xref: /freebsd/sys/contrib/openzfs/module/nvpair/nvpair.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2015, 2017 by Delphix. All rights reserved.
25  * Copyright 2018 RackTop Systems.
26  */
27 
28 /*
29  * Links to Illumos.org for more information on Interface Libraries:
30  * [1] https://illumos.org/man/3lib/libnvpair
31  * [2] https://illumos.org/man/3nvpair/nvlist_alloc
32  * [3] https://illumos.org/man/9f/nvlist_alloc
33  * [4] https://illumos.org/man/9f/nvlist_next_nvpair
34  * [5] https://illumos.org/man/9f/nvpair_value_byte
35  */
36 
37 #include <sys/debug.h>
38 #include <sys/isa_defs.h>
39 #include <sys/nvpair.h>
40 #include <sys/nvpair_impl.h>
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/string.h>
44 #include <rpc/types.h>
45 #include <rpc/xdr.h>
46 #include <sys/mod.h>
47 
48 #if defined(_KERNEL)
49 #include <sys/sunddi.h>
50 #include <sys/sysmacros.h>
51 #else
52 #include <stdarg.h>
53 #include <stdlib.h>
54 #include <stddef.h>
55 #endif
56 
57 #define	skip_whitespace(p)	while ((*(p) == ' ') || (*(p) == '\t')) (p)++
58 
59 /*
60  * nvpair.c - Provides kernel & userland interfaces for manipulating
61  *	name-value pairs.
62  *
63  * Overview Diagram
64  *
65  *  +--------------+
66  *  |  nvlist_t    |
67  *  |--------------|
68  *  | nvl_version  |
69  *  | nvl_nvflag   |
70  *  | nvl_priv    -+-+
71  *  | nvl_flag     | |
72  *  | nvl_pad      | |
73  *  +--------------+ |
74  *                   V
75  *      +--------------+      last i_nvp in list
76  *      | nvpriv_t     |  +--------------------->
77  *      |--------------|  |
78  *   +--+- nvp_list    |  |   +------------+
79  *   |  |  nvp_last   -+--+   + nv_alloc_t |
80  *   |  |  nvp_curr    |      |------------|
81  *   |  |  nvp_nva    -+----> | nva_ops    |
82  *   |  |  nvp_stat    |      | nva_arg    |
83  *   |  +--------------+      +------------+
84  *   |
85  *   +-------+
86  *           V
87  *   +---------------------+      +-------------------+
88  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
89  *   |---------------------|  |   |-------------------|  |
90  *   | nvi_next           -+--+   | nvi_next         -+--+
91  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
92  *   | . . . . . . . . . . |      | . . . . . . . . . |
93  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
94  *   |  - nvp_size         |      |  - nvp_size       |
95  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
96  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
97  *   |  - nvp_type         |      |  - nvp_type       |
98  *   |  - data ...         |      |  - data ...       |
99  *   +---------------------+      +-------------------+
100  *
101  *
102  *
103  *   +---------------------+              +---------------------+
104  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
105  *   |---------------------|  |       |   |---------------------|
106  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
107  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
108  *   | . . . . . . . . .   |              | . . . . . . . . .   |
109  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
110  *   |  - nvp_size         |              |  - nvp_size         |
111  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
112  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
113  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
114  *   |  - data (embedded)  |              |  - data ...         |
115  *   |    nvlist name      |              +---------------------+
116  *   |  +--------------+   |
117  *   |  |  nvlist_t    |   |
118  *   |  |--------------|   |
119  *   |  | nvl_version  |   |
120  *   |  | nvl_nvflag   |   |
121  *   |  | nvl_priv   --+---+---->
122  *   |  | nvl_flag     |   |
123  *   |  | nvl_pad      |   |
124  *   |  +--------------+   |
125  *   +---------------------+
126  *
127  *
128  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
129  * allow value to be aligned on 8 byte boundary
130  *
131  * name_len is the length of the name string including the null terminator
132  * so it must be >= 1
133  */
134 #define	NVP_SIZE_CALC(name_len, data_len) \
135 	(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
136 
137 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
138 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
139     uint_t nelem, const void *data);
140 
141 #define	NV_STAT_EMBEDDED	0x1
142 #define	EMBEDDED_NVL(nvp)	((nvlist_t *)(void *)NVP_VALUE(nvp))
143 #define	EMBEDDED_NVL_ARRAY(nvp)	((nvlist_t **)(void *)NVP_VALUE(nvp))
144 
145 #define	NVP_VALOFF(nvp)	(NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
146 #define	NVPAIR2I_NVP(nvp) \
147 	((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
148 
149 #ifdef _KERNEL
150 static const int nvpair_max_recursion = 20;
151 #else
152 static const int nvpair_max_recursion = 100;
153 #endif
154 
155 static const uint64_t nvlist_hashtable_init_size = (1 << 4);
156 
157 int
158 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
159 {
160 	va_list valist;
161 	int err = 0;
162 
163 	nva->nva_ops = nvo;
164 	nva->nva_arg = NULL;
165 
166 	va_start(valist, nvo);
167 	if (nva->nva_ops->nv_ao_init != NULL)
168 		err = nva->nva_ops->nv_ao_init(nva, valist);
169 	va_end(valist);
170 
171 	return (err);
172 }
173 
174 void
175 nv_alloc_reset(nv_alloc_t *nva)
176 {
177 	if (nva->nva_ops->nv_ao_reset != NULL)
178 		nva->nva_ops->nv_ao_reset(nva);
179 }
180 
181 void
182 nv_alloc_fini(nv_alloc_t *nva)
183 {
184 	if (nva->nva_ops->nv_ao_fini != NULL)
185 		nva->nva_ops->nv_ao_fini(nva);
186 }
187 
188 nv_alloc_t *
189 nvlist_lookup_nv_alloc(nvlist_t *nvl)
190 {
191 	nvpriv_t *priv;
192 
193 	if (nvl == NULL ||
194 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
195 		return (NULL);
196 
197 	return (priv->nvp_nva);
198 }
199 
200 static void *
201 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
202 {
203 	nv_alloc_t *nva = nvp->nvp_nva;
204 	void *buf;
205 
206 	if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
207 		memset(buf, 0, size);
208 
209 	return (buf);
210 }
211 
212 static void
213 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
214 {
215 	nv_alloc_t *nva = nvp->nvp_nva;
216 
217 	nva->nva_ops->nv_ao_free(nva, buf, size);
218 }
219 
220 static void
221 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
222 {
223 	memset(priv, 0, sizeof (nvpriv_t));
224 
225 	priv->nvp_nva = nva;
226 	priv->nvp_stat = stat;
227 }
228 
229 static nvpriv_t *
230 nv_priv_alloc(nv_alloc_t *nva)
231 {
232 	nvpriv_t *priv;
233 
234 	/*
235 	 * nv_mem_alloc() cannot called here because it needs the priv
236 	 * argument.
237 	 */
238 	if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
239 		return (NULL);
240 
241 	nv_priv_init(priv, nva, 0);
242 
243 	return (priv);
244 }
245 
246 /*
247  * Embedded lists need their own nvpriv_t's.  We create a new
248  * nvpriv_t using the parameters and allocator from the parent
249  * list's nvpriv_t.
250  */
251 static nvpriv_t *
252 nv_priv_alloc_embedded(nvpriv_t *priv)
253 {
254 	nvpriv_t *emb_priv;
255 
256 	if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
257 		return (NULL);
258 
259 	nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
260 
261 	return (emb_priv);
262 }
263 
264 static int
265 nvt_tab_alloc(nvpriv_t *priv, uint64_t buckets)
266 {
267 	ASSERT3P(priv->nvp_hashtable, ==, NULL);
268 	ASSERT0(priv->nvp_nbuckets);
269 	ASSERT0(priv->nvp_nentries);
270 
271 	i_nvp_t **tab = nv_mem_zalloc(priv, buckets * sizeof (i_nvp_t *));
272 	if (tab == NULL)
273 		return (ENOMEM);
274 
275 	priv->nvp_hashtable = tab;
276 	priv->nvp_nbuckets = buckets;
277 	return (0);
278 }
279 
280 static void
281 nvt_tab_free(nvpriv_t *priv)
282 {
283 	i_nvp_t **tab = priv->nvp_hashtable;
284 	if (tab == NULL) {
285 		ASSERT0(priv->nvp_nbuckets);
286 		ASSERT0(priv->nvp_nentries);
287 		return;
288 	}
289 
290 	nv_mem_free(priv, tab, priv->nvp_nbuckets * sizeof (i_nvp_t *));
291 
292 	priv->nvp_hashtable = NULL;
293 	priv->nvp_nbuckets = 0;
294 	priv->nvp_nentries = 0;
295 }
296 
297 static uint32_t
298 nvt_hash(const char *p)
299 {
300 	uint32_t g, hval = 0;
301 
302 	while (*p) {
303 		hval = (hval << 4) + *p++;
304 		if ((g = (hval & 0xf0000000)) != 0)
305 			hval ^= g >> 24;
306 		hval &= ~g;
307 	}
308 	return (hval);
309 }
310 
311 static boolean_t
312 nvt_nvpair_match(const nvpair_t *nvp1, const nvpair_t *nvp2, uint32_t nvflag)
313 {
314 	boolean_t match = B_FALSE;
315 	if (nvflag & NV_UNIQUE_NAME_TYPE) {
316 		if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0 &&
317 		    NVP_TYPE(nvp1) == NVP_TYPE(nvp2))
318 			match = B_TRUE;
319 	} else {
320 		ASSERT(nvflag == 0 || nvflag & NV_UNIQUE_NAME);
321 		if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0)
322 			match = B_TRUE;
323 	}
324 	return (match);
325 }
326 
327 static nvpair_t *
328 nvt_lookup_name_type(const nvlist_t *nvl, const char *name, data_type_t type)
329 {
330 	const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
331 	ASSERT(priv != NULL);
332 
333 	i_nvp_t **tab = priv->nvp_hashtable;
334 
335 	if (tab == NULL) {
336 		ASSERT3P(priv->nvp_list, ==, NULL);
337 		ASSERT0(priv->nvp_nbuckets);
338 		ASSERT0(priv->nvp_nentries);
339 		return (NULL);
340 	} else {
341 		ASSERT(priv->nvp_nbuckets != 0);
342 	}
343 
344 	uint64_t hash = nvt_hash(name);
345 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
346 
347 	ASSERT3U(index, <, priv->nvp_nbuckets);
348 	i_nvp_t *entry = tab[index];
349 
350 	for (i_nvp_t *e = entry; e != NULL; e = e->nvi_hashtable_next) {
351 		if (strcmp(NVP_NAME(&e->nvi_nvp), name) == 0 &&
352 		    (type == DATA_TYPE_DONTCARE ||
353 		    NVP_TYPE(&e->nvi_nvp) == type))
354 			return (&e->nvi_nvp);
355 	}
356 	return (NULL);
357 }
358 
359 static nvpair_t *
360 nvt_lookup_name(const nvlist_t *nvl, const char *name)
361 {
362 	return (nvt_lookup_name_type(nvl, name, DATA_TYPE_DONTCARE));
363 }
364 
365 static int
366 nvt_resize(nvpriv_t *priv, uint32_t new_size)
367 {
368 	i_nvp_t **tab = priv->nvp_hashtable;
369 
370 	/*
371 	 * Migrate all the entries from the current table
372 	 * to a newly-allocated table with the new size by
373 	 * re-adjusting the pointers of their entries.
374 	 */
375 	uint32_t size = priv->nvp_nbuckets;
376 	uint32_t new_mask = new_size - 1;
377 	ASSERT(ISP2(new_size));
378 
379 	i_nvp_t **new_tab = nv_mem_zalloc(priv, new_size * sizeof (i_nvp_t *));
380 	if (new_tab == NULL)
381 		return (ENOMEM);
382 
383 	uint32_t nentries = 0;
384 	for (uint32_t i = 0; i < size; i++) {
385 		i_nvp_t *next, *e = tab[i];
386 
387 		while (e != NULL) {
388 			next = e->nvi_hashtable_next;
389 
390 			uint32_t hash = nvt_hash(NVP_NAME(&e->nvi_nvp));
391 			uint32_t index = hash & new_mask;
392 
393 			e->nvi_hashtable_next = new_tab[index];
394 			new_tab[index] = e;
395 			nentries++;
396 
397 			e = next;
398 		}
399 		tab[i] = NULL;
400 	}
401 	ASSERT3U(nentries, ==, priv->nvp_nentries);
402 
403 	nvt_tab_free(priv);
404 
405 	priv->nvp_hashtable = new_tab;
406 	priv->nvp_nbuckets = new_size;
407 	priv->nvp_nentries = nentries;
408 
409 	return (0);
410 }
411 
412 static boolean_t
413 nvt_needs_togrow(nvpriv_t *priv)
414 {
415 	/*
416 	 * Grow only when we have more elements than buckets
417 	 * and the # of buckets doesn't overflow.
418 	 */
419 	return (priv->nvp_nentries > priv->nvp_nbuckets &&
420 	    (UINT32_MAX >> 1) >= priv->nvp_nbuckets);
421 }
422 
423 /*
424  * Allocate a new table that's twice the size of the old one,
425  * and migrate all the entries from the old one to the new
426  * one by re-adjusting their pointers.
427  */
428 static int
429 nvt_grow(nvpriv_t *priv)
430 {
431 	uint32_t current_size = priv->nvp_nbuckets;
432 	/* ensure we won't overflow */
433 	ASSERT3U(UINT32_MAX >> 1, >=, current_size);
434 	return (nvt_resize(priv, current_size << 1));
435 }
436 
437 static boolean_t
438 nvt_needs_toshrink(nvpriv_t *priv)
439 {
440 	/*
441 	 * Shrink only when the # of elements is less than or
442 	 * equal to 1/4 the # of buckets. Never shrink less than
443 	 * nvlist_hashtable_init_size.
444 	 */
445 	ASSERT3U(priv->nvp_nbuckets, >=, nvlist_hashtable_init_size);
446 	if (priv->nvp_nbuckets == nvlist_hashtable_init_size)
447 		return (B_FALSE);
448 	return (priv->nvp_nentries <= (priv->nvp_nbuckets >> 2));
449 }
450 
451 /*
452  * Allocate a new table that's half the size of the old one,
453  * and migrate all the entries from the old one to the new
454  * one by re-adjusting their pointers.
