xref: /freebsd/sys/contrib/openzfs/module/nvpair/nvpair.c (revision a67cc943273ba7cba2f78e33fc5897e1fbecd462)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2015, 2017 by Delphix. All rights reserved.
25  * Copyright 2018 RackTop Systems.
26  */
27 
28 /*
29  * Links to Illumos.org for more information on Interface Libraries:
30  * [1] https://illumos.org/man/3lib/libnvpair
31  * [2] https://illumos.org/man/3nvpair/nvlist_alloc
32  * [3] https://illumos.org/man/9f/nvlist_alloc
33  * [4] https://illumos.org/man/9f/nvlist_next_nvpair
34  * [5] https://illumos.org/man/9f/nvpair_value_byte
35  */
36 
37 #include <sys/debug.h>
38 #include <sys/isa_defs.h>
39 #include <sys/nvpair.h>
40 #include <sys/nvpair_impl.h>
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/strings.h>
44 #include <rpc/xdr.h>
45 #include <sys/mod.h>
46 
47 #if defined(_KERNEL)
48 #include <sys/sunddi.h>
49 #include <sys/sysmacros.h>
50 #else
51 #include <stdarg.h>
52 #include <stdlib.h>
53 #include <stddef.h>
54 #endif
55 
56 #define	skip_whitespace(p)	while ((*(p) == ' ') || (*(p) == '\t')) p++
57 
58 /*
59  * nvpair.c - Provides kernel & userland interfaces for manipulating
60  *	name-value pairs.
61  *
62  * Overview Diagram
63  *
64  *  +--------------+
65  *  |  nvlist_t    |
66  *  |--------------|
67  *  | nvl_version  |
68  *  | nvl_nvflag   |
69  *  | nvl_priv    -+-+
70  *  | nvl_flag     | |
71  *  | nvl_pad      | |
72  *  +--------------+ |
73  *                   V
74  *      +--------------+      last i_nvp in list
75  *      | nvpriv_t     |  +--------------------->
76  *      |--------------|  |
77  *   +--+- nvp_list    |  |   +------------+
78  *   |  |  nvp_last   -+--+   + nv_alloc_t |
79  *   |  |  nvp_curr    |      |------------|
80  *   |  |  nvp_nva    -+----> | nva_ops    |
81  *   |  |  nvp_stat    |      | nva_arg    |
82  *   |  +--------------+      +------------+
83  *   |
84  *   +-------+
85  *           V
86  *   +---------------------+      +-------------------+
87  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
88  *   |---------------------|  |   |-------------------|  |
89  *   | nvi_next           -+--+   | nvi_next         -+--+
90  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
91  *   | . . . . . . . . . . |      | . . . . . . . . . |
92  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
93  *   |  - nvp_size         |      |  - nvp_size       |
94  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
95  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
96  *   |  - nvp_type         |      |  - nvp_type       |
97  *   |  - data ...         |      |  - data ...       |
98  *   +---------------------+      +-------------------+
99  *
100  *
101  *
102  *   +---------------------+              +---------------------+
103  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
104  *   |---------------------|  |       |   |---------------------|
105  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
106  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
107  *   | . . . . . . . . .   |              | . . . . . . . . .   |
108  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
109  *   |  - nvp_size         |              |  - nvp_size         |
110  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
111  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
112  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
113  *   |  - data (embedded)  |              |  - data ...         |
114  *   |    nvlist name      |              +---------------------+
115  *   |  +--------------+   |
116  *   |  |  nvlist_t    |   |
117  *   |  |--------------|   |
118  *   |  | nvl_version  |   |
119  *   |  | nvl_nvflag   |   |
120  *   |  | nvl_priv   --+---+---->
121  *   |  | nvl_flag     |   |
122  *   |  | nvl_pad      |   |
123  *   |  +--------------+   |
124  *   +---------------------+
125  *
126  *
127  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
128  * allow value to be aligned on 8 byte boundary
129  *
130  * name_len is the length of the name string including the null terminator
131  * so it must be >= 1
132  */
133 #define	NVP_SIZE_CALC(name_len, data_len) \
134 	(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
135 
136 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
137 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
138     uint_t nelem, const void *data);
139 
140 #define	NV_STAT_EMBEDDED	0x1
141 #define	EMBEDDED_NVL(nvp)	((nvlist_t *)(void *)NVP_VALUE(nvp))
142 #define	EMBEDDED_NVL_ARRAY(nvp)	((nvlist_t **)(void *)NVP_VALUE(nvp))
143 
144 #define	NVP_VALOFF(nvp)	(NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
145 #define	NVPAIR2I_NVP(nvp) \
146 	((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
147 
148 #ifdef _KERNEL
149 int nvpair_max_recursion = 20;
150 #else
151 int nvpair_max_recursion = 100;
152 #endif
153 
154 uint64_t nvlist_hashtable_init_size = (1 << 4);
155 
156 int
157 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
158 {
159 	va_list valist;
160 	int err = 0;
161 
162 	nva->nva_ops = nvo;
163 	nva->nva_arg = NULL;
164 
165 	va_start(valist, nvo);
166 	if (nva->nva_ops->nv_ao_init != NULL)
167 		err = nva->nva_ops->nv_ao_init(nva, valist);
168 	va_end(valist);
169 
170 	return (err);
171 }
172 
173 void
174 nv_alloc_reset(nv_alloc_t *nva)
175 {
176 	if (nva->nva_ops->nv_ao_reset != NULL)
177 		nva->nva_ops->nv_ao_reset(nva);
178 }
179 
180 void
181 nv_alloc_fini(nv_alloc_t *nva)
182 {
183 	if (nva->nva_ops->nv_ao_fini != NULL)
184 		nva->nva_ops->nv_ao_fini(nva);
185 }
186 
187 nv_alloc_t *
188 nvlist_lookup_nv_alloc(nvlist_t *nvl)
189 {
190 	nvpriv_t *priv;
191 
192 	if (nvl == NULL ||
193 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
194 		return (NULL);
195 
196 	return (priv->nvp_nva);
197 }
198 
199 static void *
200 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
201 {
202 	nv_alloc_t *nva = nvp->nvp_nva;
203 	void *buf;
204 
205 	if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
206 		bzero(buf, size);
207 
208 	return (buf);
209 }
210 
211 static void
212 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
213 {
214 	nv_alloc_t *nva = nvp->nvp_nva;
215 
216 	nva->nva_ops->nv_ao_free(nva, buf, size);
217 }
218 
219 static void
220 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
221 {
222 	bzero(priv, sizeof (nvpriv_t));
223 
224 	priv->nvp_nva = nva;
225 	priv->nvp_stat = stat;
226 }
227 
228 static nvpriv_t *
229 nv_priv_alloc(nv_alloc_t *nva)
230 {
231 	nvpriv_t *priv;
232 
233 	/*
234 	 * nv_mem_alloc() cannot called here because it needs the priv
235 	 * argument.
236 	 */
237 	if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
238 		return (NULL);
239 
240 	nv_priv_init(priv, nva, 0);
241 
242 	return (priv);
243 }
244 
245 /*
246  * Embedded lists need their own nvpriv_t's.  We create a new
247  * nvpriv_t using the parameters and allocator from the parent
248  * list's nvpriv_t.
249  */
250 static nvpriv_t *
251 nv_priv_alloc_embedded(nvpriv_t *priv)
252 {
253 	nvpriv_t *emb_priv;
254 
255 	if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
256 		return (NULL);
257 
258 	nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
259 
260 	return (emb_priv);
261 }
262 
263 static int
264 nvt_tab_alloc(nvpriv_t *priv, uint64_t buckets)
265 {
266 	ASSERT3P(priv->nvp_hashtable, ==, NULL);
267 	ASSERT0(priv->nvp_nbuckets);
268 	ASSERT0(priv->nvp_nentries);
269 
270 	i_nvp_t **tab = nv_mem_zalloc(priv, buckets * sizeof (i_nvp_t *));
271 	if (tab == NULL)
272 		return (ENOMEM);
273 
274 	priv->nvp_hashtable = tab;
275 	priv->nvp_nbuckets = buckets;
276 	return (0);
277 }
278 
279 static void
280 nvt_tab_free(nvpriv_t *priv)
281 {
282 	i_nvp_t **tab = priv->nvp_hashtable;
283 	if (tab == NULL) {
284 		ASSERT0(priv->nvp_nbuckets);
285 		ASSERT0(priv->nvp_nentries);
286 		return;
287 	}
288 
289 	nv_mem_free(priv, tab, priv->nvp_nbuckets * sizeof (i_nvp_t *));
290 
291 	priv->nvp_hashtable = NULL;
292 	priv->nvp_nbuckets = 0;
293 	priv->nvp_nentries = 0;
294 }
295 
296 static uint32_t
297 nvt_hash(const char *p)
298 {
299 	uint32_t g, hval = 0;
300 
301 	while (*p) {
302 		hval = (hval << 4) + *p++;
303 		if ((g = (hval & 0xf0000000)) != 0)
304 			hval ^= g >> 24;
305 		hval &= ~g;
306 	}
307 	return (hval);
308 }
309 
310 static boolean_t
311 nvt_nvpair_match(nvpair_t *nvp1, nvpair_t *nvp2, uint32_t nvflag)
312 {
313 	boolean_t match = B_FALSE;
314 	if (nvflag & NV_UNIQUE_NAME_TYPE) {
315 		if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0 &&
316 		    NVP_TYPE(nvp1) == NVP_TYPE(nvp2))
317 			match = B_TRUE;
318 	} else {
319 		ASSERT(nvflag == 0 || nvflag & NV_UNIQUE_NAME);
320 		if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0)
321 			match = B_TRUE;
322 	}
323 	return (match);
324 }
325 
326 static nvpair_t *
327 nvt_lookup_name_type(nvlist_t *nvl, const char *name, data_type_t type)
328 {
329 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
330 	ASSERT(priv != NULL);
331 
332 	i_nvp_t **tab = priv->nvp_hashtable;
333 
334 	if (tab == NULL) {
335 		ASSERT3P(priv->nvp_list, ==, NULL);
336 		ASSERT0(priv->nvp_nbuckets);
337 		ASSERT0(priv->nvp_nentries);
338 		return (NULL);
339 	} else {
340 		ASSERT(priv->nvp_nbuckets != 0);
341 	}
342 
343 	uint64_t hash = nvt_hash(name);
344 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
345 
346 	ASSERT3U(index, <, priv->nvp_nbuckets);
347 	i_nvp_t *entry = tab[index];
348 
349 	for (i_nvp_t *e = entry; e != NULL; e = e->nvi_hashtable_next) {
350 		if (strcmp(NVP_NAME(&e->nvi_nvp), name) == 0 &&
351 		    (type == DATA_TYPE_DONTCARE ||
352 		    NVP_TYPE(&e->nvi_nvp) == type))
353 			return (&e->nvi_nvp);
354 	}
355 	return (NULL);
356 }
357 
358 static nvpair_t *
359 nvt_lookup_name(nvlist_t *nvl, const char *name)
360 {
361 	return (nvt_lookup_name_type(nvl, name, DATA_TYPE_DONTCARE));
362 }
363 
364 static int
365 nvt_resize(nvpriv_t *priv, uint32_t new_size)
366 {
367 	i_nvp_t **tab = priv->nvp_hashtable;
368 
369 	/*
370 	 * Migrate all the entries from the current table
371 	 * to a newly-allocated table with the new size by
372 	 * re-adjusting the pointers of their entries.
373 	 */
374 	uint32_t size = priv->nvp_nbuckets;
375 	uint32_t new_mask = new_size - 1;
376 	ASSERT(ISP2(new_size));
377 
378 	i_nvp_t **new_tab = nv_mem_zalloc(priv, new_size * sizeof (i_nvp_t *));
379 	if (new_tab == NULL)
380 		return (ENOMEM);
381 
382 	uint32_t nentries = 0;
383 	for (uint32_t i = 0; i < size; i++) {
384 		i_nvp_t *next, *e = tab[i];
385 
386 		while (e != NULL) {
387 			next = e->nvi_hashtable_next;
388 
389 			uint32_t hash = nvt_hash(NVP_NAME(&e->nvi_nvp));
390 			uint32_t index = hash & new_mask;
391 
392 			e->nvi_hashtable_next = new_tab[index];
393 			new_tab[index] = e;
394 			nentries++;
395 
396 			e = next;
397 		}
398 		tab[i] = NULL;
399 	}
400 	ASSERT3U(nentries, ==, priv->nvp_nentries);
401 
402 	nvt_tab_free(priv);
403 
404 	priv->nvp_hashtable = new_tab;
405 	priv->nvp_nbuckets = new_size;
406 	priv->nvp_nentries = nentries;
407 
408 	return (0);
409 }
410 
411 static boolean_t
412 nvt_needs_togrow(nvpriv_t *priv)
413 {
414 	/*
415 	 * Grow only when we have more elements than buckets
416 	 * and the # of buckets doesn't overflow.
417 	 */
418 	return (priv->nvp_nentries > priv->nvp_nbuckets &&
419 	    (UINT32_MAX >> 1) >= priv->nvp_nbuckets);
420 }
421 
422 /*
423  * Allocate a new table that's twice the size of the old one,
424  * and migrate all the entries from the old one to the new
425  * one by re-adjusting their pointers.
426  */
427 static int
428 nvt_grow(nvpriv_t *priv)
429 {
430 	uint32_t current_size = priv->nvp_nbuckets;
431 	/* ensure we won't overflow */
432 	ASSERT3U(UINT32_MAX >> 1, >=, current_size);
433 	return (nvt_resize(priv, current_size << 1));
434 }
435 
436 static boolean_t
437 nvt_needs_toshrink(nvpriv_t *priv)
438 {
439 	/*
440 	 * Shrink only when the # of elements is less than or
441 	 * equal to 1/4 the # of buckets. Never shrink less than
442 	 * nvlist_hashtable_init_size.
