1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/cmn_err.h> 28 #include <modes/modes.h> 29 #include <sys/crypto/common.h> 30 #include <sys/crypto/icp.h> 31 #include <sys/crypto/impl.h> 32 #include <sys/byteorder.h> 33 #include <sys/simd.h> 34 #include <modes/gcm_impl.h> 35 #ifdef CAN_USE_GCM_ASM 36 #include <aes/aes_impl.h> 37 #endif 38 39 #define GHASH(c, d, t, o) \ 40 xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \ 41 (o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \ 42 (uint64_t *)(void *)(t)); 43 44 /* Select GCM implementation */ 45 #define IMPL_FASTEST (UINT32_MAX) 46 #define IMPL_CYCLE (UINT32_MAX-1) 47 #ifdef CAN_USE_GCM_ASM 48 #define IMPL_AVX (UINT32_MAX-2) 49 #endif 50 #define GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i)) 51 static uint32_t icp_gcm_impl = IMPL_FASTEST; 52 static uint32_t user_sel_impl = IMPL_FASTEST; 53 54 #ifdef CAN_USE_GCM_ASM 55 /* Does the architecture we run on support the MOVBE instruction? */ 56 boolean_t gcm_avx_can_use_movbe = B_FALSE; 57 /* 58 * Whether to use the optimized openssl gcm and ghash implementations. 59 * Set to true if module parameter icp_gcm_impl == "avx". 60 */ 61 static boolean_t gcm_use_avx = B_FALSE; 62 #define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx) 63 64 extern boolean_t ASMABI atomic_toggle_boolean_nv(volatile boolean_t *); 65 66 static inline boolean_t gcm_avx_will_work(void); 67 static inline void gcm_set_avx(boolean_t); 68 static inline boolean_t gcm_toggle_avx(void); 69 static inline size_t gcm_simd_get_htab_size(boolean_t); 70 71 static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t, 72 crypto_data_t *, size_t); 73 74 static int gcm_encrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t); 75 static int gcm_decrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t); 76 static int gcm_init_avx(gcm_ctx_t *, const uint8_t *, size_t, const uint8_t *, 77 size_t, size_t); 78 #endif /* ifdef CAN_USE_GCM_ASM */ 79 80 /* 81 * Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode 82 * is done in another function. 83 */ 84 int 85 gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, 86 crypto_data_t *out, size_t block_size, 87 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 88 void (*copy_block)(uint8_t *, uint8_t *), 89 void (*xor_block)(uint8_t *, uint8_t *)) 90 { 91 #ifdef CAN_USE_GCM_ASM 92 if (ctx->gcm_use_avx == B_TRUE) 93 return (gcm_mode_encrypt_contiguous_blocks_avx( 94 ctx, data, length, out, block_size)); 95 #endif 96 97 const gcm_impl_ops_t *gops; 98 size_t remainder = length; 99 size_t need = 0; 100 uint8_t *datap = (uint8_t *)data; 101 uint8_t *blockp; 102 uint8_t *lastp; 103 void *iov_or_mp; 104 offset_t offset; 105 uint8_t *out_data_1; 106 uint8_t *out_data_2; 107 size_t out_data_1_len; 108 uint64_t counter; 109 uint64_t counter_mask = ntohll(0x00000000ffffffffULL); 110 111 if (length + ctx->gcm_remainder_len < block_size) { 112 /* accumulate bytes here and return */ 113 memcpy((uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len, 114 datap, 115 length); 116 ctx->gcm_remainder_len += length; 117 if (ctx->gcm_copy_to == NULL) { 118 ctx->gcm_copy_to = datap; 119 } 120 return (CRYPTO_SUCCESS); 121 } 122 123 crypto_init_ptrs(out, &iov_or_mp, &offset); 124 125 gops = gcm_impl_get_ops(); 126 do { 127 /* Unprocessed data from last call. */ 128 if (ctx->gcm_remainder_len > 0) { 129 need = block_size - ctx->gcm_remainder_len; 130 131 if (need > remainder) 132 return (CRYPTO_DATA_LEN_RANGE); 133 134 memcpy(&((uint8_t *)ctx->gcm_remainder) 135 [ctx->gcm_remainder_len], datap, need); 136 137 blockp = (uint8_t *)ctx->gcm_remainder; 138 } else { 139 blockp = datap; 140 } 141 142 /* 143 * Increment counter. Counter bits are confined 144 * to the bottom 32 bits of the counter block. 145 */ 146 counter = ntohll(ctx->gcm_cb[1] & counter_mask); 147 counter = htonll(counter + 1); 148 counter &= counter_mask; 149 ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; 150 151 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, 152 (uint8_t *)ctx->gcm_tmp); 153 xor_block(blockp, (uint8_t *)ctx->gcm_tmp); 154 155 lastp = (uint8_t *)ctx->gcm_tmp; 156 157 ctx->gcm_processed_data_len += block_size; 158 159 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, 160 &out_data_1_len, &out_data_2, block_size); 161 162 /* copy block to where it belongs */ 163 if (out_data_1_len == block_size) { 164 copy_block(lastp, out_data_1); 165 } else { 166 memcpy(out_data_1, lastp, out_data_1_len); 167 if (out_data_2 != NULL) { 168 memcpy(out_data_2, 169 lastp + out_data_1_len, 170 