xref: /freebsd/sys/contrib/openzfs/module/icp/io/aes.c (revision f81cdf24ba5436367377f7c8e8f51f6df2a75ca7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * AES provider for the Kernel Cryptographic Framework (KCF)
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/crypto/common.h>
31 #include <sys/crypto/impl.h>
32 #include <sys/crypto/spi.h>
33 #include <sys/crypto/icp.h>
34 #include <modes/modes.h>
35 #define	_AES_IMPL
36 #include <aes/aes_impl.h>
37 #include <modes/gcm_impl.h>
38 
39 /*
40  * Mechanism info structure passed to KCF during registration.
41  */
42 static const crypto_mech_info_t aes_mech_info_tab[] = {
43 	/* AES_ECB */
44 	{SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE,
45 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
46 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
47 	/* AES_CBC */
48 	{SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE,
49 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
50 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
51 	/* AES_CTR */
52 	{SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE,
53 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
54 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
55 	/* AES_CCM */
56 	{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
57 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
58 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
59 	/* AES_GCM */
60 	{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
61 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
62 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
63 	/* AES_GMAC */
64 	{SUN_CKM_AES_GMAC, AES_GMAC_MECH_INFO_TYPE,
65 	    CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
66 	    CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC |
67 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC},
68 };
69 
70 static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
71     crypto_key_t *, crypto_spi_ctx_template_t);
72 static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
73     crypto_key_t *, crypto_spi_ctx_template_t);
74 static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
75     crypto_key_t *, crypto_spi_ctx_template_t, boolean_t);
76 static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
77     crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
78 static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *);
79 static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *);
80 
81 static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
82 static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
83     crypto_data_t *);
84 static int aes_encrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
85     crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
86 
87 static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
88 static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
89     crypto_data_t *);
90 static int aes_decrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
91     crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
92 
93 static const crypto_cipher_ops_t aes_cipher_ops = {
94 	.encrypt_init = aes_encrypt_init,
95 	.encrypt = aes_encrypt,
96 	.encrypt_update = aes_encrypt_update,
97 	.encrypt_final = aes_encrypt_final,
98 	.encrypt_atomic = aes_encrypt_atomic,
99 	.decrypt_init = aes_decrypt_init,
100 	.decrypt = aes_decrypt,
101 	.decrypt_update = aes_decrypt_update,
102 	.decrypt_final = aes_decrypt_final,
103 	.decrypt_atomic = aes_decrypt_atomic
104 };
105 
106 static int aes_mac_atomic(crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
107     crypto_data_t *, crypto_spi_ctx_template_t);
108 static int aes_mac_verify_atomic(crypto_mechanism_t *, crypto_key_t *,
109     crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
110 
111 static const crypto_mac_ops_t aes_mac_ops = {
112 	.mac_init = NULL,
113 	.mac = NULL,
114 	.mac_update = NULL,
115 	.mac_final = NULL,
116 	.mac_atomic = aes_mac_atomic,
117 	.mac_verify_atomic = aes_mac_verify_atomic
118 };
119 
120 static int aes_create_ctx_template(crypto_mechanism_t *, crypto_key_t *,
121     crypto_spi_ctx_template_t *, size_t *);
122 static int aes_free_context(crypto_ctx_t *);
123 
124 static const crypto_ctx_ops_t aes_ctx_ops = {
125 	.create_ctx_template = aes_create_ctx_template,
126 	.free_context = aes_free_context
127 };
128 
129 static const crypto_ops_t aes_crypto_ops = {
130 	NULL,
131 	&aes_cipher_ops,
132 	&aes_mac_ops,
133 	&aes_ctx_ops,
134 };
135 
136 static const crypto_provider_info_t aes_prov_info = {
137 	"AES Software Provider",
138 	&aes_crypto_ops,
139 	sizeof (aes_mech_info_tab) / sizeof (crypto_mech_info_t),
140 	aes_mech_info_tab
141 };
142 
143 static crypto_kcf_provider_handle_t aes_prov_handle = 0;
144 static crypto_data_t null_crypto_data = { CRYPTO_DATA_RAW };
145 
146 int
147 aes_mod_init(void)
148 {
149 	/* Determine the fastest available implementation. */
150 	aes_impl_init();
151 	gcm_impl_init();
152 
153 	/* Register with KCF.  If the registration fails, remove the module. */
154 	if (crypto_register_provider(&aes_prov_info, &aes_prov_handle))
155 		return (EACCES);
156 
157 	return (0);
158 }
159 
160 int
161 aes_mod_fini(void)
162 {
