1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file is part of the core Kernel Cryptographic Framework. 28 * It implements the SPI functions exported to cryptographic 29 * providers. 30 */ 31 32 33 #include <sys/zfs_context.h> 34 #include <sys/crypto/common.h> 35 #include <sys/crypto/impl.h> 36 #include <sys/crypto/sched_impl.h> 37 #include <sys/crypto/spi.h> 38 39 /* 40 * minalloc and maxalloc values to be used for taskq_create(). 41 */ 42 int crypto_taskq_threads = CRYPTO_TASKQ_THREADS; 43 int crypto_taskq_minalloc = CRYPTO_TASKQ_MIN; 44 int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX; 45 46 static void remove_provider(kcf_provider_desc_t *); 47 static void process_logical_providers(crypto_provider_info_t *, 48 kcf_provider_desc_t *); 49 static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *); 50 static int kcf_prov_kstat_update(kstat_t *, int); 51 static void delete_kstat(kcf_provider_desc_t *); 52 53 static kcf_prov_stats_t kcf_stats_ks_data_template = { 54 { "kcf_ops_total", KSTAT_DATA_UINT64 }, 55 { "kcf_ops_passed", KSTAT_DATA_UINT64 }, 56 { "kcf_ops_failed", KSTAT_DATA_UINT64 }, 57 { "kcf_ops_returned_busy", KSTAT_DATA_UINT64 } 58 }; 59 60 #define KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \ 61 *((dst)->ops) = *((src)->ops); 62 63 /* 64 * Copy an ops vector from src to dst. Used during provider registration 65 * to copy the ops vector from the provider info structure to the 66 * provider descriptor maintained by KCF. 67 * Copying the ops vector specified by the provider is needed since the 68 * framework does not require the provider info structure to be 69 * persistent. 70 */ 71 static void 72 copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 73 { 74 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops); 75 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops); 76 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops); 77 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops); 78 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops); 79 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops); 80 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops); 81 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops); 82 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops); 83 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops); 84 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops); 85 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops); 86 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops); 87 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops); 88 } 89 90 static void 91 copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 92 { 93 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops); 94 } 95 96 static void 97 copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 98 { 99 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops); 100 } 101 102 /* 103 * This routine is used to add cryptographic providers to the KEF framework. 104 * Providers pass a crypto_provider_info structure to crypto_register_provider() 105 * and get back a handle. The crypto_provider_info structure contains a 106 * list of mechanisms supported by the provider and an ops vector containing 107 * provider entry points. Hardware providers call this routine in their attach 108 * routines. Software providers call this routine in their _init() routine. 109 */ 110 int 111 crypto_register_provider(crypto_provider_info_t *info, 112 crypto_kcf_provider_handle_t *handle) 113 { 114 char *ks_name; 115 116 kcf_provider_desc_t *prov_desc = NULL; 117 int ret = CRYPTO_ARGUMENTS_BAD; 118 119 if (info->pi_interface_version > CRYPTO_SPI_VERSION_3) 120 return (CRYPTO_VERSION_MISMATCH); 121 122 /* 123 * Check provider type, must be software, hardware, or logical. 