xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-generic.c (revision 657729a89dd578d8cfc70d6616f5c65a48a8b33a)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  *
23  *  Solaris Porting Layer (SPL) Generic Implementation.
24  */
25 
26 #include <sys/isa_defs.h>
27 #include <sys/sysmacros.h>
28 #include <sys/systeminfo.h>
29 #include <sys/vmsystm.h>
30 #include <sys/kmem.h>
31 #include <sys/kmem_cache.h>
32 #include <sys/vmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35 #include <sys/taskq.h>
36 #include <sys/tsd.h>
37 #include <sys/zmod.h>
38 #include <sys/debug.h>
39 #include <sys/proc.h>
40 #include <sys/kstat.h>
41 #include <sys/file.h>
42 #include <sys/sunddi.h>
43 #include <linux/ctype.h>
44 #include <sys/disp.h>
45 #include <sys/random.h>
46 #include <sys/string.h>
47 #include <linux/kmod.h>
48 #include <linux/mod_compat.h>
49 #include <sys/cred.h>
50 #include <sys/vnode.h>
51 #include <sys/misc.h>
52 #include <linux/mod_compat.h>
53 
54 unsigned long spl_hostid = 0;
55 EXPORT_SYMBOL(spl_hostid);
56 
57 /* CSTYLED */
58 module_param(spl_hostid, ulong, 0644);
59 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
60 
61 proc_t p0;
62 EXPORT_SYMBOL(p0);
63 
64 /*
65  * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
66  *
67  * "Scrambled Linear Pseudorandom Number Generators∗"
68  * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
69  *
70  * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
71  * is to provide bytes containing random numbers. It is mapped to /dev/urandom
72  * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
73  * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
74  * we can implement it using a fast PRNG that we seed using Linux' actual
75  * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
76  * with an independent seed so that all calls to random_get_pseudo_bytes() are
77  * free of atomic instructions.
78  *
79  * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
80  * to generate words larger than 256 bits will paradoxically be limited to
81  * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
82  * 256-bit words and selecting the first will implicitly select the second. If
83  * a caller finds this behavior undesirable, random_get_bytes() should be used
84  * instead.
85  *
86  * XXX: Linux interrupt handlers that trigger within the critical section
87  * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
88  * see the same numbers. Nothing in the code currently calls this in an
89  * interrupt handler, so this is considered to be okay. If that becomes a
90  * problem, we could create a set of per-cpu variables for interrupt handlers
91  * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
92  * true.
93  */
94 static void __percpu *spl_pseudo_entropy;
95 
96 /*
97  * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
98  * licensed file:
99  *
100  * https://prng.di.unimi.it/xoshiro256plusplus.c
101  */
102 
103 static inline uint64_t rotl(const uint64_t x, int k)
104 {
105 	return ((x << k) | (x >> (64 - k)));
106 }
107 
108 static inline uint64_t
109 spl_rand_next(uint64_t *s)
110 {
111 	const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
112 
113 	const uint64_t t = s[1] << 17;
114 
115 	s[2] ^= s[0];
116 	s[3] ^= s[1];
117 	s[1] ^= s[2];
118 	s[0] ^= s[3];
119 
120 	s[2] ^= t;
121 
122 	s[3] = rotl(s[3], 45);
123 
124 	return (result);
125 }
126 
127 static inline void
128 spl_rand_jump(uint64_t *s)
129 {
130 	static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
131 	    0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
132 
133 	uint64_t s0 = 0;
134 	uint64_t s1 = 0;
135 	uint64_t s2 = 0;
136 	uint64_t s3 = 0;
137 	int i, b;
138 	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
139 		for (b = 0; b < 64; b++) {
140 			if (JUMP[i] & 1ULL << b) {
141 				s0 ^= s[0];
142 				s1 ^= s[1];
143 				s2 ^= s[2];
144 				s3 ^= s[3];
145 			}
146 			(void) spl_rand_next(s);
147 		}
148 
149 	s[0] = s0;
150 	s[1] = s1;
151 	s[2] = s2;
152 	s[3] = s3;
153 }
154 
155 int
156 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
157 {
158 	uint64_t *xp, s[4];
159 
160 	ASSERT(ptr);
161 
162 	xp = get_cpu_ptr(spl_pseudo_entropy);
163 
164 	s[0] = xp[0];
165 	s[1] = xp[1];
166 	s[2] = xp[2];
167 	s[3] = xp[3];
168 
169 	while (len) {
170 		union {
171 			uint64_t ui64;
172 			uint8_t byte[sizeof (uint64_t)];
173 		}entropy;
174 		int i = MIN(len, sizeof (uint64_t));
175 
176 		len -= i;
177 		entropy.ui64 = spl_rand_next(s);
178 
179 		/*
180 		 * xoshiro256++ has low entropy lower bytes, so we copy the
181 		 * higher order bytes first.
