xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-generic.c (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  *
23  *  Solaris Porting Layer (SPL) Generic Implementation.
24  */
25 
26 #include <sys/sysmacros.h>
27 #include <sys/systeminfo.h>
28 #include <sys/vmsystm.h>
29 #include <sys/kmem.h>
30 #include <sys/kmem_cache.h>
31 #include <sys/vmem.h>
32 #include <sys/mutex.h>
33 #include <sys/rwlock.h>
34 #include <sys/taskq.h>
35 #include <sys/tsd.h>
36 #include <sys/zmod.h>
37 #include <sys/debug.h>
38 #include <sys/proc.h>
39 #include <sys/kstat.h>
40 #include <sys/file.h>
41 #include <sys/sunddi.h>
42 #include <linux/ctype.h>
43 #include <sys/disp.h>
44 #include <sys/random.h>
45 #include <sys/string.h>
46 #include <linux/kmod.h>
47 #include <linux/mod_compat.h>
48 #include <sys/cred.h>
49 #include <sys/vnode.h>
50 
51 unsigned long spl_hostid = 0;
52 EXPORT_SYMBOL(spl_hostid);
53 
54 /* CSTYLED */
55 module_param(spl_hostid, ulong, 0644);
56 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
57 
58 proc_t p0;
59 EXPORT_SYMBOL(p0);
60 
61 /*
62  * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
63  *
64  * "Further scramblings of Marsaglia's xorshift generators"
65  * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
66  *
67  * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
68  * is to provide bytes containing random numbers. It is mapped to /dev/urandom
69  * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
70  * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
71  * we can implement it using a fast PRNG that we seed using Linux' actual
72  * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
73  * with an independent seed so that all calls to random_get_pseudo_bytes() are
74  * free of atomic instructions.
75  *
76  * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
77  * to generate words larger than 128 bits will paradoxically be limited to
78  * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
79  * 128-bit words and selecting the first will implicitly select the second. If
80  * a caller finds this behavior undesirable, random_get_bytes() should be used
81  * instead.
82  *
83  * XXX: Linux interrupt handlers that trigger within the critical section
84  * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
85  * see the same numbers. Nothing in the code currently calls this in an
86  * interrupt handler, so this is considered to be okay. If that becomes a
87  * problem, we could create a set of per-cpu variables for interrupt handlers
88  * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
89  * true.
90  */
91 void __percpu *spl_pseudo_entropy;
92 
93 /*
94  * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
95  * file:
96  *
97  * http://xorshift.di.unimi.it/xorshift128plus.c
98  */
99 
100 static inline uint64_t
101 spl_rand_next(uint64_t *s)
102 {
103 	uint64_t s1 = s[0];
104 	const uint64_t s0 = s[1];
105 	s[0] = s0;
106 	s1 ^= s1 << 23; // a
107 	s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
108 	return (s[1] + s0);
109 }
110 
111 static inline void
112 spl_rand_jump(uint64_t *s)
113 {
114 	static const uint64_t JUMP[] =
115 	    { 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
116 
117 	uint64_t s0 = 0;
118 	uint64_t s1 = 0;
119 	int i, b;
120 	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
121 		for (b = 0; b < 64; b++) {
122 			if (JUMP[i] & 1ULL << b) {
123 				s0 ^= s[0];
124 				s1 ^= s[1];
125 			}
126 			(void) spl_rand_next(s);
127 		}
128 
129 	s[0] = s0;
130 	s[1] = s1;
131 }
132 
133 int
134 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
135 {
136 	uint64_t *xp, s[2];
137 
138 	ASSERT(ptr);
139 
140 	xp = get_cpu_ptr(spl_pseudo_entropy);
141 
142 	s[0] = xp[0];
143 	s[1] = xp[1];
144 
145 	while (len) {
146 		union {
147 			uint64_t ui64;
148 			uint8_t byte[sizeof (uint64_t)];
149 		}entropy;
150 		int i = MIN(len, sizeof (uint64_t));
151 
152 		len -= i;
153 		entropy.ui64 = spl_rand_next(s);
154 
155 		while (i--)
156 			*ptr++ = entropy.byte[i];
157 	}
158 
159 	xp[0] = s[0];
160 	xp[1] = s[1];
161 
162 	put_cpu_ptr(spl_pseudo_entropy);
163 
164 	return (0);
165 }
166 
167 
168 EXPORT_SYMBOL(random_get_pseudo_bytes);
169 
170 #if BITS_PER_LONG == 32
171 
172 /*
173  * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
174  * provides a div64_u64() function for this we do not use it because the
175  * implementation is flawed.  There are cases which return incorrect
176  * results as late as linux-2.6.35.  Until this is fixed upstream the
177  * spl must provide its own implementation.