124 */ 125 if (info->pi_provider_type != CRYPTO_HW_PROVIDER && 126 info->pi_provider_type != CRYPTO_SW_PROVIDER && 127 info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) 128 return (CRYPTO_ARGUMENTS_BAD); 129 130 /* 131 * Allocate and initialize a new provider descriptor. We also 132 * hold it and release it when done. 133 */ 134 prov_desc = kcf_alloc_provider_desc(info); 135 KCF_PROV_REFHOLD(prov_desc); 136 137 prov_desc->pd_prov_type = info->pi_provider_type; 138 139 /* provider-private handle, opaque to KCF */ 140 prov_desc->pd_prov_handle = info->pi_provider_handle; 141 142 /* copy provider description string */ 143 if (info->pi_provider_description != NULL) { 144 /* 145 * pi_provider_descriptor is a string that can contain 146 * up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters 147 * INCLUDING the terminating null character. A bcopy() 148 * is necessary here as pd_description should not have 149 * a null character. See comments in kcf_alloc_provider_desc() 150 * for details on pd_description field. 151 */ 152 bcopy(info->pi_provider_description, prov_desc->pd_description, 153 MIN(strlen(info->pi_provider_description), 154 (size_t)CRYPTO_PROVIDER_DESCR_MAX_LEN)); 155 } 156 157 if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) { 158 if (info->pi_ops_vector == NULL) { 159 goto bail; 160 } 161 copy_ops_vector_v1(info->pi_ops_vector, 162 prov_desc->pd_ops_vector); 163 if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) { 164 copy_ops_vector_v2(info->pi_ops_vector, 165 prov_desc->pd_ops_vector); 166 prov_desc->pd_flags = info->pi_flags; 167 } 168 if (info->pi_interface_version == CRYPTO_SPI_VERSION_3) { 169 copy_ops_vector_v3(info->pi_ops_vector, 170 prov_desc->pd_ops_vector); 171 } 172 } 173 174 /* object_ops and nostore_key_ops are mutually exclusive */ 175 if (prov_desc->pd_ops_vector->co_object_ops && 176 prov_desc->pd_ops_vector->co_nostore_key_ops) { 177 goto bail; 178 } 179 180 /* process the mechanisms supported by the provider */ 181 if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS) 182 goto bail; 183 184 /* 185 * Add provider to providers tables, also sets the descriptor 186 * pd_prov_id field. 187 */ 188 if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) { 189 undo_register_provider(prov_desc, B_FALSE); 190 goto bail; 191 } 192 193 /* 194 * We create a taskq only for a hardware provider. The global 195 * software queue is used for software providers. We handle ordering 196 * of multi-part requests in the taskq routine. So, it is safe to 197 * have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag 198 * to keep some entries cached to improve performance. 199 */ 200 if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) 201 prov_desc->pd_sched_info.ks_taskq = taskq_create("kcf_taskq", 202 crypto_taskq_threads, minclsyspri, 203 crypto_taskq_minalloc, crypto_taskq_maxalloc, 204 TASKQ_PREPOPULATE); 205 else 206 prov_desc->pd_sched_info.ks_taskq = NULL; 207 208 /* no kernel session to logical providers */ 209 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 210 /* 211 * Open a session for session-oriented providers. This session 212 * is used for all kernel consumers. This is fine as a provider 213 * is required to support multiple thread access to a session. 214 * We can do this only after the taskq has been created as we 215 * do a kcf_submit_request() to open the session. 216 */ 217 if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) { 218 kcf_req_params_t params; 219 220 KCF_WRAP_SESSION_OPS_PARAMS(¶ms, 221 KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0, 222 CRYPTO_USER, NULL, 0, prov_desc); 223 ret = kcf_submit_request(prov_desc, NULL, NULL, ¶ms, 224 B_FALSE); 225 226 if (ret != CRYPTO_SUCCESS) { 227 undo_register_provider(prov_desc, B_TRUE); 228 ret = CRYPTO_FAILED; 229 goto bail; 230 } 231 } 232 } 233 234 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 235 /* 236 * Create the kstat for this provider. There is a kstat 237 * installed for each successfully registered provider. 238 * This kstat is deleted, when the provider unregisters. 