455  */
456 static int
457 nvt_shrink(nvpriv_t *priv)
458 {
459 	uint32_t current_size = priv->nvp_nbuckets;
460 	/* ensure we won't overflow */
461 	ASSERT3U(current_size, >=, nvlist_hashtable_init_size);
462 	return (nvt_resize(priv, current_size >> 1));
463 }
464 
465 static int
466 nvt_remove_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
467 {
468 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
469 
470 	if (nvt_needs_toshrink(priv)) {
471 		int err = nvt_shrink(priv);
472 		if (err != 0)
473 			return (err);
474 	}
475 	i_nvp_t **tab = priv->nvp_hashtable;
476 
477 	const char *name = NVP_NAME(nvp);
478 	uint64_t hash = nvt_hash(name);
479 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
480 
481 	ASSERT3U(index, <, priv->nvp_nbuckets);
482 	i_nvp_t *bucket = tab[index];
483 
484 	for (i_nvp_t *prev = NULL, *e = bucket;
485 	    e != NULL; prev = e, e = e->nvi_hashtable_next) {
486 		if (nvt_nvpair_match(&e->nvi_nvp, nvp, nvl->nvl_nvflag)) {
487 			if (prev != NULL) {
488 				prev->nvi_hashtable_next =
489 				    e->nvi_hashtable_next;
490 			} else {
491 				ASSERT3P(e, ==, bucket);
492 				tab[index] = e->nvi_hashtable_next;
493 			}
494 			e->nvi_hashtable_next = NULL;
495 			priv->nvp_nentries--;
496 			break;
497 		}
498 	}
499 
500 	return (0);
501 }
502 
503 static int
504 nvt_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
505 {
506 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
507 
508 	/* initialize nvpair table now if it doesn't exist. */
509 	if (priv->nvp_hashtable == NULL) {
510 		int err = nvt_tab_alloc(priv, nvlist_hashtable_init_size);
511 		if (err != 0)
512 			return (err);
513 	}
514 
515 	/*
516 	 * if we don't allow duplicate entries, make sure to
517 	 * unlink any existing entries from the table.
518 	 */
519 	if (nvl->nvl_nvflag != 0) {
520 		int err = nvt_remove_nvpair(nvl, nvp);
521 		if (err != 0)
522 			return (err);
523 	}
524 
525 	if (nvt_needs_togrow(priv)) {
526 		int err = nvt_grow(priv);
527 		if (err != 0)
528 			return (err);
529 	}
530 	i_nvp_t **tab = priv->nvp_hashtable;
531 
532 	const char *name = NVP_NAME(nvp);
533 	uint64_t hash = nvt_hash(name);
534 	uint64_t index = hash & (priv->nvp_nbuckets - 1);
535 
536 	ASSERT3U(index, <, priv->nvp_nbuckets);
537 	// cppcheck-suppress nullPointerRedundantCheck
538 	i_nvp_t *bucket = tab[index];
539 
540 	/* insert link at the beginning of the bucket */
541 	i_nvp_t *new_entry = NVPAIR2I_NVP(nvp);
542 	ASSERT3P(new_entry->nvi_hashtable_next, ==, NULL);
543 	new_entry->nvi_hashtable_next = bucket;
544 	// cppcheck-suppress nullPointerRedundantCheck
545 	tab[index] = new_entry;
546 
547 	priv->nvp_nentries++;
548 	return (0);
549 }
550 
551 static void
552 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
553 {
554 	nvl->nvl_version = NV_VERSION;
555 	nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
556 	nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
557 	nvl->nvl_flag = 0;
558 	nvl->nvl_pad = 0;
559 }
560 
561 uint_t
562 nvlist_nvflag(nvlist_t *nvl)
563 {
564 	return (nvl->nvl_nvflag);
565 }
566 
567 static nv_alloc_t *
568 nvlist_nv_alloc(int kmflag)
569 {
570 #if defined(_KERNEL)
571 	switch (kmflag) {
572 	case KM_SLEEP:
573 		return (nv_alloc_sleep);
574 	case KM_NOSLEEP:
575 		return (nv_alloc_nosleep);
576 	default:
577 		return (nv_alloc_pushpage);
578 	}
579 #else
580 	(void) kmflag;
581 	return (nv_alloc_nosleep);
582 #endif /* _KERNEL */
583 }
584 
585 /*
586  * nvlist_alloc - Allocate nvlist.
587  */
588 int
589 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
590 {
591 	return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
592 }
593 
594 int
595 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
596 {
597 	nvpriv_t *priv;
598 
599 	if (nvlp == NULL || nva == NULL)
600 		return (EINVAL);
601 
602 	if ((priv = nv_priv_alloc(nva)) == NULL)
603 		return (ENOMEM);
604 
605 	if ((*nvlp = nv_mem_zalloc(priv,
606 	    NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
607 		nv_mem_free(priv, priv, sizeof (nvpriv_t));
608 		return (ENOMEM);
609 	}
610 
611 	nvlist_init(*nvlp, nvflag, priv);
612 
613 	return (0);
614 }
615 
616 /*
617  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
618  */
619 static nvpair_t *
620 nvp_buf_alloc(nvlist_t *nvl, size_t len)
621 {
622 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
623 	i_nvp_t *buf;
624 	nvpair_t *nvp;
625 	size_t nvsize;
626 
627 	/*
628 	 * Allocate the buffer
629 	 */
630 	nvsize = len + offsetof(i_nvp_t, nvi_nvp);
631 
632 	if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
633 		return (NULL);
634 
635 	nvp = &buf->nvi_nvp;
636 	nvp->nvp_size = len;
637 
638 	return (nvp);
639 }
640 
641 /*
642  * nvp_buf_free - de-Allocate an i_nvp_t.
643  */
644 static void
645 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
646 {
647 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
648 	size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
649 
650 	nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
651 }
652 
653 /*
654  * nvp_buf_link - link a new nv pair into the nvlist.
655  */
656 static void
657 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
658 {
659 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
660 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
661 
662 	/* Put element at end of nvlist */
663 	if (priv->nvp_list == NULL) {
664 		priv->nvp_list = priv->nvp_last = curr;
665 	} else {
666 		curr->nvi_prev = priv->nvp_last;
667 		priv->nvp_last->nvi_next = curr;
668 		priv->nvp_last = curr;
669 	}
670 }
671 
672 /*
673  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
674  */
675 static void
676 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
677 {
678 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
679 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
680 
681 	/*
682 	 * protect nvlist_next_nvpair() against walking on freed memory.
683 	 */
684 	if (priv->nvp_curr == curr)
685 		priv->nvp_curr = curr->nvi_next;
686 
687 	if (curr == priv->nvp_list)
688 		priv->nvp_list = curr->nvi_next;
689 	else
690 		curr->nvi_prev->nvi_next = curr->nvi_next;
691 
692 	if (curr == priv->nvp_last)
693 		priv->nvp_last = curr->nvi_prev;
694 	else
695 		curr->nvi_next->nvi_prev = curr->nvi_prev;
696 }
697 
698 /*
699  * take a nvpair type and number of elements and make sure the are valid
700  */
701 static int
702 i_validate_type_nelem(data_type_t type, uint_t nelem)
703 {
704 	switch (type) {
705 	case DATA_TYPE_BOOLEAN:
706 		if (nelem != 0)
707 			return (EINVAL);
708 		break;
709 	case DATA_TYPE_BOOLEAN_VALUE:
710 	case DATA_TYPE_BYTE:
711 	case DATA_TYPE_INT8:
712 	case DATA_TYPE_UINT8:
713 	case DATA_TYPE_INT16:
714 	case DATA_TYPE_UINT16:
715 	case DATA_TYPE_INT32:
716 	case DATA_TYPE_UINT32:
717 	case DATA_TYPE_INT64:
718 	case DATA_TYPE_UINT64:
719 	case DATA_TYPE_STRING:
720 	case DATA_TYPE_HRTIME:
721 	case DATA_TYPE_NVLIST:
722 #if !defined(_KERNEL)
723 	case DATA_TYPE_DOUBLE:
724 #endif
725 		if (nelem != 1)
726 			return (EINVAL);
727 		break;
728 	case DATA_TYPE_BOOLEAN_ARRAY:
729 	case DATA_TYPE_BYTE_ARRAY:
730 	case DATA_TYPE_INT8_ARRAY:
731 	case DATA_TYPE_UINT8_ARRAY:
732 	case DATA_TYPE_INT16_ARRAY:
733 	case DATA_TYPE_UINT16_ARRAY:
734 	case DATA_TYPE_INT32_ARRAY:
735 	case DATA_TYPE_UINT32_ARRAY:
736 	case DATA_TYPE_INT64_ARRAY:
737 	case DATA_TYPE_UINT64_ARRAY:
738 	case DATA_TYPE_STRING_ARRAY:
739 	case DATA_TYPE_NVLIST_ARRAY:
740 		/* we allow arrays with 0 elements */
741 		break;
742 	default:
743 		return (EINVAL);
744 	}
745 	return (0);
746 }
747 
748 /*
749  * Verify nvp_name_sz and check the name string length.
750  */
751 static int
752 i_validate_nvpair_name(nvpair_t *nvp)
753 {
754 	if ((nvp->nvp_name_sz <= 0) ||
755 	    (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
756 		return (EFAULT);
757 
758 	/* verify the name string, make sure its terminated */
759 	if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
760 		return (EFAULT);
761 
762 	return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
763 }
764 
765 static int
766 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
767 {
768 	switch (type) {
769 	case DATA_TYPE_BOOLEAN_VALUE:
770 		if (*(boolean_t *)data != B_TRUE &&
771 		    *(boolean_t *)data != B_FALSE)
772 			return (EINVAL);
773 		break;
774 	case DATA_TYPE_BOOLEAN_ARRAY: {
775 		int i;
776 
777 		for (i = 0; i < nelem; i++)
778 			if (((boolean_t *)data)[i] != B_TRUE &&
779 			    ((boolean_t *)data)[i] != B_FALSE)
780 				return (EINVAL);
781 		break;
782 	}
783 	default:
784 		break;
785 	}
786 
787 	return (0);
788 }
789 
790 /*
791  * This function takes a pointer to what should be a nvpair and it's size
792  * and then verifies that all the nvpair fields make sense and can be
793  * trusted.  This function is used when decoding packed nvpairs.
794  */
795 static int
796 i_validate_nvpair(nvpair_t *nvp)
797 {
798 	data_type_t type = NVP_TYPE(nvp);
799 	int size1, size2;
800 
801 	/* verify nvp_name_sz, check the name string length */
802 	if (i_validate_nvpair_name(nvp) != 0)
803 		return (EFAULT);
804 
805 	if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
806 		return (EFAULT);
807 
808 	/*
809 	 * verify nvp_type, nvp_value_elem, and also possibly
810 	 * verify string values and get the value size.
811 	 */
812 	size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
813 	size1 = nvp->nvp_size - NVP_VALOFF(nvp);
814 	if (size2 < 0 || size1 != NV_ALIGN(size2))
815 		return (EFAULT);
816 
817 	return (0);
818 }
819 
820 static int
821 nvlist_copy_pairs(const nvlist_t *snvl, nvlist_t *dnvl)
822 {
823 	const nvpriv_t *priv;
824 	const i_nvp_t *curr;
825 
826 	if ((priv = (const nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
827 		return (EINVAL);
828 
829 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
830 		const nvpair_t *nvp = &curr->nvi_nvp;
831 		int err;
832 
833 		if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
834 		    NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
835 			return (err);
836 	}
837 
838 	return (0);
839 }
840 
841 /*
842  * Frees all memory allocated for an nvpair (like embedded lists) with
843  * the exception of the nvpair buffer itself.
844  */
845 static void
846 nvpair_free(nvpair_t *nvp)
847 {
848 	switch (NVP_TYPE(nvp)) {
849 	case DATA_TYPE_NVLIST:
850 		nvlist_free(EMBEDDED_NVL(nvp));
851 		break;
852 	case DATA_TYPE_NVLIST_ARRAY: {
853 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
854 		int i;
855 
856 		for (i = 0; i < NVP_NELEM(nvp); i++)
857 			if (nvlp[i] != NULL)
858 				nvlist_free(nvlp[i]);
859 		break;
860 	}
861 	default:
862 		break;
863 	}
864 }
865 
866 /*
867  * nvlist_free - free an unpacked nvlist
868  */
869 void
870 nvlist_free(nvlist_t *nvl)
871 {
872 	nvpriv_t *priv;
873 	i_nvp_t *curr;
874 
875 	if (nvl == NULL ||
876 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
877 		return;
878 
879 	/*
880 	 * Unpacked nvlist are linked through i_nvp_t
881 	 */
882 	curr = priv->nvp_list;
883 	while (curr != NULL) {
884 		nvpair_t *nvp = &curr->nvi_nvp;
885 		curr = curr->nvi_next;
886 
887 		nvpair_free(nvp);
888 		nvp_buf_free(nvl, nvp);
889 	}
890 
891 	if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
892 		nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
893 	else
894 		nvl->nvl_priv = 0;
895 
896 	nvt_tab_free(priv);
897 	nv_mem_free(priv, priv, sizeof (nvpriv_t));
898 }
899 
900 static int
901 nvlist_contains_nvp(const nvlist_t *nvl, const nvpair_t *nvp)
902 {
903 	const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
904 	const i_nvp_t *curr;
905 
906 	if (nvp == NULL)
907 		return (0);
908 
909 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
910 		if (&curr->nvi_nvp == nvp)
911 			return (1);
912 
913 	return (0);
914 }
915 
916 /*
917  * Make a copy of nvlist
918  */
919 int
920 nvlist_dup(const nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
921 {
922 	return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
923 }
924 
925 int
926 nvlist_xdup(const nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
927 {
928 	int err;
929 	nvlist_t *ret;
930 
931 	if (nvl == NULL || nvlp == NULL)
932 		return (EINVAL);
933 
934 	if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
935 		return (err);
936 
937 	if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
938 		nvlist_free(ret);
939 	else
940 		*nvlp = ret;
941 
942 	return (err);
943 }
944 
945 /*
946  * Remove all with matching name
947  */
948 int
949 nvlist_remove_all(nvlist_t *nvl, const char *name)
950 {
951 	int error = ENOENT;
952 
953 	if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
954 		return (EINVAL);
955 
956 	nvpair_t *nvp;
957 	while ((nvp = nvt_lookup_name(nvl, name)) != NULL) {
958 		VERIFY0(nvlist_remove_nvpair(nvl, nvp));
959 		error = 0;
960 	}
961 
962 	return (error);
963 }
964 
965 /*
966  * Remove first one with matching name and type
967  */
968 int
969 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
970 {
971 	if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
972 		return (EINVAL);
973 
974 	nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
975 	if (nvp == NULL)
976 		return (ENOENT);
977 
978 	return (nvlist_remove_nvpair(nvl, nvp));
979 }
980 
981 int
982 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
983 {
984 	if (nvl == NULL || nvp == NULL)
985 		return (EINVAL);
986 
987 	int err = nvt_remove_nvpair(nvl, nvp);
988 	if (err != 0)
989 		return (err);
990 
991 	nvp_buf_unlink(nvl, nvp);
992 	nvpair_free(nvp);
993 	nvp_buf_free(nvl, nvp);
994 	return (0);
995 }
996 
997 /*
998  * This function calculates the size of an nvpair value.