178  *
179  * This implementation is a slightly modified version of the algorithm
180  * proposed by the book 'Hacker's Delight'.  The original source can be
181  * found here and is available for use without restriction.
182  *
183  * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
184  */
185 
186 /*
187  * Calculate number of leading of zeros for a 64-bit value.
188  */
189 static int
190 nlz64(uint64_t x)
191 {
192 	register int n = 0;
193 
194 	if (x == 0)
195 		return (64);
196 
197 	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
198 	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
199 	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
200 	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
201 	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
202 	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
203 
204 	return (n);
205 }
206 
207 /*
208  * Newer kernels have a div_u64() function but we define our own
209  * to simplify portability between kernel versions.
210  */
211 static inline uint64_t
212 __div_u64(uint64_t u, uint32_t v)
213 {
214 	(void) do_div(u, v);
215 	return (u);
216 }
217 
218 /*
219  * Turn off missing prototypes warning for these functions. They are
220  * replacements for libgcc-provided functions and will never be called
221  * directly.
222  */
223 #pragma GCC diagnostic push
224 #pragma GCC diagnostic ignored "-Wmissing-prototypes"
225 
226 /*
227  * Implementation of 64-bit unsigned division for 32-bit machines.
228  *
229  * First the procedure takes care of the case in which the divisor is a
230  * 32-bit quantity. There are two subcases: (1) If the left half of the
231  * dividend is less than the divisor, one execution of do_div() is all that
232  * is required (overflow is not possible). (2) Otherwise it does two
233  * divisions, using the grade school method.
234  */
235 uint64_t
236 __udivdi3(uint64_t u, uint64_t v)
237 {
238 	uint64_t u0, u1, v1, q0, q1, k;
239 	int n;
240 
241 	if (v >> 32 == 0) {			// If v < 2**32:
242 		if (u >> 32 < v) {		// If u/v cannot overflow,
243 			return (__div_u64(u, v)); // just do one division.
244 		} else {			// If u/v would overflow:
245 			u1 = u >> 32;		// Break u into two halves.
246 			u0 = u & 0xFFFFFFFF;
247 			q1 = __div_u64(u1, v);	// First quotient digit.
248 			k  = u1 - q1 * v;	// First remainder, < v.
249 			u0 += (k << 32);
250 			q0 = __div_u64(u0, v);	// Seconds quotient digit.
251 			return ((q1 << 32) + q0);
252 		}
253 	} else {				// If v >= 2**32:
254 		n = nlz64(v);			// 0 <= n <= 31.
255 		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
256 		u1 = u >> 1;			// To ensure no overflow.
257 		q1 = __div_u64(u1, v1);		// Get quotient from
258 		q0 = (q1 << n) >> 31;		// Undo normalization and
259 						// division of u by 2.
260 		if (q0 != 0)			// Make q0 correct or
261 			q0 = q0 - 1;		// too small by 1.
262 		if ((u - q0 * v) >= v)
263 			q0 = q0 + 1;		// Now q0 is correct.
264 
265 		return (q0);
266 	}
267 }
268 EXPORT_SYMBOL(__udivdi3);
269 
270 #ifndef abs64
271 /* CSTYLED */
272 #define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
273 #endif
274 
275 /*
276  * Implementation of 64-bit signed division for 32-bit machines.