block_size - out_data_1_len); 171 } 172 } 173 /* update offset */ 174 out->cd_offset += block_size; 175 176 /* add ciphertext to the hash */ 177 GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops); 178 179 /* Update pointer to next block of data to be processed. */ 180 if (ctx->gcm_remainder_len != 0) { 181 datap += need; 182 ctx->gcm_remainder_len = 0; 183 } else { 184 datap += block_size; 185 } 186 187 remainder = (size_t)&data[length] - (size_t)datap; 188 189 /* Incomplete last block. */ 190 if (remainder > 0 && remainder < block_size) { 191 memcpy(ctx->gcm_remainder, datap, remainder); 192 ctx->gcm_remainder_len = remainder; 193 ctx->gcm_copy_to = datap; 194 goto out; 195 } 196 ctx->gcm_copy_to = NULL; 197 198 } while (remainder > 0); 199 out: 200 return (CRYPTO_SUCCESS); 201 } 202 203 int 204 gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, 205 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 206 void (*copy_block)(uint8_t *, uint8_t *), 207 void (*xor_block)(uint8_t *, uint8_t *)) 208 { 209 (void) copy_block; 210 #ifdef CAN_USE_GCM_ASM 211 if (ctx->gcm_use_avx == B_TRUE) 212 return (gcm_encrypt_final_avx(ctx, out, block_size)); 213 #endif 214 215 const gcm_impl_ops_t *gops; 216 uint64_t counter_mask = ntohll(0x00000000ffffffffULL); 217 uint8_t *ghash, *macp = NULL; 218 int i, rv; 219 220 if (out->cd_length < 221 (ctx->gcm_remainder_len + ctx->gcm_tag_len)) { 222 return (CRYPTO_DATA_LEN_RANGE); 223 } 224 225 gops = gcm_impl_get_ops(); 226 ghash = (uint8_t *)ctx->gcm_ghash; 227 228 if (ctx->gcm_remainder_len > 0) { 229 uint64_t counter; 230 uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp; 231 232 /* 233 * Here is where we deal with data that is not a 234 * multiple of the block size. 235 */ 236 237 /* 238 * Increment counter. 239 */ 240 counter = ntohll(ctx->gcm_cb[1] & counter_mask); 241 counter = htonll(counter + 1); 242 counter &= counter_mask; 243 ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; 244 245 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, 246 (uint8_t *)ctx->gcm_tmp); 247 248 macp = (uint8_t *)ctx->gcm_remainder; 249 memset(macp + ctx->gcm_remainder_len, 0, 250 block_size - ctx->gcm_remainder_len); 251 252 /* XOR with counter block */ 253 for (i = 0; i < ctx->gcm_remainder_len; i++) { 254 macp[i] ^= tmpp[i]; 255 } 256 257 /* add ciphertext to the hash */ 258 GHASH(ctx, macp, ghash, gops); 259 260 ctx->gcm_processed_data_len += ctx->gcm_remainder_len; 261 } 262 263 ctx->gcm_len_a_len_c[1] = 264 htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len)); 265 GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops); 266 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, 267 (uint8_t *)ctx->gcm_J0); 268 xor_block((uint8_t *)ctx->gcm_J0, ghash); 269 270 if (ctx->gcm_remainder_len > 0) { 271 rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len); 272 if (rv != CRYPTO_SUCCESS) 273 return (rv); 274 } 275 out->cd_offset += ctx->gcm_remainder_len; 276 ctx->gcm_remainder_len = 0; 277 rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len); 278 if (rv != CRYPTO_SUCCESS) 279 return (rv); 280 out->cd_offset += ctx->gcm_tag_len; 281 282 return (CRYPTO_SUCCESS); 283 } 284 285 /* 286 * This will only deal with decrypting the last block of the input that 287 * might not be a multiple of block length. 288 */ 289 static void 290 gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index, 291 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 292 void (*xor_block)(uint8_t *, uint8_t *)) 293 { 294 uint8_t *datap, *outp, *counterp; 295 uint64_t counter; 296 uint64_t counter_mask = ntohll(0x00000000ffffffffULL); 297 int i; 298 299 /* 300 * Increment counter. 301 * Counter bits are confined to the bottom 32 bits 302 */ 303 counter = ntohll(ctx->gcm_cb[1] & counter_mask); 304 counter = htonll(counter + 1); 305 counter &= counter_mask; 306 ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; 307 308 datap = (uint8_t *)ctx->gcm_remainder; 309 outp = &((ctx->gcm_pt_buf)[index]); 310 counterp = (uint8_t *)ctx->gcm_tmp; 311 312 /* authentication tag */ 313 memset((uint8_t *)ctx->gcm_tmp, 0, block_size); 314 memcpy((uint8_t *)ctx->gcm_tmp, datap, ctx->gcm_remainder_len); 315 316 /* add ciphertext to the hash */ 317 GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops()); 318 319 /* decrypt remaining ciphertext */ 320 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp); 321 322 /* XOR with counter block */ 323 for (i = 0; i < ctx->gcm_remainder_len; i++) { 324 outp[i] = datap[i] ^ counterp[i]; 325 } 326 } 327 328 int 329 gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, 330 crypto_data_t *out, size_t block_size, 331 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 332 void (*copy_block)(uint8_t *, uint8_t *), 333 void (*xor_block)(uint8_t *, uint8_t *)) 334 { 335 (void) out, (void) block_size, (void) encrypt_block, (void) copy_block, 336 (void) xor_block; 337 size_t new_len; 338 uint8_t *new; 339 340 /* 341 * Copy contiguous ciphertext input blocks to plaintext buffer. 