182 		 */
183 		while (i--)
184 #ifdef _ZFS_BIG_ENDIAN
185 			*ptr++ = entropy.byte[i];
186 #else
187 			*ptr++ = entropy.byte[7 - i];
188 #endif
189 	}
190 
191 	xp[0] = s[0];
192 	xp[1] = s[1];
193 	xp[2] = s[2];
194 	xp[3] = s[3];
195 
196 	put_cpu_ptr(spl_pseudo_entropy);
197 
198 	return (0);
199 }
200 
201 
202 EXPORT_SYMBOL(random_get_pseudo_bytes);
203 
204 #if BITS_PER_LONG == 32
205 
206 /*
207  * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
208  * provides a div64_u64() function for this we do not use it because the
209  * implementation is flawed.  There are cases which return incorrect
210  * results as late as linux-2.6.35.  Until this is fixed upstream the
211  * spl must provide its own implementation.
212  *
213  * This implementation is a slightly modified version of the algorithm
214  * proposed by the book 'Hacker's Delight'.  The original source can be
215  * found here and is available for use without restriction.
216  *
217  * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
218  */
219 
220 /*
221  * Calculate number of leading of zeros for a 64-bit value.
222  */
223 static int
224 nlz64(uint64_t x)
225 {
226 	register int n = 0;
227 
228 	if (x == 0)
229 		return (64);
230 
231 	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
232 	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
233 	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
234 	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
235 	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
236 	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
237 
238 	return (n);
239 }
240 
241 /*
242  * Newer kernels have a div_u64() function but we define our own
243  * to simplify portability between kernel versions.
244  */
245 static inline uint64_t
246 __div_u64(uint64_t u, uint32_t v)
247 {
248 	(void) do_div(u, v);
249 	return (u);
250 }
251 
252 /*
253  * Turn off missing prototypes warning for these functions. They are
254  * replacements for libgcc-provided functions and will never be called
255  * directly.
256  */
257 #pragma GCC diagnostic push
258 #pragma GCC diagnostic ignored "-Wmissing-prototypes"
259 
260 /*
261  * Implementation of 64-bit unsigned division for 32-bit machines.
262  *
263  * First the procedure takes care of the case in which the divisor is a
264  * 32-bit quantity. There are two subcases: (1) If the left half of the
265  * dividend is less than the divisor, one execution of do_div() is all that
266  * is required (overflow is not possible). (2) Otherwise it does two
267  * divisions, using the grade school method.
268  */
269 uint64_t
270 __udivdi3(uint64_t u, uint64_t v)
271 {
272 	uint64_t u0, u1, v1, q0, q1, k;
273 	int n;
274 
275 	if (v >> 32 == 0) {			// If v < 2**32:
276 		if (u >> 32 < v) {		// If u/v cannot overflow,
277 			return (__div_u64(u, v)); // just do one division.
278 		} else {			// If u/v would overflow:
279 			u1 = u >> 32;		// Break u into two halves.
