xref: /freebsd/sys/contrib/openzfs/module/icp/asm-x86_64/aes/aesopt.h (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * ---------------------------------------------------------------------------
3  * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
4  *
5  * LICENSE TERMS
6  *
7  * The free distribution and use of this software is allowed (with or without
8  * changes) provided that:
9  *
10  *  1. source code distributions include the above copyright notice, this
11  *	list of conditions and the following disclaimer;
12  *
13  *  2. binary distributions include the above copyright notice, this list
14  *	of conditions and the following disclaimer in their documentation;
15  *
16  *  3. the name of the copyright holder is not used to endorse products
17  *	built using this software without specific written permission.
18  *
19  * DISCLAIMER
20  *
21  * This software is provided 'as is' with no explicit or implied warranties
22  * in respect of its properties, including, but not limited to, correctness
23  * and/or fitness for purpose.
24  * ---------------------------------------------------------------------------
25  * Issue Date: 20/12/2007
26  *
27  * This file contains the compilation options for AES (Rijndael) and code
28  * that is common across encryption, key scheduling and table generation.
29  *
30  * OPERATION
31  *
32  * These source code files implement the AES algorithm Rijndael designed by
33  * Joan Daemen and Vincent Rijmen. This version is designed for the standard
34  * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35  * and 32 bytes).
36  *
37  * This version is designed for flexibility and speed using operations on
38  * 32-bit words rather than operations on bytes.  It can be compiled with
39  * either big or little endian internal byte order but is faster when the
40  * native byte order for the processor is used.
41  *
42  * THE CIPHER INTERFACE
43  *
44  * The cipher interface is implemented as an array of bytes in which lower
45  * AES bit sequence indexes map to higher numeric significance within bytes.
46  */
47 
48 /*
49  * OpenSolaris changes
50  * 1. Added __cplusplus and _AESTAB_H header guards
51  * 2. Added header files sys/types.h and aes_impl.h
52  * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
53  * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
54  *    from brg_endian.h
55  * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
56  * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
57  * 7. Defined aes_sw32 as htonl() for byte swapping
58  * 8. Cstyled and hdrchk code
59  *
60  */
61 
62 #ifndef _AESOPT_H
63 #define	_AESOPT_H
64 
65 #ifdef	__cplusplus
66 extern "C" {
67 #endif
68 
69 #include <sys/zfs_context.h>
70 #include <aes/aes_impl.h>
71 
72 /*  SUPPORT FEATURES */
73 #define	AES_ENCRYPT /* if support for encryption is needed */
74 #define	AES_DECRYPT /* if support for decryption is needed */
75 
76 /*  PLATFORM-SPECIFIC FEATURES */
77 #define	IS_BIG_ENDIAN		4321 /* byte 0 is most significant (mc68k) */
78 #define	IS_LITTLE_ENDIAN	1234 /* byte 0 is least significant (i386) */
79 #define	PLATFORM_BYTE_ORDER	IS_LITTLE_ENDIAN
80 #define	AES_REV_DKS /* define to reverse decryption key schedule */
81 
82 
83 /*
84  *  CONFIGURATION - THE USE OF DEFINES
85  *	Later in this section there are a number of defines that control the
86  *	operation of the code.  In each section, the purpose of each define is
87  *	explained so that the relevant form can be included or excluded by
88  *	setting either 1's or 0's respectively on the branches of the related
89  *	#if clauses.  The following local defines should not be changed.