342 * Ciphertext will be decrypted in the final. 343 */ 344 if (length > 0) { 345 new_len = ctx->gcm_pt_buf_len + length; 346 new = vmem_alloc(new_len, KM_SLEEP); 347 if (new == NULL) { 348 vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); 349 ctx->gcm_pt_buf = NULL; 350 return (CRYPTO_HOST_MEMORY); 351 } 352 353 if (ctx->gcm_pt_buf != NULL) { 354 memcpy(new, ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); 355 vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); 356 } else { 357 ASSERT0(ctx->gcm_pt_buf_len); 358 } 359 360 ctx->gcm_pt_buf = new; 361 ctx->gcm_pt_buf_len = new_len; 362 memcpy(&ctx->gcm_pt_buf[ctx->gcm_processed_data_len], data, 363 length); 364 ctx->gcm_processed_data_len += length; 365 } 366 367 ctx->gcm_remainder_len = 0; 368 return (CRYPTO_SUCCESS); 369 } 370 371 int 372 gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, 373 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 374 void (*xor_block)(uint8_t *, uint8_t *)) 375 { 376 #ifdef CAN_USE_GCM_ASM 377 if (ctx->gcm_use_avx == B_TRUE) 378 return (gcm_decrypt_final_avx(ctx, out, block_size)); 379 #endif 380 381 const gcm_impl_ops_t *gops; 382 size_t pt_len; 383 size_t remainder; 384 uint8_t *ghash; 385 uint8_t *blockp; 386 uint8_t *cbp; 387 uint64_t counter; 388 uint64_t counter_mask = ntohll(0x00000000ffffffffULL); 389 int processed = 0, rv; 390 391 ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len); 392 393 gops = gcm_impl_get_ops(); 394 pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len; 395 ghash = (uint8_t *)ctx->gcm_ghash; 396 blockp = ctx->gcm_pt_buf; 397 remainder = pt_len; 398 while (remainder > 0) { 399 /* Incomplete last block */ 400 if (remainder < block_size) { 401 memcpy(ctx->gcm_remainder, blockp, remainder); 402 ctx->gcm_remainder_len = remainder; 403 /* 404 * not expecting anymore ciphertext, just 405 * compute plaintext for the remaining input 406 */ 407 gcm_decrypt_incomplete_block(ctx, block_size, 408 processed, encrypt_block, xor_block); 409 ctx->gcm_remainder_len = 0; 410 goto out; 411 } 412 /* add ciphertext to the hash */ 413 GHASH(ctx, blockp, ghash, gops); 414 415 /* 416 * Increment counter. 417 * Counter bits are confined to the bottom 32 bits 418 */ 419 counter = ntohll(ctx->gcm_cb[1] & counter_mask); 420 counter = htonll(counter + 1); 421 counter &= counter_mask; 422 ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; 423 424 cbp = (uint8_t *)ctx->gcm_tmp; 425 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp); 426 427 /* XOR with ciphertext */ 428 xor_block(cbp, blockp); 429 430 processed += block_size; 431 blockp += block_size; 432 remainder -= block_size; 433 } 434 out: 435 ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len)); 436 GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops); 437 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, 438 (uint8_t *)ctx->gcm_J0); 439 xor_block((uint8_t *)ctx->gcm_J0, ghash); 440 441 /* compare the input authentication tag with what we calculated */ 442 if (memcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) { 443 /* They don't match */ 444 return (CRYPTO_INVALID_MAC); 445 } else { 446 rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len); 447 if (rv != CRYPTO_SUCCESS) 448 return (rv); 449 out->cd_offset += pt_len; 450 } 451 return (CRYPTO_SUCCESS); 452 } 453 454 static int 455 gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param) 456 { 457 size_t tag_len; 458 459 /* 460 * Check the length of the authentication tag (in bits). 