1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 * 23 * Solaris Porting Layer (SPL) Generic Implementation. 24 */ 25 26 #include <sys/isa_defs.h> 27 #include <sys/sysmacros.h> 28 #include <sys/systeminfo.h> 29 #include <sys/vmsystm.h> 30 #include <sys/kmem.h> 31 #include <sys/kmem_cache.h> 32 #include <sys/vmem.h> 33 #include <sys/mutex.h> 34 #include <sys/rwlock.h> 35 #include <sys/taskq.h> 36 #include <sys/tsd.h> 37 #include <sys/zmod.h> 38 #include <sys/debug.h> 39 #include <sys/proc.h> 40 #include <sys/kstat.h> 41 #include <sys/file.h> 42 #include <sys/sunddi.h> 43 #include <linux/ctype.h> 44 #include <sys/disp.h> 45 #include <sys/random.h> 46 #include <sys/string.h> 47 #include <linux/kmod.h> 48 #include <linux/mod_compat.h> 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/misc.h> 52 #include <linux/mod_compat.h> 53 54 unsigned long spl_hostid = 0; 55 EXPORT_SYMBOL(spl_hostid); 56 57 /* CSTYLED */ 58 module_param(spl_hostid, ulong, 0644); 59 MODULE_PARM_DESC(spl_hostid, "The system hostid."); 60 61 proc_t p0; 62 EXPORT_SYMBOL(p0); 63 64 /* 65 * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna 66 * 67 * "Scrambled Linear Pseudorandom Number Generators∗" 68 * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf 69 * 70 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 71 * is to provide bytes containing random numbers. It is mapped to /dev/urandom 72 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 73 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 74 * we can implement it using a fast PRNG that we seed using Linux' actual 75 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 76 * with an independent seed so that all calls to random_get_pseudo_bytes() are 77 * free of atomic instructions. 78 * 79 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 80 * to generate words larger than 256 bits will paradoxically be limited to 81 * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1` 82 * 256-bit words and selecting the first will implicitly select the second. If 83 * a caller finds this behavior undesirable, random_get_bytes() should be used 84 * instead. 85 * 86 * XXX: Linux interrupt handlers that trigger within the critical section 87 * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will 88 * see the same numbers. Nothing in the code currently calls this in an 89 * interrupt handler, so this is considered to be okay. If that becomes a 90 * problem, we could create a set of per-cpu variables for interrupt handlers 91 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 92 * true. 93 */ 94 static void __percpu *spl_pseudo_entropy; 95 96 /* 97 * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0 98 * licensed file: 99 * 100 * https://prng.di.unimi.it/xoshiro256plusplus.c 101 */ 102 103 static inline uint64_t rotl(const uint64_t x, int k) 104 { 105 return ((x << k) | (x >> (64 - k))); 106 } 107 108 static inline uint64_t 109 spl_rand_next(uint64_t *s) 110 { 111 const uint64_t result = rotl(s[0] + s[3], 23) + s[0]; 112 113 const uint64_t t = s[1] << 17; 114 115 s[2] ^= s[0]; 116 s[3] ^= s[1]; 117 s[1] ^= s[2]; 118 s[0] ^= s[3]; 119 120 s[2] ^= t; 121 122 s[3] = rotl(s[3], 45); 123 124 return (result); 125 } 126 127 static inline void 128 spl_rand_jump(uint64_t *s) 129 { 130 static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 131 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c }; 132 133 uint64_t s0 = 0; 134 uint64_t s1 = 0; 135 uint64_t s2 = 0; 136 uint64_t s3 = 0; 137 int i, b; 138 for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 139 for (b = 0; b < 64; b++) { 140 if (JUMP[i] & 1ULL << b) { 141 s0 ^= s[0]; 142 s1 ^= s[1]; 143 s2 ^= s[2]; 144 s3 ^= s[3]; 145 } 146 (void) spl_rand_next(s); 147 } 148 149 s[0] = s0; 150 s[1] = s1; 151 s[2] = s2; 152 s[3] = s3; 153 } 154 155 int 156 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 157 { 158 uint64_t *xp, s[4]; 159 160 ASSERT(ptr); 161 162 xp = get_cpu_ptr(spl_pseudo_entropy); 163 164 s[0] = xp[0]; 165 s[1] = xp[1]; 166 s[2] = xp[2]; 167 s[3] = xp[3]; 168 169 while (len) { 170 union { 171 uint64_t ui64; 172 uint8_t byte[sizeof (uint64_t)]; 173 }entropy; 174 int i = MIN(len, sizeof (uint64_t)); 175 176 len -= i; 177 entropy.ui64 = spl_rand_next(s); 178 179 /* 180 * xoshiro256++ has low entropy lower bytes, so we copy the 181 * higher order bytes first. 