280 			u0 = u & 0xFFFFFFFF;
281 			q1 = __div_u64(u1, v);	// First quotient digit.
282 			k  = u1 - q1 * v;	// First remainder, < v.
283 			u0 += (k << 32);
284 			q0 = __div_u64(u0, v);	// Seconds quotient digit.
285 			return ((q1 << 32) + q0);
286 		}
287 	} else {				// If v >= 2**32:
288 		n = nlz64(v);			// 0 <= n <= 31.
289 		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
290 		u1 = u >> 1;			// To ensure no overflow.
291 		q1 = __div_u64(u1, v1);		// Get quotient from
292 		q0 = (q1 << n) >> 31;		// Undo normalization and
293 						// division of u by 2.
294 		if (q0 != 0)			// Make q0 correct or
295 			q0 = q0 - 1;		// too small by 1.
296 		if ((u - q0 * v) >= v)
297 			q0 = q0 + 1;		// Now q0 is correct.
298 
299 		return (q0);
300 	}
301 }
302 EXPORT_SYMBOL(__udivdi3);
303 
304 #ifndef abs64
305 /* CSTYLED */
306 #define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
307 #endif
308 
309 /*
310  * Implementation of 64-bit signed division for 32-bit machines.
311  */
312 int64_t
313 __divdi3(int64_t u, int64_t v)
314 {
315 	int64_t q, t;
316 	q = __udivdi3(abs64(u), abs64(v));
317 	t = (u ^ v) >> 63;	// If u, v have different
318 	return ((q ^ t) - t);	// signs, negate q.
319 }
320 EXPORT_SYMBOL(__divdi3);
321 
322 /*
323  * Implementation of 64-bit unsigned modulo for 32-bit machines.
324  */
325 uint64_t
326 __umoddi3(uint64_t dividend, uint64_t divisor)
327 {
328 	return (dividend - (divisor * __udivdi3(dividend, divisor)));
329 }
330 EXPORT_SYMBOL(__umoddi3);
331 
332 /* 64-bit signed modulo for 32-bit machines. */
333 int64_t
334 __moddi3(int64_t n, int64_t d)
335 {
336 	int64_t q;
337 	boolean_t nn = B_FALSE;
338 
339 	if (n < 0) {
340 		nn = B_TRUE;
341 		n = -n;
342 	}
343 	if (d < 0)
344 		d = -d;
345 
346 	q = __umoddi3(n, d);
347 
348 	return (nn ? -q : q);
349 }
350 EXPORT_SYMBOL(__moddi3);
351 
352 /*
353  * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
354  */
355 uint64_t
356 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
357 {
358 	uint64_t q = __udivdi3(n, d);
359 	if (r)
360 		*r = n - d * q;
361 	return (q);
362 }
363 EXPORT_SYMBOL(__udivmoddi4);
364 
365 /*
366  * Implementation of 64-bit signed division/modulo for 32-bit machines.
367  */
368 int64_t
369 __divmoddi4(int64_t n, int64_t d, int64_t *r)
370 {
371 	int64_t q, rr;
372 	boolean_t nn = B_FALSE;
373 	boolean_t nd = B_FALSE;
374 	if (n < 0) {
375 		nn = B_TRUE;
376 		n = -n;
377 	}
378 	if (d < 0) {
379 		nd = B_TRUE;
380 		d = -d;
381 	}
382 
383 	q = __udivmoddi4(n, d, (uint64_t *)&rr);
384 
385 	if (nn != nd)
386 		q = -q;
387 	if (nn)
388 		rr = -rr;
389 	if (r)
390 		*r = rr;
391 	return (q);
392 }
393 EXPORT_SYMBOL(__divmoddi4);
394 
395 #if defined(__arm) || defined(__arm__)
396 /*
397  * Implementation of 64-bit (un)signed division for 32-bit arm machines.