999  *
1000  * The data argument controls the behavior in case of the data types
1001  * 	DATA_TYPE_STRING    	and
1002  *	DATA_TYPE_STRING_ARRAY
1003  * Is data == NULL then the size of the string(s) is excluded.
1004  */
1005 static int
1006 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
1007 {
1008 	uint64_t value_sz;
1009 
1010 	if (i_validate_type_nelem(type, nelem) != 0)
1011 		return (-1);
1012 
1013 	/* Calculate required size for holding value */
1014 	switch (type) {
1015 	case DATA_TYPE_BOOLEAN:
1016 		value_sz = 0;
1017 		break;
1018 	case DATA_TYPE_BOOLEAN_VALUE:
1019 		value_sz = sizeof (boolean_t);
1020 		break;
1021 	case DATA_TYPE_BYTE:
1022 		value_sz = sizeof (uchar_t);
1023 		break;
1024 	case DATA_TYPE_INT8:
1025 		value_sz = sizeof (int8_t);
1026 		break;
1027 	case DATA_TYPE_UINT8:
1028 		value_sz = sizeof (uint8_t);
1029 		break;
1030 	case DATA_TYPE_INT16:
1031 		value_sz = sizeof (int16_t);
1032 		break;
1033 	case DATA_TYPE_UINT16:
1034 		value_sz = sizeof (uint16_t);
1035 		break;
1036 	case DATA_TYPE_INT32:
1037 		value_sz = sizeof (int32_t);
1038 		break;
1039 	case DATA_TYPE_UINT32:
1040 		value_sz = sizeof (uint32_t);
1041 		break;
1042 	case DATA_TYPE_INT64:
1043 		value_sz = sizeof (int64_t);
1044 		break;
1045 	case DATA_TYPE_UINT64:
1046 		value_sz = sizeof (uint64_t);
1047 		break;
1048 #if !defined(_KERNEL)
1049 	case DATA_TYPE_DOUBLE:
1050 		value_sz = sizeof (double);
1051 		break;
1052 #endif
1053 	case DATA_TYPE_STRING:
1054 		if (data == NULL)
1055 			value_sz = 0;
1056 		else
1057 			value_sz = strlen(data) + 1;
1058 		break;
1059 	case DATA_TYPE_BOOLEAN_ARRAY:
1060 		value_sz = (uint64_t)nelem * sizeof (boolean_t);
1061 		break;
1062 	case DATA_TYPE_BYTE_ARRAY:
1063 		value_sz = (uint64_t)nelem * sizeof (uchar_t);
1064 		break;
1065 	case DATA_TYPE_INT8_ARRAY:
1066 		value_sz = (uint64_t)nelem * sizeof (int8_t);
1067 		break;
1068 	case DATA_TYPE_UINT8_ARRAY:
1069 		value_sz = (uint64_t)nelem * sizeof (uint8_t);
1070 		break;
1071 	case DATA_TYPE_INT16_ARRAY:
1072 		value_sz = (uint64_t)nelem * sizeof (int16_t);
1073 		break;
1074 	case DATA_TYPE_UINT16_ARRAY:
1075 		value_sz = (uint64_t)nelem * sizeof (uint16_t);
1076 		break;
1077 	case DATA_TYPE_INT32_ARRAY:
1078 		value_sz = (uint64_t)nelem * sizeof (int32_t);
1079 		break;
1080 	case DATA_TYPE_UINT32_ARRAY:
1081 		value_sz = (uint64_t)nelem * sizeof (uint32_t);
1082 		break;
1083 	case DATA_TYPE_INT64_ARRAY:
1084 		value_sz = (uint64_t)nelem * sizeof (int64_t);
1085 		break;
1086 	case DATA_TYPE_UINT64_ARRAY:
1087 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
1088 		break;
1089 	case DATA_TYPE_STRING_ARRAY:
1090 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
1091 
1092 		if (data != NULL) {
1093 			char *const *strs = data;
1094 			uint_t i;
1095 
1096 			/* no alignment requirement for strings */
1097 			for (i = 0; i < nelem; i++) {
1098 				if (strs[i] == NULL)
1099 					return (-1);
1100 				value_sz += strlen(strs[i]) + 1;
1101 			}
1102 		}
1103 		break;
1104 	case DATA_TYPE_HRTIME:
1105 		value_sz = sizeof (hrtime_t);
1106 		break;
1107 	case DATA_TYPE_NVLIST:
1108 		value_sz = NV_ALIGN(sizeof (nvlist_t));
1109 		break;
1110 	case DATA_TYPE_NVLIST_ARRAY:
1111 		value_sz = (uint64_t)nelem * sizeof (uint64_t) +
1112 		    (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
1113 		break;
1114 	default:
1115 		return (-1);
1116 	}
1117 
1118 	return (value_sz > INT32_MAX ? -1 : (int)value_sz);
1119 }
1120 
1121 static int
1122 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
1123 {
1124 	nvpriv_t *priv;
1125 	int err;
1126 
1127 	if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
1128 	    nvl->nvl_priv)) == NULL)
1129 		return (ENOMEM);
1130 
1131 	nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
1132 
1133 	if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
1134 		nvlist_free(emb_nvl);
1135 		emb_nvl->nvl_priv = 0;
1136 	}
1137 
1138 	return (err);
1139 }
1140 
1141 /*
1142  * nvlist_add_common - Add new <name,value> pair to nvlist
1143  */
1144 static int
1145 nvlist_add_common(nvlist_t *nvl, const char *name,
1146     data_type_t type, uint_t nelem, const void *data)
1147 {
1148 	nvpair_t *nvp;
1149 	uint_t i;
1150 
1151 	int nvp_sz, name_sz, value_sz;
1152 	int err = 0;
1153 
1154 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1155 		return (EINVAL);
1156 
1157 	if (nelem != 0 && data == NULL)
1158 		return (EINVAL);
1159 
1160 	/*
1161 	 * Verify type and nelem and get the value size.
1162 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
1163 	 * is the size of the string(s) included.
1164 	 */
1165 	if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
1166 		return (EINVAL);
1167 
1168 	if (i_validate_nvpair_value(type, nelem, data) != 0)
1169 		return (EINVAL);
1170 
1171 	/*
1172 	 * If we're adding an nvlist or nvlist array, ensure that we are not
1173 	 * adding the input nvlist to itself, which would cause recursion,
1174 	 * and ensure that no NULL nvlist pointers are present.
1175 	 */
1176 	switch (type) {
1177 	case DATA_TYPE_NVLIST:
1178 		if (data == nvl || data == NULL)
1179 			return (EINVAL);
1180 		break;
1181 	case DATA_TYPE_NVLIST_ARRAY: {
1182 		nvlist_t **onvlp = (nvlist_t **)data;
1183 		for (i = 0; i < nelem; i++) {
1184 			if (onvlp[i] == nvl || onvlp[i] == NULL)
1185 				return (EINVAL);
1186 		}
1187 		break;
1188 	}
1189 	default:
1190 		break;
1191 	}
1192 
1193 	/* calculate sizes of the nvpair elements and the nvpair itself */
1194 	name_sz = strlen(name) + 1;
1195 	if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
1196 		return (EINVAL);
1197 
1198 	nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
1199 
1200 	if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
1201 		return (ENOMEM);
1202 
1203 	ASSERT(nvp->nvp_size == nvp_sz);
1204 	nvp->nvp_name_sz = name_sz;
1205 	nvp->nvp_value_elem = nelem;
1206 	nvp->nvp_type = type;
1207 	memcpy(NVP_NAME(nvp), name, name_sz);
1208 
1209 	switch (type) {
1210 	case DATA_TYPE_BOOLEAN:
1211 		break;
1212 	case DATA_TYPE_STRING_ARRAY: {
1213 		char *const *strs = data;
1214 		char *buf = NVP_VALUE(nvp);
1215 		char **cstrs = (void *)buf;
1216 
1217 		/* skip pre-allocated space for pointer array */
1218 		buf += nelem * sizeof (uint64_t);
1219 		for (i = 0; i < nelem; i++) {
1220 			int slen = strlen(strs[i]) + 1;
1221 			memcpy(buf, strs[i], slen);
1222 			cstrs[i] = buf;
1223 			buf += slen;
1224 		}
1225 		break;
1226 	}
1227 	case DATA_TYPE_NVLIST: {
1228 		nvlist_t *nnvl = EMBEDDED_NVL(nvp);
1229 		nvlist_t *onvl = (nvlist_t *)data;
1230 
1231 		if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
1232 			nvp_buf_free(nvl, nvp);
1233 			return (err);
1234 		}
1235 		break;
1236 	}
1237 	case DATA_TYPE_NVLIST_ARRAY: {
1238 		nvlist_t **onvlp = (nvlist_t **)data;
1239 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
1240 		nvlist_t *embedded = (nvlist_t *)
1241 		    ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
1242 
1243 		for (i = 0; i < nelem; i++) {
1244 			if ((err = nvlist_copy_embedded(nvl,
1245 			    onvlp[i], embedded)) != 0) {
1246 				/*
1247 				 * Free any successfully created lists
1248 				 */
1249 				nvpair_free(nvp);
1250 				nvp_buf_free(nvl, nvp);
1251 				return (err);
1252 			}
1253 
1254 			nvlp[i] = embedded++;
1255 		}
1256 		break;
1257 	}
1258 	default:
1259 		memcpy(NVP_VALUE(nvp), data, value_sz);
1260 	}
1261 
1262 	/* if unique name, remove before add */
1263 	if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
1264 		(void) nvlist_remove_all(nvl, name);
1265 	else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
1266 		(void) nvlist_remove(nvl, name, type);
1267 
1268 	err = nvt_add_nvpair(nvl, nvp);
1269 	if (err != 0) {
1270 		nvpair_free(nvp);
1271 		nvp_buf_free(nvl, nvp);
1272 		return (err);
1273 	}
1274 	nvp_buf_link(nvl, nvp);
1275 
1276 	return (0);
1277 }
1278 
1279 int
1280 nvlist_add_boolean(nvlist_t *nvl, const char *name)
1281 {
1282 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
1283 }
1284 
1285 int
1286 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
1287 {
1288 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
1289 }
1290 
1291 int
1292 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
1293 {
1294 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1295 }
1296 
1297 int
1298 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1299 {
1300 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1301 }
1302 
1303 int
1304 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1305 {
1306 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1307 }
1308 
1309 int
1310 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1311 {
1312 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1313 }
1314 
1315 int
1316 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1317 {
1318 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1319 }
1320 
1321 int
1322 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1323 {
1324 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1325 }
1326 
1327 int
1328 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1329 {
1330 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1331 }
1332 
1333 int
1334 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1335 {
1336 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1337 }
1338 
1339 int
1340 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1341 {
1342 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1343 }
1344 
1345 #if !defined(_KERNEL)
1346 int
1347 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1348 {
1349 	return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1350 }
1351 #endif
1352 
1353 int
1354 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1355 {
1356 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1357 }
1358 
1359 int
1360 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1361     const boolean_t *a, uint_t n)
1362 {
1363 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1364 }
1365 
1366 int
1367 nvlist_add_byte_array(nvlist_t *nvl, const char *name, const uchar_t *a,
1368     uint_t n)
1369 {
1370 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1371 }
1372 
1373 int
1374 nvlist_add_int8_array(nvlist_t *nvl, const char *name, const int8_t *a,
1375     uint_t n)
1376 {
1377 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1378 }
1379 
1380 int
1381 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, const uint8_t *a,
1382     uint_t n)
1383 {
1384 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1385 }
1386 
1387 int
1388 nvlist_add_int16_array(nvlist_t *nvl, const char *name, const int16_t *a,
1389     uint_t n)
1390 {
1391 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1392 }
1393 
1394 int
1395 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, const uint16_t *a,
1396     uint_t n)
1397 {
1398 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1399 }
1400 
1401 int
1402 nvlist_add_int32_array(nvlist_t *nvl, const char *name, const int32_t *a,
1403     uint_t n)
1404 {
1405 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1406 }
1407 
1408 int
1409 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, const uint32_t *a,
1410     uint_t n)
1411 {
1412 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1413 }
1414 
1415 int
1416 nvlist_add_int64_array(nvlist_t *nvl, const char *name, const int64_t *a,
1417     uint_t n)
1418 {
1419 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1420 }
1421 
1422 int
1423 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, const uint64_t *a,
1424     uint_t n)
1425 {
1426 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1427 }
1428 
1429 int
1430 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1431     const char *const *a, uint_t n)
1432 {
1433 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1434 }
1435 
1436 int
1437 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1438 {
1439 	return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1440 }
1441 
1442 int
1443 nvlist_add_nvlist(nvlist_t *nvl, const char *name, const nvlist_t *val)
1444 {
1445 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1446 }
1447 
1448 int
1449 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name,
1450     const nvlist_t * const *a, uint_t n)
1451 {
1452 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1453 }
1454 
1455 /* reading name-value pairs */
1456 nvpair_t *
1457 nvlist_next_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
1458 {
1459 	nvpriv_t *priv;
1460 	i_nvp_t *curr;
1461 
1462 	if (nvl == NULL ||
1463 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1464 		return (NULL);
1465 
1466 	curr = NVPAIR2I_NVP(nvp);
1467 
1468 	/*
1469 	 * Ensure that nvp is a valid nvpair on this nvlist.
1470 	 * NB: nvp_curr is used only as a hint so that we don't always
1471 	 * have to walk the list to determine if nvp is still on the list.