443 	 */
444 	ASSERT3U(priv->nvp_nbuckets, >=, nvlist_hashtable_init_size);
445 	if (priv->nvp_nbuckets == nvlist_hashtable_init_size)
446 		return (B_FALSE);
447 	return (priv->nvp_nentries <= (priv->nvp_nbuckets >> 2));
448 }
449 
450 /*
451  * Allocate a new table that's half the size of the old one,
452  * and migrate all the entries from the old one to the new
453  * one by re-adjusting their pointers.
454  */
455 static int
456 nvt_shrink(nvpriv_t *priv)
457 {
458 	uint32_t current_size = priv->nvp_nbuckets;
459 	/* ensure we won't overflow */
460 	ASSERT3U(current_size, >=, nvlist_hashtable_init_size);
461 	return (nvt_resize(priv, current_size >> 1));
462 }
463 
464 static int
465 nvt_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
466 {
467 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
468 
469 	if (nvt_needs_toshrink(priv)) {
470 		int err = nvt_shrink(priv);
471 		if (err != 0)
472 			return (err);
473 	}
474 	i_nvp_t **tab = priv->nvp_hashtable;
475 
476 	char *name = NVP_NAME(nvp);
477 	uint64_t hash = nvt_hash(name);
478 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
479 
480 	ASSERT3U(index, <, priv->nvp_nbuckets);
481 	i_nvp_t *bucket = tab[index];
482 
483 	for (i_nvp_t *prev = NULL, *e = bucket;
484 	    e != NULL; prev = e, e = e->nvi_hashtable_next) {
485 		if (nvt_nvpair_match(&e->nvi_nvp, nvp, nvl->nvl_nvflag)) {
486 			if (prev != NULL) {
487 				prev->nvi_hashtable_next =
488 				    e->nvi_hashtable_next;
489 			} else {
490 				ASSERT3P(e, ==, bucket);
491 				tab[index] = e->nvi_hashtable_next;
492 			}
493 			e->nvi_hashtable_next = NULL;
494 			priv->nvp_nentries--;
495 			break;
496 		}
497 	}
498 
499 	return (0);
500 }
501 
502 static int
503 nvt_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
504 {
505 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
506 
507 	/* initialize nvpair table now if it doesn't exist. */
508 	if (priv->nvp_hashtable == NULL) {
509 		int err = nvt_tab_alloc(priv, nvlist_hashtable_init_size);
510 		if (err != 0)
511 			return (err);
512 	}
513 
514 	/*
515 	 * if we don't allow duplicate entries, make sure to
516 	 * unlink any existing entries from the table.
517 	 */
518 	if (nvl->nvl_nvflag != 0) {
519 		int err = nvt_remove_nvpair(nvl, nvp);
520 		if (err != 0)
521 			return (err);
522 	}
523 
524 	if (nvt_needs_togrow(priv)) {
525 		int err = nvt_grow(priv);
526 		if (err != 0)
527 			return (err);
528 	}
529 	i_nvp_t **tab = priv->nvp_hashtable;
530 
531 	char *name = NVP_NAME(nvp);
532 	uint64_t hash = nvt_hash(name);
533 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
534 
535 	ASSERT3U(index, <, priv->nvp_nbuckets);
536 	i_nvp_t *bucket = tab[index];
537 
538 	/* insert link at the beginning of the bucket */
539 	i_nvp_t *new_entry = NVPAIR2I_NVP(nvp);
540 	ASSERT3P(new_entry->nvi_hashtable_next, ==, NULL);
541 	new_entry->nvi_hashtable_next = bucket;
542 	tab[index] = new_entry;
543 
544 	priv->nvp_nentries++;
545 	return (0);
546 }
547 
548 static void
549 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
550 {
551 	nvl->nvl_version = NV_VERSION;
552 	nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
553 	nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
554 	nvl->nvl_flag = 0;
555 	nvl->nvl_pad = 0;
556 }
557 
558 uint_t
559 nvlist_nvflag(nvlist_t *nvl)
560 {
561 	return (nvl->nvl_nvflag);
562 }
563 
564 static nv_alloc_t *
565 nvlist_nv_alloc(int kmflag)
566 {
567 #if defined(_KERNEL)
568 	switch (kmflag) {
569 	case KM_SLEEP:
570 		return (nv_alloc_sleep);
571 	case KM_NOSLEEP:
572 		return (nv_alloc_nosleep);
573 	default:
574 		return (nv_alloc_pushpage);
575 	}
576 #else
577 	return (nv_alloc_nosleep);
578 #endif /* _KERNEL */
579 }
580 
581 /*
582  * nvlist_alloc - Allocate nvlist.
583  */
584 int
585 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
586 {
587 	return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
588 }
589 
590 int
591 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
592 {
593 	nvpriv_t *priv;
594 
595 	if (nvlp == NULL || nva == NULL)
596 		return (EINVAL);
597 
598 	if ((priv = nv_priv_alloc(nva)) == NULL)
599 		return (ENOMEM);
600 
601 	if ((*nvlp = nv_mem_zalloc(priv,
602 	    NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
603 		nv_mem_free(priv, priv, sizeof (nvpriv_t));
604 		return (ENOMEM);
605 	}
606 
607 	nvlist_init(*nvlp, nvflag, priv);
608 
609 	return (0);
610 }
611 
612 /*
613  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
614  */
615 static nvpair_t *
616 nvp_buf_alloc(nvlist_t *nvl, size_t len)
617 {
618 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
619 	i_nvp_t *buf;
620 	nvpair_t *nvp;
621 	size_t nvsize;
622 
623 	/*
624 	 * Allocate the buffer
625 	 */
626 	nvsize = len + offsetof(i_nvp_t, nvi_nvp);
627 
628 	if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
629 		return (NULL);
630 
631 	nvp = &buf->nvi_nvp;
632 	nvp->nvp_size = len;
633 
634 	return (nvp);
635 }
636 
637 /*
638  * nvp_buf_free - de-Allocate an i_nvp_t.
639  */
640 static void
641 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
642 {
643 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
644 	size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
645 
646 	nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
647 }
648 
649 /*
650  * nvp_buf_link - link a new nv pair into the nvlist.
651  */
652 static void
653 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
654 {
655 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
656 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
657 
658 	/* Put element at end of nvlist */
659 	if (priv->nvp_list == NULL) {
660 		priv->nvp_list = priv->nvp_last = curr;
661 	} else {
662 		curr->nvi_prev = priv->nvp_last;
663 		priv->nvp_last->nvi_next = curr;
664 		priv->nvp_last = curr;
665 	}
666 }
667 
668 /*
669  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
670  */
671 static void
672 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
673 {
674 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
675 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
676 
677 	/*
678 	 * protect nvlist_next_nvpair() against walking on freed memory.
679 	 */
680 	if (priv->nvp_curr == curr)
681 		priv->nvp_curr = curr->nvi_next;
682 
683 	if (curr == priv->nvp_list)
684 		priv->nvp_list = curr->nvi_next;
685 	else
686 		curr->nvi_prev->nvi_next = curr->nvi_next;
687 
688 	if (curr == priv->nvp_last)
689 		priv->nvp_last = curr->nvi_prev;
690 	else
691 		curr->nvi_next->nvi_prev = curr->nvi_prev;
692 }
693 
694 /*
695  * take a nvpair type and number of elements and make sure the are valid
696  */
697 static int
698 i_validate_type_nelem(data_type_t type, uint_t nelem)
699 {
700 	switch (type) {
701 	case DATA_TYPE_BOOLEAN:
702 		if (nelem != 0)
703 			return (EINVAL);
704 		break;
705 	case DATA_TYPE_BOOLEAN_VALUE:
706 	case DATA_TYPE_BYTE:
707 	case DATA_TYPE_INT8:
708 	case DATA_TYPE_UINT8:
709 	case DATA_TYPE_INT16:
710 	case DATA_TYPE_UINT16:
711 	case DATA_TYPE_INT32:
712 	case DATA_TYPE_UINT32:
713 	case DATA_TYPE_INT64:
714 	case DATA_TYPE_UINT64:
715 	case DATA_TYPE_STRING:
716 	case DATA_TYPE_HRTIME:
717 	case DATA_TYPE_NVLIST:
718 #if !defined(_KERNEL)
719 	case DATA_TYPE_DOUBLE:
720 #endif
721 		if (nelem != 1)
722 			return (EINVAL);
723 		break;
724 	case DATA_TYPE_BOOLEAN_ARRAY:
725 	case DATA_TYPE_BYTE_ARRAY:
726 	case DATA_TYPE_INT8_ARRAY:
727 	case DATA_TYPE_UINT8_ARRAY:
728 	case DATA_TYPE_INT16_ARRAY:
729 	case DATA_TYPE_UINT16_ARRAY:
730 	case DATA_TYPE_INT32_ARRAY:
731 	case DATA_TYPE_UINT32_ARRAY:
732 	case DATA_TYPE_INT64_ARRAY:
733 	case DATA_TYPE_UINT64_ARRAY:
734 	case DATA_TYPE_STRING_ARRAY:
735 	case DATA_TYPE_NVLIST_ARRAY:
736 		/* we allow arrays with 0 elements */
737 		break;
738 	default:
739 		return (EINVAL);
740 	}
741 	return (0);
742 }
743 
744 /*
745  * Verify nvp_name_sz and check the name string length.
746  */
747 static int
748 i_validate_nvpair_name(nvpair_t *nvp)
749 {
750 	if ((nvp->nvp_name_sz <= 0) ||
751 	    (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
752 		return (EFAULT);
753 
754 	/* verify the name string, make sure its terminated */
755 	if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
756 		return (EFAULT);
757 
758 	return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
759 }
760 
761 static int
762 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
763 {
764 	switch (type) {
765 	case DATA_TYPE_BOOLEAN_VALUE:
766 		if (*(boolean_t *)data != B_TRUE &&
767 		    *(boolean_t *)data != B_FALSE)
768 			return (EINVAL);
769 		break;
770 	case DATA_TYPE_BOOLEAN_ARRAY: {
771 		int i;
772 
773 		for (i = 0; i < nelem; i++)
774 			if (((boolean_t *)data)[i] != B_TRUE &&
775 			    ((boolean_t *)data)[i] != B_FALSE)
776 				return (EINVAL);
777 		break;
778 	}
779 	default:
780 		break;
781 	}
782 
783 	return (0);
784 }
785 
786 /*
787  * This function takes a pointer to what should be a nvpair and it's size
788  * and then verifies that all the nvpair fields make sense and can be
789  * trusted.  This function is used when decoding packed nvpairs.
790  */
791 static int
792 i_validate_nvpair(nvpair_t *nvp)
793 {
794 	data_type_t type = NVP_TYPE(nvp);
795 	int size1, size2;
796 
797 	/* verify nvp_name_sz, check the name string length */
798 	if (i_validate_nvpair_name(nvp) != 0)
799 		return (EFAULT);
800 
801 	if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
802 		return (EFAULT);
803 
804 	/*
805 	 * verify nvp_type, nvp_value_elem, and also possibly
806 	 * verify string values and get the value size.
807 	 */
808 	size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
809 	size1 = nvp->nvp_size - NVP_VALOFF(nvp);
810 	if (size2 < 0 || size1 != NV_ALIGN(size2))
811 		return (EFAULT);
812 
813 	return (0);
814 }
815 
816 static int
817 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
818 {
819 	nvpriv_t *priv;
820 	i_nvp_t *curr;
821 
822 	if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
823 		return (EINVAL);
824 
825 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
826 		nvpair_t *nvp = &curr->nvi_nvp;
827 		int err;
828 
829 		if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
830 		    NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
831 			return (err);
832 	}
833 
834 	return (0);
835 }
836 
837 /*
838  * Frees all memory allocated for an nvpair (like embedded lists) with
839  * the exception of the nvpair buffer itself.