398  *
399  * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
400  * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
401  * and the remainder in {r2, r3}.  The return type is specifically left
402  * set to 'void' to ensure the compiler does not overwrite these registers
403  * during the return.  All results are in registers as per ABI
404  */
405 void
406 __aeabi_uldivmod(uint64_t u, uint64_t v)
407 {
408 	uint64_t res;
409 	uint64_t mod;
410 
411 	res = __udivdi3(u, v);
412 	mod = __umoddi3(u, v);
413 	{
414 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
415 		register uint32_t r1 asm("r1") = (res >> 32);
416 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
417 		register uint32_t r3 asm("r3") = (mod >> 32);
418 
419 		asm volatile(""
420 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
421 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
422 
423 		return; /* r0; */
424 	}
425 }
426 EXPORT_SYMBOL(__aeabi_uldivmod);
427 
428 void
429 __aeabi_ldivmod(int64_t u, int64_t v)
430 {
431 	int64_t res;
432 	uint64_t mod;
433 
434 	res =  __divdi3(u, v);
435 	mod = __umoddi3(u, v);
436 	{
437 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
438 		register uint32_t r1 asm("r1") = (res >> 32);
439 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
440 		register uint32_t r3 asm("r3") = (mod >> 32);
441 
442 		asm volatile(""
443 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
444 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
445 
446 		return; /* r0; */
447 	}
448 }
449 EXPORT_SYMBOL(__aeabi_ldivmod);
450 #endif /* __arm || __arm__ */
451 
452 #pragma GCC diagnostic pop
453 
454 #endif /* BITS_PER_LONG */
455 
456 /*
457  * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
458  * ddi_strtol(9F) man page.  I have not verified the behavior of these
459  * functions against their Solaris counterparts.  It is possible that I
460  * may have misinterpreted the man page or the man page is incorrect.
461  */
462 int ddi_strtol(const char *, char **, int, long *);
463 int ddi_strtoull(const char *, char **, int, unsigned long long *);
464 int ddi_strtoll(const char *, char **, int, long long *);
465 
466 #define	define_ddi_strtox(type, valtype)				\
467 int ddi_strto##type(const char *str, char **endptr,			\
468     int base, valtype *result)						\
469 {									\
470 	valtype last_value, value = 0;					\
471 	char *ptr = (char *)str;					\
472 	int digit, minus = 0;						\
473 									\
474 	while (strchr(" \t\n\r\f", *ptr))				\
475 		++ptr;							\
476 									\
477 	if (strlen(ptr) == 0)						\
478 		return (EINVAL);					\
479 									\
480 	switch (*ptr) {							\
481 	case '-':							\
482 		minus = 1;						\
483 		zfs_fallthrough;					\
484 	case '+':							\
485 		++ptr;							\
486 		break;							\
487 	}								\
488 									\
489 	/* Auto-detect base based on prefix */				\
490 	if (!base) {							\
491 		if (str[0] == '0') {					\
492 			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
493 				base = 16; /* hex */			\
494 				ptr += 2;				\
495 			} else if (str[1] >= '0' && str[1] < 8) {	\
496 				base = 8; /* octal */			\
497 				ptr += 1;				\
498 			} else {					\
499 				return (EINVAL);			\
500 			}						\
501 		} else {						\
502 			base = 10; /* decimal */			\
503 		}							\
504 	}								\
505 									\
506 	while (1) {							\
507 		if (isdigit(*ptr))					\
508 			digit = *ptr - '0';				\
509 		else if (isalpha(*ptr))					\
510 			digit = tolower(*ptr) - 'a' + 10;		\
511 		else							\
512 			break;						\
513 									\
514 		if (digit >= base)					\
515 			break;						\
516 									\
517 		last_value = value;					\
518 		value = value * base + digit;				\
519 		if (last_value > value) /* Overflow */			\
520 			return (ERANGE);				\
521 									\
522 		ptr++;							\
523 	}								\
524 									\
525 	*result = minus ? -value : value;				\
526 									\
527 	if (endptr)							\