90  */
91 
92 #define	ENCRYPTION_IN_C	1
93 #define	DECRYPTION_IN_C	2
94 #define	ENC_KEYING_IN_C	4
95 #define	DEC_KEYING_IN_C	8
96 
97 #define	NO_TABLES	0
98 #define	ONE_TABLE	1
99 #define	FOUR_TABLES	4
100 #define	NONE		0
101 #define	PARTIAL		1
102 #define	FULL		2
103 
104 /*  --- START OF USER CONFIGURED OPTIONS --- */
105 
106 /*
107  *  1. BYTE ORDER WITHIN 32 BIT WORDS
108  *
109  *	The fundamental data processing units in Rijndael are 8-bit bytes. The
110  *	input, output and key input are all enumerated arrays of bytes in which
111  *	bytes are numbered starting at zero and increasing to one less than the
112  *	number of bytes in the array in question. This enumeration is only used
113  *	for naming bytes and does not imply any adjacency or order relationship
114  *	from one byte to another. When these inputs and outputs are considered
115  *	as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
116  *	byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
117  *	In this implementation bits are numbered from 0 to 7 starting at the
118  *	numerically least significant end of each byte.  Bit n represents 2^n.
119  *
120  *	However, Rijndael can be implemented more efficiently using 32-bit
121  *	words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
122  *	into word[n]. While in principle these bytes can be assembled into words
123  *	in any positions, this implementation only supports the two formats in
124  *	which bytes in adjacent positions within words also have adjacent byte
125  *	numbers. This order is called big-endian if the lowest numbered bytes
126  *	in words have the highest numeric significance and little-endian if the
127  *	opposite applies.
128  *
129  *	This code can work in either order irrespective of the order used by the
130  *	machine on which it runs. Normally the internal byte order will be set
131  *	to the order of the processor on which the code is to be run but this
132  *	define	can be used to reverse this in special situations
133  *
134  *	WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
135  *	This define will hence be redefined later (in section 4) if necessary
136  */
137 
138 #if 1
139 #define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
140 #elif 0
141 #define	ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
142 #elif 0
143 #define	ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
144 #else
145 #error The algorithm byte order is not defined
146 #endif
147 
148 /*  2. VIA ACE SUPPORT */
149 
150 #if defined(__GNUC__) && defined(__i386__) || \
151 	defined(_WIN32) && defined(_M_IX86) && \
152 	!(defined(_WIN64) || defined(_WIN32_WCE) || \
153 	defined(_MSC_VER) && (_MSC_VER <= 800))
154 #define	VIA_ACE_POSSIBLE
155 #endif
156 
157 /*
158  *  Define this option if support for the VIA ACE is required. This uses
159  *  inline assembler instructions and is only implemented for the Microsoft,
160  *  Intel and GCC compilers.  If VIA ACE is known to be present, then defining
161  *  ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
162  *  code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
163  *  it is detected (both present and enabled) but the normal AES code will
164  *  also be present.
165  *
166  *  When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
167  *  aligned; other input/output buffers do not need to be 16 byte aligned
168  *  but there are very large performance gains if this can be arranged.
169  *  VIA ACE also requires the decryption key schedule to be in reverse
170  *  order (which later checks below ensure).
171  */
172 
173 /*  VIA ACE is not used here for OpenSolaris: */
174 #undef	VIA_ACE_POSSIBLE
175 #undef	ASSUME_VIA_ACE_PRESENT
176 
177 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
178 #define	USE_VIA_ACE_IF_PRESENT
179 #endif
180 
181 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
182 #define	ASSUME_VIA_ACE_PRESENT
183 #endif
184 
185 
186 /*
187  *  3. ASSEMBLER SUPPORT
188  *
189  *	This define (which can be on the command line) enables the use of the
190  *	assembler code routines for encryption, decryption and key scheduling
191  *	as follows:
192  *
193  *	ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
194  *		encryption and decryption and but with key scheduling in C
195  *	ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
196  *		encryption, decryption and key scheduling
197  *	ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
198  *		encryption and decryption and but with key scheduling in C
199  *	ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
200  *		encryption and decryption and but with key scheduling in C
201  *
202  *	Change one 'if 0' below to 'if 1' to select the version or define
203  *	as a compilation option.
204  */
205 
206 #if 0 && !defined(ASM_X86_V1C)
207 #define	ASM_X86_V1C
208 #elif 0 && !defined(ASM_X86_V2)
209 #define	ASM_X86_V2
210 #elif 0 && !defined(ASM_X86_V2C)
211 #define	ASM_X86_V2C
212 #elif 1 && !defined(ASM_AMD64_C)
213 #define	ASM_AMD64_C
214 #endif
215 
216 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
217 	!defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
218 	!defined(__amd64)
219 #error Assembler code is only available for x86 and AMD64 systems
220 #endif
221 
222 /*
223  *  4. FAST INPUT/OUTPUT OPERATIONS.