163 	/* Unregister from KCF if module is registered */
164 	if (aes_prov_handle != 0) {
165 		if (crypto_unregister_provider(aes_prov_handle))
166 			return (EBUSY);
167 
168 		aes_prov_handle = 0;
169 	}
170 
171 	return (0);
172 }
173 
174 static int
175 aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx)
176 {
177 	void *p = NULL;
178 	boolean_t param_required = B_TRUE;
179 	size_t param_len;
180 	void *(*alloc_fun)(int);
181 	int rv = CRYPTO_SUCCESS;
182 
183 	switch (mechanism->cm_type) {
184 	case AES_ECB_MECH_INFO_TYPE:
185 		param_required = B_FALSE;
186 		alloc_fun = ecb_alloc_ctx;
187 		break;
188 	case AES_CBC_MECH_INFO_TYPE:
189 		param_len = AES_BLOCK_LEN;
190 		alloc_fun = cbc_alloc_ctx;
191 		break;
192 	case AES_CTR_MECH_INFO_TYPE:
193 		param_len = sizeof (CK_AES_CTR_PARAMS);
194 		alloc_fun = ctr_alloc_ctx;
195 		break;
196 	case AES_CCM_MECH_INFO_TYPE:
197 		param_len = sizeof (CK_AES_CCM_PARAMS);
198 		alloc_fun = ccm_alloc_ctx;
199 		break;
200 	case AES_GCM_MECH_INFO_TYPE:
201 		param_len = sizeof (CK_AES_GCM_PARAMS);
202 		alloc_fun = gcm_alloc_ctx;
203 		break;
204 	case AES_GMAC_MECH_INFO_TYPE:
205 		param_len = sizeof (CK_AES_GMAC_PARAMS);
206 		alloc_fun = gmac_alloc_ctx;
207 		break;
208 	default:
209 		rv = CRYPTO_MECHANISM_INVALID;
210 		return (rv);
211 	}
212 	if (param_required && mechanism->cm_param != NULL &&
213 	    mechanism->cm_param_len != param_len) {
214 		rv = CRYPTO_MECHANISM_PARAM_INVALID;
215 	}
216 	if (ctx != NULL) {
217 		p = (alloc_fun)(KM_SLEEP);
218 		*ctx = p;
219 	}
220 	return (rv);
221 }
222 
223 /*
224  * Initialize key schedules for AES
225  */
226 static int
227 init_keysched(crypto_key_t *key, void *newbie)
228 {
229 	if (key->ck_length < AES_MINBITS ||
230 	    key->ck_length > AES_MAXBITS) {
231 		return (CRYPTO_KEY_SIZE_RANGE);
232 	}
233 
234 	/* key length must be either 128, 192, or 256 */
235 	if ((key->ck_length & 63) != 0)
236 		return (CRYPTO_KEY_SIZE_RANGE);
237 
238 	aes_init_keysched(key->ck_data, key->ck_length, newbie);
239 	return (CRYPTO_SUCCESS);
240 }
241 
242 static int
243 aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
244     crypto_key_t *key, crypto_spi_ctx_template_t template)
245 {
246 	return (aes_common_init(ctx, mechanism, key, template, B_TRUE));
247 }
248 
249 static int
250 aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
251     crypto_key_t *key, crypto_spi_ctx_template_t template)
252 {
253 	return (aes_common_init(ctx, mechanism, key, template, B_FALSE));
254 }
255 
256 
257 
258 /*
259  * KCF software provider encrypt entry points.
260  */
261 static int
262 aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
263     crypto_key_t *key, crypto_spi_ctx_template_t template,
264     boolean_t is_encrypt_init)
265 {
266 	aes_ctx_t *aes_ctx;
267 	int rv;
268 
269 	if ((rv = aes_check_mech_param(mechanism, &aes_ctx))
270 	    != CRYPTO_SUCCESS)
271 		return (rv);
272 
273 	rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, KM_SLEEP,
274 	    is_encrypt_init);
275 	if (rv != CRYPTO_SUCCESS) {
276 		crypto_free_mode_ctx(aes_ctx);
277 		return (rv);
278 	}
279 
280 	ctx->cc_provider_private = aes_ctx;
281 
282 	return (CRYPTO_SUCCESS);
283 }
284 
285 static void
286 aes_copy_block64(uint8_t *in, uint64_t *out)
287 {
288 	if (IS_P2ALIGNED(in, sizeof (uint64_t))) {
289 		/* LINTED: pointer alignment */
290 		out[0] = *(uint64_t *)&in[0];
291 		/* LINTED: pointer alignment */
292 		out[1] = *(uint64_t *)&in[8];
293 	} else {
294 		uint8_t *iv8 = (uint8_t *)&out[0];
295 
296 		AES_COPY_BLOCK(in, iv8);
297 	}
298 }
299 
300 
301 static int
302 aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
303     crypto_data_t *ciphertext)
304 {
305 	int ret = CRYPTO_FAILED;
306 
307 	aes_ctx_t *aes_ctx;
308 	size_t saved_length, saved_offset, length_needed;
309 
310 	ASSERT(ctx->cc_provider_private != NULL);
311 	aes_ctx = ctx->cc_provider_private;
312 
313 	/*
314 	 * For block ciphers, plaintext must be a multiple of AES block size.
315 	 * This test is only valid for ciphers whose blocksize is a power of 2.
316 	 */
317 	if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
318 	    == 0) && (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
319 		return (CRYPTO_DATA_LEN_RANGE);
320 
321 	ASSERT(ciphertext != NULL);
322 
323 	/*
324 	 * We need to just return the length needed to store the output.
325 	 * We should not destroy the context for the following case.
326 	 */
327 	switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
328 	case CCM_MODE:
329 		length_needed = plaintext->cd_length + aes_ctx->ac_mac_len;
330 		break;
331 	case GCM_MODE:
332 		length_needed = plaintext->cd_length + aes_ctx->ac_tag_len;
333 		break;
334 	case GMAC_MODE:
335 		if (plaintext->cd_length != 0)
336 			return (CRYPTO_ARGUMENTS_BAD);
337 
338 		length_needed = aes_ctx->ac_tag_len;
339 		break;
340 	default:
341 		length_needed = plaintext->cd_length;
342 	}
343 
344 	if (ciphertext->cd_length < length_needed) {
345 		ciphertext->cd_length = length_needed;
346 		return (CRYPTO_BUFFER_TOO_SMALL);
347 	}
348 
349 	saved_length = ciphertext->cd_length;
350 	saved_offset = ciphertext->cd_offset;
351 
352 	/*
353 	 * Do an update on the specified input data.