528 		*endptr = ptr;						\
529 									\
530 	return (0);							\
531 }									\
532 
533 define_ddi_strtox(l, long)
534 define_ddi_strtox(ull, unsigned long long)
535 define_ddi_strtox(ll, long long)
536 
537 EXPORT_SYMBOL(ddi_strtol);
538 EXPORT_SYMBOL(ddi_strtoll);
539 EXPORT_SYMBOL(ddi_strtoull);
540 
541 int
542 ddi_copyin(const void *from, void *to, size_t len, int flags)
543 {
544 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
545 	if (flags & FKIOCTL) {
546 		memcpy(to, from, len);
547 		return (0);
548 	}
549 
550 	return (copyin(from, to, len));
551 }
552 EXPORT_SYMBOL(ddi_copyin);
553 
554 #define	define_spl_param(type, fmt)					\
555 int									\
556 spl_param_get_##type(char *buf, zfs_kernel_param_t *kp)			\
557 {									\
558 	return (scnprintf(buf, PAGE_SIZE, fmt "\n",			\
559 	    *(type *)kp->arg));						\
560 }									\
561 int									\
562 spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp)		\
563 {									\
564 	return (kstrto##type(buf, 0, (type *)kp->arg));			\
565 }									\
566 const struct kernel_param_ops spl_param_ops_##type = {			\
567 	.set = spl_param_set_##type,					\
568 	.get = spl_param_get_##type,					\
569 };									\
570 EXPORT_SYMBOL(spl_param_get_##type);					\
571 EXPORT_SYMBOL(spl_param_set_##type);					\
572 EXPORT_SYMBOL(spl_param_ops_##type);
573 
574 define_spl_param(s64, "%lld")
575 define_spl_param(u64, "%llu")
576 
577 /*
578  * Post a uevent to userspace whenever a new vdev adds to the pool. It is
579  * necessary to sync blkid information with udev, which zed daemon uses
580  * during device hotplug to identify the vdev.
581  */
582 void
583 spl_signal_kobj_evt(struct block_device *bdev)
584 {
585 #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
586 #ifdef HAVE_BDEV_KOBJ
587 	struct kobject *disk_kobj = bdev_kobj(bdev);
588 #else
589 	struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
590 #endif
591 	if (disk_kobj) {
592 		int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
593 		if (ret) {
594 			pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
595 			    " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
596 			    kobject_name(disk_kobj), disk_kobj, ret);
597 		}
598 	}
599 #else
600 /*
601  * This is encountered if neither bdev_kobj() nor part_to_dev() is available
602  * in the kernel - likely due to an API change that needs to be chased down.
603  */
604 #error "Unsupported kernel: unable to get struct kobj from bdev"
605 #endif
606 }
607 EXPORT_SYMBOL(spl_signal_kobj_evt);
608 
609 int
610 ddi_copyout(const void *from, void *to, size_t len, int flags)
611 {
612 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
613 	if (flags & FKIOCTL) {
614 		memcpy(to, from, len);
615 		return (0);
616 	}
617 
618 	return (copyout(from, to, len));
619 }
620 EXPORT_SYMBOL(ddi_copyout);
621 
622 static ssize_t
623 spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
624 {
625 #if defined(HAVE_KERNEL_READ_PPOS)
626 	return (kernel_read(file, buf, count, pos));
627 #else
628 	mm_segment_t saved_fs;
629 	ssize_t ret;
630 
631 	saved_fs = get_fs();
632 	set_fs(KERNEL_DS);
633 
634 	ret = vfs_read(file, (void __user *)buf, count, pos);
635 
636 	set_fs(saved_fs);
637 
638 	return (ret);
639 #endif
640 }
641 
642 static int
643 spl_getattr(struct file *filp, struct kstat *stat)
644 {
645 	int rc;
646 
647 	ASSERT(filp);
648 	ASSERT(stat);
649 
650 #if defined(HAVE_4ARGS_VFS_GETATTR)
651 	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
652 	    AT_STATX_SYNC_AS_STAT);
653 #elif defined(HAVE_2ARGS_VFS_GETATTR)
654 	rc = vfs_getattr(&filp->f_path, stat);
655 #elif defined(HAVE_3ARGS_VFS_GETATTR)
656 	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
657 #else
658 #error "No available vfs_getattr()"
659 #endif
660 	if (rc)
661 		return (-rc);
662 
663 	return (0);
664 }
665 
666 /*
667  * Read the unique system identifier from the /etc/hostid file.