239 */ 240 if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 241 ks_name = kmem_asprintf("%s_%s", 242 "NONAME", "provider_stats"); 243 } else { 244 ks_name = kmem_asprintf("%s_%d_%u_%s", 245 "NONAME", 0, prov_desc->pd_prov_id, 246 "provider_stats"); 247 } 248 249 prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto", 250 KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) / 251 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 252 253 if (prov_desc->pd_kstat != NULL) { 254 bcopy(&kcf_stats_ks_data_template, 255 &prov_desc->pd_ks_data, 256 sizeof (kcf_stats_ks_data_template)); 257 prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data; 258 KCF_PROV_REFHOLD(prov_desc); 259 KCF_PROV_IREFHOLD(prov_desc); 260 prov_desc->pd_kstat->ks_private = prov_desc; 261 prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update; 262 kstat_install(prov_desc->pd_kstat); 263 } 264 kmem_strfree(ks_name); 265 } 266 267 if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) 268 process_logical_providers(info, prov_desc); 269 270 mutex_enter(&prov_desc->pd_lock); 271 prov_desc->pd_state = KCF_PROV_READY; 272 mutex_exit(&prov_desc->pd_lock); 273 kcf_do_notify(prov_desc, B_TRUE); 274 275 *handle = prov_desc->pd_kcf_prov_handle; 276 ret = CRYPTO_SUCCESS; 277 278 bail: 279 KCF_PROV_REFRELE(prov_desc); 280 return (ret); 281 } 282 283 /* 284 * This routine is used to notify the framework when a provider is being 285 * removed. Hardware providers call this routine in their detach routines. 286 * Software providers call this routine in their _fini() routine. 287 */ 288 int 289 crypto_unregister_provider(crypto_kcf_provider_handle_t handle) 290 { 291 uint_t mech_idx; 292 kcf_provider_desc_t *desc; 293 kcf_prov_state_t saved_state; 294 295 /* lookup provider descriptor */ 296 if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL) 297 return (CRYPTO_UNKNOWN_PROVIDER); 298 299 mutex_enter(&desc->pd_lock); 300 /* 301 * Check if any other thread is disabling or removing 302 * this provider. We return if this is the case. 303 */ 304 if (desc->pd_state >= KCF_PROV_DISABLED) { 305 mutex_exit(&desc->pd_lock); 306 /* Release reference held by kcf_prov_tab_lookup(). */ 307 KCF_PROV_REFRELE(desc); 308 return (CRYPTO_BUSY); 309 } 310 311 saved_state = desc->pd_state; 312 desc->pd_state = KCF_PROV_REMOVED; 313 314 if (saved_state == KCF_PROV_BUSY) { 315 /* 316 * The per-provider taskq threads may be waiting. We 317 * signal them so that they can start failing requests. 318 */ 319 cv_broadcast(&desc->pd_resume_cv); 320 } 321 322 if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 323 /* 324 * Check if this provider is currently being used. 325 * pd_irefcnt is the number of holds from the internal 326 * structures. We add one to account for the above lookup. 327 */ 328 if (desc->pd_refcnt > desc->pd_irefcnt + 1) { 329 desc->pd_state = saved_state; 330 mutex_exit(&desc->pd_lock); 331 /* Release reference held by kcf_prov_tab_lookup(). */ 332 KCF_PROV_REFRELE(desc); 333 /* 334 * The administrator presumably will stop the clients 335 * thus removing the holds, when they get the busy 336 * return value. Any retry will succeed then. 337 */ 338 return (CRYPTO_BUSY); 339 } 340 } 341 mutex_exit(&desc->pd_lock); 342 343 if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) { 344 remove_provider(desc); 345 } 346 347 if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 348 /* remove the provider from the mechanisms tables */ 349 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; 350 mech_idx++) { 351 kcf_remove_mech_provider( 352 desc->pd_mechanisms[mech_idx].cm_mech_name, desc); 353 } 354 } 355 356 /* remove provider from providers table */ 357 if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) != 358 CRYPTO_SUCCESS) { 359 /* Release reference held by kcf_prov_tab_lookup(). */ 360 KCF_PROV_REFRELE(desc); 361 return (CRYPTO_UNKNOWN_PROVIDER); 362 } 363 364 delete_kstat(desc); 365 366 if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 367 /* Release reference held by kcf_prov_tab_lookup(). */ 368 KCF_PROV_REFRELE(desc); 369 370 /* 371 * Wait till the existing requests complete. 372 */ 373 mutex_enter(&desc->pd_lock); 374 while (desc->pd_state != KCF_PROV_FREED) 375 cv_wait(&desc->pd_remove_cv, &desc->pd_lock); 376 mutex_exit(&desc->pd_lock); 377 } else { 378 /* 379 * Wait until requests that have been sent to the provider 380 * complete. 