354 	 */
355 	ret = aes_encrypt_update(ctx, plaintext, ciphertext);
356 	if (ret != CRYPTO_SUCCESS) {
357 		return (ret);
358 	}
359 
360 	/*
361 	 * For CCM mode, aes_ccm_encrypt_final() will take care of any
362 	 * left-over unprocessed data, and compute the MAC
363 	 */
364 	if (aes_ctx->ac_flags & CCM_MODE) {
365 		/*
366 		 * ccm_encrypt_final() will compute the MAC and append
367 		 * it to existing ciphertext. So, need to adjust the left over
368 		 * length value accordingly
369 		 */
370 
371 		/* order of following 2 lines MUST not be reversed */
372 		ciphertext->cd_offset = ciphertext->cd_length;
373 		ciphertext->cd_length = saved_length - ciphertext->cd_length;
374 		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext,
375 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
376 		if (ret != CRYPTO_SUCCESS) {
377 			return (ret);
378 		}
379 
380 		if (plaintext != ciphertext) {
381 			ciphertext->cd_length =
382 			    ciphertext->cd_offset - saved_offset;
383 		}
384 		ciphertext->cd_offset = saved_offset;
385 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
386 		/*
387 		 * gcm_encrypt_final() will compute the MAC and append
388 		 * it to existing ciphertext. So, need to adjust the left over
389 		 * length value accordingly
390 		 */
391 
392 		/* order of following 2 lines MUST not be reversed */
393 		ciphertext->cd_offset = ciphertext->cd_length;
394 		ciphertext->cd_length = saved_length - ciphertext->cd_length;
395 		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext,
396 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
397 		    aes_xor_block);
398 		if (ret != CRYPTO_SUCCESS) {
399 			return (ret);
400 		}
401 
402 		if (plaintext != ciphertext) {
403 			ciphertext->cd_length =
404 			    ciphertext->cd_offset - saved_offset;
405 		}
406 		ciphertext->cd_offset = saved_offset;
407 	}
408 
409 	ASSERT(aes_ctx->ac_remainder_len == 0);
410 	(void) aes_free_context(ctx);
411 
412 	return (ret);
413 }
414 
415 
416 static int
417 aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
418     crypto_data_t *plaintext)
419 {
420 	int ret = CRYPTO_FAILED;
421 
422 	aes_ctx_t *aes_ctx;
423 	off_t saved_offset;
424 	size_t saved_length, length_needed;
425 
426 	ASSERT(ctx->cc_provider_private != NULL);
427 	aes_ctx = ctx->cc_provider_private;
428 
429 	/*
430 	 * For block ciphers, plaintext must be a multiple of AES block size.
431 	 * This test is only valid for ciphers whose blocksize is a power of 2.
432 	 */
433 	if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
434 	    == 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) {
435 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
436 	}
437 
438 	ASSERT(plaintext != NULL);
439 
440 	/*
441 	 * Return length needed to store the output.
442 	 * Do not destroy context when plaintext buffer is too small.
443 	 *
444 	 * CCM:  plaintext is MAC len smaller than cipher text
445 	 * GCM:  plaintext is TAG len smaller than cipher text
446 	 * GMAC: plaintext length must be zero
447 	 */
448 	switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
449 	case CCM_MODE:
450 		length_needed = aes_ctx->ac_processed_data_len;
451 		break;
452 	case GCM_MODE:
453 		length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len;
454 		break;
455 	case GMAC_MODE:
456 		if (plaintext->cd_length != 0)
457 			return (CRYPTO_ARGUMENTS_BAD);
458 
459 		length_needed = 0;
460 		break;
461 	default:
462 		length_needed = ciphertext->cd_length;
463 	}
464 
465 	if (plaintext->cd_length < length_needed) {
466 		plaintext->cd_length = length_needed;
467 		return (CRYPTO_BUFFER_TOO_SMALL);
468 	}
469 
470 	saved_offset = plaintext->cd_offset;
471 	saved_length = plaintext->cd_length;
472 
473 	/*
474 	 * Do an update on the specified input data.
475 	 */
476 	ret = aes_decrypt_update(ctx, ciphertext, plaintext);
477 	if (ret != CRYPTO_SUCCESS) {
478 		goto cleanup;
479 	}
480 
481 	if (aes_ctx->ac_flags & CCM_MODE) {
482 		ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len);
483 		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
484 
485 		/* order of following 2 lines MUST not be reversed */
486 		plaintext->cd_offset = plaintext->cd_length;
487 		plaintext->cd_length = saved_length - plaintext->cd_length;
488 
489 		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext,
490 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
491 		    aes_xor_block);
492 		if (ret == CRYPTO_SUCCESS) {
493 			if (plaintext != ciphertext) {
494 				plaintext->cd_length =
495 				    plaintext->cd_offset - saved_offset;
496 			}
497 		} else {
498 			plaintext->cd_length = saved_length;
499 		}
500 
501 		plaintext->cd_offset = saved_offset;
502 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
503 		/* order of following 2 lines MUST not be reversed */
504 		plaintext->cd_offset = plaintext->cd_length;
505 		plaintext->cd_length = saved_length - plaintext->cd_length;
506 
507 		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext,
508 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
509 		if (ret == CRYPTO_SUCCESS) {
510 			if (plaintext != ciphertext) {
511 				plaintext->cd_length =
512 				    plaintext->cd_offset - saved_offset;
513 			}
514 		} else {
515 			plaintext->cd_length = saved_length;
516 		}
517 
518 		plaintext->cd_offset = saved_offset;
519 	}
520 
521 	ASSERT(aes_ctx->ac_remainder_len == 0);
522 
523 cleanup:
524 	(void) aes_free_context(ctx);
525 
526 	return (ret);
527 }
528 
529 
530 static int
531 aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
532     crypto_data_t *ciphertext)
533 {
534 	off_t saved_offset;
535 	size_t saved_length, out_len;
536 	int ret = CRYPTO_SUCCESS;
537 	aes_ctx_t *aes_ctx;
538 
539 	ASSERT(ctx->cc_provider_private != NULL);
540 	aes_ctx = ctx->cc_provider_private;
541 
542 	ASSERT(ciphertext != NULL);
543 
544 	/* compute number of bytes that will hold the ciphertext */
545 	out_len = aes_ctx->ac_remainder_len;
546 	out_len += plaintext->cd_length;
547 	out_len &= ~(AES_BLOCK_LEN - 1);
548 
549 	/* return length needed to store the output */
550 	if (ciphertext->cd_length < out_len) {
551 		ciphertext->cd_length = out_len;
552 		return (CRYPTO_BUFFER_TOO_SMALL);
553 	}
554 
555 	saved_offset = ciphertext->cd_offset;
556 	saved_length = ciphertext->cd_length;
557 
558 	/*
559 	 * Do the AES update on the specified input data.