461 */ 462 tag_len = gcm_param->ulTagBits; 463 switch (tag_len) { 464 case 32: 465 case 64: 466 case 96: 467 case 104: 468 case 112: 469 case 120: 470 case 128: 471 break; 472 default: 473 return (CRYPTO_MECHANISM_PARAM_INVALID); 474 } 475 476 if (gcm_param->ulIvLen == 0) 477 return (CRYPTO_MECHANISM_PARAM_INVALID); 478 479 return (CRYPTO_SUCCESS); 480 } 481 482 static void 483 gcm_format_initial_blocks(const uint8_t *iv, ulong_t iv_len, 484 gcm_ctx_t *ctx, size_t block_size, 485 void (*copy_block)(uint8_t *, uint8_t *), 486 void (*xor_block)(uint8_t *, uint8_t *)) 487 { 488 const gcm_impl_ops_t *gops; 489 uint8_t *cb; 490 ulong_t remainder = iv_len; 491 ulong_t processed = 0; 492 uint8_t *datap, *ghash; 493 uint64_t len_a_len_c[2]; 494 495 gops = gcm_impl_get_ops(); 496 ghash = (uint8_t *)ctx->gcm_ghash; 497 cb = (uint8_t *)ctx->gcm_cb; 498 if (iv_len == 12) { 499 memcpy(cb, iv, 12); 500 cb[12] = 0; 501 cb[13] = 0; 502 cb[14] = 0; 503 cb[15] = 1; 504 /* J0 will be used again in the final */ 505 copy_block(cb, (uint8_t *)ctx->gcm_J0); 506 } else { 507 /* GHASH the IV */ 508 do { 509 if (remainder < block_size) { 510 memset(cb, 0, block_size); 511 memcpy(cb, &(iv[processed]), remainder); 512 datap = (uint8_t *)cb; 513 remainder = 0; 514 } else { 515 datap = (uint8_t *)(&(iv[processed])); 516 processed += block_size; 517 remainder -= block_size; 518 } 519 GHASH(ctx, datap, ghash, gops); 520 } while (remainder > 0); 521 522 len_a_len_c[0] = 0; 523 len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len)); 524 GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops); 525 526 /* J0 will be used again in the final */ 527 copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb); 528 } 529 } 530 531 static int 532 gcm_init(gcm_ctx_t *ctx, const uint8_t *iv, size_t iv_len, 533 const uint8_t *auth_data, size_t auth_data_len, size_t block_size, 534 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 535 void (*copy_block)(uint8_t *, uint8_t *), 536 void (*xor_block)(uint8_t *, uint8_t *)) 537 { 538 const gcm_impl_ops_t *gops; 539 uint8_t *ghash, *datap, *authp; 540 size_t remainder, processed; 541 542 /* encrypt zero block to get subkey H */ 543 memset(ctx->gcm_H, 0, sizeof (ctx->gcm_H)); 544 encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H, 545 (uint8_t *)ctx->gcm_H); 546 547 gcm_format_initial_blocks(iv, iv_len, ctx, block_size, 548 copy_block, xor_block); 549 550 gops = gcm_impl_get_ops(); 551 authp = (uint8_t *)ctx->gcm_tmp; 552 ghash = (uint8_t *)ctx->gcm_ghash; 553 memset(authp, 0, block_size); 554 memset(ghash, 0, block_size); 555 556 processed = 0; 557 remainder = auth_data_len; 558 do { 559 if (remainder < block_size) { 560 /* 561 * There's not a block full of data, pad rest of 562 * buffer with zero 563 */ 564 565 if (auth_data != NULL) { 566 memset(authp, 0, block_size); 567 memcpy(authp, &(auth_data[processed]), 568 remainder); 569 } else { 570 ASSERT0(remainder); 571 } 572 573 datap = (uint8_t *)authp; 574 remainder = 0; 575 } else { 576 datap = (uint8_t *)(&(auth_data[processed])); 577 processed += block_size; 578 remainder -= block_size; 579 } 580 581 /* add auth data to the hash */ 582 GHASH(ctx, datap, ghash, gops); 583 584 } while (remainder > 0); 585 586 return (CRYPTO_SUCCESS); 587 } 588 589 /* 590 * Init the GCM context struct. Handle the cycle and avx implementations here. 591 */ 592 int 593 gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, 594 size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, 595 uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), 596 void (*xor_block)(uint8_t *, uint8_t *)) 597 { 598 CK_AES_GCM_PARAMS *gcm_param; 599 int rv = CRYPTO_SUCCESS; 600 size_t tag_len, iv_len; 601 602 if (param != NULL) { 603 gcm_param = (CK_AES_GCM_PARAMS *)(void *)param; 604 605 /* GCM mode. */ 606 if ((rv = gcm_validate_args(gcm_param)) != 0) { 607 return (rv); 608 } 609 gcm_ctx->gcm_flags |= GCM_MODE; 610 611 size_t tbits = gcm_param->ulTagBits; 612 tag_len = CRYPTO_BITS2BYTES(tbits); 613 iv_len = gcm_param->ulIvLen; 614 615 gcm_ctx->gcm_tag_len = tag_len; 616 gcm_ctx->gcm_processed_data_len = 0; 617 618 /* these values are in bits */ 619 gcm_ctx->gcm_len_a_len_c[0] 620 = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen)); 621 } else { 622 return (CRYPTO_MECHANISM_PARAM_INVALID); 623 } 624 625 const uint8_t *iv = (const uint8_t *)gcm_param->pIv; 626 const uint8_t *aad = (const uint8_t *)gcm_param->pAAD; 627 size_t aad_len = gcm_param->ulAADLen; 628 629 #ifdef CAN_USE_GCM_ASM 630 boolean_t needs_bswap = 631 ((aes_key_t *)gcm_ctx->gcm_keysched)->ops->needs_byteswap; 632 633 if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) { 634 gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX; 635 } else { 636 /* 637 * Handle the "cycle" implementation by creating avx and 638 * non-avx contexts alternately. 639 */ 640 gcm_ctx->gcm_use_avx = gcm_toggle_avx(); 641 642 /* The avx impl. doesn't handle byte swapped key schedules. */ 643 if (gcm_ctx->gcm_use_avx == B_TRUE && needs_bswap == B_TRUE) { 644 gcm_ctx->gcm_use_avx = B_FALSE; 645 } 646 /* 647 * If this is a GCM context, use the MOVBE and the BSWAP 648 * variants alternately. 