381 */ 382 mutex_enter(&desc->pd_lock); 383 while (desc->pd_irefcnt > 0) 384 cv_wait(&desc->pd_remove_cv, &desc->pd_lock); 385 mutex_exit(&desc->pd_lock); 386 } 387 388 kcf_do_notify(desc, B_FALSE); 389 390 if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 391 /* 392 * This is the only place where kcf_free_provider_desc() 393 * is called directly. KCF_PROV_REFRELE() should free the 394 * structure in all other places. 395 */ 396 ASSERT(desc->pd_state == KCF_PROV_FREED && 397 desc->pd_refcnt == 0); 398 kcf_free_provider_desc(desc); 399 } else { 400 KCF_PROV_REFRELE(desc); 401 } 402 403 return (CRYPTO_SUCCESS); 404 } 405 406 /* 407 * This routine is used to notify the framework that the state of 408 * a cryptographic provider has changed. Valid state codes are: 409 * 410 * CRYPTO_PROVIDER_READY 411 * The provider indicates that it can process more requests. A provider 412 * will notify with this event if it previously has notified us with a 413 * CRYPTO_PROVIDER_BUSY. 414 * 415 * CRYPTO_PROVIDER_BUSY 416 * The provider can not take more requests. 417 * 418 * CRYPTO_PROVIDER_FAILED 419 * The provider encountered an internal error. The framework will not 420 * be sending any more requests to the provider. The provider may notify 421 * with a CRYPTO_PROVIDER_READY, if it is able to recover from the error. 422 * 423 * This routine can be called from user or interrupt context. 424 */ 425 void 426 crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state) 427 { 428 kcf_provider_desc_t *pd; 429 430 /* lookup the provider from the given handle */ 431 if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL) 432 return; 433 434 mutex_enter(&pd->pd_lock); 435 436 if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED) 437 goto out; 438 439 if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { 440 cmn_err(CE_WARN, "crypto_provider_notification: " 441 "logical provider (%x) ignored\n", handle); 442 goto out; 443 } 444 switch (state) { 445 case CRYPTO_PROVIDER_READY: 446 switch (pd->pd_state) { 447 case KCF_PROV_BUSY: 448 pd->pd_state = KCF_PROV_READY; 449 /* 450 * Signal the per-provider taskq threads that they 451 * can start submitting requests. 452 */ 453 cv_broadcast(&pd->pd_resume_cv); 454 break; 455 456 case KCF_PROV_FAILED: 457 /* 458 * The provider recovered from the error. Let us 459 * use it now. 460 */ 461 pd->pd_state = KCF_PROV_READY; 462 break; 463 default: 464 break; 465 } 466 break; 467 468 case CRYPTO_PROVIDER_BUSY: 469 switch (pd->pd_state) { 470 case KCF_PROV_READY: 471 pd->pd_state = KCF_PROV_BUSY; 472 break; 473 default: 474 break; 475 } 476 break; 477 478 case CRYPTO_PROVIDER_FAILED: 479 /* 480 * We note the failure and return. The per-provider taskq 481 * threads check this flag and start failing the 482 * requests, if it is set. See process_req_hwp() for details. 483 */ 484 switch (pd->pd_state) { 485 case KCF_PROV_READY: 486 pd->pd_state = KCF_PROV_FAILED; 487 break; 488 489 case KCF_PROV_BUSY: 490 pd->pd_state = KCF_PROV_FAILED; 491 /* 492 * The per-provider taskq threads may be waiting. We 493 * signal them so that they can start failing requests. 494 */ 495 cv_broadcast(&pd->pd_resume_cv); 496 break; 497 default: 498 break; 499 } 500 break; 501 default: 502 break; 503 } 504 out: 505 mutex_exit(&pd->pd_lock); 506 KCF_PROV_REFRELE(pd); 507 } 508 509 /* 510 * This routine is used to notify the framework the result of 511 * an asynchronous request handled by a provider. Valid error 512 * codes are the same as the CRYPTO_* errors defined in common.h. 513 * 514 * This routine can be called from user or interrupt context. 