840  */
841 static void
842 nvpair_free(nvpair_t *nvp)
843 {
844 	switch (NVP_TYPE(nvp)) {
845 	case DATA_TYPE_NVLIST:
846 		nvlist_free(EMBEDDED_NVL(nvp));
847 		break;
848 	case DATA_TYPE_NVLIST_ARRAY: {
849 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
850 		int i;
851 
852 		for (i = 0; i < NVP_NELEM(nvp); i++)
853 			if (nvlp[i] != NULL)
854 				nvlist_free(nvlp[i]);
855 		break;
856 	}
857 	default:
858 		break;
859 	}
860 }
861 
862 /*
863  * nvlist_free - free an unpacked nvlist
864  */
865 void
866 nvlist_free(nvlist_t *nvl)
867 {
868 	nvpriv_t *priv;
869 	i_nvp_t *curr;
870 
871 	if (nvl == NULL ||
872 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
873 		return;
874 
875 	/*
876 	 * Unpacked nvlist are linked through i_nvp_t
877 	 */
878 	curr = priv->nvp_list;
879 	while (curr != NULL) {
880 		nvpair_t *nvp = &curr->nvi_nvp;
881 		curr = curr->nvi_next;
882 
883 		nvpair_free(nvp);
884 		nvp_buf_free(nvl, nvp);
885 	}
886 
887 	if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
888 		nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
889 	else
890 		nvl->nvl_priv = 0;
891 
892 	nvt_tab_free(priv);
893 	nv_mem_free(priv, priv, sizeof (nvpriv_t));
894 }
895 
896 static int
897 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
898 {
899 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
900 	i_nvp_t *curr;
901 
902 	if (nvp == NULL)
903 		return (0);
904 
905 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
906 		if (&curr->nvi_nvp == nvp)
907 			return (1);
908 
909 	return (0);
910 }
911 
912 /*
913  * Make a copy of nvlist
914  */
915 int
916 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
917 {
918 	return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
919 }
920 
921 int
922 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
923 {
924 	int err;
925 	nvlist_t *ret;
926 
927 	if (nvl == NULL || nvlp == NULL)
928 		return (EINVAL);
929 
930 	if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
931 		return (err);
932 
933 	if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
934 		nvlist_free(ret);
935 	else
936 		*nvlp = ret;
937 
938 	return (err);
939 }
940 
941 /*
942  * Remove all with matching name
943  */
944 int
945 nvlist_remove_all(nvlist_t *nvl, const char *name)
946 {
947 	int error = ENOENT;
948 
949 	if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
950 		return (EINVAL);
951 
952 	nvpair_t *nvp;
953 	while ((nvp = nvt_lookup_name(nvl, name)) != NULL) {
954 		VERIFY0(nvlist_remove_nvpair(nvl, nvp));
955 		error = 0;
956 	}
957 
958 	return (error);
959 }
960 
961 /*
962  * Remove first one with matching name and type
963  */
964 int
965 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
966 {
967 	if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
968 		return (EINVAL);
969 
970 	nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
971 	if (nvp == NULL)
972 		return (ENOENT);
973 
974 	return (nvlist_remove_nvpair(nvl, nvp));
975 }
976 
977 int
978 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
979 {
980 	if (nvl == NULL || nvp == NULL)
981 		return (EINVAL);
982 
983 	int err = nvt_remove_nvpair(nvl, nvp);
984 	if (err != 0)
985 		return (err);
986 
987 	nvp_buf_unlink(nvl, nvp);
988 	nvpair_free(nvp);
989 	nvp_buf_free(nvl, nvp);
990 	return (0);
991 }
992 
993 /*
994  * This function calculates the size of an nvpair value.
995  *
996  * The data argument controls the behavior in case of the data types
997  * 	DATA_TYPE_STRING    	and
998  *	DATA_TYPE_STRING_ARRAY
999  * Is data == NULL then the size of the string(s) is excluded.
1000  */
1001 static int
1002 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
1003 {
1004 	uint64_t value_sz;
1005 
1006 	if (i_validate_type_nelem(type, nelem) != 0)
1007 		return (-1);
1008 
1009 	/* Calculate required size for holding value */
1010 	switch (type) {
1011 	case DATA_TYPE_BOOLEAN:
1012 		value_sz = 0;
1013 		break;
1014 	case DATA_TYPE_BOOLEAN_VALUE:
1015 		value_sz = sizeof (boolean_t);
1016 		break;
1017 	case DATA_TYPE_BYTE:
1018 		value_sz = sizeof (uchar_t);
1019 		break;
1020 	case DATA_TYPE_INT8:
1021 		value_sz = sizeof (int8_t);
1022 		break;
1023 	case DATA_TYPE_UINT8:
1024 		value_sz = sizeof (uint8_t);
1025 		break;
1026 	case DATA_TYPE_INT16:
1027 		value_sz = sizeof (int16_t);
1028 		break;
1029 	case DATA_TYPE_UINT16:
1030 		value_sz = sizeof (uint16_t);
1031 		break;
1032 	case DATA_TYPE_INT32:
1033 		value_sz = sizeof (int32_t);
1034 		break;
1035 	case DATA_TYPE_UINT32:
1036 		value_sz = sizeof (uint32_t);
1037 		break;
1038 	case DATA_TYPE_INT64:
1039 		value_sz = sizeof (int64_t);
1040 		break;
1041 	case DATA_TYPE_UINT64:
1042 		value_sz = sizeof (uint64_t);
1043 		break;
1044 #if !defined(_KERNEL)
1045 	case DATA_TYPE_DOUBLE:
1046 		value_sz = sizeof (double);
1047 		break;
1048 #endif
1049 	case DATA_TYPE_STRING:
1050 		if (data == NULL)
1051 			value_sz = 0;
1052 		else
1053 			value_sz = strlen(data) + 1;
1054 		break;
1055 	case DATA_TYPE_BOOLEAN_ARRAY:
1056 		value_sz = (uint64_t)nelem * sizeof (boolean_t);
1057 		break;
1058 	case DATA_TYPE_BYTE_ARRAY:
1059 		value_sz = (uint64_t)nelem * sizeof (uchar_t);
1060 		break;
1061 	case DATA_TYPE_INT8_ARRAY:
1062 		value_sz = (uint64_t)nelem * sizeof (int8_t);
1063 		break;
1064 	case DATA_TYPE_UINT8_ARRAY:
1065 		value_sz = (uint64_t)nelem * sizeof (uint8_t);
1066 		break;
1067 	case DATA_TYPE_INT16_ARRAY:
1068 		value_sz = (uint64_t)nelem * sizeof (int16_t);
1069 		break;
1070 	case DATA_TYPE_UINT16_ARRAY:
1071 		value_sz = (uint64_t)nelem * sizeof (uint16_t);
1072 		break;
1073 	case DATA_TYPE_INT32_ARRAY:
1074 		value_sz = (uint64_t)nelem * sizeof (int32_t);
1075 		break;
1076 	case DATA_TYPE_UINT32_ARRAY:
1077 		value_sz = (uint64_t)nelem * sizeof (uint32_t);
1078 		break;
1079 	case DATA_TYPE_INT64_ARRAY:
1080 		value_sz = (uint64_t)nelem * sizeof (int64_t);
1081 		break;
1082 	case DATA_TYPE_UINT64_ARRAY:
1083 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
1084 		break;
1085 	case DATA_TYPE_STRING_ARRAY:
1086 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
1087 
1088 		if (data != NULL) {
1089 			char *const *strs = data;
1090 			uint_t i;
1091 
1092 			/* no alignment requirement for strings */
1093 			for (i = 0; i < nelem; i++) {
1094 				if (strs[i] == NULL)
1095 					return (-1);
1096 				value_sz += strlen(strs[i]) + 1;
1097 			}
1098 		}
1099 		break;
1100 	case DATA_TYPE_HRTIME:
1101 		value_sz = sizeof (hrtime_t);
1102 		break;
1103 	case DATA_TYPE_NVLIST:
1104 		value_sz = NV_ALIGN(sizeof (nvlist_t));
1105 		break;
1106 	case DATA_TYPE_NVLIST_ARRAY:
1107 		value_sz = (uint64_t)nelem * sizeof (uint64_t) +
1108 		    (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
1109 		break;
1110 	default:
1111 		return (-1);
1112 	}
1113 
1114 	return (value_sz > INT32_MAX ? -1 : (int)value_sz);
1115 }
1116 
1117 static int
1118 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
1119 {
1120 	nvpriv_t *priv;
1121 	int err;
1122 
1123 	if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
1124 	    nvl->nvl_priv)) == NULL)
1125 		return (ENOMEM);
1126 
1127 	nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
1128 
1129 	if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
1130 		nvlist_free(emb_nvl);
1131 		emb_nvl->nvl_priv = 0;
1132 	}
1133 
1134 	return (err);
1135 }
1136 
1137 /*
1138  * nvlist_add_common - Add new <name,value> pair to nvlist
1139  */
1140 static int
1141 nvlist_add_common(nvlist_t *nvl, const char *name,
1142     data_type_t type, uint_t nelem, const void *data)
1143 {
1144 	nvpair_t *nvp;
1145 	uint_t i;
1146 
1147 	int nvp_sz, name_sz, value_sz;
1148 	int err = 0;
1149 
1150 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1151 		return (EINVAL);
1152 
1153 	if (nelem != 0 && data == NULL)
1154 		return (EINVAL);
1155 
1156 	/*
1157 	 * Verify type and nelem and get the value size.
1158 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
1159 	 * is the size of the string(s) included.
1160 	 */
1161 	if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
1162 		return (EINVAL);
1163 
1164 	if (i_validate_nvpair_value(type, nelem, data) != 0)
1165 		return (EINVAL);
1166 
1167 	/*
1168 	 * If we're adding an nvlist or nvlist array, ensure that we are not
1169 	 * adding the input nvlist to itself, which would cause recursion,
1170 	 * and ensure that no NULL nvlist pointers are present.
1171 	 */
1172 	switch (type) {
1173 	case DATA_TYPE_NVLIST:
1174 		if (data == nvl || data == NULL)
1175 			return (EINVAL);
1176 		break;
1177 	case DATA_TYPE_NVLIST_ARRAY: {
1178 		nvlist_t **onvlp = (nvlist_t **)data;
1179 		for (i = 0; i < nelem; i++) {
1180 			if (onvlp[i] == nvl || onvlp[i] == NULL)
1181 				return (EINVAL);
1182 		}
1183 		break;
1184 	}
1185 	default:
1186 		break;
1187 	}
1188 
1189 	/* calculate sizes of the nvpair elements and the nvpair itself */
1190 	name_sz = strlen(name) + 1;
1191 	if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
1192 		return (EINVAL);
1193 
1194 	nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
1195 
1196 	if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
1197 		return (ENOMEM);
1198 
1199 	ASSERT(nvp->nvp_size == nvp_sz);
1200 	nvp->nvp_name_sz = name_sz;
1201 	nvp->nvp_value_elem = nelem;
1202 	nvp->nvp_type = type;
1203 	bcopy(name, NVP_NAME(nvp), name_sz);
1204 
1205 	switch (type) {
1206 	case DATA_TYPE_BOOLEAN:
1207 		break;
1208 	case DATA_TYPE_STRING_ARRAY: {
1209 		char *const *strs = data;
1210 		char *buf = NVP_VALUE(nvp);
1211 		char **cstrs = (void *)buf;
1212 
1213 		/* skip pre-allocated space for pointer array */
1214 		buf += nelem * sizeof (uint64_t);
1215 		for (i = 0; i < nelem; i++) {
1216 			int slen = strlen(strs[i]) + 1;
1217 			bcopy(strs[i], buf, slen);
1218 			cstrs[i] = buf;
1219 			buf += slen;
1220 		}
1221 		break;
1222 	}
1223 	case DATA_TYPE_NVLIST: {
1224 		nvlist_t *nnvl = EMBEDDED_NVL(nvp);
1225 		nvlist_t *onvl = (nvlist_t *)data;
1226 
1227 		if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
1228 			nvp_buf_free(nvl, nvp);
1229 			return (err);
1230 		}
1231 		break;
1232 	}
1233 	case DATA_TYPE_NVLIST_ARRAY: {
1234 		nvlist_t **onvlp = (nvlist_t **)data;
1235 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
1236 		nvlist_t *embedded = (nvlist_t *)
1237 		    ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
1238 
1239 		for (i = 0; i < nelem; i++) {
1240 			if ((err = nvlist_copy_embedded(nvl,
1241 			    onvlp[i], embedded)) != 0) {
1242 				/*
1243 				 * Free any successfully created lists
1244 				 */
1245 				nvpair_free(nvp);
1246 				nvp_buf_free(nvl, nvp);
1247 				return (err);
1248 			}
1249 
1250 			nvlp[i] = embedded++;
1251 		}
1252 		break;
1253 	}
1254 	default:
1255 		bcopy(data, NVP_VALUE(nvp), value_sz);
1256 	}
1257 
1258 	/* if unique name, remove before add */
1259 	if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
1260 		(void) nvlist_remove_all(nvl, name);
1261 	else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
1262 		(void) nvlist_remove(nvl, name, type);
1263 
1264 	err = nvt_add_nvpair(nvl, nvp);
1265 	if (err != 0) {
1266 		nvpair_free(nvp);
1267 		nvp_buf_free(nvl, nvp);
1268 		return (err);
1269 	}
1270 	nvp_buf_link(nvl, nvp);
1271 
1272 	return (0);
1273 }
1274 
1275 int
1276 nvlist_add_boolean(nvlist_t *nvl, const char *name)
1277 {
1278 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
1279 }
1280 
1281 int
1282 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
1283 {
1284 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
1285 }
1286 
1287 int
1288 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
1289 {
1290 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1291 }
1292 
1293 int
1294 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1295 {
1296 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1297 }
1298 
1299 int
1300 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1301 {
1302 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1303 }
1304 
1305 int
1306 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1307 {
1308 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1309 }
1310 
1311 int
1312 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1313 {
1314 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1315 }
1316 
1317 int
1318 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1319 {
1320 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1321 }
1322 
1323 int
1324 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1325 {
1326 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1327 }
1328 
1329 int
1330 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1331 {
1332 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1333 }
1334 
1335 int
1336 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1337 {
1338 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1339 }
1340 
1341 #if !defined(_KERNEL)
1342 int
1343 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1344 {
1345 	return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1346 }
1347 #endif
1348 
1349 int
1350 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1351 {
1352 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1353 }
1354 
1355 int
1356 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1357     boolean_t *a, uint_t n)
1358 {
1359 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1360 }
1361 
1362 int
1363 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1364 {
1365 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1366 }
1367 
1368 int
1369 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1370 {
1371 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1372 }
1373 
1374 int
1375 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1376 {
1377 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1378 }
1379 
1380 int
1381 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1382 {
1383 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1384 }
1385 
1386 int
1387 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1388 {
1389 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1390 }
1391 
1392 int
1393 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1394 {
1395 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1396 }
1397 
1398 int
1399 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1400 {
1401 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1402 }
1403 
1404 int
1405 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1406 {
1407 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1408 }
1409 
1410 int
1411 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1412 {
1413 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1414 }
1415 
1416 int
1417 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1418     char *const *a, uint_t n)
1419 {
1420 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1421 }
1422 
1423 int
1424 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1425 {
1426 	return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1427 }
1428 
1429 int
1430 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1431 {
1432 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1433 }
1434 
1435 int
1436 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1437 {
1438 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1439 }
1440 
1441 /* reading name-value pairs */
1442 nvpair_t *
1443 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1444 {
1445 	nvpriv_t *priv;
1446 	i_nvp_t *curr;
1447 
1448 	if (nvl == NULL ||
1449 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1450 		return (NULL);
1451 
1452 	curr = NVPAIR2I_NVP(nvp);
1453 
1454 	/*
1455 	 * Ensure that nvp is a valid nvpair on this nvlist.