649 */ 650 if (gcm_ctx->gcm_use_avx == B_TRUE && 651 zfs_movbe_available() == B_TRUE) { 652 (void) atomic_toggle_boolean_nv( 653 (volatile boolean_t *)&gcm_avx_can_use_movbe); 654 } 655 } 656 /* 657 * We don't handle byte swapped key schedules in the avx code path, 658 * still they could be created by the aes generic implementation. 659 * Make sure not to use them since we'll corrupt data if we do. 660 */ 661 if (gcm_ctx->gcm_use_avx == B_TRUE && needs_bswap == B_TRUE) { 662 gcm_ctx->gcm_use_avx = B_FALSE; 663 664 cmn_err_once(CE_WARN, 665 "ICP: Can't use the aes generic or cycle implementations " 666 "in combination with the gcm avx implementation!"); 667 cmn_err_once(CE_WARN, 668 "ICP: Falling back to a compatible implementation, " 669 "aes-gcm performance will likely be degraded."); 670 cmn_err_once(CE_WARN, 671 "ICP: Choose at least the x86_64 aes implementation to " 672 "restore performance."); 673 } 674 675 /* Allocate Htab memory as needed. */ 676 if (gcm_ctx->gcm_use_avx == B_TRUE) { 677 size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx); 678 679 if (htab_len == 0) { 680 return (CRYPTO_MECHANISM_PARAM_INVALID); 681 } 682 gcm_ctx->gcm_htab_len = htab_len; 683 gcm_ctx->gcm_Htable = 684 kmem_alloc(htab_len, KM_SLEEP); 685 686 if (gcm_ctx->gcm_Htable == NULL) { 687 return (CRYPTO_HOST_MEMORY); 688 } 689 } 690 /* Avx and non avx context initialization differs from here on. */ 691 if (gcm_ctx->gcm_use_avx == B_FALSE) { 692 #endif /* ifdef CAN_USE_GCM_ASM */ 693 if (gcm_init(gcm_ctx, iv, iv_len, aad, aad_len, block_size, 694 encrypt_block, copy_block, xor_block) != CRYPTO_SUCCESS) { 695 rv = CRYPTO_MECHANISM_PARAM_INVALID; 696 } 697 #ifdef CAN_USE_GCM_ASM 698 } else { 699 if (gcm_init_avx(gcm_ctx, iv, iv_len, aad, aad_len, 700 block_size) != CRYPTO_SUCCESS) { 701 rv = CRYPTO_MECHANISM_PARAM_INVALID; 702 } 703 } 704 #endif /* ifdef CAN_USE_GCM_ASM */ 705 706 return (rv); 707 } 708 709 void * 710 gcm_alloc_ctx(int kmflag) 711 { 712 gcm_ctx_t *gcm_ctx; 713 714 if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL) 715 return (NULL); 716 717 gcm_ctx->gcm_flags = GCM_MODE; 718 return (gcm_ctx); 719 } 720 721 /* GCM implementation that contains the fastest methods */ 722 static gcm_impl_ops_t gcm_fastest_impl = { 723 .name = "fastest" 724 }; 725 726 /* All compiled in implementations */ 727 static const gcm_impl_ops_t *gcm_all_impl[] = { 728 &gcm_generic_impl, 729 #if defined(__x86_64) && defined(HAVE_PCLMULQDQ) 730 &gcm_pclmulqdq_impl, 731 #endif 732 }; 733 734 /* Indicate that benchmark has been completed */ 735 static boolean_t gcm_impl_initialized = B_FALSE; 736 737 /* Hold all supported implementations */ 738 static size_t gcm_supp_impl_cnt = 0; 739 static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)]; 740 741 /* 742 * Returns the GCM operations for encrypt/decrypt/key setup. When a 743 * SIMD implementation is not allowed in the current context, then 744 * fallback to the fastest generic implementation. 745 */ 746 const gcm_impl_ops_t * 747 gcm_impl_get_ops(void) 748 { 749 if (!kfpu_allowed()) 750 return (&gcm_generic_impl); 751 752 const gcm_impl_ops_t *ops = NULL; 753 const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl); 754 755 switch (impl) { 756 case IMPL_FASTEST: 757 ASSERT(gcm_impl_initialized); 758 ops = &gcm_fastest_impl; 759 break; 760 case IMPL_CYCLE: 761 /* Cycle through supported implementations */ 762 ASSERT(gcm_impl_initialized); 763 ASSERT3U(gcm_supp_impl_cnt, >, 0); 764 static size_t cycle_impl_idx = 0; 765 size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt; 766 ops = gcm_supp_impl[idx]; 767 break; 768 #ifdef CAN_USE_GCM_ASM 769 case IMPL_AVX: 770 /* 771 * Make sure that we return a valid implementation while 772 * switching to the avx implementation since there still 773 * may be unfinished non-avx contexts around. 774 */ 775 ops = &gcm_generic_impl; 776 break; 777 #endif 778 default: 779 ASSERT3U(impl, <, gcm_supp_impl_cnt); 780 ASSERT3U(gcm_supp_impl_cnt, >, 0); 781 if (impl < ARRAY_SIZE(gcm_all_impl)) 782 ops = gcm_supp_impl[impl]; 783 break; 784 } 785 786 ASSERT3P(ops, !=, NULL); 787 788 return (ops); 789 } 790 791 /* 792 * Initialize all supported implementations. 793 */ 794 void 795 gcm_impl_init(void) 796 { 797 gcm_impl_ops_t *curr_impl; 798 int i, c; 799 800 /* Move supported implementations into gcm_supp_impls */ 801 for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) { 802 curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i]; 803 804 if (curr_impl->is_supported()) 805 gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl; 806 } 807 gcm_supp_impl_cnt = c; 808 809 /* 810 * Set the fastest implementation given the assumption that the 811 * hardware accelerated version is the fastest. 