277  */
278 int64_t
279 __divdi3(int64_t u, int64_t v)
280 {
281 	int64_t q, t;
282 	q = __udivdi3(abs64(u), abs64(v));
283 	t = (u ^ v) >> 63;	// If u, v have different
284 	return ((q ^ t) - t);	// signs, negate q.
285 }
286 EXPORT_SYMBOL(__divdi3);
287 
288 /*
289  * Implementation of 64-bit unsigned modulo for 32-bit machines.
290  */
291 uint64_t
292 __umoddi3(uint64_t dividend, uint64_t divisor)
293 {
294 	return (dividend - (divisor * __udivdi3(dividend, divisor)));
295 }
296 EXPORT_SYMBOL(__umoddi3);
297 
298 /* 64-bit signed modulo for 32-bit machines. */
299 int64_t
300 __moddi3(int64_t n, int64_t d)
301 {
302 	int64_t q;
303 	boolean_t nn = B_FALSE;
304 
305 	if (n < 0) {
306 		nn = B_TRUE;
307 		n = -n;
308 	}
309 	if (d < 0)
310 		d = -d;
311 
312 	q = __umoddi3(n, d);
313 
314 	return (nn ? -q : q);
315 }
316 EXPORT_SYMBOL(__moddi3);
317 
318 /*
319  * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
320  */
321 uint64_t
322 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
323 {
324 	uint64_t q = __udivdi3(n, d);
325 	if (r)
326 		*r = n - d * q;
327 	return (q);
328 }
329 EXPORT_SYMBOL(__udivmoddi4);
330 
331 /*
332  * Implementation of 64-bit signed division/modulo for 32-bit machines.
333  */
334 int64_t
335 __divmoddi4(int64_t n, int64_t d, int64_t *r)
336 {
337 	int64_t q, rr;
338 	boolean_t nn = B_FALSE;
339 	boolean_t nd = B_FALSE;
340 	if (n < 0) {
341 		nn = B_TRUE;
342 		n = -n;
343 	}
344 	if (d < 0) {
345 		nd = B_TRUE;
346 		d = -d;
347 	}
348 
349 	q = __udivmoddi4(n, d, (uint64_t *)&rr);
350 
351 	if (nn != nd)
352 		q = -q;
353 	if (nn)
354 		rr = -rr;
355 	if (r)
356 		*r = rr;
357 	return (q);
358 }
359 EXPORT_SYMBOL(__divmoddi4);
360 
361 #if defined(__arm) || defined(__arm__)
362 /*
363  * Implementation of 64-bit (un)signed division for 32-bit arm machines.
364  *
365  * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
366  * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
367  * and the remainder in {r2, r3}.  The return type is specifically left
368  * set to 'void' to ensure the compiler does not overwrite these registers
369  * during the return.  All results are in registers as per ABI
370  */
371 void
372 __aeabi_uldivmod(uint64_t u, uint64_t v)
373 {
374 	uint64_t res;
375 	uint64_t mod;
376 
377 	res = __udivdi3(u, v);
378 	mod = __umoddi3(u, v);
379 	{
380 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
381 		register uint32_t r1 asm("r1") = (res >> 32);
382 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
383 		register uint32_t r3 asm("r3") = (mod >> 32);
384 
385 		asm volatile(""
386 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
387 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
388 
389 		return; /* r0; */
390 	}
391 }
392 EXPORT_SYMBOL(__aeabi_uldivmod);
393 
394 void
395 __aeabi_ldivmod(int64_t u, int64_t v)
396 {
397 	int64_t res;
398 	uint64_t mod;
399 
400 	res =  __divdi3(u, v);
401 	mod = __umoddi3(u, v);
402 	{
403 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
404 		register uint32_t r1 asm("r1") = (res >> 32);
405 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
406 		register uint32_t r3 asm("r3") = (mod >> 32);
407 
408 		asm volatile(""
409 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
410 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
411 
412 		return; /* r0; */
413 	}
414 }
415 EXPORT_SYMBOL(__aeabi_ldivmod);
416 #endif /* __arm || __arm__ */
417 
418 #pragma GCC diagnostic pop
419 
420 #endif /* BITS_PER_LONG */
421 
422 /*
423  * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
424  * ddi_strtol(9F) man page.  I have not verified the behavior of these
425  * functions against their Solaris counterparts.  It is possible that I
426  * may have misinterpreted the man page or the man page is incorrect.