182 */ 183 while (i--) 184 #ifdef _ZFS_BIG_ENDIAN 185 *ptr++ = entropy.byte[i]; 186 #else 187 *ptr++ = entropy.byte[7 - i]; 188 #endif 189 } 190 191 xp[0] = s[0]; 192 xp[1] = s[1]; 193 xp[2] = s[2]; 194 xp[3] = s[3]; 195 196 put_cpu_ptr(spl_pseudo_entropy); 197 198 return (0); 199 } 200 201 202 EXPORT_SYMBOL(random_get_pseudo_bytes); 203 204 #if BITS_PER_LONG == 32 205 206 /* 207 * Support 64/64 => 64 division on a 32-bit platform. While the kernel 208 * provides a div64_u64() function for this we do not use it because the 209 * implementation is flawed. There are cases which return incorrect 210 * results as late as linux-2.6.35. Until this is fixed upstream the 211 * spl must provide its own implementation. 212 * 213 * This implementation is a slightly modified version of the algorithm 214 * proposed by the book 'Hacker's Delight'. The original source can be 215 * found here and is available for use without restriction. 216 * 217 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 218 */ 219 220 /* 221 * Calculate number of leading of zeros for a 64-bit value. 222 */ 223 static int 224 nlz64(uint64_t x) 225 { 226 register int n = 0; 227 228 if (x == 0) 229 return (64); 230 231 if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 232 if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 233 if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 234 if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 235 if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 236 if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 237 238 return (n); 239 } 240 241 /* 242 * Newer kernels have a div_u64() function but we define our own 243 * to simplify portability between kernel versions. 244 */ 245 static inline uint64_t 246 __div_u64(uint64_t u, uint32_t v) 247 { 248 (void) do_div(u, v); 249 return (u); 250 } 251 252 /* 253 * Turn off missing prototypes warning for these functions. They are 254 * replacements for libgcc-provided functions and will never be called 255 * directly. 256 */ 257 #pragma GCC diagnostic push 258 #pragma GCC diagnostic ignored "-Wmissing-prototypes" 259 260 /* 261 * Implementation of 64-bit unsigned division for 32-bit machines. 262 * 263 * First the procedure takes care of the case in which the divisor is a 264 * 32-bit quantity. There are two subcases: (1) If the left half of the 265 * dividend is less than the divisor, one execution of do_div() is all that 266 * is required (overflow is not possible). (2) Otherwise it does two 267 * divisions, using the grade school method. 268 */ 269 uint64_t 270 __udivdi3(uint64_t u, uint64_t v) 271 { 272 uint64_t u0, u1, v1, q0, q1, k; 273 int n; 274 275 if (v >> 32 == 0) { // If v < 2**32: 276 if (u >> 32 < v) { // If u/v cannot overflow, 277 return (__div_u64(u, v)); // just do one division. 278 } else { // If u/v would overflow: 279 u1 = u >> 32; // Break u into two halves. 280 u0 = u & 0xFFFFFFFF; 281 q1 = __div_u64(u1, v); // First quotient digit. 282 k = u1 - q1 * v; // First remainder, < v. 283 u0 += (k << 32); 284 q0 = __div_u64(u0, v); // Seconds quotient digit. 285 return ((q1 << 32) + q0); 286 } 287 } else { // If v >= 2**32: 288 n = nlz64(v); // 0 <= n <= 31. 289 v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 290 u1 = u >> 1; // To ensure no overflow. 