1456 	 * NB: nvp_curr is used only as a hint so that we don't always
1457 	 * have to walk the list to determine if nvp is still on the list.
1458 	 */
1459 	if (nvp == NULL)
1460 		curr = priv->nvp_list;
1461 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1462 		curr = curr->nvi_next;
1463 	else
1464 		curr = NULL;
1465 
1466 	priv->nvp_curr = curr;
1467 
1468 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1469 }
1470 
1471 nvpair_t *
1472 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1473 {
1474 	nvpriv_t *priv;
1475 	i_nvp_t *curr;
1476 
1477 	if (nvl == NULL ||
1478 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1479 		return (NULL);
1480 
1481 	curr = NVPAIR2I_NVP(nvp);
1482 
1483 	if (nvp == NULL)
1484 		curr = priv->nvp_last;
1485 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1486 		curr = curr->nvi_prev;
1487 	else
1488 		curr = NULL;
1489 
1490 	priv->nvp_curr = curr;
1491 
1492 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1493 }
1494 
1495 boolean_t
1496 nvlist_empty(nvlist_t *nvl)
1497 {
1498 	nvpriv_t *priv;
1499 
1500 	if (nvl == NULL ||
1501 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1502 		return (B_TRUE);
1503 
1504 	return (priv->nvp_list == NULL);
1505 }
1506 
1507 char *
1508 nvpair_name(nvpair_t *nvp)
1509 {
1510 	return (NVP_NAME(nvp));
1511 }
1512 
1513 data_type_t
1514 nvpair_type(nvpair_t *nvp)
1515 {
1516 	return (NVP_TYPE(nvp));
1517 }
1518 
1519 int
1520 nvpair_type_is_array(nvpair_t *nvp)
1521 {
1522 	data_type_t type = NVP_TYPE(nvp);
1523 
1524 	if ((type == DATA_TYPE_BYTE_ARRAY) ||
1525 	    (type == DATA_TYPE_INT8_ARRAY) ||
1526 	    (type == DATA_TYPE_UINT8_ARRAY) ||
1527 	    (type == DATA_TYPE_INT16_ARRAY) ||
1528 	    (type == DATA_TYPE_UINT16_ARRAY) ||
1529 	    (type == DATA_TYPE_INT32_ARRAY) ||
1530 	    (type == DATA_TYPE_UINT32_ARRAY) ||
1531 	    (type == DATA_TYPE_INT64_ARRAY) ||
1532 	    (type == DATA_TYPE_UINT64_ARRAY) ||
1533 	    (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1534 	    (type == DATA_TYPE_STRING_ARRAY) ||
1535 	    (type == DATA_TYPE_NVLIST_ARRAY))
1536 		return (1);
1537 	return (0);
1538 
1539 }
1540 
1541 static int
1542 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1543 {
1544 	int value_sz;
1545 
1546 	if (nvp == NULL || nvpair_type(nvp) != type)
1547 		return (EINVAL);
1548 
1549 	/*
1550 	 * For non-array types, we copy the data.
1551 	 * For array types (including string), we set a pointer.
1552 	 */
1553 	switch (type) {
1554 	case DATA_TYPE_BOOLEAN:
1555 		if (nelem != NULL)
1556 			*nelem = 0;
1557 		break;
1558 
1559 	case DATA_TYPE_BOOLEAN_VALUE:
1560 	case DATA_TYPE_BYTE:
1561 	case DATA_TYPE_INT8:
1562 	case DATA_TYPE_UINT8:
1563 	case DATA_TYPE_INT16:
1564 	case DATA_TYPE_UINT16:
1565 	case DATA_TYPE_INT32:
1566 	case DATA_TYPE_UINT32:
1567 	case DATA_TYPE_INT64:
1568 	case DATA_TYPE_UINT64:
1569 	case DATA_TYPE_HRTIME:
1570 #if !defined(_KERNEL)
1571 	case DATA_TYPE_DOUBLE:
1572 #endif
1573 		if (data == NULL)
1574 			return (EINVAL);
1575 		if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
1576 			return (EINVAL);
1577 		bcopy(NVP_VALUE(nvp), data, (size_t)value_sz);
1578 		if (nelem != NULL)
1579 			*nelem = 1;
1580 		break;
1581 
1582 	case DATA_TYPE_NVLIST:
1583 	case DATA_TYPE_STRING:
1584 		if (data == NULL)
1585 			return (EINVAL);
1586 		*(void **)data = (void *)NVP_VALUE(nvp);
1587 		if (nelem != NULL)
1588 			*nelem = 1;
1589 		break;
1590 
1591 	case DATA_TYPE_BOOLEAN_ARRAY:
1592 	case DATA_TYPE_BYTE_ARRAY:
1593 	case DATA_TYPE_INT8_ARRAY:
1594 	case DATA_TYPE_UINT8_ARRAY:
1595 	case DATA_TYPE_INT16_ARRAY:
1596 	case DATA_TYPE_UINT16_ARRAY:
1597 	case DATA_TYPE_INT32_ARRAY:
1598 	case DATA_TYPE_UINT32_ARRAY:
1599 	case DATA_TYPE_INT64_ARRAY:
1600 	case DATA_TYPE_UINT64_ARRAY:
1601 	case DATA_TYPE_STRING_ARRAY:
1602 	case DATA_TYPE_NVLIST_ARRAY:
1603 		if (nelem == NULL || data == NULL)
1604 			return (EINVAL);
1605 		if ((*nelem = NVP_NELEM(nvp)) != 0)
1606 			*(void **)data = (void *)NVP_VALUE(nvp);
1607 		else
1608 			*(void **)data = NULL;
1609 		break;
1610 
1611 	default:
1612 		return (ENOTSUP);
1613 	}
1614 
1615 	return (0);
1616 }
1617 
1618 static int
1619 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1620     uint_t *nelem, void *data)
1621 {
1622 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1623 		return (EINVAL);
1624 
1625 	if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1626 		return (ENOTSUP);
1627 
1628 	nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
1629 	if (nvp == NULL)
1630 		return (ENOENT);
1631 
1632 	return (nvpair_value_common(nvp, type, nelem, data));
1633 }
1634 
1635 int
1636 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1637 {
1638 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1639 }
1640 
1641 int
1642 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1643 {
1644 	return (nvlist_lookup_common(nvl, name,
1645 	    DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1646 }
1647 
1648 int
1649 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1650 {
1651 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1652 }
1653 
1654 int
1655 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1656 {
1657 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1658 }
1659 
1660 int
1661 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1662 {
1663 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1664 }
1665 
1666 int
1667 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1668 {
1669 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1670 }
1671 
1672 int
1673 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1674 {
1675 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1676 }
1677 
1678 int
1679 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1680 {
1681 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1682 }
1683 
1684 int
1685 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1686 {
1687 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1688 }
1689 
1690 int
1691 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1692 {
1693 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1694 }
1695 
1696 int
1697 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1698 {
1699 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1700 }
1701 
1702 #if !defined(_KERNEL)
1703 int
1704 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1705 {
1706 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1707 }
1708 #endif
1709 
1710 int
1711 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1712 {
1713 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1714 }
1715 
1716 int
1717 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1718 {
1719 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1720 }
1721 
1722 int
1723 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1724     boolean_t **a, uint_t *n)
1725 {
1726 	return (nvlist_lookup_common(nvl, name,
1727 	    DATA_TYPE_BOOLEAN_ARRAY, n, a));
1728 }
1729 
1730 int
1731 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1732     uchar_t **a, uint_t *n)
1733 {
1734 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1735 }
1736 
1737 int
1738 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1739 {
1740 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1741 }
1742 
1743 int
1744 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1745     uint8_t **a, uint_t *n)
1746 {
1747 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1748 }
1749 
1750 int
1751 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1752     int16_t **a, uint_t *n)
1753 {
1754 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1755 }
1756 
1757 int
1758 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1759     uint16_t **a, uint_t *n)
1760 {
1761 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1762 }
1763 
1764 int
1765 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1766     int32_t **a, uint_t *n)
1767 {
1768 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1769 }
1770 
1771 int
1772 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1773     uint32_t **a, uint_t *n)
1774 {
1775 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1776 }
1777 
1778 int
1779 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1780     int64_t **a, uint_t *n)
1781 {
1782 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1783 }
1784 
1785 int
1786 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1787     uint64_t **a, uint_t *n)
1788 {
1789 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1790 }
1791 
1792 int
1793 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1794     char ***a, uint_t *n)
1795 {
1796 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1797 }
1798 
1799 int
1800 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1801     nvlist_t ***a, uint_t *n)
1802 {
1803 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1804 }
1805 
1806 int
1807 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1808 {
1809 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1810 }
1811 
1812 int
1813 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1814 {
1815 	va_list ap;
1816 	char *name;
1817 	int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1818 	int ret = 0;
1819 
1820 	va_start(ap, flag);
1821 	while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1822 		data_type_t type;
1823 		void *val;
1824 		uint_t *nelem;
1825 
1826 		switch (type = va_arg(ap, data_type_t)) {
1827 		case DATA_TYPE_BOOLEAN:
1828 			ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1829 			break;
1830 
1831 		case DATA_TYPE_BOOLEAN_VALUE:
1832 		case DATA_TYPE_BYTE:
1833 		case DATA_TYPE_INT8:
1834 		case DATA_TYPE_UINT8:
1835 		case DATA_TYPE_INT16:
1836 		case DATA_TYPE_UINT16:
1837 		case DATA_TYPE_INT32:
1838 		case DATA_TYPE_UINT32:
1839 		case DATA_TYPE_INT64:
1840 		case DATA_TYPE_UINT64:
1841 		case DATA_TYPE_HRTIME:
1842 		case DATA_TYPE_STRING:
1843 		case DATA_TYPE_NVLIST:
1844 #if !defined(_KERNEL)
1845 		case DATA_TYPE_DOUBLE:
1846 #endif
1847 			val = va_arg(ap, void *);
1848 			ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1849 			break;
1850 
1851 		case DATA_TYPE_BYTE_ARRAY:
1852 		case DATA_TYPE_BOOLEAN_ARRAY:
1853 		case DATA_TYPE_INT8_ARRAY:
1854 		case DATA_TYPE_UINT8_ARRAY:
1855 		case DATA_TYPE_INT16_ARRAY:
1856 		case DATA_TYPE_UINT16_ARRAY:
1857 		case DATA_TYPE_INT32_ARRAY:
1858 		case DATA_TYPE_UINT32_ARRAY:
1859 		case DATA_TYPE_INT64_ARRAY:
1860 		case DATA_TYPE_UINT64_ARRAY:
1861 		case DATA_TYPE_STRING_ARRAY:
1862 		case DATA_TYPE_NVLIST_ARRAY:
1863 			val = va_arg(ap, void *);
1864 			nelem = va_arg(ap, uint_t *);
1865 			ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1866 			break;
1867 
1868 		default:
1869 			ret = EINVAL;
1870 		}
1871 
1872 		if (ret == ENOENT && noentok)
1873 			ret = 0;
1874 	}
1875 	va_end(ap);
1876 
1877 	return (ret);
1878 }
1879 
1880 /*
1881  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1882  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1883  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1884  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1885  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1886  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convenience,
1887  * code also supports "a.d[3]e[1]" syntax).
1888  *
1889  * If 'ip' is non-NULL and the last name component is an array, return the
1890  * value of the "...[index]" array index in *ip. For an array reference that
1891  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1892  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1893  * inside the 'name' string where the syntax error was detected.
1894  */
1895 static int
1896 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1897     nvpair_t **ret, int *ip, char **ep)
1898 {
1899 	nvpair_t	*nvp;
1900 	const char	*np;
1901 	char		*sepp = NULL;
1902 	char		*idxp, *idxep;
1903 	nvlist_t	**nva;
1904 	long		idx = 0;
1905 	int		n;
1906 
1907 	if (ip)
1908 		*ip = -1;			/* not indexed */
1909 	if (ep)
1910 		*ep = NULL;
1911 
1912 	if ((nvl == NULL) || (name == NULL))
1913 		return (EINVAL);
1914 
1915 	sepp = NULL;
1916 	idx = 0;
1917 	/* step through components of name */
1918 	for (np = name; np && *np; np = sepp) {
1919 		/* ensure unique names */
1920 		if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1921 			return (ENOTSUP);
1922 
1923 		/* skip white space */
1924 		skip_whitespace(np);
1925 		if (*np == 0)
1926 			break;
1927 
1928 		/* set 'sepp' to end of current component 'np' */
1929 		if (sep)
1930 			sepp = strchr(np, sep);
1931 		else
1932 			sepp = NULL;
1933 
1934 		/* find start of next "[ index ]..." */
1935 		idxp = strchr(np, '[');
1936 
1937 		/* if sepp comes first, set idxp to NULL */
1938 		if (sepp && idxp && (sepp < idxp))
1939 			idxp = NULL;
1940 
1941 		/*
1942 		 * At this point 'idxp' is set if there is an index
1943 		 * expected for the current component.