427  */
428 int ddi_strtol(const char *, char **, int, long *);
429 int ddi_strtoull(const char *, char **, int, unsigned long long *);
430 int ddi_strtoll(const char *, char **, int, long long *);
431 
432 #define	define_ddi_strtox(type, valtype)				\
433 int ddi_strto##type(const char *str, char **endptr,			\
434     int base, valtype *result)						\
435 {									\
436 	valtype last_value, value = 0;					\
437 	char *ptr = (char *)str;					\
438 	int digit, minus = 0;						\
439 									\
440 	while (strchr(" \t\n\r\f", *ptr))				\
441 		++ptr;							\
442 									\
443 	if (strlen(ptr) == 0)						\
444 		return (EINVAL);					\
445 									\
446 	switch (*ptr) {							\
447 	case '-':							\
448 		minus = 1;						\
449 		zfs_fallthrough;					\
450 	case '+':							\
451 		++ptr;							\
452 		break;							\
453 	}								\
454 									\
455 	/* Auto-detect base based on prefix */				\
456 	if (!base) {							\
457 		if (str[0] == '0') {					\
458 			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
459 				base = 16; /* hex */			\
460 				ptr += 2;				\
461 			} else if (str[1] >= '0' && str[1] < 8) {	\
462 				base = 8; /* octal */			\
463 				ptr += 1;				\
464 			} else {					\
465 				return (EINVAL);			\
466 			}						\
467 		} else {						\
468 			base = 10; /* decimal */			\
469 		}							\
470 	}								\
471 									\
472 	while (1) {							\
473 		if (isdigit(*ptr))					\
474 			digit = *ptr - '0';				\
475 		else if (isalpha(*ptr))					\
476 			digit = tolower(*ptr) - 'a' + 10;		\
477 		else							\
478 			break;						\
479 									\
480 		if (digit >= base)					\
481 			break;						\
482 									\
483 		last_value = value;					\
484 		value = value * base + digit;				\
485 		if (last_value > value) /* Overflow */			\
486 			return (ERANGE);				\
487 									\
488 		ptr++;							\
489 	}								\
490 									\
491 	*result = minus ? -value : value;				\
492 									\
493 	if (endptr)							\
494 		*endptr = ptr;						\
495 									\
496 	return (0);							\
497 }									\
498 
499 define_ddi_strtox(l, long)
500 define_ddi_strtox(ull, unsigned long long)
501 define_ddi_strtox(ll, long long)
502 
503 EXPORT_SYMBOL(ddi_strtol);
504 EXPORT_SYMBOL(ddi_strtoll);
505 EXPORT_SYMBOL(ddi_strtoull);
506 
507 int
508 ddi_copyin(const void *from, void *to, size_t len, int flags)
509 {
510 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
511 	if (flags & FKIOCTL) {
512 		memcpy(to, from, len);
513 		return (0);
514 	}
515 
516 	return (copyin(from, to, len));
517 }
518 EXPORT_SYMBOL(ddi_copyin);
519 
520 int
521 ddi_copyout(const void *from, void *to, size_t len, int flags)
522 {
523 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
524 	if (flags & FKIOCTL) {
525 		memcpy(to, from, len);
526 		return (0);
527 	}
528 
529 	return (copyout(from, to, len));
530 }
531 EXPORT_SYMBOL(ddi_copyout);
532 
533 static ssize_t
534 spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
535 {
536 #if defined(HAVE_KERNEL_READ_PPOS)
537 	return (kernel_read(file, buf, count, pos));
538 #else
539 	mm_segment_t saved_fs;
540 	ssize_t ret;
541 
542 	saved_fs = get_fs();
543 	set_fs(KERNEL_DS);
544 
545 	ret = vfs_read(file, (void __user *)buf, count, pos);
546 
547 	set_fs(saved_fs);
548 
549 	return (ret);
550 #endif
551 }
552 
553 static int
554 spl_getattr(struct file *filp, struct kstat *stat)
555 {
556 	int rc;
557 
558 	ASSERT(filp);
559 	ASSERT(stat);
560 
561 #if defined(HAVE_4ARGS_VFS_GETATTR)
562 	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
563 	    AT_STATX_SYNC_AS_STAT);
564 #elif defined(HAVE_2ARGS_VFS_GETATTR)
565 	rc = vfs_getattr(&filp->f_path, stat);
566 #elif defined(HAVE_3ARGS_VFS_GETATTR)
567 	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
568 #else
569 #error "No available vfs_getattr()"
570 #endif
571 	if (rc)
572 		return (-rc);
573 
574 	return (0);
575 }
576 
577 /*
578  * Read the unique system identifier from the /etc/hostid file.