291 q1 = __div_u64(u1, v1); // Get quotient from 292 q0 = (q1 << n) >> 31; // Undo normalization and 293 // division of u by 2. 294 if (q0 != 0) // Make q0 correct or 295 q0 = q0 - 1; // too small by 1. 296 if ((u - q0 * v) >= v) 297 q0 = q0 + 1; // Now q0 is correct. 298 299 return (q0); 300 } 301 } 302 EXPORT_SYMBOL(__udivdi3); 303 304 #ifndef abs64 305 /* CSTYLED */ 306 #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 307 #endif 308 309 /* 310 * Implementation of 64-bit signed division for 32-bit machines. 311 */ 312 int64_t 313 __divdi3(int64_t u, int64_t v) 314 { 315 int64_t q, t; 316 q = __udivdi3(abs64(u), abs64(v)); 317 t = (u ^ v) >> 63; // If u, v have different 318 return ((q ^ t) - t); // signs, negate q. 319 } 320 EXPORT_SYMBOL(__divdi3); 321 322 /* 323 * Implementation of 64-bit unsigned modulo for 32-bit machines. 324 */ 325 uint64_t 326 __umoddi3(uint64_t dividend, uint64_t divisor) 327 { 328 return (dividend - (divisor * __udivdi3(dividend, divisor))); 329 } 330 EXPORT_SYMBOL(__umoddi3); 331 332 /* 64-bit signed modulo for 32-bit machines. */ 333 int64_t 334 __moddi3(int64_t n, int64_t d) 335 { 336 int64_t q; 337 boolean_t nn = B_FALSE; 338 339 if (n < 0) { 340 nn = B_TRUE; 341 n = -n; 342 } 343 if (d < 0) 344 d = -d; 345 346 q = __umoddi3(n, d); 347 348 return (nn ? -q : q); 349 } 350 EXPORT_SYMBOL(__moddi3); 351 352 /* 353 * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 354 */ 355 uint64_t 356 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 357 { 358 uint64_t q = __udivdi3(n, d); 359 if (r) 360 *r = n - d * q; 361 return (q); 362 } 363 EXPORT_SYMBOL(__udivmoddi4); 364 365 /* 366 * Implementation of 64-bit signed division/modulo for 32-bit machines. 367 */ 368 int64_t 369 __divmoddi4(int64_t n, int64_t d, int64_t *r) 370 { 371 int64_t q, rr; 372 boolean_t nn = B_FALSE; 373 boolean_t nd = B_FALSE; 374 if (n < 0) { 375 nn = B_TRUE; 376 n = -n; 377 } 378 if (d < 0) { 379 nd = B_TRUE; 380 d = -d; 381 } 382 383 q = __udivmoddi4(n, d, (uint64_t *)&rr); 384 385 if (nn != nd) 386 q = -q; 387 if (nn) 388 rr = -rr; 389 if (r) 390 *r = rr; 391 return (q); 392 } 393 EXPORT_SYMBOL(__divmoddi4); 394 395 #if defined(__arm) || defined(__arm__) 396 /* 397 * Implementation of 64-bit (un)signed division for 32-bit arm machines. 398 * 399 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 400 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 401 * and the remainder in {r2, r3}. The return type is specifically left 402 * set to 'void' to ensure the compiler does not overwrite these registers 403 * during the return. All results are in registers as per ABI 404 */ 405 void 406 __aeabi_uldivmod(uint64_t u, uint64_t v) 407 { 408 uint64_t res; 409 uint64_t mod; 410 411 res = __udivdi3(u, v); 412 mod = __umoddi3(u, v); 413 { 414 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 415 register uint32_t r1 asm("r1") = (res >> 32); 416 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 417 register uint32_t r3 asm("r3") = (mod >> 32); 418 419 asm volatile("" 420 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 421 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 422 423 return; /* r0; */ 424 } 425 } 426 EXPORT_SYMBOL(__aeabi_uldivmod); 427 428 void 429 __aeabi_ldivmod(int64_t u, int64_t v) 430 { 431 int64_t res; 432 uint64_t mod; 433 434 res = __divdi3(u, v); 435 mod = __umoddi3(u, v); 436 { 437 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 438 register uint32_t r1 asm("r1") = (res >> 32); 439 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 440 register uint32_t r3 asm("r3") = (mod >> 32); 441 442 asm volatile("" 443 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 444 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 445 446 return; /* r0; */ 447 } 448 } 449 EXPORT_SYMBOL(__aeabi_ldivmod); 450 #endif /* __arm || __arm__ */ 451 452 #pragma GCC diagnostic pop 453 454 #endif /* BITS_PER_LONG */ 455 456 /* 457 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 458 * ddi_strtol(9F) man page. I have not verified the behavior of these 459 * functions against their Solaris counterparts. It is possible that I 460 * may have misinterpreted the man page or the man page is incorrect. 