1944 		 */
1945 		if (idxp) {
1946 			/* set 'n' to length of current 'np' name component */
1947 			n = idxp++ - np;
1948 
1949 			/* keep sepp up to date for *ep use as we advance */
1950 			skip_whitespace(idxp);
1951 			sepp = idxp;
1952 
1953 			/* determine the index value */
1954 #if defined(_KERNEL)
1955 			if (ddi_strtol(idxp, &idxep, 0, &idx))
1956 				goto fail;
1957 #else
1958 			idx = strtol(idxp, &idxep, 0);
1959 #endif
1960 			if (idxep == idxp)
1961 				goto fail;
1962 
1963 			/* keep sepp up to date for *ep use as we advance */
1964 			sepp = idxep;
1965 
1966 			/* skip white space index value and check for ']' */
1967 			skip_whitespace(sepp);
1968 			if (*sepp++ != ']')
1969 				goto fail;
1970 
1971 			/* for embedded arrays, support C syntax: "a[1].b" */
1972 			skip_whitespace(sepp);
1973 			if (sep && (*sepp == sep))
1974 				sepp++;
1975 		} else if (sepp) {
1976 			n = sepp++ - np;
1977 		} else {
1978 			n = strlen(np);
1979 		}
1980 
1981 		/* trim trailing whitespace by reducing length of 'np' */
1982 		if (n == 0)
1983 			goto fail;
1984 		for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1985 			;
1986 		n++;
1987 
1988 		/* skip whitespace, and set sepp to NULL if complete */
1989 		if (sepp) {
1990 			skip_whitespace(sepp);
1991 			if (*sepp == 0)
1992 				sepp = NULL;
1993 		}
1994 
1995 		/*
1996 		 * At this point:
1997 		 * o  'n' is the length of current 'np' component.
1998 		 * o  'idxp' is set if there was an index, and value 'idx'.
1999 		 * o  'sepp' is set to the beginning of the next component,
2000 		 *    and set to NULL if we have no more components.
2001 		 *
2002 		 * Search for nvpair with matching component name.
2003 		 */
2004 		for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
2005 		    nvp = nvlist_next_nvpair(nvl, nvp)) {
2006 
2007 			/* continue if no match on name */
2008 			if (strncmp(np, nvpair_name(nvp), n) ||
2009 			    (strlen(nvpair_name(nvp)) != n))
2010 				continue;
2011 
2012 			/* if indexed, verify type is array oriented */
2013 			if (idxp && !nvpair_type_is_array(nvp))
2014 				goto fail;
2015 
2016 			/*
2017 			 * Full match found, return nvp and idx if this
2018 			 * was the last component.
2019 			 */
2020 			if (sepp == NULL) {
2021 				if (ret)
2022 					*ret = nvp;
2023 				if (ip && idxp)
2024 					*ip = (int)idx;	/* return index */
2025 				return (0);		/* found */
2026 			}
2027 
2028 			/*
2029 			 * More components: current match must be
2030 			 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
2031 			 * to support going deeper.
2032 			 */
2033 			if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
2034 				nvl = EMBEDDED_NVL(nvp);
2035 				break;
2036 			} else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
2037 				(void) nvpair_value_nvlist_array(nvp,
2038 				    &nva, (uint_t *)&n);
2039 				if ((n < 0) || (idx >= n))
2040 					goto fail;
2041 				nvl = nva[idx];
2042 				break;
2043 			}
2044 
2045 			/* type does not support more levels */
2046 			goto fail;
2047 		}
2048 		if (nvp == NULL)
2049 			goto fail;		/* 'name' not found */
2050 
2051 		/* search for match of next component in embedded 'nvl' list */
2052 	}
2053 
2054 fail:	if (ep && sepp)
2055 		*ep = sepp;
2056 	return (EINVAL);
2057 }
2058 
2059 /*
2060  * Return pointer to nvpair with specified 'name'.
2061  */
2062 int
2063 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
2064 {
2065 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
2066 }
2067 
2068 /*
2069  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
2070  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
2071  * description.
2072  */
2073 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
2074     const char *name, nvpair_t **ret, int *ip, char **ep)
2075 {
2076 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
2077 }
2078 
2079 boolean_t
2080 nvlist_exists(nvlist_t *nvl, const char *name)
2081 {
2082 	nvpriv_t *priv;
2083 	nvpair_t *nvp;
2084 	i_nvp_t *curr;
2085 
2086 	if (name == NULL || nvl == NULL ||
2087 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2088 		return (B_FALSE);
2089 
2090 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2091 		nvp = &curr->nvi_nvp;
2092 
2093 		if (strcmp(name, NVP_NAME(nvp)) == 0)
2094 			return (B_TRUE);
2095 	}
2096 
2097 	return (B_FALSE);
2098 }
2099 
2100 int
2101 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
2102 {
2103 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
2104 }
2105 
2106 int
2107 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
2108 {
2109 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
2110 }
2111 
2112 int
2113 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
2114 {
2115 	return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
2116 }
2117 
2118 int
2119 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
2120 {
2121 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
2122 }
2123 
2124 int
2125 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
2126 {
2127 	return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
2128 }
2129 
2130 int
2131 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
2132 {
2133 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
2134 }
2135 
2136 int
2137 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
2138 {
2139 	return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
2140 }
2141 
2142 int
2143 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
2144 {
2145 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
2146 }
2147 
2148 int
2149 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
2150 {
2151 	return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
2152 }
2153 
2154 int
2155 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
2156 {
2157 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
2158 }
2159 
2160 #if !defined(_KERNEL)
2161 int
2162 nvpair_value_double(nvpair_t *nvp, double *val)
2163 {
2164 	return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
2165 }
2166 #endif
2167 
2168 int
2169 nvpair_value_string(nvpair_t *nvp, char **val)
2170 {
2171 	return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
2172 }
2173 
2174 int
2175 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
2176 {
2177 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
2178 }
2179 
2180 int
2181 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
2182 {
2183 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
2184 }
2185 
2186 int
2187 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
2188 {
2189 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
2190 }
2191 
2192 int
2193 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
2194 {
2195 	return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
2196 }
2197 
2198 int
2199 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
2200 {
2201 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
2202 }
2203 
2204 int
2205 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
2206 {
2207 	return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
2208 }
2209 
2210 int
2211 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
2212 {
2213 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
2214 }
2215 
2216 int
2217 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
2218 {
2219 	return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
2220 }
2221 
2222 int
2223 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
2224 {
2225 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
2226 }
2227 
2228 int
2229 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
2230 {
2231 	return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
2232 }
2233 
2234 int
2235 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
2236 {
2237 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
2238 }
2239 
2240 int
2241 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
2242 {
2243 	return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
2244 }
2245 
2246 int
2247 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
2248 {
2249 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
2250 }
2251 
2252 int
2253 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
2254 {
2255 	return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
2256 }
2257 
2258 /*
2259  * Add specified pair to the list.
2260  */
2261 int
2262 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
2263 {
2264 	if (nvl == NULL || nvp == NULL)
2265 		return (EINVAL);
2266 
2267 	return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
2268 	    NVP_NELEM(nvp), NVP_VALUE(nvp)));
2269 }
2270 
2271 /*
2272  * Merge the supplied nvlists and put the result in dst.
2273  * The merged list will contain all names specified in both lists,
2274  * the values are taken from nvl in the case of duplicates.
2275  * Return 0 on success.
2276  */
2277 /*ARGSUSED*/
2278 int
2279 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
2280 {
2281 	if (nvl == NULL || dst == NULL)
2282 		return (EINVAL);
2283 
2284 	if (dst != nvl)
2285 		return (nvlist_copy_pairs(nvl, dst));
2286 
2287 	return (0);
2288 }
2289 
2290 /*
2291  * Encoding related routines
2292  */
2293 #define	NVS_OP_ENCODE	0
2294 #define	NVS_OP_DECODE	1
2295 #define	NVS_OP_GETSIZE	2
2296 
2297 typedef struct nvs_ops nvs_ops_t;
2298 
2299 typedef struct {
2300 	int		nvs_op;
2301 	const nvs_ops_t	*nvs_ops;
2302 	void		*nvs_private;
2303 	nvpriv_t	*nvs_priv;
2304 	int		nvs_recursion;
2305 } nvstream_t;
2306 
2307 /*
2308  * nvs operations are:
2309  *   - nvs_nvlist
2310  *     encoding / decoding of an nvlist header (nvlist_t)
2311  *     calculates the size used for header and end detection
2312  *
2313  *   - nvs_nvpair
2314  *     responsible for the first part of encoding / decoding of an nvpair
2315  *     calculates the decoded size of an nvpair
2316  *
2317  *   - nvs_nvp_op
2318  *     second part of encoding / decoding of an nvpair
2319  *
2320  *   - nvs_nvp_size
2321  *     calculates the encoding size of an nvpair
2322  *
2323  *   - nvs_nvl_fini
2324  *     encodes the end detection mark (zeros).
2325  */
2326 struct nvs_ops {
2327 	int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2328 	int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2329 	int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2330 	int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2331 	int (*nvs_nvl_fini)(nvstream_t *);
2332 };
2333 
2334 typedef struct {
2335 	char	nvh_encoding;	/* nvs encoding method */
2336 	char	nvh_endian;	/* nvs endian */
2337 	char	nvh_reserved1;	/* reserved for future use */
2338 	char	nvh_reserved2;	/* reserved for future use */
2339 } nvs_header_t;
2340 
2341 static int
2342 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2343 {
2344 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2345 	i_nvp_t *curr;
2346 
2347 	/*
2348 	 * Walk nvpair in list and encode each nvpair
2349 	 */
2350 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2351 		if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2352 			return (EFAULT);
2353 
2354 	return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2355 }
2356 
2357 static int
2358 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2359 {
2360 	nvpair_t *nvp;
2361 	size_t nvsize;
2362 	int err;
2363 
2364 	/*
2365 	 * Get decoded size of next pair in stream, alloc
2366 	 * memory for nvpair_t, then decode the nvpair
2367 	 */
2368 	while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2369 		if (nvsize == 0) /* end of list */
2370 			break;
2371 
2372 		/* make sure len makes sense */
2373 		if (nvsize < NVP_SIZE_CALC(1, 0))
2374 			return (EFAULT);
2375 
2376 		if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2377 			return (ENOMEM);
2378 
2379 		if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2380 			nvp_buf_free(nvl, nvp);
2381 			return (err);
2382 		}
2383 
2384 		if (i_validate_nvpair(nvp) != 0) {
2385 			nvpair_free(nvp);
2386 			nvp_buf_free(nvl, nvp);
2387 			return (EFAULT);
2388 		}
2389 
2390 		err = nvt_add_nvpair(nvl, nvp);
2391 		if (err != 0) {
2392 			nvpair_free(nvp);
2393 			nvp_buf_free(nvl, nvp);
2394 			return (err);
2395 		}
2396 		nvp_buf_link(nvl, nvp);
2397 	}
2398 	return (err);
2399 }
2400 
2401 static int
2402 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2403 {
2404 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2405 	i_nvp_t *curr;
2406 	uint64_t nvsize = *buflen;
2407 	size_t size;
2408 
2409 	/*
2410 	 * Get encoded size of nvpairs in nvlist
2411 	 */
2412 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2413 		if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2414 			return (EINVAL);
2415 
2416 		if ((nvsize += size) > INT32_MAX)
2417 			return (EINVAL);
2418 	}
2419 
2420 	*buflen = nvsize;
2421 	return (0);
2422 }
2423 
2424 static int
2425 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2426 {
2427 	int err;
2428 
2429 	if (nvl->nvl_priv == 0)
2430 		return (EFAULT);
2431 
2432 	/*
2433 	 * Perform the operation, starting with header, then each nvpair
2434 	 */
2435 	if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2436 		return (err);
2437 
2438 	switch (nvs->nvs_op) {
2439 	case NVS_OP_ENCODE:
2440 		err = nvs_encode_pairs(nvs, nvl);
2441 		break;
2442 
2443 	case NVS_OP_DECODE:
2444 		err = nvs_decode_pairs(nvs, nvl);
2445 		break;
2446 
2447 	case NVS_OP_GETSIZE:
2448 		err = nvs_getsize_pairs(nvs, nvl, buflen);
2449 		break;
2450 
2451 	default:
2452 		err = EINVAL;
2453 	}
2454 
2455 	return (err);
2456 }
2457 
2458 static int
2459 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2460 {
2461 	switch (nvs->nvs_op) {
2462 	case NVS_OP_ENCODE: {
2463 		int err;
2464 
2465 		if (nvs->nvs_recursion >= nvpair_max_recursion)
2466 			return (EINVAL);
2467 		nvs->nvs_recursion++;
2468 		err = nvs_operation(nvs, embedded, NULL);
2469 		nvs->nvs_recursion--;
2470 		return (err);
2471 	}
2472 	case NVS_OP_DECODE: {
2473 		nvpriv_t *priv;
2474 		int err;
2475 
2476 		if (embedded->nvl_version != NV_VERSION)
2477 			return (ENOTSUP);
2478 
2479 		if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2480 			return (ENOMEM);
2481 
2482 		nvlist_init(embedded, embedded->nvl_nvflag, priv);
2483 
2484 		if (nvs->nvs_recursion >= nvpair_max_recursion) {
2485 			nvlist_free(embedded);
2486 			return (EINVAL);
2487 		}
2488 		nvs->nvs_recursion++;
2489 		if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2490 			nvlist_free(embedded);
2491 		nvs->nvs_recursion--;
2492 		return (err);
2493 	}
2494 	default:
2495 		break;
2496 	}
2497 
2498 	return (EINVAL);
2499 }
2500 
2501 static int
2502 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2503 {
2504 	size_t nelem = NVP_NELEM(nvp);
2505 	nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2506 	int i;
2507 
2508 	switch (nvs->nvs_op) {
2509 	case NVS_OP_ENCODE:
2510 		for (i = 0; i < nelem; i++)
2511 			if (nvs_embedded(nvs, nvlp[i]) != 0)
2512 				return (EFAULT);
2513 		break;
2514 
2515 	case NVS_OP_DECODE: {
2516 		size_t len = nelem * sizeof (uint64_t);
2517 		nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2518 
2519 		bzero(nvlp, len);	/* don't trust packed data */
2520 		for (i = 0; i < nelem; i++) {
2521 			if (nvs_embedded(nvs, embedded) != 0) {
2522 				nvpair_free(nvp);
2523 				return (EFAULT);
2524 			}
2525 
2526 			nvlp[i] = embedded++;
2527 		}
2528 		break;
2529 	}
2530 	case NVS_OP_GETSIZE: {
2531 		uint64_t nvsize = 0;
2532 
2533 		for (i = 0; i < nelem; i++) {
2534 			size_t nvp_sz = 0;
2535 
2536 			if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2537 				return (EINVAL);
2538 
2539 			if ((nvsize += nvp_sz) > INT32_MAX)
2540 				return (EINVAL);
2541 		}
2542 
2543 		*size = nvsize;
2544 		break;
2545 	}
2546 	default:
2547 		return (EINVAL);
2548 	}
2549 
2550 	return (0);
2551 }
2552 
2553 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2554 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2555 
2556 /*
2557  * Common routine for nvlist operations:
2558  * encode, decode, getsize (encoded size).