515 */ 516 void 517 crypto_op_notification(crypto_req_handle_t handle, int error) 518 { 519 kcf_call_type_t ctype; 520 521 if (handle == NULL) 522 return; 523 524 if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) { 525 kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle; 526 527 if (error != CRYPTO_SUCCESS) 528 sreq->sn_provider->pd_sched_info.ks_nfails++; 529 KCF_PROV_IREFRELE(sreq->sn_provider); 530 kcf_sop_done(sreq, error); 531 } else { 532 kcf_areq_node_t *areq = (kcf_areq_node_t *)handle; 533 534 ASSERT(ctype == CRYPTO_ASYNCH); 535 if (error != CRYPTO_SUCCESS) 536 areq->an_provider->pd_sched_info.ks_nfails++; 537 KCF_PROV_IREFRELE(areq->an_provider); 538 kcf_aop_done(areq, error); 539 } 540 } 541 542 /* 543 * This routine is used by software providers to determine 544 * whether to use KM_SLEEP or KM_NOSLEEP during memory allocation. 545 * Note that hardware providers can always use KM_SLEEP. So, 546 * they do not need to call this routine. 547 * 548 * This routine can be called from user or interrupt context. 549 */ 550 int 551 crypto_kmflag(crypto_req_handle_t handle) 552 { 553 return (REQHNDL2_KMFLAG(handle)); 554 } 555 556 /* 557 * Process the mechanism info structures specified by the provider 558 * during registration. A NULL crypto_provider_info_t indicates 559 * an already initialized provider descriptor. 560 * 561 * Mechanisms are not added to the kernel's mechanism table if the 562 * provider is a logical provider. 563 * 564 * Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one 565 * of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY 566 * if the table of mechanisms is full. 567 */ 568 static int 569 init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc) 570 { 571 uint_t mech_idx; 572 uint_t cleanup_idx; 573 int err = CRYPTO_SUCCESS; 574 kcf_prov_mech_desc_t *pmd; 575 int desc_use_count = 0; 576 int mcount = desc->pd_mech_list_count; 577 578 if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { 579 if (info != NULL) { 580 ASSERT(info->pi_mechanisms != NULL); 581 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 582 sizeof (crypto_mech_info_t) * mcount); 583 } 584 return (CRYPTO_SUCCESS); 585 } 586 587 /* 588 * Copy the mechanism list from the provider info to the provider 589 * descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t 590 * element if the provider has random_ops since we keep an internal 591 * mechanism, SUN_RANDOM, in this case. 592 */ 593 if (info != NULL) { 594 if (info->pi_ops_vector->co_random_ops != NULL) { 595 crypto_mech_info_t *rand_mi; 596 597 /* 598 * Need the following check as it is possible to have 599 * a provider that implements just random_ops and has 600 * pi_mechanisms == NULL. 601 */ 602 if (info->pi_mechanisms != NULL) { 603 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 604 sizeof (crypto_mech_info_t) * (mcount - 1)); 605 } 606 rand_mi = &desc->pd_mechanisms[mcount - 1]; 607 608 bzero(rand_mi, sizeof (crypto_mech_info_t)); 609 (void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM, 610 CRYPTO_MAX_MECH_NAME); 611 rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM; 612 } else { 613 ASSERT(info->pi_mechanisms != NULL); 614 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 615 sizeof (crypto_mech_info_t) * mcount); 616 } 617 } 618 619 /* 620 * For each mechanism support by the provider, add the provider 621 * to the corresponding KCF mechanism mech_entry chain. 622 */ 623 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) { 624 crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx]; 625 626 if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) && 627 (mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) { 628 err = CRYPTO_ARGUMENTS_BAD; 629 break; 630 } 631 632 if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE && 633 mi->cm_func_group_mask & CRYPTO_FG_DIGEST) { 634 /* 635 * We ask the provider to specify the limit 636 * per hash mechanism. But, in practice, a 637 * hardware limitation means all hash mechanisms 638 * will have the same maximum size allowed for 639 * input data. So, we make it a per provider 640 * limit to keep it simple. 