461 */ 462 int ddi_strtol(const char *, char **, int, long *); 463 int ddi_strtoull(const char *, char **, int, unsigned long long *); 464 int ddi_strtoll(const char *, char **, int, long long *); 465 466 #define define_ddi_strtox(type, valtype) \ 467 int ddi_strto##type(const char *str, char **endptr, \ 468 int base, valtype *result) \ 469 { \ 470 valtype last_value, value = 0; \ 471 char *ptr = (char *)str; \ 472 int digit, minus = 0; \ 473 \ 474 while (strchr(" \t\n\r\f", *ptr)) \ 475 ++ptr; \ 476 \ 477 if (strlen(ptr) == 0) \ 478 return (EINVAL); \ 479 \ 480 switch (*ptr) { \ 481 case '-': \ 482 minus = 1; \ 483 zfs_fallthrough; \ 484 case '+': \ 485 ++ptr; \ 486 break; \ 487 } \ 488 \ 489 /* Auto-detect base based on prefix */ \ 490 if (!base) { \ 491 if (str[0] == '0') { \ 492 if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 493 base = 16; /* hex */ \ 494 ptr += 2; \ 495 } else if (str[1] >= '0' && str[1] < 8) { \ 496 base = 8; /* octal */ \ 497 ptr += 1; \ 498 } else { \ 499 return (EINVAL); \ 500 } \ 501 } else { \ 502 base = 10; /* decimal */ \ 503 } \ 504 } \ 505 \ 506 while (1) { \ 507 if (isdigit(*ptr)) \ 508 digit = *ptr - '0'; \ 509 else if (isalpha(*ptr)) \ 510 digit = tolower(*ptr) - 'a' + 10; \ 511 else \ 512 break; \ 513 \ 514 if (digit >= base) \ 515 break; \ 516 \ 517 last_value = value; \ 518 value = value * base + digit; \ 519 if (last_value > value) /* Overflow */ \ 520 return (ERANGE); \ 521 \ 522 ptr++; \ 523 } \ 524 \ 525 *result = minus ? -value : value; \ 526 \ 527 if (endptr) \ 528 *endptr = ptr; \ 529 \ 530 return (0); \ 531 } \ 532 533 define_ddi_strtox(l, long) 534 define_ddi_strtox(ull, unsigned long long) 535 define_ddi_strtox(ll, long long) 536 537 EXPORT_SYMBOL(ddi_strtol); 538 EXPORT_SYMBOL(ddi_strtoll); 539 EXPORT_SYMBOL(ddi_strtoull); 540 541 int 542 ddi_copyin(const void *from, void *to, size_t len, int flags) 543 { 544 /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 545 if (flags & FKIOCTL) { 546 memcpy(to, from, len); 547 return (0); 548 } 549 550 return (copyin(from, to, len)); 551 } 552 EXPORT_SYMBOL(ddi_copyin); 553 554 #define define_spl_param(type, fmt) \ 555 int \ 556 spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \ 557 { \ 558 return (scnprintf(buf, PAGE_SIZE, fmt "\n", \ 559 *(type *)kp->arg)); \ 560 } \ 561 int \ 562 spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \ 563 { \ 564 return (kstrto##type(buf, 0, (type *)kp->arg)); \ 565 } \ 566 const struct kernel_param_ops spl_param_ops_##type = { \ 567 .set = spl_param_set_##type, \ 568 .get = spl_param_get_##type, \ 569 }; \ 570 EXPORT_SYMBOL(spl_param_get_##type); \ 571 EXPORT_SYMBOL(spl_param_set_##type); \ 572 EXPORT_SYMBOL(spl_param_ops_##type); 573 574 define_spl_param(s64, "%lld") 575 define_spl_param(u64, "%llu") 576 577 /* 578 * Post a uevent to userspace whenever a new vdev adds to the pool. It is 579 * necessary to sync blkid information with udev, which zed daemon uses 580 * during device hotplug to identify the vdev. 581 */ 582 void 583 spl_signal_kobj_evt(struct block_device *bdev) 584 { 585 #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV) 586 #ifdef HAVE_BDEV_KOBJ 587 struct kobject *disk_kobj = bdev_kobj(bdev); 588 #else 589 struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj; 590 #endif 591 if (disk_kobj) { 592 int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE); 593 if (ret) { 594 pr_warn("ZFS: Sending