2559  */
2560 static int
2561 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2562     int nvs_op)
2563 {
2564 	int err = 0;
2565 	nvstream_t nvs;
2566 	int nvl_endian;
2567 #if defined(_ZFS_LITTLE_ENDIAN)
2568 	int host_endian = 1;
2569 #elif defined(_ZFS_BIG_ENDIAN)
2570 	int host_endian = 0;
2571 #else
2572 #error "No endian defined!"
2573 #endif	/* _ZFS_LITTLE_ENDIAN */
2574 	nvs_header_t *nvh;
2575 
2576 	if (buflen == NULL || nvl == NULL ||
2577 	    (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2578 		return (EINVAL);
2579 
2580 	nvs.nvs_op = nvs_op;
2581 	nvs.nvs_recursion = 0;
2582 
2583 	/*
2584 	 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2585 	 * a buffer is allocated.  The first 4 bytes in the buffer are
2586 	 * used for encoding method and host endian.
2587 	 */
2588 	switch (nvs_op) {
2589 	case NVS_OP_ENCODE:
2590 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2591 			return (EINVAL);
2592 
2593 		nvh = (void *)buf;
2594 		nvh->nvh_encoding = encoding;
2595 		nvh->nvh_endian = nvl_endian = host_endian;
2596 		nvh->nvh_reserved1 = 0;
2597 		nvh->nvh_reserved2 = 0;
2598 		break;
2599 
2600 	case NVS_OP_DECODE:
2601 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2602 			return (EINVAL);
2603 
2604 		/* get method of encoding from first byte */
2605 		nvh = (void *)buf;
2606 		encoding = nvh->nvh_encoding;
2607 		nvl_endian = nvh->nvh_endian;
2608 		break;
2609 
2610 	case NVS_OP_GETSIZE:
2611 		nvl_endian = host_endian;
2612 
2613 		/*
2614 		 * add the size for encoding
2615 		 */
2616 		*buflen = sizeof (nvs_header_t);
2617 		break;
2618 
2619 	default:
2620 		return (ENOTSUP);
2621 	}
2622 
2623 	/*
2624 	 * Create an nvstream with proper encoding method
2625 	 */
2626 	switch (encoding) {
2627 	case NV_ENCODE_NATIVE:
2628 		/*
2629 		 * check endianness, in case we are unpacking
2630 		 * from a file
2631 		 */
2632 		if (nvl_endian != host_endian)
2633 			return (ENOTSUP);
2634 		err = nvs_native(&nvs, nvl, buf, buflen);
2635 		break;
2636 	case NV_ENCODE_XDR:
2637 		err = nvs_xdr(&nvs, nvl, buf, buflen);
2638 		break;
2639 	default:
2640 		err = ENOTSUP;
2641 		break;
2642 	}
2643 
2644 	return (err);
2645 }
2646 
2647 int
2648 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2649 {
2650 	return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2651 }
2652 
2653 /*
2654  * Pack nvlist into contiguous memory
2655  */
2656 int
2657 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2658     int kmflag)
2659 {
2660 	return (nvlist_xpack(nvl, bufp, buflen, encoding,
2661 	    nvlist_nv_alloc(kmflag)));
2662 }
2663 
2664 int
2665 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2666     nv_alloc_t *nva)
2667 {
2668 	nvpriv_t nvpriv;
2669 	size_t alloc_size;
2670 	char *buf;
2671 	int err;
2672 
2673 	if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2674 		return (EINVAL);
2675 
2676 	if (*bufp != NULL)
2677 		return (nvlist_common(nvl, *bufp, buflen, encoding,
2678 		    NVS_OP_ENCODE));
2679 
2680 	/*
2681 	 * Here is a difficult situation:
2682 	 * 1. The nvlist has fixed allocator properties.
2683 	 *    All other nvlist routines (like nvlist_add_*, ...) use
2684 	 *    these properties.
2685 	 * 2. When using nvlist_pack() the user can specify their own
2686 	 *    allocator properties (e.g. by using KM_NOSLEEP).
2687 	 *
2688 	 * We use the user specified properties (2). A clearer solution
2689 	 * will be to remove the kmflag from nvlist_pack(), but we will
2690 	 * not change the interface.
2691 	 */
2692 	nv_priv_init(&nvpriv, nva, 0);
2693 
2694 	if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2695 		return (err);
2696 
2697 	if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2698 		return (ENOMEM);
2699 
2700 	if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2701 	    NVS_OP_ENCODE)) != 0) {
2702 		nv_mem_free(&nvpriv, buf, alloc_size);
2703 	} else {
2704 		*buflen = alloc_size;
2705 		*bufp = buf;
2706 	}
2707 
2708 	return (err);
2709 }
2710 
2711 /*
2712  * Unpack buf into an nvlist_t
2713  */
2714 int
2715 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2716 {
2717 	return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
2718 }
2719 
2720 int
2721 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2722 {
2723 	nvlist_t *nvl;
2724 	int err;
2725 
2726 	if (nvlp == NULL)
2727 		return (EINVAL);
2728 
2729 	if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2730 		return (err);
2731 
2732 	if ((err = nvlist_common(nvl, buf, &buflen, NV_ENCODE_NATIVE,
2733 	    NVS_OP_DECODE)) != 0)
2734 		nvlist_free(nvl);
2735 	else
2736 		*nvlp = nvl;
2737 
2738 	return (err);
2739 }
2740 
2741 /*
2742  * Native encoding functions
2743  */
2744 typedef struct {
2745 	/*
2746 	 * This structure is used when decoding a packed nvpair in
2747 	 * the native format.  n_base points to a buffer containing the
2748 	 * packed nvpair.  n_end is a pointer to the end of the buffer.
2749 	 * (n_end actually points to the first byte past the end of the
2750 	 * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2751 	 * It points to the current data that we are decoding.
2752 	 * The amount of data left in the buffer is equal to n_end - n_curr.
2753 	 * n_flag is used to recognize a packed embedded list.
2754 	 */
2755 	caddr_t n_base;
2756 	caddr_t n_end;
2757 	caddr_t n_curr;
2758 	uint_t  n_flag;
2759 } nvs_native_t;
2760 
2761 static int
2762 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2763     size_t buflen)
2764 {
2765 	switch (nvs->nvs_op) {
2766 	case NVS_OP_ENCODE:
2767 	case NVS_OP_DECODE:
2768 		nvs->nvs_private = native;
2769 		native->n_curr = native->n_base = buf;
2770 		native->n_end = buf + buflen;
2771 		native->n_flag = 0;
2772 		return (0);
2773 
2774 	case NVS_OP_GETSIZE:
2775 		nvs->nvs_private = native;
2776 		native->n_curr = native->n_base = native->n_end = NULL;
2777 		native->n_flag = 0;
2778 		return (0);
2779 	default:
2780 		return (EINVAL);
2781 	}
2782 }
2783 
2784 /*ARGSUSED*/
2785 static void
2786 nvs_native_destroy(nvstream_t *nvs)
2787 {
2788 }
2789 
2790 static int
2791 native_cp(nvstream_t *nvs, void *buf, size_t size)
2792 {
2793 	nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2794 
2795 	if (native->n_curr + size > native->n_end)
2796 		return (EFAULT);
2797 
2798 	/*
2799 	 * The bcopy() below eliminates alignment requirement
2800 	 * on the buffer (stream) and is preferred over direct access.
2801 	 */
2802 	switch (nvs->nvs_op) {
2803 	case NVS_OP_ENCODE:
2804 		bcopy(buf, native->n_curr, size);
2805 		break;
2806 	case NVS_OP_DECODE:
2807 		bcopy(native->n_curr, buf, size);
2808 		break;
2809 	default:
2810 		return (EINVAL);
2811 	}
2812 
2813 	native->n_curr += size;
2814 	return (0);
2815 }
2816 
2817 /*
2818  * operate on nvlist_t header
2819  */
2820 static int
2821 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2822 {
2823 	nvs_native_t *native = nvs->nvs_private;
2824 
2825 	switch (nvs->nvs_op) {
2826 	case NVS_OP_ENCODE:
2827 	case NVS_OP_DECODE:
2828 		if (native->n_flag)
2829 			return (0);	/* packed embedded list */
2830 
2831 		native->n_flag = 1;
2832 
2833 		/* copy version and nvflag of the nvlist_t */
2834 		if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2835 		    native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2836 			return (EFAULT);
2837 
2838 		return (0);
2839 
2840 	case NVS_OP_GETSIZE:
2841 		/*
2842 		 * if calculate for packed embedded list
2843 		 * 	4 for end of the embedded list
2844 		 * else
2845 		 * 	2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2846 		 * 	and 4 for end of the entire list
2847 		 */
2848 		if (native->n_flag) {
2849 			*size += 4;
2850 		} else {
2851 			native->n_flag = 1;
2852 			*size += 2 * sizeof (int32_t) + 4;
2853 		}
2854 
2855 		return (0);
2856 
2857 	default:
2858 		return (EINVAL);
2859 	}
2860 }
2861 
2862 static int
2863 nvs_native_nvl_fini(nvstream_t *nvs)
2864 {
2865 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2866 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2867 		/*
2868 		 * Add 4 zero bytes at end of nvlist. They are used
2869 		 * for end detection by the decode routine.
2870 		 */
2871 		if (native->n_curr + sizeof (int) > native->n_end)
2872 			return (EFAULT);
2873 
2874 		bzero(native->n_curr, sizeof (int));
2875 		native->n_curr += sizeof (int);
2876 	}
2877 
2878 	return (0);
2879 }
2880 
2881 static int
2882 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2883 {
2884 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2885 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2886 		nvlist_t *packed = (void *)
2887 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2888 		/*
2889 		 * Null out the pointer that is meaningless in the packed
2890 		 * structure. The address may not be aligned, so we have
2891 		 * to use bzero.
2892 		 */
2893 		bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
2894 		    sizeof (uint64_t));
2895 	}
2896 
2897 	return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2898 }
2899 
2900 static int
2901 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2902 {
2903 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2904 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2905 		char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2906 		size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2907 		nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2908 		int i;
2909 		/*
2910 		 * Null out pointers that are meaningless in the packed
2911 		 * structure. The addresses may not be aligned, so we have
2912 		 * to use bzero.
2913 		 */
2914 		bzero(value, len);
2915 
2916 		for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2917 			/*
2918 			 * Null out the pointer that is meaningless in the
2919 			 * packed structure. The address may not be aligned,
2920 			 * so we have to use bzero.
2921 			 */
2922 			bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
2923 			    sizeof (uint64_t));
2924 	}
2925 
2926 	return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2927 }
2928 
2929 static void
2930 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2931 {
2932 	switch (nvs->nvs_op) {
2933 	case NVS_OP_ENCODE: {
2934 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2935 		uint64_t *strp = (void *)
2936 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2937 		/*
2938 		 * Null out pointers that are meaningless in the packed
2939 		 * structure. The addresses may not be aligned, so we have
2940 		 * to use bzero.
2941 		 */
2942 		bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2943 		break;
2944 	}
2945 	case NVS_OP_DECODE: {
2946 		char **strp = (void *)NVP_VALUE(nvp);
2947 		char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2948 		int i;
2949 
2950 		for (i = 0; i < NVP_NELEM(nvp); i++) {
2951 			strp[i] = buf;
2952 			buf += strlen(buf) + 1;
2953 		}
2954 		break;
2955 	}
2956 	}
2957 }
2958 
2959 static int
2960 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2961 {
2962 	data_type_t type;
2963 	int value_sz;
2964 	int ret = 0;
2965 
2966 	/*
2967 	 * We do the initial bcopy of the data before we look at
2968 	 * the nvpair type, because when we're decoding, we won't
2969 	 * have the correct values for the pair until we do the bcopy.
2970 	 */
2971 	switch (nvs->nvs_op) {
2972 	case NVS_OP_ENCODE:
2973 	case NVS_OP_DECODE:
2974 		if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2975 			return (EFAULT);
2976 		break;
2977 	default:
2978 		return (EINVAL);
2979 	}
2980 
2981 	/* verify nvp_name_sz, check the name string length */
2982 	if (i_validate_nvpair_name(nvp) != 0)
2983 		return (EFAULT);
2984 
2985 	type = NVP_TYPE(nvp);
2986 
2987 	/*
2988 	 * Verify type and nelem and get the value size.