668  *
669  * The behavior of /usr/bin/hostid on Linux systems with the
670  * regular eglibc and coreutils is:
671  *
672  *   1. Generate the value if the /etc/hostid file does not exist
673  *      or if the /etc/hostid file is less than four bytes in size.
674  *
675  *   2. If the /etc/hostid file is at least 4 bytes, then return
676  *      the first four bytes [0..3] in native endian order.
677  *
678  *   3. Always ignore bytes [4..] if they exist in the file.
679  *
680  * Only the first four bytes are significant, even on systems that
681  * have a 64-bit word size.
682  *
683  * See:
684  *
685  *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
686  *   coreutils: src/hostid.c
687  *
688  * Notes:
689  *
690  * The /etc/hostid file on Solaris is a text file that often reads:
691  *
692  *   # DO NOT EDIT
693  *   "0123456789"
694  *
695  * Directly copying this file to Linux results in a constant
696  * hostid of 4f442023 because the default comment constitutes
697  * the first four bytes of the file.
698  *
699  */
700 
701 static char *spl_hostid_path = HW_HOSTID_PATH;
702 module_param(spl_hostid_path, charp, 0444);
703 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
704 
705 static int
706 hostid_read(uint32_t *hostid)
707 {
708 	uint64_t size;
709 	uint32_t value = 0;
710 	int error;
711 	loff_t off;
712 	struct file *filp;
713 	struct kstat stat;
714 
715 	filp = filp_open(spl_hostid_path, 0, 0);
716 
717 	if (IS_ERR(filp))
718 		return (ENOENT);
719 
720 	error = spl_getattr(filp, &stat);
721 	if (error) {
722 		filp_close(filp, 0);
723 		return (error);
724 	}
725 	size = stat.size;
726 	// cppcheck-suppress sizeofwithnumericparameter
727 	if (size < sizeof (HW_HOSTID_MASK)) {
728 		filp_close(filp, 0);
729 		return (EINVAL);
730 	}
731 
732 	off = 0;
733 	/*
734 	 * Read directly into the variable like eglibc does.
735 	 * Short reads are okay; native behavior is preserved.
736 	 */
737 	error = spl_kernel_read(filp, &value, sizeof (value), &off);
738 	if (error < 0) {
739 		filp_close(filp, 0);
740 		return (EIO);
741 	}
742 
743 	/* Mask down to 32 bits like coreutils does. */
744 	*hostid = (value & HW_HOSTID_MASK);
745 	filp_close(filp, 0);
746 
747 	return (0);
748 }
749 
750 /*
751  * Return the system hostid.  Preferentially use the spl_hostid module option
752  * when set, otherwise use the value in the /etc/hostid file.
753  */
754 uint32_t
755 zone_get_hostid(void *zone)
756 {
757 	uint32_t hostid;
758 
759 	ASSERT3P(zone, ==, NULL);
760 
761 	if (spl_hostid != 0)
762 		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
763 
764 	if (hostid_read(&hostid) == 0)
765 		return (hostid);
766 
767 	return (0);
768 }
769 EXPORT_SYMBOL(zone_get_hostid);
770 
771 static int
772 spl_kvmem_init(void)
773 {
774 	int rc = 0;
775 
776 	rc = spl_kmem_init();
777 	if (rc)
778 		return (rc);
779 
780 	rc = spl_vmem_init();
781 	if (rc) {
782 		spl_kmem_fini();
783 		return (rc);
784 	}
785 
786 	return (rc);
787 }
788 
789 /*
790  * We initialize the random number generator with 128 bits of entropy from the
791  * system random number generator. In the improbable case that we have a zero
792  * seed, we fallback to the system jiffies, unless it is also zero, in which
793  * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
794  * initialize each of the per-cpu seeds so that the sequences generated on each
795  * CPU are guaranteed to never overlap in practice.