812 */ 813 #if defined(__x86_64) && defined(HAVE_PCLMULQDQ) 814 if (gcm_pclmulqdq_impl.is_supported()) { 815 memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl, 816 sizeof (gcm_fastest_impl)); 817 } else 818 #endif 819 { 820 memcpy(&gcm_fastest_impl, &gcm_generic_impl, 821 sizeof (gcm_fastest_impl)); 822 } 823 824 strlcpy(gcm_fastest_impl.name, "fastest", GCM_IMPL_NAME_MAX); 825 826 #ifdef CAN_USE_GCM_ASM 827 /* 828 * Use the avx implementation if it's available and the implementation 829 * hasn't changed from its default value of fastest on module load. 830 */ 831 if (gcm_avx_will_work()) { 832 #ifdef HAVE_MOVBE 833 if (zfs_movbe_available() == B_TRUE) { 834 atomic_swap_32(&gcm_avx_can_use_movbe, B_TRUE); 835 } 836 #endif 837 if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) { 838 gcm_set_avx(B_TRUE); 839 } 840 } 841 #endif 842 /* Finish initialization */ 843 atomic_swap_32(&icp_gcm_impl, user_sel_impl); 844 gcm_impl_initialized = B_TRUE; 845 } 846 847 static const struct { 848 const char *name; 849 uint32_t sel; 850 } gcm_impl_opts[] = { 851 { "cycle", IMPL_CYCLE }, 852 { "fastest", IMPL_FASTEST }, 853 #ifdef CAN_USE_GCM_ASM 854 { "avx", IMPL_AVX }, 855 #endif 856 }; 857 858 /* 859 * Function sets desired gcm implementation. 860 * 861 * If we are called before init(), user preference will be saved in 862 * user_sel_impl, and applied in later init() call. This occurs when module 863 * parameter is specified on module load. Otherwise, directly update 864 * icp_gcm_impl. 865 * 866 * @val Name of gcm implementation to use 867 * @param Unused. 868 */ 869 int 870 gcm_impl_set(const char *val) 871 { 872 int err = -EINVAL; 873 char req_name[GCM_IMPL_NAME_MAX]; 874 uint32_t impl = GCM_IMPL_READ(user_sel_impl); 875 size_t i; 876 877 /* sanitize input */ 878 i = strnlen(val, GCM_IMPL_NAME_MAX); 879 if (i == 0 || i >= GCM_IMPL_NAME_MAX) 880 return (err); 881 882 strlcpy(req_name, val, GCM_IMPL_NAME_MAX); 883 while (i > 0 && isspace(req_name[i-1])) 884 i--; 885 req_name[i] = '\0'; 886 887 /* Check mandatory options */ 888 for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) { 889 #ifdef CAN_USE_GCM_ASM 890 /* Ignore avx implementation if it won't work. */ 891 if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) { 892 continue; 893 } 894 #endif 895 if (strcmp(req_name, gcm_impl_opts[i].name) == 0) { 896 impl = gcm_impl_opts[i].sel; 897 err = 0; 898 break; 899 } 900 } 901 902 /* check all supported impl if init() was already called */ 903 if (err != 0 && gcm_impl_initialized) { 904 /* check all supported implementations */ 905 for (i = 0; i < gcm_supp_impl_cnt; i++) { 906 if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) { 907 impl = i; 908 err = 0; 909 break; 910 } 911 } 912 } 913 #ifdef CAN_USE_GCM_ASM 914 /* 915 * Use the avx implementation if available and the requested one is 916 * avx or fastest. 917 */ 918 if (gcm_avx_will_work() == B_TRUE && 919 (impl == IMPL_AVX || impl == IMPL_FASTEST)) { 920 gcm_set_avx(B_TRUE); 921 } else { 922 gcm_set_avx(B_FALSE); 923 } 924 #endif 925 926 if (err == 0) { 927 if (gcm_impl_initialized) 928 atomic_swap_32(&icp_gcm_impl, impl); 929 else 930 atomic_swap_32(&user_sel_impl, impl); 931 } 932 933 return (err); 934 } 935 936 #if defined(_KERNEL) && defined(__linux__) 937 938 static int 939 icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp) 940 { 941 return (gcm_impl_set(val)); 942 } 943 944 static int 945 icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp) 946 { 947 int i, cnt = 0; 948 char *fmt; 949 const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl); 950 951 /* list mandatory options */ 952 for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) { 953 #ifdef CAN_USE_GCM_ASM 954 /* Ignore avx implementation if it won't work. */ 955 if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) { 956 continue; 957 } 958 #endif 959 fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s "; 960 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, 961 gcm_impl_opts[i].name); 962 } 963 964 /* list all supported implementations */ 965 for (i = 0; i < gcm_supp_impl_cnt; i++) { 966 fmt = (i == impl) ? "[%s] " : "%s "; 967 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, 968 gcm_supp_impl[i]->name); 969 } 970 971 return (cnt); 972 } 973 974 module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get, 975 NULL, 0644); 976 MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation."); 977 #endif /* defined(__KERNEL) */ 978 979 #ifdef CAN_USE_GCM_ASM 980 #define GCM_BLOCK_LEN 16 981 /* 982 * The openssl asm routines are 6x aggregated and need that many bytes 983 * at minimum. 