560 	 */
561 	switch (plaintext->cd_format) {
562 	case CRYPTO_DATA_RAW:
563 		ret = crypto_update_iov(ctx->cc_provider_private,
564 		    plaintext, ciphertext, aes_encrypt_contiguous_blocks);
565 		break;
566 	case CRYPTO_DATA_UIO:
567 		ret = crypto_update_uio(ctx->cc_provider_private,
568 		    plaintext, ciphertext, aes_encrypt_contiguous_blocks);
569 		break;
570 	default:
571 		ret = CRYPTO_ARGUMENTS_BAD;
572 	}
573 
574 	/*
575 	 * Since AES counter mode is a stream cipher, we call
576 	 * ctr_mode_final() to pick up any remaining bytes.
577 	 * It is an internal function that does not destroy
578 	 * the context like *normal* final routines.
579 	 */
580 	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
581 		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx,
582 		    ciphertext, aes_encrypt_block);
583 	}
584 
585 	if (ret == CRYPTO_SUCCESS) {
586 		if (plaintext != ciphertext)
587 			ciphertext->cd_length =
588 			    ciphertext->cd_offset - saved_offset;
589 	} else {
590 		ciphertext->cd_length = saved_length;
591 	}
592 	ciphertext->cd_offset = saved_offset;
593 
594 	return (ret);
595 }
596 
597 
598 static int
599 aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
600     crypto_data_t *plaintext)
601 {
602 	off_t saved_offset;
603 	size_t saved_length, out_len;
604 	int ret = CRYPTO_SUCCESS;
605 	aes_ctx_t *aes_ctx;
606 
607 	ASSERT(ctx->cc_provider_private != NULL);
608 	aes_ctx = ctx->cc_provider_private;
609 
610 	ASSERT(plaintext != NULL);
611 
612 	/*
613 	 * Compute number of bytes that will hold the plaintext.
614 	 * This is not necessary for CCM, GCM, and GMAC since these
615 	 * mechanisms never return plaintext for update operations.
616 	 */
617 	if ((aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
618 		out_len = aes_ctx->ac_remainder_len;
619 		out_len += ciphertext->cd_length;
620 		out_len &= ~(AES_BLOCK_LEN - 1);
621 
622 		/* return length needed to store the output */
623 		if (plaintext->cd_length < out_len) {
624 			plaintext->cd_length = out_len;
625 			return (CRYPTO_BUFFER_TOO_SMALL);
626 		}
627 	}
628 
629 	saved_offset = plaintext->cd_offset;
630 	saved_length = plaintext->cd_length;
631 
632 	/*
633 	 * Do the AES update on the specified input data.
634 	 */
635 	switch (ciphertext->cd_format) {
636 	case CRYPTO_DATA_RAW:
637 		ret = crypto_update_iov(ctx->cc_provider_private,
638 		    ciphertext, plaintext, aes_decrypt_contiguous_blocks);
639 		break;
640 	case CRYPTO_DATA_UIO:
641 		ret = crypto_update_uio(ctx->cc_provider_private,
642 		    ciphertext, plaintext, aes_decrypt_contiguous_blocks);
643 		break;
644 	default:
645 		ret = CRYPTO_ARGUMENTS_BAD;
646 	}
647 
648 	/*
649 	 * Since AES counter mode is a stream cipher, we call
650 	 * ctr_mode_final() to pick up any remaining bytes.
651 	 * It is an internal function that does not destroy
652 	 * the context like *normal* final routines.