796  */
797 static int __init
798 spl_random_init(void)
799 {
800 	uint64_t s[4];
801 	int i = 0;
802 
803 	spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
804 	    sizeof (uint64_t));
805 
806 	if (!spl_pseudo_entropy)
807 		return (-ENOMEM);
808 
809 	get_random_bytes(s, sizeof (s));
810 
811 	if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
812 		if (jiffies != 0) {
813 			s[0] = jiffies;
814 			s[1] = ~0 - jiffies;
815 			s[2] = ~jiffies;
816 			s[3] = jiffies - ~0;
817 		} else {
818 			(void) memcpy(s, "improbable seed", 16);
819 		}
820 		printk("SPL: get_random_bytes() returned 0 "
821 		    "when generating random seed. Setting initial seed to "
822 		    "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
823 		    cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
824 	}
825 
826 	for_each_possible_cpu(i) {
827 		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
828 
829 		spl_rand_jump(s);
830 
831 		wordp[0] = s[0];
832 		wordp[1] = s[1];
833 		wordp[2] = s[2];
834 		wordp[3] = s[3];
835 	}
836 
837 	return (0);
838 }
839 
840 static void
841 spl_random_fini(void)
842 {
843 	free_percpu(spl_pseudo_entropy);
844 }
845 
846 static void
847 spl_kvmem_fini(void)
848 {
849 	spl_vmem_fini();
850 	spl_kmem_fini();
851 }
852 
853 static int __init
854 spl_init(void)
855 {
856 	int rc = 0;
857 
858 	if ((rc = spl_random_init()))
859 		goto out0;
860 
861 	if ((rc = spl_kvmem_init()))
862 		goto out1;
863 
864 	if ((rc = spl_tsd_init()))
865 		goto out2;
866 
867 	if ((rc = spl_taskq_init()))
868 		goto out3;
869 
870 	if ((rc = spl_kmem_cache_init()))
871 		goto out4;
872 
873 	if ((rc = spl_proc_init()))
874 		goto out5;
875 
876 	if ((rc = spl_kstat_init()))
877 		goto out6;
878 
879 	if ((rc = spl_zlib_init()))
880 		goto out7;
881 
882 	if ((rc = spl_zone_init()))
883 		goto out8;
884 
885 	return (rc);
886 
887 out8:
888 	spl_zlib_fini();
889 out7:
890 	spl_kstat_fini();
891 out6:
892 	spl_proc_fini();
893 out5:
894 	spl_kmem_cache_fini();
895 out4:
896 	spl_taskq_fini();
897 out3:
898 	spl_tsd_fini();
899 out2:
900 	spl_kvmem_fini();
901 out1:
902 	spl_random_fini();
903 out0:
904 	return (rc);
905 }
906 
907 static void __exit
908 spl_fini(void)
909 {
910 	spl_zone_fini();
911 	spl_zlib_fini();
912 	spl_kstat_fini();
913 	spl_proc_fini();
914 	spl_kmem_cache_fini();
915 	spl_taskq_fini();
916 	spl_tsd_fini();
917 	spl_kvmem_fini();
918 	spl_random_fini();
919 }
920 
921 module_init(spl_init);
922 module_exit(spl_fini);
923 
924 MODULE_DESCRIPTION("Solaris Porting Layer");
925 MODULE_AUTHOR(ZFS_META_AUTHOR);
926 MODULE_LICENSE("GPL");
927 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
928