641 */ 642 if (mi->cm_max_input_length == 0) { 643 err = CRYPTO_ARGUMENTS_BAD; 644 break; 645 } else { 646 desc->pd_hash_limit = mi->cm_max_input_length; 647 } 648 } 649 650 if ((err = kcf_add_mech_provider(mech_idx, desc, &pmd)) != 651 KCF_SUCCESS) 652 break; 653 654 if (pmd == NULL) 655 continue; 656 657 /* The provider will be used for this mechanism */ 658 desc_use_count++; 659 } 660 661 /* 662 * Don't allow multiple software providers with disabled mechanisms 663 * to register. Subsequent enabling of mechanisms will result in 664 * an unsupported configuration, i.e. multiple software providers 665 * per mechanism. 666 */ 667 if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER) 668 return (CRYPTO_ARGUMENTS_BAD); 669 670 if (err == KCF_SUCCESS) 671 return (CRYPTO_SUCCESS); 672 673 /* 674 * An error occurred while adding the mechanism, cleanup 675 * and bail. 676 */ 677 for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) { 678 kcf_remove_mech_provider( 679 desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc); 680 } 681 682 if (err == KCF_MECH_TAB_FULL) 683 return (CRYPTO_HOST_MEMORY); 684 685 return (CRYPTO_ARGUMENTS_BAD); 686 } 687 688 /* 689 * Update routine for kstat. Only privileged users are allowed to 690 * access this information, since this information is sensitive. 691 * There are some cryptographic attacks (e.g. traffic analysis) 692 * which can use this information. 693 */ 694 static int 695 kcf_prov_kstat_update(kstat_t *ksp, int rw) 696 { 697 kcf_prov_stats_t *ks_data; 698 kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private; 699 700 if (rw == KSTAT_WRITE) 701 return (EACCES); 702 703 ks_data = ksp->ks_data; 704 705 ks_data->ps_ops_total.value.ui64 = pd->pd_sched_info.ks_ndispatches; 706 ks_data->ps_ops_failed.value.ui64 = pd->pd_sched_info.ks_nfails; 707 ks_data->ps_ops_busy_rval.value.ui64 = pd->pd_sched_info.ks_nbusy_rval; 708 ks_data->ps_ops_passed.value.ui64 = 709 pd->pd_sched_info.ks_ndispatches - 710 pd->pd_sched_info.ks_nfails - 711 pd->pd_sched_info.ks_nbusy_rval; 712 713 return (0); 714 } 715 716 717 /* 718 * Utility routine called from failure paths in crypto_register_provider() 719 * and from crypto_load_soft_disabled(). 720 */ 721 void 722 undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov) 723 { 724 uint_t mech_idx; 725 726 /* remove the provider from the mechanisms tables */ 727 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; 728 mech_idx++) { 729 kcf_remove_mech_provider( 730 desc->pd_mechanisms[mech_idx].cm_mech_name, desc); 731 } 732 733 /* remove provider from providers table */ 734 if (remove_prov) 735 (void) kcf_prov_tab_rem_provider(desc->pd_prov_id); 736 } 737 738 /* 739 * Utility routine called from crypto_load_soft_disabled(). Callers 740 * should have done a prior undo_register_provider(). 741 */ 742 void 743 redo_register_provider(kcf_provider_desc_t *pd) 744 { 745 /* process the mechanisms supported by the provider */ 746 (void) init_prov_mechs(NULL, pd); 747 748 /* 749 * Hold provider in providers table. We should not call 750 * kcf_prov_tab_add_provider() here as the provider descriptor 751 * is still valid which means it has an entry in the provider 752 * table. 753 */ 754 KCF_PROV_REFHOLD(pd); 755 KCF_PROV_IREFHOLD(pd); 756 } 757 758 /* 759 * Add provider (p1) to another provider's array of providers (p2). 760 * Hardware and logical providers use this array to cross-reference 761 * each other. 762 */ 763 static void 764 add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2) 765 { 766 kcf_provider_list_t *new; 767 768 new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP); 769 mutex_enter(&p2->pd_lock); 770 new->pl_next = p2->pd_provider_list; 771 p2->pd_provider_list = new; 772 KCF_PROV_IREFHOLD(p1); 773 new->pl_provider = p1; 774 mutex_exit(&p2->pd_lock); 775 } 776 777 /* 778 * Remove provider (p1) from another provider's array of providers (p2). 779 * Hardware and logical providers use this array to cross-reference 780 * each other. 