224  *
225  *	On some machines it is possible to improve speed by transferring the
226  *	bytes in the input and output arrays to and from the internal 32-bit
227  *	variables by addressing these arrays as if they are arrays of 32-bit
228  *	words.  On some machines this will always be possible but there may
229  *	be a large performance penalty if the byte arrays are not aligned on
230  *	the normal word boundaries. On other machines this technique will
231  *	lead to memory access errors when such 32-bit word accesses are not
232  *	properly aligned. The option SAFE_IO avoids such problems but will
233  *	often be slower on those machines that support misaligned access
234  *	(especially so if care is taken to align the input  and output byte
235  *	arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
236  *	assumed that access to byte arrays as if they are arrays of 32-bit
237  *	words will not cause problems when such accesses are misaligned.
238  */
239 #if 1 && !defined(_MSC_VER)
240 #define	SAFE_IO
241 #endif
242 
243 /*
244  *  5. LOOP UNROLLING
245  *
246  *	The code for encryption and decryption cycles through a number of rounds
247  *	that can be implemented either in a loop or by expanding the code into a
248  *	long sequence of instructions, the latter producing a larger program but
249  *	one that will often be much faster. The latter is called loop unrolling.
250  *	There are also potential speed advantages in expanding two iterations in
251  *	a loop with half the number of iterations, which is called partial loop
252  *	unrolling.  The following options allow partial or full loop unrolling
253  *	to be set independently for encryption and decryption
254  */
255 #if 1
256 #define	ENC_UNROLL  FULL
257 #elif 0
258 #define	ENC_UNROLL  PARTIAL
259 #else
260 #define	ENC_UNROLL  NONE
261 #endif
262 
263 #if 1
264 #define	DEC_UNROLL  FULL
265 #elif 0
266 #define	DEC_UNROLL  PARTIAL
267 #else
268 #define	DEC_UNROLL  NONE
269 #endif
270 
271 #if 1
272 #define	ENC_KS_UNROLL
273 #endif
274 
275 #if 1
276 #define	DEC_KS_UNROLL
277 #endif
278 
279 /*
280  *  6. FAST FINITE FIELD OPERATIONS
281  *
282  *	If this section is included, tables are used to provide faster finite
283  *	field arithmetic.  This has no effect if FIXED_TABLES is defined.
284  */
285 #if 1
286 #define	FF_TABLES
287 #endif
288 
289 /*
290  *  7. INTERNAL STATE VARIABLE FORMAT
291  *
292  *	The internal state of Rijndael is stored in a number of local 32-bit
293  *	word variables which can be defined either as an array or as individual
294  *	names variables. Include this section if you want to store these local
295  *	variables in arrays. Otherwise individual local variables will be used.
296  */
297 #if 1
298 #define	ARRAYS
299 #endif
300 
301 /*
302  *  8. FIXED OR DYNAMIC TABLES
303  *
304  *	When this section is included the tables used by the code are compiled
305  *	statically into the binary file.  Otherwise the subroutine aes_init()
306  *	must be called to compute them before the code is first used.
307  */
308 #if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
309 #define	FIXED_TABLES
310 #endif
311 
312 /*
313  *  9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
314  *
315  *	In some systems it is better to mask longer values to extract bytes
316  *	rather than using a cast. This option allows this choice.
317  */
318 #if 0
319 #define	to_byte(x)  ((uint8_t)(x))
320 #else
321 #define	to_byte(x)  ((x) & 0xff)
322 #endif
323 
324 /*
325  *  10. TABLE ALIGNMENT
326  *
327  *	On some systems speed will be improved by aligning the AES large lookup
328  *	tables on particular boundaries. This define should be set to a power of
329  *	two giving the desired alignment. It can be left undefined if alignment
330  *	is not needed.  This option is specific to the Microsoft VC++ compiler -
331  *	it seems to sometimes cause trouble for the VC++ version 6 compiler.