653 	 */
654 	if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
655 		ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, plaintext,
656 		    aes_encrypt_block);
657 		if (ret == CRYPTO_DATA_LEN_RANGE)
658 			ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
659 	}
660 
661 	if (ret == CRYPTO_SUCCESS) {
662 		if (ciphertext != plaintext)
663 			plaintext->cd_length =
664 			    plaintext->cd_offset - saved_offset;
665 	} else {
666 		plaintext->cd_length = saved_length;
667 	}
668 	plaintext->cd_offset = saved_offset;
669 
670 
671 	return (ret);
672 }
673 
674 static int
675 aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
676 {
677 	aes_ctx_t *aes_ctx;
678 	int ret;
679 
680 	ASSERT(ctx->cc_provider_private != NULL);
681 	aes_ctx = ctx->cc_provider_private;
682 
683 	if (data->cd_format != CRYPTO_DATA_RAW &&
684 	    data->cd_format != CRYPTO_DATA_UIO) {
685 		return (CRYPTO_ARGUMENTS_BAD);
686 	}
687 
688 	if (aes_ctx->ac_flags & CTR_MODE) {
689 		if (aes_ctx->ac_remainder_len > 0) {
690 			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
691 			    aes_encrypt_block);
692 			if (ret != CRYPTO_SUCCESS)
693 				return (ret);
694 		}
695 	} else if (aes_ctx->ac_flags & CCM_MODE) {
696 		ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data,
697 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
698 		if (ret != CRYPTO_SUCCESS) {
699 			return (ret);
700 		}
701 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
702 		size_t saved_offset = data->cd_offset;
703 
704 		ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data,
705 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
706 		    aes_xor_block);
707 		if (ret != CRYPTO_SUCCESS) {
708 			return (ret);
709 		}
710 		data->cd_length = data->cd_offset - saved_offset;
711 		data->cd_offset = saved_offset;
712 	} else {
713 		/*
714 		 * There must be no unprocessed plaintext.
715 		 * This happens if the length of the last data is
716 		 * not a multiple of the AES block length.
717 		 */
718 		if (aes_ctx->ac_remainder_len > 0) {
719 			return (CRYPTO_DATA_LEN_RANGE);
720 		}
721 		data->cd_length = 0;
722 	}
723 
724 	(void) aes_free_context(ctx);
725 
726 	return (CRYPTO_SUCCESS);
727 }
728 
729 static int
730 aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
731 {
732 	aes_ctx_t *aes_ctx;
733 	int ret;
734 	off_t saved_offset;
735 	size_t saved_length;
736 
737 	ASSERT(ctx->cc_provider_private != NULL);
738 	aes_ctx = ctx->cc_provider_private;
739 
740 	if (data->cd_format != CRYPTO_DATA_RAW &&
741 	    data->cd_format != CRYPTO_DATA_UIO) {
742 		return (CRYPTO_ARGUMENTS_BAD);
743 	}
744 
745 	/*
746 	 * There must be no unprocessed ciphertext.
747 	 * This happens if the length of the last ciphertext is
748 	 * not a multiple of the AES block length.
749 	 */
750 	if (aes_ctx->ac_remainder_len > 0) {
751 		if ((aes_ctx->ac_flags & CTR_MODE) == 0)
752 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
753 		else {
754 			ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
755 			    aes_encrypt_block);
756 			if (ret == CRYPTO_DATA_LEN_RANGE)
757 				ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
758 			if (ret != CRYPTO_SUCCESS)
759 				return (ret);
760 		}
761 	}
762 
763 	if (aes_ctx->ac_flags & CCM_MODE) {
764 		/*
765 		 * This is where all the plaintext is returned, make sure
766 		 * the plaintext buffer is big enough
767 		 */
768 		size_t pt_len = aes_ctx->ac_data_len;
769 		if (data->cd_length < pt_len) {
770 			data->cd_length = pt_len;
771 			return (CRYPTO_BUFFER_TOO_SMALL);
772 		}
773 
774 		ASSERT(aes_ctx->ac_processed_data_len == pt_len);
775 		ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
776 		saved_offset = data->cd_offset;
777 		saved_length = data->cd_length;
778 		ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data,
779 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
780 		    aes_xor_block);
781 		if (ret == CRYPTO_SUCCESS) {
782 			data->cd_length = data->cd_offset - saved_offset;
783 		} else {
784 			data->cd_length = saved_length;
785 		}
786 
787 		data->cd_offset = saved_offset;
788 		if (ret != CRYPTO_SUCCESS) {
789 			return (ret);
790 		}
791 	} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
792 		/*
793 		 * This is where all the plaintext is returned, make sure
794 		 * the plaintext buffer is big enough
795 		 */
796 		gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx;
797 		size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
798 
799 		if (data->cd_length < pt_len) {
800 			data->cd_length = pt_len;
801 			return (CRYPTO_BUFFER_TOO_SMALL);
802 		}
803 
804 		saved_offset = data->cd_offset;
805 		saved_length = data->cd_length;
806 		ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data,
807 		    AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
808 		if (ret == CRYPTO_SUCCESS) {
809 			data->cd_length = data->cd_offset - saved_offset;
810 		} else {
811 			data->cd_length = saved_length;
812 		}
813 
814 		data->cd_offset = saved_offset;
815 		if (ret != CRYPTO_SUCCESS) {
816 			return (ret);
817 		}
818 	}
819 
820 
821 	if ((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
822 		data->cd_length = 0;
823 	}
824 
825 	(void) aes_free_context(ctx);
826 
827 	return (CRYPTO_SUCCESS);
828 }
829 
830 static int
831 aes_encrypt_atomic(crypto_mechanism_t *mechanism,
832     crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
833     crypto_spi_ctx_template_t template)
834 {
835 	aes_ctx_t aes_ctx = {{{{0}}}};
836 	off_t saved_offset;
837 	size_t saved_length;
838 	size_t length_needed;
839 	int ret;
840 
841 	ASSERT(ciphertext != NULL);
842 
843 	/*
844 	 * CTR, CCM, GCM, and GMAC modes do not require that plaintext
845 	 * be a multiple of AES block size.