579  *
580  * The behavior of /usr/bin/hostid on Linux systems with the
581  * regular eglibc and coreutils is:
582  *
583  *   1. Generate the value if the /etc/hostid file does not exist
584  *      or if the /etc/hostid file is less than four bytes in size.
585  *
586  *   2. If the /etc/hostid file is at least 4 bytes, then return
587  *      the first four bytes [0..3] in native endian order.
588  *
589  *   3. Always ignore bytes [4..] if they exist in the file.
590  *
591  * Only the first four bytes are significant, even on systems that
592  * have a 64-bit word size.
593  *
594  * See:
595  *
596  *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
597  *   coreutils: src/hostid.c
598  *
599  * Notes:
600  *
601  * The /etc/hostid file on Solaris is a text file that often reads:
602  *
603  *   # DO NOT EDIT
604  *   "0123456789"
605  *
606  * Directly copying this file to Linux results in a constant
607  * hostid of 4f442023 because the default comment constitutes
608  * the first four bytes of the file.
609  *
610  */
611 
612 static char *spl_hostid_path = HW_HOSTID_PATH;
613 module_param(spl_hostid_path, charp, 0444);
614 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
615 
616 static int
617 hostid_read(uint32_t *hostid)
618 {
619 	uint64_t size;
620 	uint32_t value = 0;
621 	int error;
622 	loff_t off;
623 	struct file *filp;
624 	struct kstat stat;
625 
626 	filp = filp_open(spl_hostid_path, 0, 0);
627 
628 	if (IS_ERR(filp))
629 		return (ENOENT);
630 
631 	error = spl_getattr(filp, &stat);
632 	if (error) {
633 		filp_close(filp, 0);
634 		return (error);
635 	}
636 	size = stat.size;
637 	// cppcheck-suppress sizeofwithnumericparameter
638 	if (size < sizeof (HW_HOSTID_MASK)) {
639 		filp_close(filp, 0);
640 		return (EINVAL);
641 	}
642 
643 	off = 0;
644 	/*
645 	 * Read directly into the variable like eglibc does.
646 	 * Short reads are okay; native behavior is preserved.
647 	 */
648 	error = spl_kernel_read(filp, &value, sizeof (value), &off);
649 	if (error < 0) {
650 		filp_close(filp, 0);
651 		return (EIO);
652 	}
653 
654 	/* Mask down to 32 bits like coreutils does. */
655 	*hostid = (value & HW_HOSTID_MASK);
656 	filp_close(filp, 0);
657 
658 	return (0);
659 }
660 
661 /*
662  * Return the system hostid.  Preferentially use the spl_hostid module option
663  * when set, otherwise use the value in the /etc/hostid file.