984 */ 985 #define GCM_AVX_MIN_DECRYPT_BYTES (GCM_BLOCK_LEN * 6) 986 #define GCM_AVX_MIN_ENCRYPT_BYTES (GCM_BLOCK_LEN * 6 * 3) 987 /* 988 * Ensure the chunk size is reasonable since we are allocating a 989 * GCM_AVX_MAX_CHUNK_SIZEd buffer and disabling preemption and interrupts. 990 */ 991 #define GCM_AVX_MAX_CHUNK_SIZE \ 992 (((128*1024)/GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES) 993 994 /* Clear the FPU registers since they hold sensitive internal state. */ 995 #define clear_fpu_regs() clear_fpu_regs_avx() 996 #define GHASH_AVX(ctx, in, len) \ 997 gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t *)(ctx)->gcm_Htable, \ 998 in, len) 999 1000 #define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1) 1001 1002 /* Get the chunk size module parameter. */ 1003 #define GCM_CHUNK_SIZE_READ *(volatile uint32_t *) &gcm_avx_chunk_size 1004 1005 /* 1006 * Module parameter: number of bytes to process at once while owning the FPU. 1007 * Rounded down to the next GCM_AVX_MIN_DECRYPT_BYTES byte boundary and is 1008 * ensured to be greater or equal than GCM_AVX_MIN_DECRYPT_BYTES. 1009 */ 1010 static uint32_t gcm_avx_chunk_size = 1011 ((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES; 1012 1013 extern void ASMABI clear_fpu_regs_avx(void); 1014 extern void ASMABI gcm_xor_avx(const uint8_t *src, uint8_t *dst); 1015 extern void ASMABI aes_encrypt_intel(const uint32_t rk[], int nr, 1016 const uint32_t pt[4], uint32_t ct[4]); 1017 1018 extern void ASMABI gcm_init_htab_avx(uint64_t *Htable, const uint64_t H[2]); 1019 extern void ASMABI gcm_ghash_avx(uint64_t ghash[2], const uint64_t *Htable, 1020 const uint8_t *in, size_t len); 1021 1022 extern size_t ASMABI aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t, 1023 const void *, uint64_t *, uint64_t *); 1024 1025 extern size_t ASMABI aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t, 1026 const void *, uint64_t *, uint64_t *); 1027 1028 static inline boolean_t 1029 gcm_avx_will_work(void) 1030 { 1031 /* Avx should imply aes-ni and pclmulqdq, but make sure anyhow. */ 1032 return (kfpu_allowed() && 1033 zfs_avx_available() && zfs_aes_available() && 1034 zfs_pclmulqdq_available()); 1035 } 1036 1037 static inline void 1038 gcm_set_avx(boolean_t val) 1039 { 1040 if (gcm_avx_will_work() == B_TRUE) { 1041 atomic_swap_32(&gcm_use_avx, val); 1042 } 1043 } 1044 1045 static inline boolean_t 1046 gcm_toggle_avx(void) 1047 { 1048 if (gcm_avx_will_work() == B_TRUE) { 1049 return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX)); 1050 } else { 1051 return (B_FALSE); 1052 } 1053 } 1054 1055 static inline size_t 1056 gcm_simd_get_htab_size(boolean_t simd_mode) 1057 { 1058 switch (simd_mode) { 1059 case B_TRUE: 1060 return (2 * 6 * 2 * sizeof (uint64_t)); 1061 1062 default: 1063 return (0); 1064 } 1065 } 1066 1067 1068 /* Increment the GCM counter block by n. */ 1069 static inline void 1070 gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n) 1071 { 1072 uint64_t counter_mask = ntohll(0x00000000ffffffffULL); 1073 uint64_t counter = ntohll(ctx->gcm_cb[1] & counter_mask); 1074 1075 counter = htonll(counter + n); 1076 counter &= counter_mask; 1077 ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; 1078 } 1079 1080 /* 1081 * Encrypt multiple blocks of data in GCM mode. 1082 * This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines 1083 * if possible. While processing a chunk the FPU is "locked". 1084 */ 1085 static int 1086 gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data, 1087 size_t length, crypto_data_t *out, size_t block_size) 1088 { 1089 size_t bleft = length; 1090 size_t need = 0; 1091 size_t done = 0; 1092 uint8_t *datap = (uint8_t *)data; 1093 size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ; 1094 const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched); 1095 uint64_t *ghash = ctx->gcm_ghash; 1096 uint64_t *cb = ctx->gcm_cb; 1097 uint8_t *ct_buf = NULL; 1098 uint8_t *tmp = (uint8_t *)ctx->gcm_tmp; 1099 int rv = CRYPTO_SUCCESS; 1100 1101 ASSERT(block_size == GCM_BLOCK_LEN); 1102 ASSERT3S(((aes_key_t *)ctx->gcm_keysched)->ops->needs_byteswap, ==, 1103 B_FALSE); 1104 /* 1105 * If the last call left an incomplete block, try to fill 1106 * it first. 