846 	 */
847 	switch (mechanism->cm_type) {
848 	case AES_CTR_MECH_INFO_TYPE:
849 	case AES_CCM_MECH_INFO_TYPE:
850 	case AES_GCM_MECH_INFO_TYPE:
851 	case AES_GMAC_MECH_INFO_TYPE:
852 		break;
853 	default:
854 		if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
855 			return (CRYPTO_DATA_LEN_RANGE);
856 	}
857 
858 	if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
859 		return (ret);
860 
861 	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
862 	    KM_SLEEP, B_TRUE);
863 	if (ret != CRYPTO_SUCCESS)
864 		return (ret);
865 
866 	switch (mechanism->cm_type) {
867 	case AES_CCM_MECH_INFO_TYPE:
868 		length_needed = plaintext->cd_length + aes_ctx.ac_mac_len;
869 		break;
870 	case AES_GMAC_MECH_INFO_TYPE:
871 		if (plaintext->cd_length != 0)
872 			return (CRYPTO_ARGUMENTS_BAD);
873 		zfs_fallthrough;
874 	case AES_GCM_MECH_INFO_TYPE:
875 		length_needed = plaintext->cd_length + aes_ctx.ac_tag_len;
876 		break;
877 	default:
878 		length_needed = plaintext->cd_length;
879 	}
880 
881 	/* return size of buffer needed to store output */
882 	if (ciphertext->cd_length < length_needed) {
883 		ciphertext->cd_length = length_needed;
884 		ret = CRYPTO_BUFFER_TOO_SMALL;
885 		goto out;
886 	}
887 
888 	saved_offset = ciphertext->cd_offset;
889 	saved_length = ciphertext->cd_length;
890 
891 	/*
892 	 * Do an update on the specified input data.
893 	 */
894 	switch (plaintext->cd_format) {
895 	case CRYPTO_DATA_RAW:
896 		ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext,
897 		    aes_encrypt_contiguous_blocks);
898 		break;
899 	case CRYPTO_DATA_UIO:
900 		ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext,
901 		    aes_encrypt_contiguous_blocks);
902 		break;
903 	default:
904 		ret = CRYPTO_ARGUMENTS_BAD;
905 	}
906 
907 	if (ret == CRYPTO_SUCCESS) {
908 		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
909 			ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx,
910 			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
911 			    aes_xor_block);
912 			if (ret != CRYPTO_SUCCESS)
913 				goto out;
914 			ASSERT(aes_ctx.ac_remainder_len == 0);
915 		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
916 		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
917 			ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx,
918 			    ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
919 			    aes_copy_block, aes_xor_block);
920 			if (ret != CRYPTO_SUCCESS)
921 				goto out;
922 			ASSERT(aes_ctx.ac_remainder_len == 0);
923 		} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
924 			if (aes_ctx.ac_remainder_len > 0) {
925 				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
926 				    ciphertext, aes_encrypt_block);
927 				if (ret != CRYPTO_SUCCESS)
928 					goto out;
929 			}
930 		} else {
931 			ASSERT(aes_ctx.ac_remainder_len == 0);
932 		}
933 
934 		if (plaintext != ciphertext) {
935 			ciphertext->cd_length =
936 			    ciphertext->cd_offset - saved_offset;
937 		}
938 	} else {
939 		ciphertext->cd_length = saved_length;
940 	}
941 	ciphertext->cd_offset = saved_offset;
942 
943 out:
944 	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
945 		memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
946 		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
947 	}
948 	if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
949 		gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
950 	}
951 	return (ret);
952 }
953 
954 static int
955 aes_decrypt_atomic(crypto_mechanism_t *mechanism,
956     crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
957     crypto_spi_ctx_template_t template)
958 {
959 	aes_ctx_t aes_ctx = {{{{0}}}};
960 	off_t saved_offset;
961 	size_t saved_length;
962 	size_t length_needed;
963 	int ret;
964 
965 	ASSERT(plaintext != NULL);
966 
967 	/*
968 	 * CCM, GCM, CTR, and GMAC modes do not require that ciphertext
969 	 * be a multiple of AES block size.
970 	 */
971 	switch (mechanism->cm_type) {
972 	case AES_CTR_MECH_INFO_TYPE:
973 	case AES_CCM_MECH_INFO_TYPE:
974 	case AES_GCM_MECH_INFO_TYPE:
975 	case AES_GMAC_MECH_INFO_TYPE:
976 		break;
977 	default:
978 		if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
979 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
980 	}
981 
982 	if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
983 		return (ret);
984 
985 	ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
986 	    KM_SLEEP, B_FALSE);
987 	if (ret != CRYPTO_SUCCESS)
988 		return (ret);
989 
990 	switch (mechanism->cm_type) {
991 	case AES_CCM_MECH_INFO_TYPE:
992 		length_needed = aes_ctx.ac_data_len;
993 		break;
994 	case AES_GCM_MECH_INFO_TYPE:
995 		length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len;
996 		break;
997 	case AES_GMAC_MECH_INFO_TYPE:
998 		if (plaintext->cd_length != 0)
999 			return (CRYPTO_ARGUMENTS_BAD);
1000 		length_needed = 0;
1001 		break;
1002 	default:
1003 		length_needed = ciphertext->cd_length;
1004 	}
1005 
1006 	/* return size of buffer needed to store output */
1007 	if (plaintext->cd_length < length_needed) {
1008 		plaintext->cd_length = length_needed;
1009 		ret = CRYPTO_BUFFER_TOO_SMALL;
1010 		goto out;
1011 	}
1012 
1013 	saved_offset = plaintext->cd_offset;
1014 	saved_length = plaintext->cd_length;
1015 
1016 	/*
1017 	 * Do an update on the specified input data.