664  */
665 uint32_t
666 zone_get_hostid(void *zone)
667 {
668 	uint32_t hostid;
669 
670 	ASSERT3P(zone, ==, NULL);
671 
672 	if (spl_hostid != 0)
673 		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
674 
675 	if (hostid_read(&hostid) == 0)
676 		return (hostid);
677 
678 	return (0);
679 }
680 EXPORT_SYMBOL(zone_get_hostid);
681 
682 static int
683 spl_kvmem_init(void)
684 {
685 	int rc = 0;
686 
687 	rc = spl_kmem_init();
688 	if (rc)
689 		return (rc);
690 
691 	rc = spl_vmem_init();
692 	if (rc) {
693 		spl_kmem_fini();
694 		return (rc);
695 	}
696 
697 	return (rc);
698 }
699 
700 /*
701  * We initialize the random number generator with 128 bits of entropy from the
702  * system random number generator. In the improbable case that we have a zero
703  * seed, we fallback to the system jiffies, unless it is also zero, in which
704  * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
705  * initialize each of the per-cpu seeds so that the sequences generated on each
706  * CPU are guaranteed to never overlap in practice.
707  */
708 static void __init
709 spl_random_init(void)
710 {
711 	uint64_t s[2];
712 	int i = 0;
713 
714 	spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t),
715 	    sizeof (uint64_t));
716 
717 	get_random_bytes(s, sizeof (s));
718 
719 	if (s[0] == 0 && s[1] == 0) {
720 		if (jiffies != 0) {
721 			s[0] = jiffies;
722 			s[1] = ~0 - jiffies;
723 		} else {
724 			(void) memcpy(s, "improbable seed", sizeof (s));
725 		}
726 		printk("SPL: get_random_bytes() returned 0 "
727 		    "when generating random seed. Setting initial seed to "
728 		    "0x%016llx%016llx.\n", cpu_to_be64(s[0]),
729 		    cpu_to_be64(s[1]));
730 	}
731 
732 	for_each_possible_cpu(i) {
733 		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
734 
735 		spl_rand_jump(s);
736 
737 		wordp[0] = s[0];
738 		wordp[1] = s[1];
739 	}
740 }
741 
742 static void
743 spl_random_fini(void)
744 {
745 	free_percpu(spl_pseudo_entropy);
746 }
747 
748 static void
749 spl_kvmem_fini(void)
750 {
751 	spl_vmem_fini();
752 	spl_kmem_fini();
753 }
754 
755 static int __init
756 spl_init(void)
757 {
758 	int rc = 0;
759 
760 	spl_random_init();
761 
762 	if ((rc = spl_kvmem_init()))
763 		goto out1;
764 
765 	if ((rc = spl_tsd_init()))
766 		goto out2;
767 
768 	if ((rc = spl_taskq_init()))
769 		goto out3;
770 
771 	if ((rc = spl_kmem_cache_init()))
772 		goto out4;
773 
774 	if ((rc = spl_proc_init()))
775 		goto out5;
776 
777 	if ((rc = spl_kstat_init()))
778 		goto out6;
779 
780 	if ((rc = spl_zlib_init()))
781 		goto out7;
782 
783 	return (rc);
784 
785 out7:
786 	spl_kstat_fini();
787 out6:
788 	spl_proc_fini();
789 out5:
790 	spl_kmem_cache_fini();
791 out4:
792 	spl_taskq_fini();
793 out3:
794 	spl_tsd_fini();
795 out2:
796 	spl_kvmem_fini();
797 out1:
798 	return (rc);
799 }
800 
801 static void __exit
802 spl_fini(void)
803 {
804 	spl_zlib_fini();
805 	spl_kstat_fini();
806 	spl_proc_fini();
807 	spl_kmem_cache_fini();
808 	spl_taskq_fini();
809 	spl_tsd_fini();
810 	spl_kvmem_fini();
811 	spl_random_fini();
812 }
813 
814 module_init(spl_init);
815 module_exit(spl_fini);
816 
817 MODULE_DESCRIPTION("Solaris Porting Layer");
818 MODULE_AUTHOR(ZFS_META_AUTHOR);
819 MODULE_LICENSE("GPL");
820 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
821