event '%d' to kobject: '%s'" 595 " (%p): failed(ret:%d)\n", KOBJ_CHANGE, 596 kobject_name(disk_kobj), disk_kobj, ret); 597 } 598 } 599 #else 600 /* 601 * This is encountered if neither bdev_kobj() nor part_to_dev() is available 602 * in the kernel - likely due to an API change that needs to be chased down. 603 */ 604 #error "Unsupported kernel: unable to get struct kobj from bdev" 605 #endif 606 } 607 EXPORT_SYMBOL(spl_signal_kobj_evt); 608 609 int 610 ddi_copyout(const void *from, void *to, size_t len, int flags) 611 { 612 /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 613 if (flags & FKIOCTL) { 614 memcpy(to, from, len); 615 return (0); 616 } 617 618 return (copyout(from, to, len)); 619 } 620 EXPORT_SYMBOL(ddi_copyout); 621 622 static ssize_t 623 spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) 624 { 625 #if defined(HAVE_KERNEL_READ_PPOS) 626 return (kernel_read(file, buf, count, pos)); 627 #else 628 mm_segment_t saved_fs; 629 ssize_t ret; 630 631 saved_fs = get_fs(); 632 set_fs(KERNEL_DS); 633 634 ret = vfs_read(file, (void __user *)buf, count, pos); 635 636 set_fs(saved_fs); 637 638 return (ret); 639 #endif 640 } 641 642 static int 643 spl_getattr(struct file *filp, struct kstat *stat) 644 { 645 int rc; 646 647 ASSERT(filp); 648 ASSERT(stat); 649 650 #if defined(HAVE_4ARGS_VFS_GETATTR) 651 rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 652 AT_STATX_SYNC_AS_STAT); 653 #elif defined(HAVE_2ARGS_VFS_GETATTR) 654 rc = vfs_getattr(&filp->f_path, stat); 655 #elif defined(HAVE_3ARGS_VFS_GETATTR) 656 rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); 657 #else 658 #error "No available vfs_getattr()" 659 #endif 660 if (rc) 661 return (-rc); 662 663 return (0); 664 } 665 666 /* 667 * Read the unique system identifier from the /etc/hostid file. 668 * 669 * The behavior of /usr/bin/hostid on Linux systems with the 670 * regular eglibc and coreutils is: 671 * 672 * 1. Generate the value if the /etc/hostid file does not exist 673 * or if the /etc/hostid file is less than four bytes in size. 674 * 675 * 2. If the /etc/hostid file is at least 4 bytes, then return 676 * the first four bytes [0..3] in native endian order. 677 * 678 * 3. Always ignore bytes [4..] if they exist in the file. 679 * 680 * Only the first four bytes are significant, even on systems that 681 * have a 64-bit word size. 682 * 683 * See: 684 * 685 * eglibc: sysdeps/unix/sysv/linux/gethostid.c 686 * coreutils: src/hostid.c 687 * 688 * Notes: 689 * 690 * The /etc/hostid file on Solaris is a text file that often reads: 691 * 692 * # DO NOT EDIT 693 * "0123456789" 694 * 695 * Directly copying this file to Linux results in a constant 696 * hostid of 4f442023 because the default comment constitutes 697 * the first four bytes of the file. 698 * 699 */ 700 701 static char *spl_hostid_path = HW_HOSTID_PATH; 702 module_param(spl_hostid_path, charp, 0444); 703 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 704 705 static int 706 hostid_read(uint32_t *hostid) 707 { 708 uint64_t size; 709 uint32_t value = 0; 710 int error; 711 loff_t off; 712 struct file *filp; 713 struct kstat stat; 714 715 filp = filp_open(spl_hostid_path, 0, 0); 716 717 if (IS_ERR(filp)) 718 return (ENOENT); 719 720 error = spl_getattr(filp, &stat); 721 if (error) { 722 filp_close(filp, 0); 723 return (error); 724 } 725 size = stat.size; 726 // cppcheck-suppress sizeofwithnumericparameter 727 if (size < sizeof (HW_HOSTID_MASK)) { 728 filp_close(filp, 0); 729 return (EINVAL); 730 } 731 732 off = 0; 733 /* 734 * Read directly into the variable like eglibc does. 735 * Short reads are okay; native behavior is preserved. 