1018 	 */
1019 	switch (ciphertext->cd_format) {
1020 	case CRYPTO_DATA_RAW:
1021 		ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext,
1022 		    aes_decrypt_contiguous_blocks);
1023 		break;
1024 	case CRYPTO_DATA_UIO:
1025 		ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext,
1026 		    aes_decrypt_contiguous_blocks);
1027 		break;
1028 	default:
1029 		ret = CRYPTO_ARGUMENTS_BAD;
1030 	}
1031 
1032 	if (ret == CRYPTO_SUCCESS) {
1033 		if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
1034 			ASSERT(aes_ctx.ac_processed_data_len
1035 			    == aes_ctx.ac_data_len);
1036 			ASSERT(aes_ctx.ac_processed_mac_len
1037 			    == aes_ctx.ac_mac_len);
1038 			ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx,
1039 			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
1040 			    aes_copy_block, aes_xor_block);
1041 			ASSERT(aes_ctx.ac_remainder_len == 0);
1042 			if ((ret == CRYPTO_SUCCESS) &&
1043 			    (ciphertext != plaintext)) {
1044 				plaintext->cd_length =
1045 				    plaintext->cd_offset - saved_offset;
1046 			} else {
1047 				plaintext->cd_length = saved_length;
1048 			}
1049 		} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
1050 		    mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
1051 			ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx,
1052 			    plaintext, AES_BLOCK_LEN, aes_encrypt_block,
1053 			    aes_xor_block);
1054 			ASSERT(aes_ctx.ac_remainder_len == 0);
1055 			if ((ret == CRYPTO_SUCCESS) &&
1056 			    (ciphertext != plaintext)) {
1057 				plaintext->cd_length =
1058 				    plaintext->cd_offset - saved_offset;
1059 			} else {
1060 				plaintext->cd_length = saved_length;
1061 			}
1062 		} else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) {
1063 			ASSERT(aes_ctx.ac_remainder_len == 0);
1064 			if (ciphertext != plaintext)
1065 				plaintext->cd_length =
1066 				    plaintext->cd_offset - saved_offset;
1067 		} else {
1068 			if (aes_ctx.ac_remainder_len > 0) {
1069 				ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
1070 				    plaintext, aes_encrypt_block);
1071 				if (ret == CRYPTO_DATA_LEN_RANGE)
1072 					ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
1073 				if (ret != CRYPTO_SUCCESS)
1074 					goto out;
1075 			}
1076 			if (ciphertext != plaintext)
1077 				plaintext->cd_length =
1078 				    plaintext->cd_offset - saved_offset;
1079 		}
1080 	} else {
1081 		plaintext->cd_length = saved_length;
1082 	}
1083 	plaintext->cd_offset = saved_offset;
1084 
1085 out:
1086 	if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1087 		memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
1088 		kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
1089 	}
1090 
1091 	if (aes_ctx.ac_flags & CCM_MODE) {
1092 		if (aes_ctx.ac_pt_buf != NULL) {
1093 			vmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len);
1094 		}
1095 	} else if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
1096 		gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
1097 	}
1098 
1099 	return (ret);
1100 }
1101 
1102 /*
1103  * KCF software provider context template entry points.
1104  */
1105 static int
1106 aes_create_ctx_template(crypto_mechanism_t *mechanism, crypto_key_t *key,
1107     crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size)
1108 {
1109 	void *keysched;
1110 	size_t size;
1111 	int rv;
1112 
1113 	if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE &&
1114 	    mechanism->cm_type != AES_CBC_MECH_INFO_TYPE &&
1115 	    mechanism->cm_type != AES_CTR_MECH_INFO_TYPE &&
1116 	    mechanism->cm_type != AES_CCM_MECH_INFO_TYPE &&
1117 	    mechanism->cm_type != AES_GCM_MECH_INFO_TYPE &&
1118 	    mechanism->cm_type != AES_GMAC_MECH_INFO_TYPE)
1119 		return (CRYPTO_MECHANISM_INVALID);
1120 
1121 	if ((keysched = aes_alloc_keysched(&size, KM_SLEEP)) == NULL) {
1122 		return (CRYPTO_HOST_MEMORY);
1123 	}
1124 
1125 	/*
1126 	 * Initialize key schedule.  Key length information is stored
1127 	 * in the key.
1128 	 */
1129 	if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
1130 		memset(keysched, 0, size);
1131 		kmem_free(keysched, size);
1132 		return (rv);
1133 	}
1134 
1135 	*tmpl = keysched;
1136 	*tmpl_size = size;
1137 
1138 	return (CRYPTO_SUCCESS);
1139 }
1140 
1141 
1142 static int
1143 aes_free_context(crypto_ctx_t *ctx)
1144 {
1145 	aes_ctx_t *aes_ctx = ctx->cc_provider_private;
1146 
1147 	if (aes_ctx != NULL) {
1148 		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1149 			ASSERT(aes_ctx->ac_keysched_len != 0);
1150 			memset(aes_ctx->ac_keysched, 0,
1151 			    aes_ctx->ac_keysched_len);
1152 			kmem_free(aes_ctx->ac_keysched,
1153 			    aes_ctx->ac_keysched_len);
1154 		}
1155 		crypto_free_mode_ctx(aes_ctx);
1156 		ctx->cc_provider_private = NULL;
1157 	}
1158 
1159 	return (CRYPTO_SUCCESS);
1160 }
1161 
1162 
1163 static int
1164 aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
1165     crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
1166     boolean_t is_encrypt_init)
1167 {
1168 	int rv = CRYPTO_SUCCESS;
1169 	void *keysched;
1170 	size_t size = 0;
1171 
1172 	if (template == NULL) {
1173 		if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
1174 			return (CRYPTO_HOST_MEMORY);
1175 		/*
1176 		 * Initialize key schedule.