332  */
333 
334 #if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
335 #define	TABLE_ALIGN 32
336 #endif
337 
338 /*
339  *  11.  REDUCE CODE AND TABLE SIZE
340  *
341  *	This replaces some expanded macros with function calls if AES_ASM_V2 or
342  *	AES_ASM_V2C are defined
343  */
344 
345 #if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
346 #define	REDUCE_CODE_SIZE
347 #endif
348 
349 /*
350  *  12. TABLE OPTIONS
351  *
352  *	This cipher proceeds by repeating in a number of cycles known as rounds
353  *	which are implemented by a round function which is optionally be speeded
354  *	up using tables.  The basic tables are 256 32-bit words, with either
355  *	one or four tables being required for each round function depending on
356  *	how much speed is required. Encryption and decryption round functions
357  *	are different and the last encryption and decryption round functions are
358  *	different again making four different round functions in all.
359  *
360  *	This means that:
361  *	1. Normal encryption and decryption rounds can each use either 0, 1
362  *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
363  *	2. The last encryption and decryption rounds can also use either 0, 1
364  *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
365  *
366  *	Include or exclude the appropriate definitions below to set the number
367  *	of tables used by this implementation.
368  */
369 
370 #if 1   /* set tables for the normal encryption round */
371 #define	ENC_ROUND   FOUR_TABLES
372 #elif 0
373 #define	ENC_ROUND   ONE_TABLE
374 #else
375 #define	ENC_ROUND   NO_TABLES
376 #endif
377 
378 #if 1   /* set tables for the last encryption round */
379 #define	LAST_ENC_ROUND  FOUR_TABLES
380 #elif 0
381 #define	LAST_ENC_ROUND  ONE_TABLE
382 #else
383 #define	LAST_ENC_ROUND  NO_TABLES
384 #endif
385 
386 #if 1   /* set tables for the normal decryption round */
387 #define	DEC_ROUND   FOUR_TABLES
388 #elif 0
389 #define	DEC_ROUND   ONE_TABLE
390 #else
391 #define	DEC_ROUND   NO_TABLES
392 #endif
393 
394 #if 1   /* set tables for the last decryption round */
395 #define	LAST_DEC_ROUND  FOUR_TABLES
396 #elif 0
397 #define	LAST_DEC_ROUND  ONE_TABLE
398 #else
399 #define	LAST_DEC_ROUND  NO_TABLES
400 #endif
401 
402 /*
403  *  The decryption key schedule can be speeded up with tables in the same
404  *	way that the round functions can.  Include or exclude the following
405  *	defines to set this requirement.
406  */
407 #if 1
408 #define	KEY_SCHED   FOUR_TABLES
409 #elif 0
410 #define	KEY_SCHED   ONE_TABLE
411 #else
412 #define	KEY_SCHED   NO_TABLES
413 #endif
414 
415 /*  ---- END OF USER CONFIGURED OPTIONS ---- */
416 
417 /* VIA ACE support is only available for VC++ and GCC */
418 
419 #if !defined(_MSC_VER) && !defined(__GNUC__)
420 #if defined(ASSUME_VIA_ACE_PRESENT)
421 #undef ASSUME_VIA_ACE_PRESENT
422 #endif
423 #if defined(USE_VIA_ACE_IF_PRESENT)
424 #undef USE_VIA_ACE_IF_PRESENT
425 #endif
426 #endif
427 
428 #if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
429 #define	USE_VIA_ACE_IF_PRESENT
430 #endif
431 
432 #if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
433 #define	AES_REV_DKS
434 #endif
435 
436 /* Assembler support requires the use of platform byte order */
437 
438 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
439 	(ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
440 #undef  ALGORITHM_BYTE_ORDER
441 #define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
442 #endif
443 
444 /*
445  * In this implementation the columns of the state array are each held in
446  *	32-bit words. The state array can be held in various ways: in an array
447  *	of words, in a number of individual word variables or in a number of
448  *	processor registers. The following define maps a variable name x and
449  *	a column number c to the way the state array variable is to be held.