1472 	 */
1473 	if (nvp == NULL)
1474 		curr = priv->nvp_list;
1475 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1476 		curr = curr->nvi_next;
1477 	else
1478 		curr = NULL;
1479 
1480 	priv->nvp_curr = curr;
1481 
1482 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1483 }
1484 
1485 nvpair_t *
1486 nvlist_prev_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
1487 {
1488 	nvpriv_t *priv;
1489 	i_nvp_t *curr;
1490 
1491 	if (nvl == NULL ||
1492 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1493 		return (NULL);
1494 
1495 	curr = NVPAIR2I_NVP(nvp);
1496 
1497 	if (nvp == NULL)
1498 		curr = priv->nvp_last;
1499 	else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1500 		curr = curr->nvi_prev;
1501 	else
1502 		curr = NULL;
1503 
1504 	priv->nvp_curr = curr;
1505 
1506 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1507 }
1508 
1509 boolean_t
1510 nvlist_empty(const nvlist_t *nvl)
1511 {
1512 	const nvpriv_t *priv;
1513 
1514 	if (nvl == NULL ||
1515 	    (priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1516 		return (B_TRUE);
1517 
1518 	return (priv->nvp_list == NULL);
1519 }
1520 
1521 const char *
1522 nvpair_name(const nvpair_t *nvp)
1523 {
1524 	return (NVP_NAME(nvp));
1525 }
1526 
1527 data_type_t
1528 nvpair_type(const nvpair_t *nvp)
1529 {
1530 	return (NVP_TYPE(nvp));
1531 }
1532 
1533 int
1534 nvpair_type_is_array(const nvpair_t *nvp)
1535 {
1536 	data_type_t type = NVP_TYPE(nvp);
1537 
1538 	if ((type == DATA_TYPE_BYTE_ARRAY) ||
1539 	    (type == DATA_TYPE_INT8_ARRAY) ||
1540 	    (type == DATA_TYPE_UINT8_ARRAY) ||
1541 	    (type == DATA_TYPE_INT16_ARRAY) ||
1542 	    (type == DATA_TYPE_UINT16_ARRAY) ||
1543 	    (type == DATA_TYPE_INT32_ARRAY) ||
1544 	    (type == DATA_TYPE_UINT32_ARRAY) ||
1545 	    (type == DATA_TYPE_INT64_ARRAY) ||
1546 	    (type == DATA_TYPE_UINT64_ARRAY) ||
1547 	    (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1548 	    (type == DATA_TYPE_STRING_ARRAY) ||
1549 	    (type == DATA_TYPE_NVLIST_ARRAY))
1550 		return (1);
1551 	return (0);
1552 
1553 }
1554 
1555 static int
1556 nvpair_value_common(const nvpair_t *nvp, data_type_t type, uint_t *nelem,
1557     void *data)
1558 {
1559 	int value_sz;
1560 
1561 	if (nvp == NULL || nvpair_type(nvp) != type)
1562 		return (EINVAL);
1563 
1564 	/*
1565 	 * For non-array types, we copy the data.
1566 	 * For array types (including string), we set a pointer.
1567 	 */
1568 	switch (type) {
1569 	case DATA_TYPE_BOOLEAN:
1570 		if (nelem != NULL)
1571 			*nelem = 0;
1572 		break;
1573 
1574 	case DATA_TYPE_BOOLEAN_VALUE:
1575 	case DATA_TYPE_BYTE:
1576 	case DATA_TYPE_INT8:
1577 	case DATA_TYPE_UINT8:
1578 	case DATA_TYPE_INT16:
1579 	case DATA_TYPE_UINT16:
1580 	case DATA_TYPE_INT32:
1581 	case DATA_TYPE_UINT32:
1582 	case DATA_TYPE_INT64:
1583 	case DATA_TYPE_UINT64:
1584 	case DATA_TYPE_HRTIME:
1585 #if !defined(_KERNEL)
1586 	case DATA_TYPE_DOUBLE:
1587 #endif
1588 		if (data == NULL)
1589 			return (EINVAL);
1590 		if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
1591 			return (EINVAL);
1592 		memcpy(data, NVP_VALUE(nvp), (size_t)value_sz);
1593 		if (nelem != NULL)
1594 			*nelem = 1;
1595 		break;
1596 
1597 	case DATA_TYPE_NVLIST:
1598 	case DATA_TYPE_STRING:
1599 		if (data == NULL)
1600 			return (EINVAL);
1601 		/*
1602 		 * This discards the const from nvp, so all callers for these
1603 		 * types must not accept const nvpairs.
1604 		 */
1605 		*(void **)data = (void *)NVP_VALUE(nvp);
1606 		if (nelem != NULL)
1607 			*nelem = 1;
1608 		break;
1609 
1610 	case DATA_TYPE_BOOLEAN_ARRAY:
1611 	case DATA_TYPE_BYTE_ARRAY:
1612 	case DATA_TYPE_INT8_ARRAY:
1613 	case DATA_TYPE_UINT8_ARRAY:
1614 	case DATA_TYPE_INT16_ARRAY:
1615 	case DATA_TYPE_UINT16_ARRAY:
1616 	case DATA_TYPE_INT32_ARRAY:
1617 	case DATA_TYPE_UINT32_ARRAY:
1618 	case DATA_TYPE_INT64_ARRAY:
1619 	case DATA_TYPE_UINT64_ARRAY:
1620 	case DATA_TYPE_STRING_ARRAY:
1621 	case DATA_TYPE_NVLIST_ARRAY:
1622 		if (nelem == NULL || data == NULL)
1623 			return (EINVAL);
1624 		/*
1625 		 * This discards the const from nvp, so all callers for these
1626 		 * types must not accept const nvpairs.
1627 		 */
1628 		if ((*nelem = NVP_NELEM(nvp)) != 0)
1629 			*(void **)data = (void *)NVP_VALUE(nvp);
1630 		else
1631 			*(void **)data = NULL;
1632 		break;
1633 
1634 	default:
1635 		return (ENOTSUP);
1636 	}
1637 
1638 	return (0);
1639 }
1640 
1641 static int
1642 nvlist_lookup_common(const nvlist_t *nvl, const char *name, data_type_t type,
1643     uint_t *nelem, void *data)
1644 {
1645 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1646 		return (EINVAL);
1647 
1648 	if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1649 		return (ENOTSUP);
1650 
1651 	nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
1652 	if (nvp == NULL)
1653 		return (ENOENT);
1654 
1655 	return (nvpair_value_common(nvp, type, nelem, data));
1656 }
1657 
1658 int
1659 nvlist_lookup_boolean(const nvlist_t *nvl, const char *name)
1660 {
1661 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1662 }
1663 
1664 int
1665 nvlist_lookup_boolean_value(const nvlist_t *nvl, const char *name,
1666     boolean_t *val)
1667 {
1668 	return (nvlist_lookup_common(nvl, name,
1669 	    DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1670 }
1671 
1672 int
1673 nvlist_lookup_byte(const nvlist_t *nvl, const char *name, uchar_t *val)
1674 {
1675 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1676 }
1677 
1678 int
1679 nvlist_lookup_int8(const nvlist_t *nvl, const char *name, int8_t *val)
1680 {
1681 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1682 }
1683 
1684 int
1685 nvlist_lookup_uint8(const nvlist_t *nvl, const char *name, uint8_t *val)
1686 {
1687 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1688 }
1689 
1690 int
1691 nvlist_lookup_int16(const nvlist_t *nvl, const char *name, int16_t *val)
1692 {
1693 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1694 }
1695 
1696 int
1697 nvlist_lookup_uint16(const nvlist_t *nvl, const char *name, uint16_t *val)
1698 {
1699 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1700 }
1701 
1702 int
1703 nvlist_lookup_int32(const nvlist_t *nvl, const char *name, int32_t *val)
1704 {
1705 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1706 }
1707 
1708 int
1709 nvlist_lookup_uint32(const nvlist_t *nvl, const char *name, uint32_t *val)
1710 {
1711 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1712 }
1713 
1714 int
1715 nvlist_lookup_int64(const nvlist_t *nvl, const char *name, int64_t *val)
1716 {
1717 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1718 }
1719 
1720 int
1721 nvlist_lookup_uint64(const nvlist_t *nvl, const char *name, uint64_t *val)
1722 {
1723 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1724 }
1725 
1726 #if !defined(_KERNEL)
1727 int
1728 nvlist_lookup_double(const nvlist_t *nvl, const char *name, double *val)
1729 {
1730 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1731 }
1732 #endif
1733 
1734 int
1735 nvlist_lookup_string(const nvlist_t *nvl, const char *name, const char **val)
1736 {
1737 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1738 }
1739 
1740 int
1741 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1742 {
1743 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1744 }
1745 
1746 int
1747 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1748     boolean_t **a, uint_t *n)
1749 {
1750 	return (nvlist_lookup_common(nvl, name,
1751 	    DATA_TYPE_BOOLEAN_ARRAY, n, a));
1752 }
1753 
1754 int
1755 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1756     uchar_t **a, uint_t *n)
1757 {
1758 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1759 }
1760 
1761 int
1762 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1763 {
1764 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1765 }
1766 
1767 int
1768 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1769     uint8_t **a, uint_t *n)
1770 {
1771 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1772 }
1773 
1774 int
1775 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1776     int16_t **a, uint_t *n)
1777 {
1778 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1779 }
1780 
1781 int
1782 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1783     uint16_t **a, uint_t *n)
1784 {
1785 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1786 }
1787 
1788 int
1789 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1790     int32_t **a, uint_t *n)
1791 {
1792 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1793 }
1794 
1795 int
1796 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1797     uint32_t **a, uint_t *n)
1798 {
1799 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1800 }
1801 
1802 int
1803 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1804     int64_t **a, uint_t *n)
1805 {
1806 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1807 }
1808 
1809 int
1810 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1811     uint64_t **a, uint_t *n)
1812 {
1813 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1814 }
1815 
1816 int
1817 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1818     char ***a, uint_t *n)
1819 {
1820 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1821 }
1822 
1823 int
1824 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1825     nvlist_t ***a, uint_t *n)
1826 {
1827 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1828 }
1829 
1830 int
1831 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1832 {
1833 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1834 }
1835 
1836 int
1837 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1838 {
1839 	va_list ap;
1840 	char *name;
1841 	int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1842 	int ret = 0;
1843 
1844 	va_start(ap, flag);
1845 	while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1846 		data_type_t type;
1847 		void *val;
1848 		uint_t *nelem;
1849 
1850 		switch (type = va_arg(ap, data_type_t)) {
1851 		case DATA_TYPE_BOOLEAN:
1852 			ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1853 			break;
1854 
1855 		case DATA_TYPE_BOOLEAN_VALUE:
1856 		case DATA_TYPE_BYTE:
1857 		case DATA_TYPE_INT8:
1858 		case DATA_TYPE_UINT8:
1859 		case DATA_TYPE_INT16:
1860 		case DATA_TYPE_UINT16:
1861 		case DATA_TYPE_INT32:
1862 		case DATA_TYPE_UINT32:
1863 		case DATA_TYPE_INT64:
1864 		case DATA_TYPE_UINT64:
1865 		case DATA_TYPE_HRTIME:
1866 		case DATA_TYPE_STRING:
1867 		case DATA_TYPE_NVLIST:
1868 #if !defined(_KERNEL)
1869 		case DATA_TYPE_DOUBLE:
1870 #endif
1871 			val = va_arg(ap, void *);
1872 			ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1873 			break;
1874 
1875 		case DATA_TYPE_BYTE_ARRAY:
1876 		case DATA_TYPE_BOOLEAN_ARRAY:
1877 		case DATA_TYPE_INT8_ARRAY:
1878 		case DATA_TYPE_UINT8_ARRAY:
1879 		case DATA_TYPE_INT16_ARRAY:
1880 		case DATA_TYPE_UINT16_ARRAY:
1881 		case DATA_TYPE_INT32_ARRAY:
1882 		case DATA_TYPE_UINT32_ARRAY:
1883 		case DATA_TYPE_INT64_ARRAY:
1884 		case DATA_TYPE_UINT64_ARRAY:
1885 		case DATA_TYPE_STRING_ARRAY:
1886 		case DATA_TYPE_NVLIST_ARRAY:
1887 			val = va_arg(ap, void *);
1888 			nelem = va_arg(ap, uint_t *);
1889 			ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1890 			break;
1891 
1892 		default:
1893 			ret = EINVAL;
1894 		}
1895 
1896 		if (ret == ENOENT && noentok)
1897 			ret = 0;
1898 	}
1899 	va_end(ap);
1900 
1901 	return (ret);
1902 }
1903 
1904 /*
1905  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1906  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1907  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1908  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1909  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1910  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convenience,
1911  * code also supports "a.d[3]e[1]" syntax).
1912  *
1913  * If 'ip' is non-NULL and the last name component is an array, return the
1914  * value of the "...[index]" array index in *ip. For an array reference that
1915  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1916  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1917  * inside the 'name' string where the syntax error was detected.
1918  */
1919 static int
1920 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1921     nvpair_t **ret, int *ip, const char **ep)
1922 {
1923 	nvpair_t	*nvp;
1924 	const char	*np;
1925 	char		*sepp = NULL;
1926 	char		*idxp, *idxep;
1927 	nvlist_t	**nva;
1928 	long		idx = 0;
1929 	int		n;
1930 
1931 	if (ip)
1932 		*ip = -1;			/* not indexed */
1933 	if (ep)
1934 		*ep = NULL;
1935 
1936 	if ((nvl == NULL) || (name == NULL))
1937 		return (EINVAL);
1938 
1939 	sepp = NULL;
1940 	idx = 0;
1941 	/* step through components of name */
1942 	for (np = name; np && *np; np = sepp) {
1943 		/* ensure unique names */
1944 		if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1945 			return (ENOTSUP);
1946 
1947 		/* skip white space */
1948 		skip_whitespace(np);
1949 		if (*np == 0)
1950 			break;
1951 
1952 		/* set 'sepp' to end of current component 'np' */
1953 		if (sep)
1954 			sepp = strchr(np, sep);
1955 		else
1956 			sepp = NULL;
1957 
1958 		/* find start of next "[ index ]..." */
1959 		idxp = strchr(np, '[');
1960 
1961 		/* if sepp comes first, set idxp to NULL */
1962 		if (sepp && idxp && (sepp < idxp))
1963 			idxp = NULL;
1964 
1965 		/*
1966 		 * At this point 'idxp' is set if there is an index
1967 		 * expected for the current component.