736 */ 737 error = spl_kernel_read(filp, &value, sizeof (value), &off); 738 if (error < 0) { 739 filp_close(filp, 0); 740 return (EIO); 741 } 742 743 /* Mask down to 32 bits like coreutils does. */ 744 *hostid = (value & HW_HOSTID_MASK); 745 filp_close(filp, 0); 746 747 return (0); 748 } 749 750 /* 751 * Return the system hostid. Preferentially use the spl_hostid module option 752 * when set, otherwise use the value in the /etc/hostid file. 753 */ 754 uint32_t 755 zone_get_hostid(void *zone) 756 { 757 uint32_t hostid; 758 759 ASSERT3P(zone, ==, NULL); 760 761 if (spl_hostid != 0) 762 return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 763 764 if (hostid_read(&hostid) == 0) 765 return (hostid); 766 767 return (0); 768 } 769 EXPORT_SYMBOL(zone_get_hostid); 770 771 static int 772 spl_kvmem_init(void) 773 { 774 int rc = 0; 775 776 rc = spl_kmem_init(); 777 if (rc) 778 return (rc); 779 780 rc = spl_vmem_init(); 781 if (rc) { 782 spl_kmem_fini(); 783 return (rc); 784 } 785 786 return (rc); 787 } 788 789 /* 790 * We initialize the random number generator with 128 bits of entropy from the 791 * system random number generator. In the improbable case that we have a zero 792 * seed, we fallback to the system jiffies, unless it is also zero, in which 793 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 794 * initialize each of the per-cpu seeds so that the sequences generated on each 795 * CPU are guaranteed to never overlap in practice. 796 */ 797 static int __init 798 spl_random_init(void) 799 { 800 uint64_t s[4]; 801 int i = 0; 802 803 spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t), 804 sizeof (uint64_t)); 805 806 if (!spl_pseudo_entropy) 807 return (-ENOMEM); 808 809 get_random_bytes(s, sizeof (s)); 810 811 if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) { 812 if (jiffies != 0) { 813 s[0] = jiffies; 814 s[1] = ~0 - jiffies; 815 s[2] = ~jiffies; 816 s[3] = jiffies - ~0; 817 } else { 818 (void) memcpy(s, "improbable seed", 16); 819 } 820 printk("SPL: get_random_bytes() returned 0 " 821 "when generating random seed. Setting initial seed to " 822 "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]), 823 cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3])); 824 } 825 826 for_each_possible_cpu(i) { 827 uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 828 829 spl_rand_jump(s); 830 831 wordp[0] = s[0]; 832 wordp[1] = s[1]; 833 wordp[2] = s[2]; 834 wordp[3] = s[3]; 835 } 836 837 return (0); 838 } 839 840 static void 841 spl_random_fini(void) 842 { 843 free_percpu(spl_pseudo_entropy); 844 } 845 846 static void 847 spl_kvmem_fini(void) 848 { 849 spl_vmem_fini(); 850 spl_kmem_fini(); 851 } 852 853 static int __init 854 spl_init(void) 855 { 856 int rc = 0; 857 858 if ((rc = spl_random_init())) 859 goto out0; 860 861 if ((rc = spl_kvmem_init())) 862 goto out1; 863 864 if ((rc = spl_tsd_init())) 865 goto out2; 866 867 if ((rc = spl_taskq_init())) 868 goto out3; 869 870 if ((rc = spl_kmem_cache_init())) 871 goto out4; 872 873 if ((rc = spl_proc_init())) 874 goto out5; 875 876 if ((rc = spl_kstat_init())) 877 goto out6; 878 879 if ((rc = spl_zlib_init())) 880 goto out7; 881 882 if ((rc = spl_zone_init())) 883 goto out8; 884 885 return (rc); 886 887 out8: 888 spl_zlib_fini(); 889 out7: 890 spl_kstat_fini(); 891 out6: 892 spl_proc_fini(); 893 out5: 894 spl_kmem_cache_fini(); 895 out4: 896 spl_taskq_fini(); 897 out3: 898 spl_tsd_fini(); 899 out2: 900 spl_kvmem_fini(); 901 out1: 902 spl_random_fini(); 903 out0: 904 return (rc); 905 } 906 907 static void __exit 908 spl_fini(void) 909 { 910 spl_zone_fini(); 911 spl_zlib_fini(); 912 spl_kstat_fini(); 913 spl_proc_fini(); 914 spl_kmem_cache_fini(); 915 spl_taskq_fini(); 916 spl_tsd_fini(); 917 spl_kvmem_fini(); 918 spl_random_fini(); 919 } 920 921 module_init(spl_init); 922 module_exit(spl_fini); 923 924 MODULE_DESCRIPTION("Solaris Porting Layer"); 925 MODULE_AUTHOR(ZFS_META_AUTHOR); 926 MODULE_LICENSE("GPL"); 927 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 928