450  *	The first define below maps the state into an array x[c] whereas the
451  *	second form maps the state into a number of individual variables x0,
452  *	x1, etc.  Another form could map individual state columns to machine
453  *	register names.
454  */
455 
456 #if defined(ARRAYS)
457 #define	s(x, c) x[c]
458 #else
459 #define	s(x, c) x##c
460 #endif
461 
462 /*
463  *  This implementation provides subroutines for encryption, decryption
464  *	and for setting the three key lengths (separately) for encryption
465  *	and decryption. Since not all functions are needed, masks are set
466  *	up here to determine which will be implemented in C
467  */
468 
469 #if !defined(AES_ENCRYPT)
470 #define	EFUNCS_IN_C   0
471 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
472 	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
473 #define	EFUNCS_IN_C   ENC_KEYING_IN_C
474 #elif !defined(ASM_X86_V2)
475 #define	EFUNCS_IN_C   (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
476 #else
477 #define	EFUNCS_IN_C   0
478 #endif
479 
480 #if !defined(AES_DECRYPT)
481 #define	DFUNCS_IN_C   0
482 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
483 	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
484 #define	DFUNCS_IN_C   DEC_KEYING_IN_C
485 #elif !defined(ASM_X86_V2)
486 #define	DFUNCS_IN_C   (DECRYPTION_IN_C | DEC_KEYING_IN_C)
487 #else
488 #define	DFUNCS_IN_C   0
489 #endif
490 
491 #define	FUNCS_IN_C  (EFUNCS_IN_C | DFUNCS_IN_C)
492 
493 /* END OF CONFIGURATION OPTIONS */
494 
495 /* Disable or report errors on some combinations of options */
496 
497 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
498 #undef  LAST_ENC_ROUND
499 #define	LAST_ENC_ROUND  NO_TABLES
500 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
501 #undef  LAST_ENC_ROUND
502 #define	LAST_ENC_ROUND  ONE_TABLE
503 #endif
504 
505 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
506 #undef  ENC_UNROLL
507 #define	ENC_UNROLL  NONE
508 #endif
509 
510 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
511 #undef  LAST_DEC_ROUND
512 #define	LAST_DEC_ROUND  NO_TABLES
513 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
514 #undef  LAST_DEC_ROUND
515 #define	LAST_DEC_ROUND  ONE_TABLE
516 #endif
517 
518 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
519 #undef  DEC_UNROLL
520 #define	DEC_UNROLL  NONE
521 #endif
522 
523 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
524 #define	aes_sw32	htonl
525 #elif defined(bswap32)
526 #define	aes_sw32	bswap32
527 #elif defined(bswap_32)
528 #define	aes_sw32	bswap_32
529 #else
530 #define	brot(x, n)  (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
531 #define	aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
532 #endif
533 
534 
535 /*
536  *	upr(x, n):  rotates bytes within words by n positions, moving bytes to
537  *		higher index positions with wrap around into low positions
538  *	ups(x, n):  moves bytes by n positions to higher index positions in
539  *		words but without wrap around
540  *	bval(x, n): extracts a byte from a word
541  *
542  *	WARNING:   The definitions given here are intended only for use with
543  *		unsigned variables and with shift counts that are compile
544  *		time constants
545  */
546 
547 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
548 #define	upr(x, n)	(((uint32_t)(x) << (8 * (n))) | \
549 			((uint32_t)(x) >> (32 - 8 * (n))))
550 #define	ups(x, n)	((uint32_t)(x) << (8 * (n)))
551 #define	bval(x, n)	to_byte((x) >> (8 * (n)))