1968 		 */
1969 		if (idxp) {
1970 			/* set 'n' to length of current 'np' name component */
1971 			n = idxp++ - np;
1972 
1973 			/* keep sepp up to date for *ep use as we advance */
1974 			skip_whitespace(idxp);
1975 			sepp = idxp;
1976 
1977 			/* determine the index value */
1978 #if defined(_KERNEL)
1979 			if (ddi_strtol(idxp, &idxep, 0, &idx))
1980 				goto fail;
1981 #else
1982 			idx = strtol(idxp, &idxep, 0);
1983 #endif
1984 			if (idxep == idxp)
1985 				goto fail;
1986 
1987 			/* keep sepp up to date for *ep use as we advance */
1988 			sepp = idxep;
1989 
1990 			/* skip white space index value and check for ']' */
1991 			skip_whitespace(sepp);
1992 			if (*sepp++ != ']')
1993 				goto fail;
1994 
1995 			/* for embedded arrays, support C syntax: "a[1].b" */
1996 			skip_whitespace(sepp);
1997 			if (sep && (*sepp == sep))
1998 				sepp++;
1999 		} else if (sepp) {
2000 			n = sepp++ - np;
2001 		} else {
2002 			n = strlen(np);
2003 		}
2004 
2005 		/* trim trailing whitespace by reducing length of 'np' */
2006 		if (n == 0)
2007 			goto fail;
2008 		for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
2009 			;
2010 		n++;
2011 
2012 		/* skip whitespace, and set sepp to NULL if complete */
2013 		if (sepp) {
2014 			skip_whitespace(sepp);
2015 			if (*sepp == 0)
2016 				sepp = NULL;
2017 		}
2018 
2019 		/*
2020 		 * At this point:
2021 		 * o  'n' is the length of current 'np' component.
2022 		 * o  'idxp' is set if there was an index, and value 'idx'.
2023 		 * o  'sepp' is set to the beginning of the next component,
2024 		 *    and set to NULL if we have no more components.
2025 		 *
2026 		 * Search for nvpair with matching component name.
2027 		 */
2028 		for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
2029 		    nvp = nvlist_next_nvpair(nvl, nvp)) {
2030 
2031 			/* continue if no match on name */
2032 			if (strncmp(np, nvpair_name(nvp), n) ||
2033 			    (strlen(nvpair_name(nvp)) != n))
2034 				continue;
2035 
2036 			/* if indexed, verify type is array oriented */
2037 			if (idxp && !nvpair_type_is_array(nvp))
2038 				goto fail;
2039 
2040 			/*
2041 			 * Full match found, return nvp and idx if this
2042 			 * was the last component.
2043 			 */
2044 			if (sepp == NULL) {
2045 				if (ret)
2046 					*ret = nvp;
2047 				if (ip && idxp)
2048 					*ip = (int)idx;	/* return index */
2049 				return (0);		/* found */
2050 			}
2051 
2052 			/*
2053 			 * More components: current match must be
2054 			 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
2055 			 * to support going deeper.
2056 			 */
2057 			if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
2058 				nvl = EMBEDDED_NVL(nvp);
2059 				break;
2060 			} else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
2061 				if (nvpair_value_nvlist_array(nvp,
2062 				    &nva, (uint_t *)&n) != 0)
2063 					goto fail;
2064 				if (nva == NULL)
2065 					goto fail;
2066 				if ((n < 0) || (idx >= n))
2067 					goto fail;
2068 				nvl = nva[idx];
2069 				break;
2070 			}
2071 
2072 			/* type does not support more levels */
2073 			goto fail;
2074 		}
2075 		if (nvp == NULL)
2076 			goto fail;		/* 'name' not found */
2077 
2078 		/* search for match of next component in embedded 'nvl' list */
2079 	}
2080 
2081 fail:	if (ep && sepp)
2082 		*ep = sepp;
2083 	return (EINVAL);
2084 }
2085 
2086 /*
2087  * Return pointer to nvpair with specified 'name'.
2088  */
2089 int
2090 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
2091 {
2092 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
2093 }
2094 
2095 /*
2096  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
2097  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
2098  * description.
2099  */
2100 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
2101     const char *name, nvpair_t **ret, int *ip, const char **ep)
2102 {
2103 	return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
2104 }
2105 
2106 boolean_t
2107 nvlist_exists(const nvlist_t *nvl, const char *name)
2108 {
2109 	nvpriv_t *priv;
2110 	nvpair_t *nvp;
2111 	i_nvp_t *curr;
2112 
2113 	if (name == NULL || nvl == NULL ||
2114 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2115 		return (B_FALSE);
2116 
2117 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2118 		nvp = &curr->nvi_nvp;
2119 
2120 		if (strcmp(name, NVP_NAME(nvp)) == 0)
2121 			return (B_TRUE);
2122 	}
2123 
2124 	return (B_FALSE);
2125 }
2126 
2127 int
2128 nvpair_value_boolean_value(const nvpair_t *nvp, boolean_t *val)
2129 {
2130 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
2131 }
2132 
2133 int
2134 nvpair_value_byte(const nvpair_t *nvp, uchar_t *val)
2135 {
2136 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
2137 }
2138 
2139 int
2140 nvpair_value_int8(const nvpair_t *nvp, int8_t *val)
2141 {
2142 	return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
2143 }
2144 
2145 int
2146 nvpair_value_uint8(const nvpair_t *nvp, uint8_t *val)
2147 {
2148 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
2149 }
2150 
2151 int
2152 nvpair_value_int16(const nvpair_t *nvp, int16_t *val)
2153 {
2154 	return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
2155 }
2156 
2157 int
2158 nvpair_value_uint16(const nvpair_t *nvp, uint16_t *val)
2159 {
2160 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
2161 }
2162 
2163 int
2164 nvpair_value_int32(const nvpair_t *nvp, int32_t *val)
2165 {
2166 	return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
2167 }
2168 
2169 int
2170 nvpair_value_uint32(const nvpair_t *nvp, uint32_t *val)
2171 {
2172 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
2173 }
2174 
2175 int
2176 nvpair_value_int64(const nvpair_t *nvp, int64_t *val)
2177 {
2178 	return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
2179 }
2180 
2181 int
2182 nvpair_value_uint64(const nvpair_t *nvp, uint64_t *val)
2183 {
2184 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
2185 }
2186 
2187 #if !defined(_KERNEL)
2188 int
2189 nvpair_value_double(const nvpair_t *nvp, double *val)
2190 {
2191 	return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
2192 }
2193 #endif
2194 
2195 int
2196 nvpair_value_string(const nvpair_t *nvp, const char **val)
2197 {
2198 	return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
2199 }
2200 
2201 int
2202 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
2203 {
2204 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
2205 }
2206 
2207 int
2208 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
2209 {
2210 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
2211 }
2212 
2213 int
2214 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
2215 {
2216 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
2217 }
2218 
2219 int
2220 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
2221 {
2222 	return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
2223 }
2224 
2225 int
2226 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
2227 {
2228 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
2229 }
2230 
2231 int
2232 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
2233 {
2234 	return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
2235 }
2236 
2237 int
2238 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
2239 {
2240 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
2241 }
2242 
2243 int
2244 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
2245 {
2246 	return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
2247 }
2248 
2249 int
2250 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
2251 {
2252 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
2253 }
2254 
2255 int
2256 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
2257 {
2258 	return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
2259 }
2260 
2261 int
2262 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
2263 {
2264 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
2265 }
2266 
2267 int
2268 nvpair_value_string_array(nvpair_t *nvp, const char ***val, uint_t *nelem)
2269 {
2270 	return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
2271 }
2272 
2273 int
2274 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
2275 {
2276 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
2277 }
2278 
2279 int
2280 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
2281 {
2282 	return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
2283 }
2284 
2285 /*
2286  * Add specified pair to the list.
2287  */
2288 int
2289 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
2290 {
2291 	if (nvl == NULL || nvp == NULL)
2292 		return (EINVAL);
2293 
2294 	return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
2295 	    NVP_NELEM(nvp), NVP_VALUE(nvp)));
2296 }
2297 
2298 /*
2299  * Merge the supplied nvlists and put the result in dst.
2300  * The merged list will contain all names specified in both lists,
2301  * the values are taken from nvl in the case of duplicates.
2302  * Return 0 on success.
2303  */
2304 int
2305 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
2306 {
2307 	(void) flag;
2308 
2309 	if (nvl == NULL || dst == NULL)
2310 		return (EINVAL);
2311 
2312 	if (dst != nvl)
2313 		return (nvlist_copy_pairs(nvl, dst));
2314 
2315 	return (0);
2316 }
2317 
2318 /*
2319  * Encoding related routines
2320  */
2321 #define	NVS_OP_ENCODE	0
2322 #define	NVS_OP_DECODE	1
2323 #define	NVS_OP_GETSIZE	2
2324 
2325 typedef struct nvs_ops nvs_ops_t;
2326 
2327 typedef struct {
2328 	int		nvs_op;
2329 	const nvs_ops_t	*nvs_ops;
2330 	void		*nvs_private;
2331 	nvpriv_t	*nvs_priv;
2332 	int		nvs_recursion;
2333 } nvstream_t;
2334 
2335 /*
2336  * nvs operations are:
2337  *   - nvs_nvlist
2338  *     encoding / decoding of an nvlist header (nvlist_t)
2339  *     calculates the size used for header and end detection
2340  *
2341  *   - nvs_nvpair
2342  *     responsible for the first part of encoding / decoding of an nvpair
2343  *     calculates the decoded size of an nvpair
2344  *
2345  *   - nvs_nvp_op
2346  *     second part of encoding / decoding of an nvpair
2347  *
2348  *   - nvs_nvp_size
2349  *     calculates the encoding size of an nvpair
2350  *
2351  *   - nvs_nvl_fini
2352  *     encodes the end detection mark (zeros).
2353  */
2354 struct nvs_ops {
2355 	int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2356 	int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2357 	int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2358 	int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2359 	int (*nvs_nvl_fini)(nvstream_t *);
2360 };
2361 
2362 typedef struct {
2363 	char	nvh_encoding;	/* nvs encoding method */
2364 	char	nvh_endian;	/* nvs endian */
2365 	char	nvh_reserved1;	/* reserved for future use */
2366 	char	nvh_reserved2;	/* reserved for future use */
2367 } nvs_header_t;
2368 
2369 static int
2370 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2371 {
2372 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2373 	i_nvp_t *curr;
2374 
2375 	/*
2376 	 * Walk nvpair in list and encode each nvpair
2377 	 */
2378 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2379 		if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2380 			return (EFAULT);
2381 
2382 	return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2383 }
2384 
2385 static int
2386 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2387 {
2388 	nvpair_t *nvp;
2389 	size_t nvsize;
2390 	int err;
2391 
2392 	/*
2393 	 * Get decoded size of next pair in stream, alloc
2394 	 * memory for nvpair_t, then decode the nvpair
2395 	 */
2396 	while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2397 		if (nvsize == 0) /* end of list */
2398 			break;
2399 
2400 		/* make sure len makes sense */
2401 		if (nvsize < NVP_SIZE_CALC(1, 0))
2402 			return (EFAULT);
2403 
2404 		if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2405 			return (ENOMEM);
2406 
2407 		if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2408 			nvp_buf_free(nvl, nvp);
2409 			return (err);
2410 		}
2411 
2412 		if (i_validate_nvpair(nvp) != 0) {
2413 			nvpair_free(nvp);
2414 			nvp_buf_free(nvl, nvp);
2415 			return (EFAULT);
2416 		}
2417 
2418 		err = nvt_add_nvpair(nvl, nvp);
2419 		if (err != 0) {
2420 			nvpair_free(nvp);
2421 			nvp_buf_free(nvl, nvp);
2422 			return (err);
2423 		}
2424 		nvp_buf_link(nvl, nvp);
2425 	}
2426 	return (err);
2427 }
2428 
2429 static int
2430 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2431 {
2432 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2433 	i_nvp_t *curr;
2434 	uint64_t nvsize = *buflen;
2435 	size_t size;
2436 
2437 	/*
2438 	 * Get encoded size of nvpairs in nvlist
2439 	 */
2440 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2441 		if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2442 			return (EINVAL);
2443 
2444 		if ((nvsize += size) > INT32_MAX)
2445 			return (EINVAL);
2446 	}
2447 
2448 	*buflen = nvsize;
2449 	return (0);
2450 }
2451 
2452 static int
2453 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2454 {
2455 	int err;
2456 
2457 	if (nvl->nvl_priv == 0)
2458 		return (EFAULT);
2459 
2460 	/*
2461 	 * Perform the operation, starting with header, then each nvpair
2462 	 */
2463 	if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2464 		return (err);
2465 
2466 	switch (nvs->nvs_op) {
2467 	case NVS_OP_ENCODE:
2468 		err = nvs_encode_pairs(nvs, nvl);
2469 		break;
2470 
2471 	case NVS_OP_DECODE:
2472 		err = nvs_decode_pairs(nvs, nvl);
2473 		break;
2474 
2475 	case NVS_OP_GETSIZE:
2476 		err = nvs_getsize_pairs(nvs, nvl, buflen);
2477 		break;
2478 
2479 	default:
2480 		err = EINVAL;
2481 	}
2482 
2483 	return (err);
2484 }
2485 
2486 static int
2487 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2488 {
2489 	switch (nvs->nvs_op) {
2490 	case NVS_OP_ENCODE: {
2491 		int err;
2492 
2493 		if (nvs->nvs_recursion >= nvpair_max_recursion)
2494 			return (EINVAL);
2495 		nvs->nvs_recursion++;
2496 		err = nvs_operation(nvs, embedded, NULL);
2497 		nvs->nvs_recursion--;
2498 		return (err);
2499 	}
2500 	case NVS_OP_DECODE: {
2501 		nvpriv_t *priv;
2502 		int err;
2503 
2504 		if (embedded->nvl_version != NV_VERSION)
2505 			return (ENOTSUP);
2506 
2507 		if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2508 			return (ENOMEM);
2509 
2510 		nvlist_init(embedded, embedded->nvl_nvflag, priv);
2511 
2512 		if (nvs->nvs_recursion >= nvpair_max_recursion) {
2513 			nvlist_free(embedded);
2514 			return (EINVAL);
2515 		}
2516 		nvs->nvs_recursion++;
2517 		if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2518 			nvlist_free(embedded);
2519 		nvs->nvs_recursion--;
2520 		return (err);
2521 	}
2522 	default:
2523 		break;
2524 	}
2525 
2526 	return (EINVAL);
2527 }
2528 
2529 static int
2530 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2531 {
2532 	size_t nelem = NVP_NELEM(nvp);
2533 	nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2534 	int i;
2535 
2536 	switch (nvs->nvs_op) {
2537 	case NVS_OP_ENCODE:
2538 		for (i = 0; i < nelem; i++)
2539 			if (nvs_embedded(nvs, nvlp[i]) != 0)
2540 				return (EFAULT);
2541 		break;
2542 
2543 	case NVS_OP_DECODE: {
2544 		size_t len = nelem * sizeof (uint64_t);
2545 		nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2546 
2547 		memset(nvlp, 0, len);	/* don't trust packed data */
2548 		for (i = 0; i < nelem; i++) {
2549 			if (nvs_embedded(nvs, embedded) != 0) {
2550 				nvpair_free(nvp);
2551 				return (EFAULT);
2552 			}
2553 
2554 			nvlp[i] = embedded++;
2555 		}
2556 		break;
2557 	}
2558 	case NVS_OP_GETSIZE: {
2559 		uint64_t nvsize = 0;
2560 
2561 		for (i = 0; i < nelem; i++) {
2562 			size_t nvp_sz = 0;
2563 
2564 			if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2565 				return (EINVAL);
2566 
2567 			if ((nvsize += nvp_sz) > INT32_MAX)
2568 				return (EINVAL);
2569 		}
2570 
2571 		*size = nvsize;
2572 		break;
2573 	}
2574 	default:
2575 		return (EINVAL);
2576 	}
2577 
2578 	return (0);
2579 }
2580 
2581 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2582 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2583 
2584 /*
2585  * Common routine for nvlist operations:
2586  * encode, decode, getsize (encoded size).