2989 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2990 	 * is the size of the string(s) excluded.
2991 	 */
2992 	if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2993 		return (EFAULT);
2994 
2995 	if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2996 		return (EFAULT);
2997 
2998 	switch (type) {
2999 	case DATA_TYPE_NVLIST:
3000 		ret = nvpair_native_embedded(nvs, nvp);
3001 		break;
3002 	case DATA_TYPE_NVLIST_ARRAY:
3003 		ret = nvpair_native_embedded_array(nvs, nvp);
3004 		break;
3005 	case DATA_TYPE_STRING_ARRAY:
3006 		nvpair_native_string_array(nvs, nvp);
3007 		break;
3008 	default:
3009 		break;
3010 	}
3011 
3012 	return (ret);
3013 }
3014 
3015 static int
3016 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3017 {
3018 	uint64_t nvp_sz = nvp->nvp_size;
3019 
3020 	switch (NVP_TYPE(nvp)) {
3021 	case DATA_TYPE_NVLIST: {
3022 		size_t nvsize = 0;
3023 
3024 		if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
3025 			return (EINVAL);
3026 
3027 		nvp_sz += nvsize;
3028 		break;
3029 	}
3030 	case DATA_TYPE_NVLIST_ARRAY: {
3031 		size_t nvsize;
3032 
3033 		if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
3034 			return (EINVAL);
3035 
3036 		nvp_sz += nvsize;
3037 		break;
3038 	}
3039 	default:
3040 		break;
3041 	}
3042 
3043 	if (nvp_sz > INT32_MAX)
3044 		return (EINVAL);
3045 
3046 	*size = nvp_sz;
3047 
3048 	return (0);
3049 }
3050 
3051 static int
3052 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3053 {
3054 	switch (nvs->nvs_op) {
3055 	case NVS_OP_ENCODE:
3056 		return (nvs_native_nvp_op(nvs, nvp));
3057 
3058 	case NVS_OP_DECODE: {
3059 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
3060 		int32_t decode_len;
3061 
3062 		/* try to read the size value from the stream */
3063 		if (native->n_curr + sizeof (int32_t) > native->n_end)
3064 			return (EFAULT);
3065 		bcopy(native->n_curr, &decode_len, sizeof (int32_t));
3066 
3067 		/* sanity check the size value */
3068 		if (decode_len < 0 ||
3069 		    decode_len > native->n_end - native->n_curr)
3070 			return (EFAULT);
3071 
3072 		*size = decode_len;
3073 
3074 		/*
3075 		 * If at the end of the stream then move the cursor
3076 		 * forward, otherwise nvpair_native_op() will read
3077 		 * the entire nvpair at the same cursor position.
3078 		 */
3079 		if (*size == 0)
3080 			native->n_curr += sizeof (int32_t);
3081 		break;
3082 	}
3083 
3084 	default:
3085 		return (EINVAL);
3086 	}
3087 
3088 	return (0);
3089 }
3090 
3091 static const nvs_ops_t nvs_native_ops = {
3092 	.nvs_nvlist = nvs_native_nvlist,
3093 	.nvs_nvpair = nvs_native_nvpair,
3094 	.nvs_nvp_op = nvs_native_nvp_op,
3095 	.nvs_nvp_size = nvs_native_nvp_size,
3096 	.nvs_nvl_fini = nvs_native_nvl_fini
3097 };
3098 
3099 static int
3100 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3101 {
3102 	nvs_native_t native;
3103 	int err;
3104 
3105 	nvs->nvs_ops = &nvs_native_ops;
3106 
3107 	if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
3108 	    *buflen - sizeof (nvs_header_t))) != 0)
3109 		return (err);
3110 
3111 	err = nvs_operation(nvs, nvl, buflen);
3112 
3113 	nvs_native_destroy(nvs);
3114 
3115 	return (err);
3116 }
3117 
3118 /*
3119  * XDR encoding functions
3120  *
3121  * An xdr packed nvlist is encoded as:
3122  *
3123  *  - encoding method and host endian (4 bytes)
3124  *  - nvl_version (4 bytes)
3125  *  - nvl_nvflag (4 bytes)
3126  *
3127  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
3128  *	- encoded size of the nvpair (4 bytes)
3129  *	- decoded size of the nvpair (4 bytes)
3130  *	- name string, (4 + sizeof(NV_ALIGN4(string))
3131  *	  a string is coded as size (4 bytes) and data
3132  *	- data type (4 bytes)
3133  *	- number of elements in the nvpair (4 bytes)
3134  *	- data
3135  *
3136  *  - 2 zero's for end of the entire list (8 bytes)
3137  */
3138 static int
3139 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
3140 {
3141 	/* xdr data must be 4 byte aligned */
3142 	if ((ulong_t)buf % 4 != 0)
3143 		return (EFAULT);
3144 
3145 	switch (nvs->nvs_op) {
3146 	case NVS_OP_ENCODE:
3147 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
3148 		nvs->nvs_private = xdr;
3149 		return (0);
3150 	case NVS_OP_DECODE:
3151 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
3152 		nvs->nvs_private = xdr;
3153 		return (0);
3154 	case NVS_OP_GETSIZE:
3155 		nvs->nvs_private = NULL;
3156 		return (0);
3157 	default:
3158 		return (EINVAL);
3159 	}
3160 }
3161 
3162 static void
3163 nvs_xdr_destroy(nvstream_t *nvs)
3164 {
3165 	switch (nvs->nvs_op) {
3166 	case NVS_OP_ENCODE:
3167 	case NVS_OP_DECODE:
3168 		xdr_destroy((XDR *)nvs->nvs_private);
3169 		break;
3170 	default:
3171 		break;
3172 	}
3173 }
3174 
3175 static int
3176 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
3177 {
3178 	switch (nvs->nvs_op) {
3179 	case NVS_OP_ENCODE:
3180 	case NVS_OP_DECODE: {
3181 		XDR 	*xdr = nvs->nvs_private;
3182 
3183 		if (!xdr_int(xdr, &nvl->nvl_version) ||
3184 		    !xdr_u_int(xdr, &nvl->nvl_nvflag))
3185 			return (EFAULT);
3186 		break;
3187 	}
3188 	case NVS_OP_GETSIZE: {
3189 		/*
3190 		 * 2 * 4 for nvl_version + nvl_nvflag
3191 		 * and 8 for end of the entire list
3192 		 */
3193 		*size += 2 * 4 + 8;
3194 		break;
3195 	}
3196 	default:
3197 		return (EINVAL);
3198 	}
3199 	return (0);
3200 }
3201 
3202 static int
3203 nvs_xdr_nvl_fini(nvstream_t *nvs)
3204 {
3205 	if (nvs->nvs_op == NVS_OP_ENCODE) {
3206 		XDR *xdr = nvs->nvs_private;
3207 		int zero = 0;
3208 
3209 		if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
3210 			return (EFAULT);
3211 	}
3212 
3213 	return (0);
3214 }
3215 
3216 /*
3217  * The format of xdr encoded nvpair is:
3218  * encode_size, decode_size, name string, data type, nelem, data
3219  */
3220 static int
3221 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
3222 {
3223 	data_type_t type;
3224 	char	*buf;
3225 	char	*buf_end = (char *)nvp + nvp->nvp_size;
3226 	int	value_sz;
3227 	uint_t	nelem, buflen;
3228 	bool_t	ret = FALSE;
3229 	XDR	*xdr = nvs->nvs_private;
3230 
3231 	ASSERT(xdr != NULL && nvp != NULL);
3232 
3233 	/* name string */
3234 	if ((buf = NVP_NAME(nvp)) >= buf_end)
3235 		return (EFAULT);
3236 	buflen = buf_end - buf;
3237 
3238 	if (!xdr_string(xdr, &buf, buflen - 1))
3239 		return (EFAULT);
3240 	nvp->nvp_name_sz = strlen(buf) + 1;
3241 
3242 	/* type and nelem */
3243 	if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
3244 	    !xdr_int(xdr, &nvp->nvp_value_elem))
3245 		return (EFAULT);
3246 
3247 	type = NVP_TYPE(nvp);
3248 	nelem = nvp->nvp_value_elem;
3249 
3250 	/*
3251 	 * Verify type and nelem and get the value size.
3252 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
3253 	 * is the size of the string(s) excluded.
3254 	 */
3255 	if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
3256 		return (EFAULT);
3257 
3258 	/* if there is no data to extract then return */
3259 	if (nelem == 0)
3260 		return (0);
3261 
3262 	/* value */
3263 	if ((buf = NVP_VALUE(nvp)) >= buf_end)
3264 		return (EFAULT);
3265 	buflen = buf_end - buf;
3266 
3267 	if (buflen < value_sz)
3268 		return (EFAULT);
3269 
3270 	switch (type) {
3271 	case DATA_TYPE_NVLIST:
3272 		if (nvs_embedded(nvs, (void *)buf) == 0)
3273 			return (0);
3274 		break;
3275 
3276 	case DATA_TYPE_NVLIST_ARRAY:
3277 		if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
3278 			return (0);
3279 		break;
3280 
3281 	case DATA_TYPE_BOOLEAN:
3282 		ret = TRUE;
3283 		break;
3284 
3285 	case DATA_TYPE_BYTE:
3286 	case DATA_TYPE_INT8:
3287 	case DATA_TYPE_UINT8:
3288 		ret = xdr_char(xdr, buf);
3289 		break;
3290 
3291 	case DATA_TYPE_INT16:
3292 		ret = xdr_short(xdr, (void *)buf);
3293 		break;
3294 
3295 	case DATA_TYPE_UINT16:
3296 		ret = xdr_u_short(xdr, (void *)buf);
3297 		break;
3298 
3299 	case DATA_TYPE_BOOLEAN_VALUE:
3300 	case DATA_TYPE_INT32:
3301 		ret = xdr_int(xdr, (void *)buf);
3302 		break;
3303 
3304 	case DATA_TYPE_UINT32:
3305 		ret = xdr_u_int(xdr, (void *)buf);
3306 		break;
3307 
3308 	case DATA_TYPE_INT64:
3309 		ret = xdr_longlong_t(xdr, (void *)buf);
3310 		break;
3311 
3312 	case DATA_TYPE_UINT64:
3313 		ret = xdr_u_longlong_t(xdr, (void *)buf);
3314 		break;
3315 
3316 	case DATA_TYPE_HRTIME:
3317 		/*
3318 		 * NOTE: must expose the definition of hrtime_t here
3319 		 */
3320 		ret = xdr_longlong_t(xdr, (void *)buf);
3321 		break;
3322 #if !defined(_KERNEL)
3323 	case DATA_TYPE_DOUBLE:
3324 		ret = xdr_double(xdr, (void *)buf);
3325 		break;
3326 #endif
3327 	case DATA_TYPE_STRING:
3328 		ret = xdr_string(xdr, &buf, buflen - 1);
3329 		break;
3330 
3331 	case DATA_TYPE_BYTE_ARRAY:
3332 		ret = xdr_opaque(xdr, buf, nelem);
3333 		break;
3334 
3335 	case DATA_TYPE_INT8_ARRAY:
3336 	case DATA_TYPE_UINT8_ARRAY:
3337 		ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3338 		    (xdrproc_t)xdr_char);
3339 		break;
3340 
3341 	case DATA_TYPE_INT16_ARRAY:
3342 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3343 		    sizeof (int16_t), (xdrproc_t)xdr_short);
3344 		break;
3345 
3346 	case DATA_TYPE_UINT16_ARRAY:
3347 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3348 		    sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3349 		break;
3350 
3351 	case DATA_TYPE_BOOLEAN_ARRAY:
3352 	case DATA_TYPE_INT32_ARRAY:
3353 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3354 		    sizeof (int32_t), (xdrproc_t)xdr_int);
3355 		break;
3356 
3357 	case DATA_TYPE_UINT32_ARRAY:
3358 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3359 		    sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3360 		break;
3361 
3362 	case DATA_TYPE_INT64_ARRAY:
3363 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3364 		    sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3365 		break;
3366 
3367 	case DATA_TYPE_UINT64_ARRAY:
3368 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3369 		    sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3370 		break;
3371 
3372 	case DATA_TYPE_STRING_ARRAY: {
3373 		size_t len = nelem * sizeof (uint64_t);
3374 		char **strp = (void *)buf;
3375 		int i;
3376 
3377 		if (nvs->nvs_op == NVS_OP_DECODE)
3378 			bzero(buf, len);	/* don't trust packed data */
3379 
3380 		for (i = 0; i < nelem; i++) {
3381 			if (buflen <= len)
3382 				return (EFAULT);
3383 
3384 			buf += len;
3385 			buflen -= len;
3386 
3387 			if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3388 				return (EFAULT);
3389 
3390 			if (nvs->nvs_op == NVS_OP_DECODE)
3391 				strp[i] = buf;
3392 			len = strlen(buf) + 1;
3393 		}
3394 		ret = TRUE;
3395 		break;
3396 	}
3397 	default:
3398 		break;
3399 	}
3400 
3401 	return (ret == TRUE ? 0 : EFAULT);
3402 }
3403 
3404 static int
3405 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3406 {
3407 	data_type_t type = NVP_TYPE(nvp);
3408 	/*
3409 	 * encode_size + decode_size + name string size + data type + nelem
3410 	 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3411 	 */
3412 	uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3413 
3414 	switch (type) {
3415 	case DATA_TYPE_BOOLEAN:
3416 		break;
3417 
3418 	case DATA_TYPE_BOOLEAN_VALUE:
3419 	case DATA_TYPE_BYTE:
3420 	case DATA_TYPE_INT8:
3421 	case DATA_TYPE_UINT8:
3422 	case DATA_TYPE_INT16:
3423 	case DATA_TYPE_UINT16:
3424 	case DATA_TYPE_INT32:
3425 	case DATA_TYPE_UINT32:
3426 		nvp_sz += 4;	/* 4 is the minimum xdr unit */
3427 		break;
3428 
3429 	case DATA_TYPE_INT64:
3430 	case DATA_TYPE_UINT64:
3431 	case DATA_TYPE_HRTIME:
3432 #if !defined(_KERNEL)
3433 	case DATA_TYPE_DOUBLE:
3434 #endif
3435 		nvp_sz += 8;
3436 		break;
3437 
3438 	case DATA_TYPE_STRING:
3439 		nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3440 		break;
3441 
3442 	case DATA_TYPE_BYTE_ARRAY:
3443 		nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3444 		break;
3445 
3446 	case DATA_TYPE_BOOLEAN_ARRAY:
3447 	case DATA_TYPE_INT8_ARRAY:
3448 	case DATA_TYPE_UINT8_ARRAY:
3449 	case DATA_TYPE_INT16_ARRAY:
3450 	case DATA_TYPE_UINT16_ARRAY:
3451 	case DATA_TYPE_INT32_ARRAY:
3452 	case DATA_TYPE_UINT32_ARRAY:
3453 		nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3454 		break;
3455 
3456 	case DATA_TYPE_INT64_ARRAY:
3457 	case DATA_TYPE_UINT64_ARRAY:
3458 		nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3459 		break;
3460 
3461 	case DATA_TYPE_STRING_ARRAY: {
3462 		int i;
3463 		char **strs = (void *)NVP_VALUE(nvp);
3464 
3465 		for (i = 0; i < NVP_NELEM(nvp); i++)
3466 			nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3467 
3468 		break;
3469 	}
3470 
3471 	case DATA_TYPE_NVLIST:
3472 	case DATA_TYPE_NVLIST_ARRAY: {
3473 		size_t nvsize = 0;
3474 		int old_nvs_op = nvs->nvs_op;
3475 		int err;
3476 
3477 		nvs->nvs_op = NVS_OP_GETSIZE;
3478 		if (type == DATA_TYPE_NVLIST)
3479 			err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3480 		else
3481 			err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3482 		nvs->nvs_op = old_nvs_op;
3483 
3484 		if (err != 0)
3485 			return (EINVAL);
3486 
3487 		nvp_sz += nvsize;
3488 		break;
3489 	}
3490 
3491 	default:
3492 		return (EINVAL);
3493 	}
3494 
3495 	if (nvp_sz > INT32_MAX)
3496 		return (EINVAL);
3497 
3498 	*size = nvp_sz;
3499 
3500 	return (0);
3501 }
3502 
3503 
3504 /*
3505  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3506  * the largest nvpair that could be encoded in the buffer.