552 #define	bytes2word(b0, b1, b2, b3)  \
553 		(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
554 		((uint32_t)(b1) << 8) | (b0))
555 #endif
556 
557 #if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
558 #define	upr(x, n)	(((uint32_t)(x) >> (8 * (n))) | \
559 			((uint32_t)(x) << (32 - 8 * (n))))
560 #define	ups(x, n)	((uint32_t)(x) >> (8 * (n)))
561 #define	bval(x, n)	to_byte((x) >> (24 - 8 * (n)))
562 #define	bytes2word(b0, b1, b2, b3)  \
563 		(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
564 		((uint32_t)(b2) << 8) | (b3))
565 #endif
566 
567 #if defined(SAFE_IO)
568 #define	word_in(x, c)	bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
569 				((const uint8_t *)(x) + 4 * c)[1], \
570 				((const uint8_t *)(x) + 4 * c)[2], \
571 				((const uint8_t *)(x) + 4 * c)[3])
572 #define	word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
573 			((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
574 			((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
575 			((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
576 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
577 #define	word_in(x, c)	(*((uint32_t *)(x) + (c)))
578 #define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
579 #else
580 #define	word_in(x, c)	aes_sw32(*((uint32_t *)(x) + (c)))
581 #define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
582 #endif
583 
584 /* the finite field modular polynomial and elements */
585 
586 #define	WPOLY   0x011b
587 #define	BPOLY	0x1b
588 
589 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
590 
591 #define	m1  0x80808080
592 #define	m2  0x7f7f7f7f
593 #define	gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
594 
595 /*
596  * The following defines provide alternative definitions of gf_mulx that might
597  * give improved performance if a fast 32-bit multiply is not available. Note
598  * that a temporary variable u needs to be defined where gf_mulx is used.
599  *
600  * #define	gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
601  *			((u >> 3) | (u >> 6))
602  * #define	m4  (0x01010101 * BPOLY)
603  * #define	gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
604  *			& m4)
605  */
606 
607 /* Work out which tables are needed for the different options   */
608 
609 #if defined(ASM_X86_V1C)
610 #if defined(ENC_ROUND)
611 #undef  ENC_ROUND
612 #endif
613 #define	ENC_ROUND   FOUR_TABLES
614 #if defined(LAST_ENC_ROUND)
615 #undef  LAST_ENC_ROUND
616 #endif
617 #define	LAST_ENC_ROUND  FOUR_TABLES
618 #if defined(DEC_ROUND)
619 #undef  DEC_ROUND
620 #endif
621 #define	DEC_ROUND   FOUR_TABLES
622 #if defined(LAST_DEC_ROUND)
623 #undef  LAST_DEC_ROUND
624 #endif
625 #define	LAST_DEC_ROUND  FOUR_TABLES
626 #if defined(KEY_SCHED)
627 #undef  KEY_SCHED
628 #define	KEY_SCHED   FOUR_TABLES
629 #endif
630 #endif
631 
632 #if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
633 #if ENC_ROUND == ONE_TABLE
634 #define	FT1_SET
635 #elif ENC_ROUND == FOUR_TABLES
636 #define	FT4_SET
637 #else
638 #define	SBX_SET
639 #endif
640 #if LAST_ENC_ROUND == ONE_TABLE
641 #define	FL1_SET
642 #elif LAST_ENC_ROUND == FOUR_TABLES
643 #define	FL4_SET
644 #elif !defined(SBX_SET)
645 #define	SBX_SET
646 #endif
647 #endif
648 
649 #if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
650 #if DEC_ROUND == ONE_TABLE
651 #define	IT1_SET
652 #elif DEC_ROUND == FOUR_TABLES
653 #define	IT4_SET
654 #else
655 #define	ISB_SET
656 #endif
657 #if LAST_DEC_ROUND == ONE_TABLE
658 #define	IL1_SET
659 #elif LAST_DEC_ROUND == FOUR_TABLES