1177 		 * Key length is stored in the key.
1178 		 */
1179 		if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
1180 			kmem_free(keysched, size);
1181 			return (rv);
1182 		}
1183 
1184 		aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE;
1185 		aes_ctx->ac_keysched_len = size;
1186 	} else {
1187 		keysched = template;
1188 	}
1189 	aes_ctx->ac_keysched = keysched;
1190 
1191 	switch (mechanism->cm_type) {
1192 	case AES_CBC_MECH_INFO_TYPE:
1193 		rv = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mechanism->cm_param,
1194 		    mechanism->cm_param_len, AES_BLOCK_LEN, aes_copy_block64);
1195 		break;
1196 	case AES_CTR_MECH_INFO_TYPE: {
1197 		CK_AES_CTR_PARAMS *pp;
1198 
1199 		if (mechanism->cm_param == NULL ||
1200 		    mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) {
1201 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1202 		}
1203 		pp = (CK_AES_CTR_PARAMS *)(void *)mechanism->cm_param;
1204 		rv = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits,
1205 		    pp->cb, aes_copy_block);
1206 		break;
1207 	}
1208 	case AES_CCM_MECH_INFO_TYPE:
1209 		if (mechanism->cm_param == NULL ||
1210 		    mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) {
1211 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1212 		}
1213 		rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param,
1214 		    kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block,
1215 		    aes_xor_block);
1216 		break;
1217 	case AES_GCM_MECH_INFO_TYPE:
1218 		if (mechanism->cm_param == NULL ||
1219 		    mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) {
1220 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1221 		}
1222 		rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
1223 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
1224 		    aes_xor_block);
1225 		break;
1226 	case AES_GMAC_MECH_INFO_TYPE:
1227 		if (mechanism->cm_param == NULL ||
1228 		    mechanism->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) {
1229 			return (CRYPTO_MECHANISM_PARAM_INVALID);
1230 		}
1231 		rv = gmac_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
1232 		    AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
1233 		    aes_xor_block);
1234 		break;
1235 	case AES_ECB_MECH_INFO_TYPE:
1236 		aes_ctx->ac_flags |= ECB_MODE;
1237 	}
1238 
1239 	if (rv != CRYPTO_SUCCESS) {
1240 		if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
1241 			memset(keysched, 0, size);
1242 			kmem_free(keysched, size);
1243 		}
1244 	}
1245 
1246 	return (rv);
1247 }
1248 
1249 static int
1250 process_gmac_mech(crypto_mechanism_t *mech, crypto_data_t *data,
1251     CK_AES_GCM_PARAMS *gcm_params)
1252 {
1253 	/* LINTED: pointer alignment */
1254 	CK_AES_GMAC_PARAMS *params = (CK_AES_GMAC_PARAMS *)mech->cm_param;
1255 
1256 	if (mech->cm_type != AES_GMAC_MECH_INFO_TYPE)
1257 		return (CRYPTO_MECHANISM_INVALID);
1258 
1259 	if (mech->cm_param_len != sizeof (CK_AES_GMAC_PARAMS))
1260 		return (CRYPTO_MECHANISM_PARAM_INVALID);
1261 
1262 	if (params->pIv == NULL)
1263 		return (CRYPTO_MECHANISM_PARAM_INVALID);
1264 
1265 	gcm_params->pIv = params->pIv;
1266 	gcm_params->ulIvLen = AES_GMAC_IV_LEN;
1267 	gcm_params->ulTagBits = AES_GMAC_TAG_BITS;
1268 
1269 	if (data == NULL)
1270 		return (CRYPTO_SUCCESS);
1271 
1272 	if (data->cd_format != CRYPTO_DATA_RAW)
1273 		return (CRYPTO_ARGUMENTS_BAD);
1274 
1275 	gcm_params->pAAD = (uchar_t *)data->cd_raw.iov_base;
1276 	gcm_params->ulAADLen = data->cd_length;
1277 	return (CRYPTO_SUCCESS);
1278 }
1279 
1280 static int
1281 aes_mac_atomic(crypto_mechanism_t *mechanism,
1282     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1283     crypto_spi_ctx_template_t template)
1284 {
1285 	CK_AES_GCM_PARAMS gcm_params;
1286 	crypto_mechanism_t gcm_mech;
1287 	int rv;
1288 
1289 	if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
1290 	    != CRYPTO_SUCCESS)
1291 		return (rv);
1292 
1293 	gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
1294 	gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
1295 	gcm_mech.cm_param = (char *)&gcm_params;
1296 
1297 	return (aes_encrypt_atomic(&gcm_mech,
1298 	    key, &null_crypto_data, mac, template));
1299 }
1300 
1301 static int
1302 aes_mac_verify_atomic(crypto_mechanism_t *mechanism, crypto_key_t *key,
1303     crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t template)
1304 {
1305 	CK_AES_GCM_PARAMS gcm_params;
1306 	crypto_mechanism_t gcm_mech;
1307 	int rv;
1308 
1309 	if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
1310 	    != CRYPTO_SUCCESS)
1311 		return (rv);
1312 
1313 	gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
1314 	gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
1315 	gcm_mech.cm_param = (char *)&gcm_params;
1316 
1317 	return (aes_decrypt_atomic(&gcm_mech,
1318 	    key, mac, &null_crypto_data, template));
1319 }
1320