2587  */
2588 static int
2589 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2590     int nvs_op)
2591 {
2592 	int err = 0;
2593 	nvstream_t nvs;
2594 	int nvl_endian;
2595 #if defined(_ZFS_LITTLE_ENDIAN)
2596 	int host_endian = 1;
2597 #elif defined(_ZFS_BIG_ENDIAN)
2598 	int host_endian = 0;
2599 #else
2600 #error "No endian defined!"
2601 #endif	/* _ZFS_LITTLE_ENDIAN */
2602 	nvs_header_t *nvh;
2603 
2604 	if (buflen == NULL || nvl == NULL ||
2605 	    (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2606 		return (EINVAL);
2607 
2608 	nvs.nvs_op = nvs_op;
2609 	nvs.nvs_recursion = 0;
2610 
2611 	/*
2612 	 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2613 	 * a buffer is allocated.  The first 4 bytes in the buffer are
2614 	 * used for encoding method and host endian.
2615 	 */
2616 	switch (nvs_op) {
2617 	case NVS_OP_ENCODE:
2618 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2619 			return (EINVAL);
2620 
2621 		nvh = (void *)buf;
2622 		nvh->nvh_encoding = encoding;
2623 		nvh->nvh_endian = nvl_endian = host_endian;
2624 		nvh->nvh_reserved1 = 0;
2625 		nvh->nvh_reserved2 = 0;
2626 		break;
2627 
2628 	case NVS_OP_DECODE:
2629 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2630 			return (EINVAL);
2631 
2632 		/* get method of encoding from first byte */
2633 		nvh = (void *)buf;
2634 		encoding = nvh->nvh_encoding;
2635 		nvl_endian = nvh->nvh_endian;
2636 		break;
2637 
2638 	case NVS_OP_GETSIZE:
2639 		nvl_endian = host_endian;
2640 
2641 		/*
2642 		 * add the size for encoding
2643 		 */
2644 		*buflen = sizeof (nvs_header_t);
2645 		break;
2646 
2647 	default:
2648 		return (ENOTSUP);
2649 	}
2650 
2651 	/*
2652 	 * Create an nvstream with proper encoding method
2653 	 */
2654 	switch (encoding) {
2655 	case NV_ENCODE_NATIVE:
2656 		/*
2657 		 * check endianness, in case we are unpacking
2658 		 * from a file
2659 		 */
2660 		if (nvl_endian != host_endian)
2661 			return (ENOTSUP);
2662 		err = nvs_native(&nvs, nvl, buf, buflen);
2663 		break;
2664 	case NV_ENCODE_XDR:
2665 		err = nvs_xdr(&nvs, nvl, buf, buflen);
2666 		break;
2667 	default:
2668 		err = ENOTSUP;
2669 		break;
2670 	}
2671 
2672 	return (err);
2673 }
2674 
2675 int
2676 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2677 {
2678 	return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2679 }
2680 
2681 /*
2682  * Pack nvlist into contiguous memory
2683  */
2684 int
2685 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2686     int kmflag)
2687 {
2688 	return (nvlist_xpack(nvl, bufp, buflen, encoding,
2689 	    nvlist_nv_alloc(kmflag)));
2690 }
2691 
2692 int
2693 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2694     nv_alloc_t *nva)
2695 {
2696 	nvpriv_t nvpriv;
2697 	size_t alloc_size;
2698 	char *buf;
2699 	int err;
2700 
2701 	if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2702 		return (EINVAL);
2703 
2704 	if (*bufp != NULL)
2705 		return (nvlist_common(nvl, *bufp, buflen, encoding,
2706 		    NVS_OP_ENCODE));
2707 
2708 	/*
2709 	 * Here is a difficult situation:
2710 	 * 1. The nvlist has fixed allocator properties.
2711 	 *    All other nvlist routines (like nvlist_add_*, ...) use
2712 	 *    these properties.
2713 	 * 2. When using nvlist_pack() the user can specify their own
2714 	 *    allocator properties (e.g. by using KM_NOSLEEP).
2715 	 *
2716 	 * We use the user specified properties (2). A clearer solution
2717 	 * will be to remove the kmflag from nvlist_pack(), but we will
2718 	 * not change the interface.
2719 	 */
2720 	nv_priv_init(&nvpriv, nva, 0);
2721 
2722 	if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2723 		return (err);
2724 
2725 	if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2726 		return (ENOMEM);
2727 
2728 	if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2729 	    NVS_OP_ENCODE)) != 0) {
2730 		nv_mem_free(&nvpriv, buf, alloc_size);
2731 	} else {
2732 		*buflen = alloc_size;
2733 		*bufp = buf;
2734 	}
2735 
2736 	return (err);
2737 }
2738 
2739 /*
2740  * Unpack buf into an nvlist_t
2741  */
2742 int
2743 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2744 {
2745 	return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
2746 }
2747 
2748 int
2749 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2750 {
2751 	nvlist_t *nvl;
2752 	int err;
2753 
2754 	if (nvlp == NULL)
2755 		return (EINVAL);
2756 
2757 	if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2758 		return (err);
2759 
2760 	if ((err = nvlist_common(nvl, buf, &buflen, NV_ENCODE_NATIVE,
2761 	    NVS_OP_DECODE)) != 0)
2762 		nvlist_free(nvl);
2763 	else
2764 		*nvlp = nvl;
2765 
2766 	return (err);
2767 }
2768 
2769 /*
2770  * Native encoding functions
2771  */
2772 typedef struct {
2773 	/*
2774 	 * This structure is used when decoding a packed nvpair in
2775 	 * the native format.  n_base points to a buffer containing the
2776 	 * packed nvpair.  n_end is a pointer to the end of the buffer.
2777 	 * (n_end actually points to the first byte past the end of the
2778 	 * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2779 	 * It points to the current data that we are decoding.
2780 	 * The amount of data left in the buffer is equal to n_end - n_curr.
2781 	 * n_flag is used to recognize a packed embedded list.
2782 	 */
2783 	caddr_t n_base;
2784 	caddr_t n_end;
2785 	caddr_t n_curr;
2786 	uint_t  n_flag;
2787 } nvs_native_t;
2788 
2789 static int
2790 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2791     size_t buflen)
2792 {
2793 	switch (nvs->nvs_op) {
2794 	case NVS_OP_ENCODE:
2795 	case NVS_OP_DECODE:
2796 		nvs->nvs_private = native;
2797 		native->n_curr = native->n_base = buf;
2798 		native->n_end = buf + buflen;
2799 		native->n_flag = 0;
2800 		return (0);
2801 
2802 	case NVS_OP_GETSIZE:
2803 		nvs->nvs_private = native;
2804 		native->n_curr = native->n_base = native->n_end = NULL;
2805 		native->n_flag = 0;
2806 		return (0);
2807 	default:
2808 		return (EINVAL);
2809 	}
2810 }
2811 
2812 static void
2813 nvs_native_destroy(nvstream_t *nvs)
2814 {
2815 	nvs->nvs_private = NULL;
2816 }
2817 
2818 static int
2819 native_cp(nvstream_t *nvs, void *buf, size_t size)
2820 {
2821 	nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2822 
2823 	if (native->n_curr + size > native->n_end)
2824 		return (EFAULT);
2825 
2826 	/*
2827 	 * The memcpy() below eliminates alignment requirement
2828 	 * on the buffer (stream) and is preferred over direct access.
2829 	 */
2830 	switch (nvs->nvs_op) {
2831 	case NVS_OP_ENCODE:
2832 		memcpy(native->n_curr, buf, size);
2833 		break;
2834 	case NVS_OP_DECODE:
2835 		memcpy(buf, native->n_curr, size);
2836 		break;
2837 	default:
2838 		return (EINVAL);
2839 	}
2840 
2841 	native->n_curr += size;
2842 	return (0);
2843 }
2844 
2845 /*
2846  * operate on nvlist_t header
2847  */
2848 static int
2849 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2850 {
2851 	nvs_native_t *native = nvs->nvs_private;
2852 
2853 	switch (nvs->nvs_op) {
2854 	case NVS_OP_ENCODE:
2855 	case NVS_OP_DECODE:
2856 		if (native->n_flag)
2857 			return (0);	/* packed embedded list */
2858 
2859 		native->n_flag = 1;
2860 
2861 		/* copy version and nvflag of the nvlist_t */
2862 		if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2863 		    native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2864 			return (EFAULT);
2865 
2866 		return (0);
2867 
2868 	case NVS_OP_GETSIZE:
2869 		/*
2870 		 * if calculate for packed embedded list
2871 		 * 	4 for end of the embedded list
2872 		 * else
2873 		 * 	2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2874 		 * 	and 4 for end of the entire list
2875 		 */
2876 		if (native->n_flag) {
2877 			*size += 4;
2878 		} else {
2879 			native->n_flag = 1;
2880 			*size += 2 * sizeof (int32_t) + 4;
2881 		}
2882 
2883 		return (0);
2884 
2885 	default:
2886 		return (EINVAL);
2887 	}
2888 }
2889 
2890 static int
2891 nvs_native_nvl_fini(nvstream_t *nvs)
2892 {
2893 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2894 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2895 		/*
2896 		 * Add 4 zero bytes at end of nvlist. They are used
2897 		 * for end detection by the decode routine.
2898 		 */
2899 		if (native->n_curr + sizeof (int) > native->n_end)
2900 			return (EFAULT);
2901 
2902 		memset(native->n_curr, 0, sizeof (int));
2903 		native->n_curr += sizeof (int);
2904 	}
2905 
2906 	return (0);
2907 }
2908 
2909 static int
2910 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2911 {
2912 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2913 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2914 		nvlist_t *packed = (void *)
2915 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2916 		/*
2917 		 * Null out the pointer that is meaningless in the packed
2918 		 * structure. The address may not be aligned, so we have
2919 		 * to use memset.
2920 		 */
2921 		memset((char *)packed + offsetof(nvlist_t, nvl_priv),
2922 		    0, sizeof (uint64_t));
2923 	}
2924 
2925 	return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2926 }
2927 
2928 static int
2929 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2930 {
2931 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2932 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2933 		char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2934 		size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2935 		nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2936 		int i;
2937 		/*
2938 		 * Null out pointers that are meaningless in the packed
2939 		 * structure. The addresses may not be aligned, so we have
2940 		 * to use memset.
2941 		 */
2942 		memset(value, 0, len);
2943 
2944 		for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2945 			/*
2946 			 * Null out the pointer that is meaningless in the
2947 			 * packed structure. The address may not be aligned,
2948 			 * so we have to use memset.
2949 			 */
2950 			memset((char *)packed + offsetof(nvlist_t, nvl_priv),
2951 			    0, sizeof (uint64_t));
2952 	}
2953 
2954 	return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2955 }
2956 
2957 static void
2958 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2959 {
2960 	switch (nvs->nvs_op) {
2961 	case NVS_OP_ENCODE: {
2962 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2963 		uint64_t *strp = (void *)
2964 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2965 		/*
2966 		 * Null out pointers that are meaningless in the packed
2967 		 * structure. The addresses may not be aligned, so we have
2968 		 * to use memset.
2969 		 */
2970 		memset(strp, 0, NVP_NELEM(nvp) * sizeof (uint64_t));
2971 		break;
2972 	}
2973 	case NVS_OP_DECODE: {
2974 		char **strp = (void *)NVP_VALUE(nvp);
2975 		char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2976 		int i;
2977 
2978 		for (i = 0; i < NVP_NELEM(nvp); i++) {
2979 			strp[i] = buf;
2980 			buf += strlen(buf) + 1;
2981 		}
2982 		break;
2983 	}
2984 	}
2985 }
2986 
2987 static int
2988 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2989 {
2990 	data_type_t type;
2991 	int value_sz;
2992 	int ret = 0;
2993 
2994 	/*
2995 	 * We do the initial memcpy of the data before we look at
2996 	 * the nvpair type, because when we're decoding, we won't
2997 	 * have the correct values for the pair until we do the memcpy.
2998 	 */
2999 	switch (nvs->nvs_op) {
3000 	case NVS_OP_ENCODE:
3001 	case NVS_OP_DECODE:
3002 		if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
3003 			return (EFAULT);
3004 		break;
3005 	default:
3006 		return (EINVAL);
3007 	}
3008 
3009 	/* verify nvp_name_sz, check the name string length */
3010 	if (i_validate_nvpair_name(nvp) != 0)
3011 		return (EFAULT);
3012 
3013 	type = NVP_TYPE(nvp);
3014 
3015 	/*
3016 	 * Verify type and nelem and get the value size.
3017 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
3018 	 * is the size of the string(s) excluded.