660 #define	IL4_SET
661 #elif !defined(ISB_SET)
662 #define	ISB_SET
663 #endif
664 #endif
665 
666 
667 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
668 	defined(ASM_X86_V2C)))
669 #if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
670 #if KEY_SCHED == ONE_TABLE
671 #if !defined(FL1_SET) && !defined(FL4_SET)
672 #define	LS1_SET
673 #endif
674 #elif KEY_SCHED == FOUR_TABLES
675 #if !defined(FL4_SET)
676 #define	LS4_SET
677 #endif
678 #elif !defined(SBX_SET)
679 #define	SBX_SET
680 #endif
681 #endif
682 #if (FUNCS_IN_C & DEC_KEYING_IN_C)
683 #if KEY_SCHED == ONE_TABLE
684 #define	IM1_SET
685 #elif KEY_SCHED == FOUR_TABLES
686 #define	IM4_SET
687 #elif !defined(SBX_SET)
688 #define	SBX_SET
689 #endif
690 #endif
691 #endif
692 
693 /* generic definitions of Rijndael macros that use tables */
694 
695 #define	no_table(x, box, vf, rf, c) bytes2word(\
696 	box[bval(vf(x, 0, c), rf(0, c))], \
697 	box[bval(vf(x, 1, c), rf(1, c))], \
698 	box[bval(vf(x, 2, c), rf(2, c))], \
699 	box[bval(vf(x, 3, c), rf(3, c))])
700 
701 #define	one_table(x, op, tab, vf, rf, c) \
702 	(tab[bval(vf(x, 0, c), rf(0, c))] \
703 	^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
704 	^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
705 	^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
706 
707 #define	four_tables(x, tab, vf, rf, c) \
708 	(tab[0][bval(vf(x, 0, c), rf(0, c))] \
709 	^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
710 	^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
711 	^ tab[3][bval(vf(x, 3, c), rf(3, c))])
712 
713 #define	vf1(x, r, c)	(x)
714 #define	rf1(r, c)	(r)
715 #define	rf2(r, c)	((8+r-c)&3)
716 
717 /*
718  * Perform forward and inverse column mix operation on four bytes in long word
719  * x in parallel. NOTE: x must be a simple variable, NOT an expression in
720  * these macros.
721  */
722 
723 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
724 	defined(ASM_X86_V2C)))
725 
726 #if defined(FM4_SET)	/* not currently used */
727 #define	fwd_mcol(x)	four_tables(x, t_use(f, m), vf1, rf1, 0)
728 #elif defined(FM1_SET)	/* not currently used */
729 #define	fwd_mcol(x)	one_table(x, upr, t_use(f, m), vf1, rf1, 0)
730 #else
731 #define	dec_fmvars	uint32_t g2
732 #define	fwd_mcol(x)	(g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
733 				upr((x), 2) ^ upr((x), 1))
734 #endif
735 
736 #if defined(IM4_SET)
737 #define	inv_mcol(x)	four_tables(x, t_use(i, m), vf1, rf1, 0)
738 #elif defined(IM1_SET)
739 #define	inv_mcol(x)	one_table(x, upr, t_use(i, m), vf1, rf1, 0)
740 #else
741 #define	dec_imvars	uint32_t g2, g4, g9
742 #define	inv_mcol(x)	(g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
743 				(x) ^ gf_mulx(g4), g4 ^= g9, \
744 				(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
745 				upr(g4, 2) ^ upr(g9, 1))
746 #endif
747 
748 #if defined(FL4_SET)
749 #define	ls_box(x, c)	four_tables(x, t_use(f, l), vf1, rf2, c)
750 #elif defined(LS4_SET)
751 #define	ls_box(x, c)	four_tables(x, t_use(l, s), vf1, rf2, c)
752 #elif defined(FL1_SET)
753 #define	ls_box(x, c)	one_table(x, upr, t_use(f, l), vf1, rf2, c)
754 #elif defined(LS1_SET)
755 #define	ls_box(x, c)	one_table(x, upr, t_use(l, s), vf1, rf2, c)
756 #else
757 #define	ls_box(x, c)	no_table(x, t_use(s, box), vf1, rf2, c)
758 #endif
759 
760 #endif
761 
762 #if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
763 #define	ISB_SET
764 #endif
765 
766 #ifdef	__cplusplus
767 }
768 #endif
769 
770 #endif	/* _AESOPT_H */
771