781 */ 782 static void 783 remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2) 784 { 785 786 kcf_provider_list_t *pl = NULL, **prev; 787 788 mutex_enter(&p2->pd_lock); 789 for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list; 790 pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) { 791 if (pl->pl_provider == p1) { 792 break; 793 } 794 } 795 796 if (p1 == NULL) { 797 mutex_exit(&p2->pd_lock); 798 return; 799 } 800 801 /* detach and free kcf_provider_list structure */ 802 KCF_PROV_IREFRELE(p1); 803 *prev = pl->pl_next; 804 kmem_free(pl, sizeof (*pl)); 805 mutex_exit(&p2->pd_lock); 806 } 807 808 /* 809 * Convert an array of logical provider handles (crypto_provider_id) 810 * stored in a crypto_provider_info structure into an array of provider 811 * descriptors (kcf_provider_desc_t) attached to a logical provider. 812 */ 813 static void 814 process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp) 815 { 816 kcf_provider_desc_t *lp; 817 crypto_provider_id_t handle; 818 int count = info->pi_logical_provider_count; 819 int i; 820 821 /* add hardware provider to each logical provider */ 822 for (i = 0; i < count; i++) { 823 handle = info->pi_logical_providers[i]; 824 lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle); 825 if (lp == NULL) { 826 continue; 827 } 828 add_provider_to_array(hp, lp); 829 hp->pd_flags |= KCF_LPROV_MEMBER; 830 831 /* 832 * A hardware provider has to have the provider descriptor of 833 * every logical provider it belongs to, so it can be removed 834 * from the logical provider if the hardware provider 835 * unregisters from the framework. 836 */ 837 add_provider_to_array(lp, hp); 838 KCF_PROV_REFRELE(lp); 839 } 840 } 841 842 /* 843 * This routine removes a provider from all of the logical or 844 * hardware providers it belongs to, and frees the provider's 845 * array of pointers to providers. 846 */ 847 static void 848 remove_provider(kcf_provider_desc_t *pp) 849 { 850 kcf_provider_desc_t *p; 851 kcf_provider_list_t *e, *next; 852 853 mutex_enter(&pp->pd_lock); 854 for (e = pp->pd_provider_list; e != NULL; e = next) { 855 p = e->pl_provider; 856 remove_provider_from_array(pp, p); 857 if (p->pd_prov_type == CRYPTO_HW_PROVIDER && 858 p->pd_provider_list == NULL) 859 p->pd_flags &= ~KCF_LPROV_MEMBER; 860 KCF_PROV_IREFRELE(p); 861 next = e->pl_next; 862 kmem_free(e, sizeof (*e)); 863 } 864 pp->pd_provider_list = NULL; 865 mutex_exit(&pp->pd_lock); 866 } 867 868 /* 869 * Dispatch events as needed for a provider. is_added flag tells 870 * whether the provider is registering or unregistering. 871 */ 872 void 873 kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added) 874 { 875 int i; 876 crypto_notify_event_change_t ec; 877 878 ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED); 879 880 /* 881 * Inform interested clients of the mechanisms becoming 882 * available/unavailable. We skip this for logical providers 883 * as they do not affect mechanisms. 884 */ 885 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 886 ec.ec_provider_type = prov_desc->pd_prov_type; 887 ec.ec_change = is_added ? CRYPTO_MECH_ADDED : 888 CRYPTO_MECH_REMOVED; 889 for (i = 0; i < prov_desc->pd_mech_list_count; i++) { 890 (void) strlcpy(ec.ec_mech_name, 891 prov_desc->pd_mechanisms[i].cm_mech_name, 892 CRYPTO_MAX_MECH_NAME); 893 kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec); 894 } 895 896 } 897 898 /* 899 * Inform interested clients about the new or departing provider. 900 * In case of a logical provider, we need to notify the event only 901 * for the logical provider and not for the underlying 902 * providers which are known by the KCF_LPROV_MEMBER bit. 903 */ 904 if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER || 905 (prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) { 906 kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED : 907 CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc); 908 } 909 } 910 911 static void 912 delete_kstat(kcf_provider_desc_t *desc) 913 { 914 /* destroy the kstat created for this provider */ 915 if (desc->pd_kstat != NULL) { 916 kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private; 917 918 /* release reference held by desc->pd_kstat->ks_private */ 919 ASSERT(desc == kspd); 920 kstat_delete(kspd->pd_kstat); 921 desc->pd_kstat = NULL; 922 KCF_PROV_REFRELE(kspd); 923 KCF_PROV_IREFRELE(kspd); 924 } 925 } 926