3019 	 */
3020 	if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
3021 		return (EFAULT);
3022 
3023 	if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
3024 		return (EFAULT);
3025 
3026 	switch (type) {
3027 	case DATA_TYPE_NVLIST:
3028 		ret = nvpair_native_embedded(nvs, nvp);
3029 		break;
3030 	case DATA_TYPE_NVLIST_ARRAY:
3031 		ret = nvpair_native_embedded_array(nvs, nvp);
3032 		break;
3033 	case DATA_TYPE_STRING_ARRAY:
3034 		nvpair_native_string_array(nvs, nvp);
3035 		break;
3036 	default:
3037 		break;
3038 	}
3039 
3040 	return (ret);
3041 }
3042 
3043 static int
3044 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3045 {
3046 	uint64_t nvp_sz = nvp->nvp_size;
3047 
3048 	switch (NVP_TYPE(nvp)) {
3049 	case DATA_TYPE_NVLIST: {
3050 		size_t nvsize = 0;
3051 
3052 		if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
3053 			return (EINVAL);
3054 
3055 		nvp_sz += nvsize;
3056 		break;
3057 	}
3058 	case DATA_TYPE_NVLIST_ARRAY: {
3059 		size_t nvsize;
3060 
3061 		if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
3062 			return (EINVAL);
3063 
3064 		nvp_sz += nvsize;
3065 		break;
3066 	}
3067 	default:
3068 		break;
3069 	}
3070 
3071 	if (nvp_sz > INT32_MAX)
3072 		return (EINVAL);
3073 
3074 	*size = nvp_sz;
3075 
3076 	return (0);
3077 }
3078 
3079 static int
3080 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3081 {
3082 	switch (nvs->nvs_op) {
3083 	case NVS_OP_ENCODE:
3084 		return (nvs_native_nvp_op(nvs, nvp));
3085 
3086 	case NVS_OP_DECODE: {
3087 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
3088 		int32_t decode_len;
3089 
3090 		/* try to read the size value from the stream */
3091 		if (native->n_curr + sizeof (int32_t) > native->n_end)
3092 			return (EFAULT);
3093 		memcpy(&decode_len, native->n_curr, sizeof (int32_t));
3094 
3095 		/* sanity check the size value */
3096 		if (decode_len < 0 ||
3097 		    decode_len > native->n_end - native->n_curr)
3098 			return (EFAULT);
3099 
3100 		*size = decode_len;
3101 
3102 		/*
3103 		 * If at the end of the stream then move the cursor
3104 		 * forward, otherwise nvpair_native_op() will read
3105 		 * the entire nvpair at the same cursor position.
3106 		 */
3107 		if (*size == 0)
3108 			native->n_curr += sizeof (int32_t);
3109 		break;
3110 	}
3111 
3112 	default:
3113 		return (EINVAL);
3114 	}
3115 
3116 	return (0);
3117 }
3118 
3119 static const nvs_ops_t nvs_native_ops = {
3120 	.nvs_nvlist = nvs_native_nvlist,
3121 	.nvs_nvpair = nvs_native_nvpair,
3122 	.nvs_nvp_op = nvs_native_nvp_op,
3123 	.nvs_nvp_size = nvs_native_nvp_size,
3124 	.nvs_nvl_fini = nvs_native_nvl_fini
3125 };
3126 
3127 static int
3128 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3129 {
3130 	nvs_native_t native;
3131 	int err;
3132 
3133 	nvs->nvs_ops = &nvs_native_ops;
3134 
3135 	if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
3136 	    *buflen - sizeof (nvs_header_t))) != 0)
3137 		return (err);
3138 
3139 	err = nvs_operation(nvs, nvl, buflen);
3140 
3141 	nvs_native_destroy(nvs);
3142 
3143 	return (err);
3144 }
3145 
3146 /*
3147  * XDR encoding functions
3148  *
3149  * An xdr packed nvlist is encoded as:
3150  *
3151  *  - encoding method and host endian (4 bytes)
3152  *  - nvl_version (4 bytes)
3153  *  - nvl_nvflag (4 bytes)
3154  *
3155  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
3156  *	- encoded size of the nvpair (4 bytes)
3157  *	- decoded size of the nvpair (4 bytes)
3158  *	- name string, (4 + sizeof(NV_ALIGN4(string))
3159  *	  a string is coded as size (4 bytes) and data
3160  *	- data type (4 bytes)
3161  *	- number of elements in the nvpair (4 bytes)
3162  *	- data
3163  *
3164  *  - 2 zero's for end of the entire list (8 bytes)
3165  */
3166 static int
3167 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
3168 {
3169 	/* xdr data must be 4 byte aligned */
3170 	if ((ulong_t)buf % 4 != 0)
3171 		return (EFAULT);
3172 
3173 	switch (nvs->nvs_op) {
3174 	case NVS_OP_ENCODE:
3175 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
3176 		nvs->nvs_private = xdr;
3177 		return (0);
3178 	case NVS_OP_DECODE:
3179 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
3180 		nvs->nvs_private = xdr;
3181 		return (0);
3182 	case NVS_OP_GETSIZE:
3183 		nvs->nvs_private = NULL;
3184 		return (0);
3185 	default:
3186 		return (EINVAL);
3187 	}
3188 }
3189 
3190 static void
3191 nvs_xdr_destroy(nvstream_t *nvs)
3192 {
3193 	switch (nvs->nvs_op) {
3194 	case NVS_OP_ENCODE:
3195 	case NVS_OP_DECODE:
3196 		nvs->nvs_private = NULL;
3197 		break;
3198 	default:
3199 		break;
3200 	}
3201 }
3202 
3203 static int
3204 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
3205 {
3206 	switch (nvs->nvs_op) {
3207 	case NVS_OP_ENCODE:
3208 	case NVS_OP_DECODE: {
3209 		XDR 	*xdr = nvs->nvs_private;
3210 
3211 		if (!xdr_int(xdr, &nvl->nvl_version) ||
3212 		    !xdr_u_int(xdr, &nvl->nvl_nvflag))
3213 			return (EFAULT);
3214 		break;
3215 	}
3216 	case NVS_OP_GETSIZE: {
3217 		/*
3218 		 * 2 * 4 for nvl_version + nvl_nvflag
3219 		 * and 8 for end of the entire list
3220 		 */
3221 		*size += 2 * 4 + 8;
3222 		break;
3223 	}
3224 	default:
3225 		return (EINVAL);
3226 	}
3227 	return (0);
3228 }
3229 
3230 static int
3231 nvs_xdr_nvl_fini(nvstream_t *nvs)
3232 {
3233 	if (nvs->nvs_op == NVS_OP_ENCODE) {
3234 		XDR *xdr = nvs->nvs_private;
3235 		int zero = 0;
3236 
3237 		if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
3238 			return (EFAULT);
3239 	}
3240 
3241 	return (0);
3242 }
3243 
3244 /*
3245  * xdrproc_t-compatible callbacks for xdr_array()
3246  */
3247 
3248 #if defined(_KERNEL) && defined(__linux__) /* Linux kernel */
3249 
3250 #define	NVS_BUILD_XDRPROC_T(type)		\
3251 static bool_t					\
3252 nvs_xdr_nvp_##type(XDR *xdrs, void *ptr)	\
3253 {						\
3254 	return (xdr_##type(xdrs, ptr));		\
3255 }
3256 
3257 #elif !defined(_KERNEL) && defined(XDR_CONTROL) /* tirpc */
3258 
3259 #define	NVS_BUILD_XDRPROC_T(type)		\
3260 static bool_t					\
3261 nvs_xdr_nvp_##type(XDR *xdrs, ...)		\
3262 {						\
3263 	va_list args;				\
3264 	void *ptr;				\
3265 						\
3266 	va_start(args, xdrs);			\
3267 	ptr = va_arg(args, void *);		\
3268 	va_end(args);				\
3269 						\
3270 	return (xdr_##type(xdrs, ptr));		\
3271 }
3272 
3273 #else /* FreeBSD, sunrpc */
3274 
3275 #define	NVS_BUILD_XDRPROC_T(type)		\
3276 static bool_t					\
3277 nvs_xdr_nvp_##type(XDR *xdrs, void *ptr, ...)	\
3278 {						\
3279 	return (xdr_##type(xdrs, ptr));		\
3280 }
3281 
3282 #endif
3283 
3284 NVS_BUILD_XDRPROC_T(char);
3285 NVS_BUILD_XDRPROC_T(short);
3286 NVS_BUILD_XDRPROC_T(u_short);
3287 NVS_BUILD_XDRPROC_T(int);
3288 NVS_BUILD_XDRPROC_T(u_int);
3289 NVS_BUILD_XDRPROC_T(longlong_t);
3290 NVS_BUILD_XDRPROC_T(u_longlong_t);
3291 
3292 /*
3293  * The format of xdr encoded nvpair is:
3294  * encode_size, decode_size, name string, data type, nelem, data
3295  */
3296 static int
3297 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
3298 {
3299 	ASSERT(nvs != NULL && nvp != NULL);
3300 
3301 	data_type_t type;
3302 	char	*buf;
3303 	char	*buf_end = (char *)nvp + nvp->nvp_size;
3304 	int	value_sz;
3305 	uint_t	nelem, buflen;
3306 	bool_t	ret = FALSE;
3307 	XDR	*xdr = nvs->nvs_private;
3308 
3309 	ASSERT(xdr != NULL);
3310 
3311 	/* name string */
3312 	if ((buf = NVP_NAME(nvp)) >= buf_end)
3313 		return (EFAULT);
3314 	buflen = buf_end - buf;
3315 
3316 	if (!xdr_string(xdr, &buf, buflen - 1))
3317 		return (EFAULT);
3318 	nvp->nvp_name_sz = strlen(buf) + 1;
3319 
3320 	/* type and nelem */
3321 	if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
3322 	    !xdr_int(xdr, &nvp->nvp_value_elem))
3323 		return (EFAULT);
3324 
3325 	type = NVP_TYPE(nvp);
3326 	nelem = nvp->nvp_value_elem;
3327 
3328 	/*
3329 	 * Verify type and nelem and get the value size.
3330 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
3331 	 * is the size of the string(s) excluded.
3332 	 */
3333 	if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
3334 		return (EFAULT);
3335 
3336 	/* if there is no data to extract then return */
3337 	if (nelem == 0)
3338 		return (0);
3339 
3340 	/* value */
3341 	if ((buf = NVP_VALUE(nvp)) >= buf_end)
3342 		return (EFAULT);
3343 	buflen = buf_end - buf;
3344 
3345 	if (buflen < value_sz)
3346 		return (EFAULT);
3347 
3348 	switch (type) {
3349 	case DATA_TYPE_NVLIST:
3350 		if (nvs_embedded(nvs, (void *)buf) == 0)
3351 			return (0);
3352 		break;
3353 
3354 	case DATA_TYPE_NVLIST_ARRAY:
3355 		if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
3356 			return (0);
3357 		break;
3358 
3359 	case DATA_TYPE_BOOLEAN:
3360 		ret = TRUE;
3361 		break;
3362 
3363 	case DATA_TYPE_BYTE:
3364 	case DATA_TYPE_INT8:
3365 	case DATA_TYPE_UINT8:
3366 		ret = xdr_char(xdr, buf);
3367 		break;
3368 
3369 	case DATA_TYPE_INT16:
3370 		ret = xdr_short(xdr, (void *)buf);
3371 		break;
3372 
3373 	case DATA_TYPE_UINT16:
3374 		ret = xdr_u_short(xdr, (void *)buf);
3375 		break;
3376 
3377 	case DATA_TYPE_BOOLEAN_VALUE:
3378 	case DATA_TYPE_INT32:
3379 		ret = xdr_int(xdr, (void *)buf);
3380 		break;
3381 
3382 	case DATA_TYPE_UINT32:
3383 		ret = xdr_u_int(xdr, (void *)buf);
3384 		break;
3385 
3386 	case DATA_TYPE_INT64:
3387 		ret = xdr_longlong_t(xdr, (void *)buf);
3388 		break;
3389 
3390 	case DATA_TYPE_UINT64:
3391 		ret = xdr_u_longlong_t(xdr, (void *)buf);
3392 		break;
3393 
3394 	case DATA_TYPE_HRTIME:
3395 		/*
3396 		 * NOTE: must expose the definition of hrtime_t here
3397 		 */
3398 		ret = xdr_longlong_t(xdr, (void *)buf);
3399 		break;
3400 #if !defined(_KERNEL)
3401 	case DATA_TYPE_DOUBLE:
3402 		ret = xdr_double(xdr, (void *)buf);
3403 		break;
3404 #endif
3405 	case DATA_TYPE_STRING:
3406 		ret = xdr_string(xdr, &buf, buflen - 1);
3407 		break;
3408 
3409 	case DATA_TYPE_BYTE_ARRAY:
3410 		ret = xdr_opaque(xdr, buf, nelem);
3411 		break;
3412 
3413 	case DATA_TYPE_INT8_ARRAY:
3414 	case DATA_TYPE_UINT8_ARRAY:
3415 		ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3416 		    nvs_xdr_nvp_char);
3417 		break;
3418 
3419 	case DATA_TYPE_INT16_ARRAY:
3420 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3421 		    sizeof (int16_t), nvs_xdr_nvp_short);
3422 		break;
3423 
3424 	case DATA_TYPE_UINT16_ARRAY:
3425 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3426 		    sizeof (uint16_t), nvs_xdr_nvp_u_short);
3427 		break;
3428 
3429 	case DATA_TYPE_BOOLEAN_ARRAY:
3430 	case DATA_TYPE_INT32_ARRAY:
3431 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3432 		    sizeof (int32_t), nvs_xdr_nvp_int);
3433 		break;
3434 
3435 	case DATA_TYPE_UINT32_ARRAY:
3436 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3437 		    sizeof (uint32_t), nvs_xdr_nvp_u_int);
3438 		break;
3439 
3440 	case DATA_TYPE_INT64_ARRAY:
3441 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3442 		    sizeof (int64_t), nvs_xdr_nvp_longlong_t);
3443 		break;
3444 
3445 	case DATA_TYPE_UINT64_ARRAY:
3446 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3447 		    sizeof (uint64_t), nvs_xdr_nvp_u_longlong_t);
3448 		break;
3449 
3450 	case DATA_TYPE_STRING_ARRAY: {
3451 		size_t len = nelem * sizeof (uint64_t);
3452 		char **strp = (void *)buf;
3453 		int i;
3454 
3455 		if (nvs->nvs_op == NVS_OP_DECODE)
3456 			memset(buf, 0, len);	/* don't trust packed data */
3457 
3458 		for (i = 0; i < nelem; i++) {
3459 			if (buflen <= len)
3460 				return (EFAULT);
3461 
3462 			buf += len;
3463 			buflen -= len;
3464 
3465 			if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3466 				return (EFAULT);
3467 
3468 			if (nvs->nvs_op == NVS_OP_DECODE)
3469 				strp[i] = buf;
3470 			len = strlen(buf) + 1;
3471 		}
3472 		ret = TRUE;
3473 		break;
3474 	}
3475 	default:
3476 		break;
3477 	}
3478 
3479 	return (ret == TRUE ? 0 : EFAULT);
3480 }
3481 
3482 static int
3483 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3484 {
3485 	data_type_t type = NVP_TYPE(nvp);
3486 	/*
3487 	 * encode_size + decode_size + name string size + data type + nelem
3488 	 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3489 	 */
3490 	uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3491 
3492 	switch (type) {
3493 	case DATA_TYPE_BOOLEAN:
3494 		break;
3495 
3496 	case DATA_TYPE_BOOLEAN_VALUE:
3497 	case DATA_TYPE_BYTE:
3498 	case DATA_TYPE_INT8:
3499 	case DATA_TYPE_UINT8:
3500 	case DATA_TYPE_INT16:
3501 	case DATA_TYPE_UINT16:
3502 	case DATA_TYPE_INT32:
3503 	case DATA_TYPE_UINT32:
3504 		nvp_sz += 4;	/* 4 is the minimum xdr unit */
3505 		break;
3506 
3507 	case DATA_TYPE_INT64:
3508 	case DATA_TYPE_UINT64:
3509 	case DATA_TYPE_HRTIME:
3510 #if !defined(_KERNEL)
3511 	case DATA_TYPE_DOUBLE:
3512 #endif
3513 		nvp_sz += 8;
3514 		break;
3515 
3516 	case DATA_TYPE_STRING:
3517 		nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3518 		break;
3519 
3520 	case DATA_TYPE_BYTE_ARRAY:
3521 		nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3522 		break;
3523 
3524 	case DATA_TYPE_BOOLEAN_ARRAY:
3525 	case DATA_TYPE_INT8_ARRAY:
3526 	case DATA_TYPE_UINT8_ARRAY:
3527 	case DATA_TYPE_INT16_ARRAY:
3528 	case DATA_TYPE_UINT16_ARRAY:
3529 	case DATA_TYPE_INT32_ARRAY:
3530 	case DATA_TYPE_UINT32_ARRAY:
3531 		nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3532 		break;
3533 
3534 	case DATA_TYPE_INT64_ARRAY:
3535 	case DATA_TYPE_UINT64_ARRAY:
3536 		nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3537 		break;
3538 
3539 	case DATA_TYPE_STRING_ARRAY: {
3540 		int i;
3541 		char **strs = (void *)NVP_VALUE(nvp);
3542 
3543 		for (i = 0; i < NVP_NELEM(nvp); i++)
3544 			nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3545 
3546 		break;
3547 	}
3548 
3549 	case DATA_TYPE_NVLIST:
3550 	case DATA_TYPE_NVLIST_ARRAY: {
3551 		size_t nvsize = 0;
3552 		int old_nvs_op = nvs->nvs_op;
3553 		int err;
3554 
3555 		nvs->nvs_op = NVS_OP_GETSIZE;
3556 		if (type == DATA_TYPE_NVLIST)
3557 			err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3558 		else
3559 			err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3560 		nvs->nvs_op = old_nvs_op;
3561 
3562 		if (err != 0)
3563 			return (EINVAL);
3564 
3565 		nvp_sz += nvsize;
3566 		break;
3567 	}
3568 
3569 	default:
3570 		return (EINVAL);
3571 	}
3572 
3573 	if (nvp_sz > INT32_MAX)
3574 		return (EINVAL);
3575 
3576 	*size = nvp_sz;
3577 
3578 	return (0);
3579 }
3580 
3581 
3582 /*
3583  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3584  * the largest nvpair that could be encoded in the buffer.