3507  *
3508  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3509  * The size of a xdr packed nvpair without any data is 5 words.
3510  *
3511  * Using the size of the data directly as an estimate would be ok
3512  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3513  * then the actual nvpair has space for an array of pointers to index
3514  * the strings.  These pointers are not encoded into the packed xdr buffer.
3515  *
3516  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3517  * of length 0, then each string is encoded in xdr format as a single word.
3518  * Therefore when expanded to an nvpair there will be 2.25 word used for
3519  * each string.  (a int64_t allocated for pointer usage, and a single char
3520  * for the null termination.)
3521  *
3522  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3523  */
3524 #define	NVS_XDR_HDR_LEN		((size_t)(5 * 4))
3525 #define	NVS_XDR_DATA_LEN(y)	(((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3526 					0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3527 #define	NVS_XDR_MAX_LEN(x)	(NVP_SIZE_CALC(1, 0) + \
3528 					(NVS_XDR_DATA_LEN(x) * 2) + \
3529 					NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3530 
3531 static int
3532 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3533 {
3534 	XDR 	*xdr = nvs->nvs_private;
3535 	int32_t	encode_len, decode_len;
3536 
3537 	switch (nvs->nvs_op) {
3538 	case NVS_OP_ENCODE: {
3539 		size_t nvsize;
3540 
3541 		if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3542 			return (EFAULT);
3543 
3544 		decode_len = nvp->nvp_size;
3545 		encode_len = nvsize;
3546 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3547 			return (EFAULT);
3548 
3549 		return (nvs_xdr_nvp_op(nvs, nvp));
3550 	}
3551 	case NVS_OP_DECODE: {
3552 		struct xdr_bytesrec bytesrec;
3553 
3554 		/* get the encode and decode size */
3555 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3556 			return (EFAULT);
3557 		*size = decode_len;
3558 
3559 		/* are we at the end of the stream? */
3560 		if (*size == 0)
3561 			return (0);
3562 
3563 		/* sanity check the size parameter */
3564 		if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3565 			return (EFAULT);
3566 
3567 		if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3568 			return (EFAULT);
3569 		break;
3570 	}
3571 
3572 	default:
3573 		return (EINVAL);
3574 	}
3575 	return (0);
3576 }
3577 
3578 static const struct nvs_ops nvs_xdr_ops = {
3579 	.nvs_nvlist = nvs_xdr_nvlist,
3580 	.nvs_nvpair = nvs_xdr_nvpair,
3581 	.nvs_nvp_op = nvs_xdr_nvp_op,
3582 	.nvs_nvp_size = nvs_xdr_nvp_size,
3583 	.nvs_nvl_fini = nvs_xdr_nvl_fini
3584 };
3585 
3586 static int
3587 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3588 {
3589 	XDR xdr;
3590 	int err;
3591 
3592 	nvs->nvs_ops = &nvs_xdr_ops;
3593 
3594 	if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3595 	    *buflen - sizeof (nvs_header_t))) != 0)
3596 		return (err);
3597 
3598 	err = nvs_operation(nvs, nvl, buflen);
3599 
3600 	nvs_xdr_destroy(nvs);
3601 
3602 	return (err);
3603 }
3604 
3605 #if defined(_KERNEL)
3606 static int __init
3607 nvpair_init(void)
3608 {
3609 	return (0);
3610 }
3611 
3612 static void __exit
3613 nvpair_fini(void)
3614 {
3615 }
3616 
3617 module_init(nvpair_init);
3618 module_exit(nvpair_fini);
3619 #endif
3620 
3621 ZFS_MODULE_DESCRIPTION("Generic name/value pair implementation");
3622 ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR);
3623 ZFS_MODULE_LICENSE(ZFS_META_LICENSE);
3624 ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
3625 
3626 EXPORT_SYMBOL(nv_alloc_init);
3627 EXPORT_SYMBOL(nv_alloc_reset);
3628 EXPORT_SYMBOL(nv_alloc_fini);
3629 
3630 /* list management */
3631 EXPORT_SYMBOL(nvlist_alloc);
3632 EXPORT_SYMBOL(nvlist_free);
3633 EXPORT_SYMBOL(nvlist_size);
3634 EXPORT_SYMBOL(nvlist_pack);
3635 EXPORT_SYMBOL(nvlist_unpack);
3636 EXPORT_SYMBOL(nvlist_dup);
3637 EXPORT_SYMBOL(nvlist_merge);
3638 
3639 EXPORT_SYMBOL(nvlist_xalloc);
3640 EXPORT_SYMBOL(nvlist_xpack);
3641 EXPORT_SYMBOL(nvlist_xunpack);
3642 EXPORT_SYMBOL(nvlist_xdup);
3643 EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
3644 
3645 EXPORT_SYMBOL(nvlist_add_nvpair);
3646 EXPORT_SYMBOL(nvlist_add_boolean);
3647 EXPORT_SYMBOL(nvlist_add_boolean_value);
3648 EXPORT_SYMBOL(nvlist_add_byte);
3649 EXPORT_SYMBOL(nvlist_add_int8);
3650 EXPORT_SYMBOL(nvlist_add_uint8);
3651 EXPORT_SYMBOL(nvlist_add_int16);
3652 EXPORT_SYMBOL(nvlist_add_uint16);
3653 EXPORT_SYMBOL(nvlist_add_int32);
3654 EXPORT_SYMBOL(nvlist_add_uint32);
3655 EXPORT_SYMBOL(nvlist_add_int64);
3656 EXPORT_SYMBOL(nvlist_add_uint64);
3657 EXPORT_SYMBOL(nvlist_add_string);
3658 EXPORT_SYMBOL(nvlist_add_nvlist);
3659 EXPORT_SYMBOL(nvlist_add_boolean_array);
3660 EXPORT_SYMBOL(nvlist_add_byte_array);
3661 EXPORT_SYMBOL(nvlist_add_int8_array);
3662 EXPORT_SYMBOL(nvlist_add_uint8_array);
3663 EXPORT_SYMBOL(nvlist_add_int16_array);
3664 EXPORT_SYMBOL(nvlist_add_uint16_array);
3665 EXPORT_SYMBOL(nvlist_add_int32_array);
3666 EXPORT_SYMBOL(nvlist_add_uint32_array);
3667 EXPORT_SYMBOL(nvlist_add_int64_array);
3668 EXPORT_SYMBOL(nvlist_add_uint64_array);
3669 EXPORT_SYMBOL(nvlist_add_string_array);
3670 EXPORT_SYMBOL(nvlist_add_nvlist_array);
3671 EXPORT_SYMBOL(nvlist_next_nvpair);
3672 EXPORT_SYMBOL(nvlist_prev_nvpair);
3673 EXPORT_SYMBOL(nvlist_empty);
3674 EXPORT_SYMBOL(nvlist_add_hrtime);
3675 
3676 EXPORT_SYMBOL(nvlist_remove);
3677 EXPORT_SYMBOL(nvlist_remove_nvpair);
3678 EXPORT_SYMBOL(nvlist_remove_all);
3679 
3680 EXPORT_SYMBOL(nvlist_lookup_boolean);
3681 EXPORT_SYMBOL(nvlist_lookup_boolean_value);
3682 EXPORT_SYMBOL(nvlist_lookup_byte);
3683 EXPORT_SYMBOL(nvlist_lookup_int8);
3684 EXPORT_SYMBOL(nvlist_lookup_uint8);
3685 EXPORT_SYMBOL(nvlist_lookup_int16);
3686 EXPORT_SYMBOL(nvlist_lookup_uint16);
3687 EXPORT_SYMBOL(nvlist_lookup_int32);
3688 EXPORT_SYMBOL(nvlist_lookup_uint32);
3689 EXPORT_SYMBOL(nvlist_lookup_int64);
3690 EXPORT_SYMBOL(nvlist_lookup_uint64);
3691 EXPORT_SYMBOL(nvlist_lookup_string);
3692 EXPORT_SYMBOL(nvlist_lookup_nvlist);
3693 EXPORT_SYMBOL(nvlist_lookup_boolean_array);
3694 EXPORT_SYMBOL(nvlist_lookup_byte_array);
3695 EXPORT_SYMBOL(nvlist_lookup_int8_array);
3696 EXPORT_SYMBOL(nvlist_lookup_uint8_array);
3697 EXPORT_SYMBOL(nvlist_lookup_int16_array);
3698 EXPORT_SYMBOL(nvlist_lookup_uint16_array);
3699 EXPORT_SYMBOL(nvlist_lookup_int32_array);
3700 EXPORT_SYMBOL(nvlist_lookup_uint32_array);
3701 EXPORT_SYMBOL(nvlist_lookup_int64_array);
3702 EXPORT_SYMBOL(nvlist_lookup_uint64_array);
3703 EXPORT_SYMBOL(nvlist_lookup_string_array);
3704 EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
3705 EXPORT_SYMBOL(nvlist_lookup_hrtime);
3706 EXPORT_SYMBOL(nvlist_lookup_pairs);
3707 
3708 EXPORT_SYMBOL(nvlist_lookup_nvpair);
3709 EXPORT_SYMBOL(nvlist_exists);
3710 
3711 /* processing nvpair */
3712 EXPORT_SYMBOL(nvpair_name);
3713 EXPORT_SYMBOL(nvpair_type);
3714 EXPORT_SYMBOL(nvpair_value_boolean_value);
3715 EXPORT_SYMBOL(nvpair_value_byte);
3716 EXPORT_SYMBOL(nvpair_value_int8);
3717 EXPORT_SYMBOL(nvpair_value_uint8);
3718 EXPORT_SYMBOL(nvpair_value_int16);
3719 EXPORT_SYMBOL(nvpair_value_uint16);
3720 EXPORT_SYMBOL(nvpair_value_int32);
3721 EXPORT_SYMBOL(nvpair_value_uint32);
3722 EXPORT_SYMBOL(nvpair_value_int64);
3723 EXPORT_SYMBOL(nvpair_value_uint64);
3724 EXPORT_SYMBOL(nvpair_value_string);
3725 EXPORT_SYMBOL(nvpair_value_nvlist);
3726 EXPORT_SYMBOL(nvpair_value_boolean_array);
3727 EXPORT_SYMBOL(nvpair_value_byte_array);
3728 EXPORT_SYMBOL(nvpair_value_int8_array);
3729 EXPORT_SYMBOL(nvpair_value_uint8_array);
3730 EXPORT_SYMBOL(nvpair_value_int16_array);
3731 EXPORT_SYMBOL(nvpair_value_uint16_array);
3732 EXPORT_SYMBOL(nvpair_value_int32_array);
3733 EXPORT_SYMBOL(nvpair_value_uint32_array);
3734 EXPORT_SYMBOL(nvpair_value_int64_array);
3735 EXPORT_SYMBOL(nvpair_value_uint64_array);
3736 EXPORT_SYMBOL(nvpair_value_string_array);
3737 EXPORT_SYMBOL(nvpair_value_nvlist_array);
3738 EXPORT_SYMBOL(nvpair_value_hrtime);
3739