3585  *
3586  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3587  * The size of a xdr packed nvpair without any data is 5 words.
3588  *
3589  * Using the size of the data directly as an estimate would be ok
3590  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3591  * then the actual nvpair has space for an array of pointers to index
3592  * the strings.  These pointers are not encoded into the packed xdr buffer.
3593  *
3594  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3595  * of length 0, then each string is encoded in xdr format as a single word.
3596  * Therefore when expanded to an nvpair there will be 2.25 word used for
3597  * each string.  (a int64_t allocated for pointer usage, and a single char
3598  * for the null termination.)
3599  *
3600  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3601  */
3602 #define	NVS_XDR_HDR_LEN		((size_t)(5 * 4))
3603 #define	NVS_XDR_DATA_LEN(y)	(((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3604 					0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3605 #define	NVS_XDR_MAX_LEN(x)	(NVP_SIZE_CALC(1, 0) + \
3606 					(NVS_XDR_DATA_LEN(x) * 2) + \
3607 					NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3608 
3609 static int
3610 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3611 {
3612 	XDR 	*xdr = nvs->nvs_private;
3613 	int32_t	encode_len, decode_len;
3614 
3615 	switch (nvs->nvs_op) {
3616 	case NVS_OP_ENCODE: {
3617 		size_t nvsize;
3618 
3619 		if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3620 			return (EFAULT);
3621 
3622 		decode_len = nvp->nvp_size;
3623 		encode_len = nvsize;
3624 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3625 			return (EFAULT);
3626 
3627 		return (nvs_xdr_nvp_op(nvs, nvp));
3628 	}
3629 	case NVS_OP_DECODE: {
3630 		struct xdr_bytesrec bytesrec;
3631 
3632 		/* get the encode and decode size */
3633 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3634 			return (EFAULT);
3635 		*size = decode_len;
3636 
3637 		/* are we at the end of the stream? */
3638 		if (*size == 0)
3639 			return (0);
3640 
3641 		/* sanity check the size parameter */
3642 		if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3643 			return (EFAULT);
3644 
3645 		if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3646 			return (EFAULT);
3647 		break;
3648 	}
3649 
3650 	default:
3651 		return (EINVAL);
3652 	}
3653 	return (0);
3654 }
3655 
3656 static const struct nvs_ops nvs_xdr_ops = {
3657 	.nvs_nvlist = nvs_xdr_nvlist,
3658 	.nvs_nvpair = nvs_xdr_nvpair,
3659 	.nvs_nvp_op = nvs_xdr_nvp_op,
3660 	.nvs_nvp_size = nvs_xdr_nvp_size,
3661 	.nvs_nvl_fini = nvs_xdr_nvl_fini
3662 };
3663 
3664 static int
3665 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3666 {
3667 	XDR xdr;
3668 	int err;
3669 
3670 	nvs->nvs_ops = &nvs_xdr_ops;
3671 
3672 	if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3673 	    *buflen - sizeof (nvs_header_t))) != 0)
3674 		return (err);
3675 
3676 	err = nvs_operation(nvs, nvl, buflen);
3677 
3678 	nvs_xdr_destroy(nvs);
3679 
3680 	return (err);
3681 }
3682 
3683 EXPORT_SYMBOL(nv_alloc_init);
3684 EXPORT_SYMBOL(nv_alloc_reset);
3685 EXPORT_SYMBOL(nv_alloc_fini);
3686 
3687 /* list management */
3688 EXPORT_SYMBOL(nvlist_alloc);
3689 EXPORT_SYMBOL(nvlist_free);
3690 EXPORT_SYMBOL(nvlist_size);
3691 EXPORT_SYMBOL(nvlist_pack);
3692 EXPORT_SYMBOL(nvlist_unpack);
3693 EXPORT_SYMBOL(nvlist_dup);
3694 EXPORT_SYMBOL(nvlist_merge);
3695 
3696 EXPORT_SYMBOL(nvlist_xalloc);
3697 EXPORT_SYMBOL(nvlist_xpack);
3698 EXPORT_SYMBOL(nvlist_xunpack);
3699 EXPORT_SYMBOL(nvlist_xdup);
3700 EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
3701 
3702 EXPORT_SYMBOL(nvlist_add_nvpair);
3703 EXPORT_SYMBOL(nvlist_add_boolean);
3704 EXPORT_SYMBOL(nvlist_add_boolean_value);
3705 EXPORT_SYMBOL(nvlist_add_byte);
3706 EXPORT_SYMBOL(nvlist_add_int8);
3707 EXPORT_SYMBOL(nvlist_add_uint8);
3708 EXPORT_SYMBOL(nvlist_add_int16);
3709 EXPORT_SYMBOL(nvlist_add_uint16);
3710 EXPORT_SYMBOL(nvlist_add_int32);
3711 EXPORT_SYMBOL(nvlist_add_uint32);
3712 EXPORT_SYMBOL(nvlist_add_int64);
3713 EXPORT_SYMBOL(nvlist_add_uint64);
3714 EXPORT_SYMBOL(nvlist_add_string);
3715 EXPORT_SYMBOL(nvlist_add_nvlist);
3716 EXPORT_SYMBOL(nvlist_add_boolean_array);
3717 EXPORT_SYMBOL(nvlist_add_byte_array);
3718 EXPORT_SYMBOL(nvlist_add_int8_array);
3719 EXPORT_SYMBOL(nvlist_add_uint8_array);
3720 EXPORT_SYMBOL(nvlist_add_int16_array);
3721 EXPORT_SYMBOL(nvlist_add_uint16_array);
3722 EXPORT_SYMBOL(nvlist_add_int32_array);
3723 EXPORT_SYMBOL(nvlist_add_uint32_array);
3724 EXPORT_SYMBOL(nvlist_add_int64_array);
3725 EXPORT_SYMBOL(nvlist_add_uint64_array);
3726 EXPORT_SYMBOL(nvlist_add_string_array);
3727 EXPORT_SYMBOL(nvlist_add_nvlist_array);
3728 EXPORT_SYMBOL(nvlist_next_nvpair);
3729 EXPORT_SYMBOL(nvlist_prev_nvpair);
3730 EXPORT_SYMBOL(nvlist_empty);
3731 EXPORT_SYMBOL(nvlist_add_hrtime);
3732 
3733 EXPORT_SYMBOL(nvlist_remove);
3734 EXPORT_SYMBOL(nvlist_remove_nvpair);
3735 EXPORT_SYMBOL(nvlist_remove_all);
3736 
3737 EXPORT_SYMBOL(nvlist_lookup_boolean);
3738 EXPORT_SYMBOL(nvlist_lookup_boolean_value);
3739 EXPORT_SYMBOL(nvlist_lookup_byte);
3740 EXPORT_SYMBOL(nvlist_lookup_int8);
3741 EXPORT_SYMBOL(nvlist_lookup_uint8);
3742 EXPORT_SYMBOL(nvlist_lookup_int16);
3743 EXPORT_SYMBOL(nvlist_lookup_uint16);
3744 EXPORT_SYMBOL(nvlist_lookup_int32);
3745 EXPORT_SYMBOL(nvlist_lookup_uint32);
3746 EXPORT_SYMBOL(nvlist_lookup_int64);
3747 EXPORT_SYMBOL(nvlist_lookup_uint64);
3748 EXPORT_SYMBOL(nvlist_lookup_string);
3749 EXPORT_SYMBOL(nvlist_lookup_nvlist);
3750 EXPORT_SYMBOL(nvlist_lookup_boolean_array);
3751 EXPORT_SYMBOL(nvlist_lookup_byte_array);
3752 EXPORT_SYMBOL(nvlist_lookup_int8_array);
3753 EXPORT_SYMBOL(nvlist_lookup_uint8_array);
3754 EXPORT_SYMBOL(nvlist_lookup_int16_array);
3755 EXPORT_SYMBOL(nvlist_lookup_uint16_array);
3756 EXPORT_SYMBOL(nvlist_lookup_int32_array);
3757 EXPORT_SYMBOL(nvlist_lookup_uint32_array);
3758 EXPORT_SYMBOL(nvlist_lookup_int64_array);
3759 EXPORT_SYMBOL(nvlist_lookup_uint64_array);
3760 EXPORT_SYMBOL(nvlist_lookup_string_array);
3761 EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
3762 EXPORT_SYMBOL(nvlist_lookup_hrtime);
3763 EXPORT_SYMBOL(nvlist_lookup_pairs);
3764 
3765 EXPORT_SYMBOL(nvlist_lookup_nvpair);
3766 EXPORT_SYMBOL(nvlist_exists);
3767 
3768 /* processing nvpair */
3769 EXPORT_SYMBOL(nvpair_name);
3770 EXPORT_SYMBOL(nvpair_type);
3771 EXPORT_SYMBOL(nvpair_value_boolean_value);
3772 EXPORT_SYMBOL(nvpair_value_byte);
3773 EXPORT_SYMBOL(nvpair_value_int8);
3774 EXPORT_SYMBOL(nvpair_value_uint8);
3775 EXPORT_SYMBOL(nvpair_value_int16);
3776 EXPORT_SYMBOL(nvpair_value_uint16);
3777 EXPORT_SYMBOL(nvpair_value_int32);
3778 EXPORT_SYMBOL(nvpair_value_uint32);
3779 EXPORT_SYMBOL(nvpair_value_int64);
3780 EXPORT_SYMBOL(nvpair_value_uint64);
3781 EXPORT_SYMBOL(nvpair_value_string);
3782 EXPORT_SYMBOL(nvpair_value_nvlist);
3783 EXPORT_SYMBOL(nvpair_value_boolean_array);
3784 EXPORT_SYMBOL(nvpair_value_byte_array);
3785 EXPORT_SYMBOL(nvpair_value_int8_array);
3786 EXPORT_SYMBOL(nvpair_value_uint8_array);
3787 EXPORT_SYMBOL(nvpair_value_int16_array);
3788 EXPORT_SYMBOL(nvpair_value_uint16_array);
3789 EXPORT_SYMBOL(nvpair_value_int32_array);
3790 EXPORT_SYMBOL(nvpair_value_uint32_array);
3791 EXPORT_SYMBOL(nvpair_value_int64_array);
3792 EXPORT_SYMBOL(nvpair_value_uint64_array);
3793 EXPORT_SYMBOL(nvpair_value_string_array);
3794 EXPORT_SYMBOL(nvpair_value_nvlist_array);
3795 EXPORT_SYMBOL(nvpair_value_hrtime);
3796