1107 */ 1108 if (ctx->gcm_remainder_len > 0) { 1109 need = block_size - ctx->gcm_remainder_len; 1110 if (length < need) { 1111 /* Accumulate bytes here and return. */ 1112 memcpy((uint8_t *)ctx->gcm_remainder + 1113 ctx->gcm_remainder_len, datap, length); 1114 1115 ctx->gcm_remainder_len += length; 1116 if (ctx->gcm_copy_to == NULL) { 1117 ctx->gcm_copy_to = datap; 1118 } 1119 return (CRYPTO_SUCCESS); 1120 } else { 1121 /* Complete incomplete block. */ 1122 memcpy((uint8_t *)ctx->gcm_remainder + 1123 ctx->gcm_remainder_len, datap, need); 1124 1125 ctx->gcm_copy_to = NULL; 1126 } 1127 } 1128 1129 /* Allocate a buffer to encrypt to if there is enough input. */ 1130 if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) { 1131 ct_buf = vmem_alloc(chunk_size, KM_SLEEP); 1132 if (ct_buf == NULL) { 1133 return (CRYPTO_HOST_MEMORY); 1134 } 1135 } 1136 1137 /* If we completed an incomplete block, encrypt and write it out. */ 1138 if (ctx->gcm_remainder_len > 0) { 1139 kfpu_begin(); 1140 aes_encrypt_intel(key->encr_ks.ks32, key->nr, 1141 (const uint32_t *)cb, (uint32_t *)tmp); 1142 1143 gcm_xor_avx((const uint8_t *) ctx->gcm_remainder, tmp); 1144 GHASH_AVX(ctx, tmp, block_size); 1145 clear_fpu_regs(); 1146 kfpu_end(); 1147 rv = crypto_put_output_data(tmp, out, block_size); 1148 out->cd_offset += block_size; 1149 gcm_incr_counter_block(ctx); 1150 ctx->gcm_processed_data_len += block_size; 1151 bleft -= need; 1152 datap += need; 1153 ctx->gcm_remainder_len = 0; 1154 } 1155 1156 /* Do the bulk encryption in chunk_size blocks. */ 1157 for (; bleft >= chunk_size; bleft -= chunk_size) { 1158 kfpu_begin(); 1159 done = aesni_gcm_encrypt( 1160 datap, ct_buf, chunk_size, key, cb, ghash); 1161 1162 clear_fpu_regs(); 1163 kfpu_end(); 1164 if (done != chunk_size) { 1165 rv = CRYPTO_FAILED; 1166 goto out_nofpu; 1167 } 1168 rv = crypto_put_output_data(ct_buf, out, chunk_size); 1169 if (rv != CRYPTO_SUCCESS) { 1170 goto out_nofpu; 1171 } 1172 out->cd_offset += chunk_size; 1173 datap += chunk_size; 1174 ctx->gcm_processed_data_len += chunk_size; 1175 } 1176 /* Check if we are already done. */ 1177 if (bleft == 0) { 1178 goto out_nofpu; 1179 } 1180 /* Bulk encrypt the remaining data. */ 1181 kfpu_begin(); 1182 if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) { 1183 done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash); 1184 if (done == 0) { 1185 rv = CRYPTO_FAILED; 1186 goto out; 1187 } 1188 rv = crypto_put_output_data(ct_buf, out, done); 1189 if (rv != CRYPTO_SUCCESS) { 1190 goto out; 1191 } 1192 out->cd_offset += done; 1193 ctx->gcm_processed_data_len += done; 1194 datap += done; 1195 bleft -= done; 1196 1197 } 1198 /* Less than GCM_AVX_MIN_ENCRYPT_BYTES remain, operate on blocks. */ 1199 while (bleft > 0) { 1200 if (bleft < block_size) { 1201 memcpy(ctx->gcm_remainder, datap, bleft); 1202 ctx->gcm_remainder_len = bleft; 1203 ctx->gcm_copy_to = datap; 1204 goto out; 1205 } 1206 /* Encrypt, hash and write out. */ 1207 aes_encrypt_intel(key->encr_ks.ks32, key->nr, 1208 (const uint32_t *)cb, (uint32_t *)tmp); 1209 1210 gcm_xor_avx(datap, tmp); 1211 GHASH_AVX(ctx, tmp, block_size); 1212 rv = crypto_put_output_data(tmp, out, block_size); 1213 if (rv != CRYPTO_SUCCESS) { 1214 goto out; 1215 } 1216 out->cd_offset += block_size; 1217 gcm_incr_counter_block(ctx); 1218 ctx->gcm_processed_data_len += block_size; 1219 datap += block_size; 1220 bleft -= block_size; 1221 } 1222 out: 1223 clear_fpu_regs(); 1224 kfpu_end(); 1225 out_nofpu: 1226 if (ct_buf != NULL) { 1227 vmem_free(ct_buf, chunk_size); 1228 } 1229 return (rv); 1230 } 1231 1232 /* 1233 * Finalize the encryption: Zero fill, encrypt, hash and write out an eventual 1234 * incomplete last block. Encrypt the ICB. Calculate the tag and write it out. 1235 */ 1236 static int 1237 gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size) 1238 { 1239 uint8_t *ghash = (uint8_t *)ctx->gcm_ghash; 1240 uint32_t *J0 = (uint32_t *)ctx->gcm_J0; 1241 uint8_t *remainder = (uint8_t *)ctx->gcm_remainder; 1242 size_t rem_len = ctx->gcm_remainder_len; 1243 const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32; 1244 int aes_rounds = ((aes_key_t *)keysched)->nr; 1245 int rv; 1246 1247 ASSERT(block_size == GCM_BLOCK_LEN); 1248 ASSERT3S(((aes_key_t *)ctx->gcm_keysched)->ops->needs_byteswap, ==, 1249 B_FALSE); 1250 1251 if (out->cd_length < (rem_len + ctx->gcm_tag_len)) { 1252 return (CRYPTO_DATA_LEN_RANGE); 1253 } 1254 1255 kfpu_begin(); 1256 /* Pad last incomplete block with zeros, encrypt and hash. */ 1257 if (rem_len > 0) { 1258 uint8_t *tmp = (uint8_t *)ctx->gcm_tmp; 1259 const uint32_t *cb = (uint32_t *)ctx->gcm_cb; 1260 1261 aes_encrypt_intel(keysched, aes_rounds, cb, (uint32_t *)tmp); 1262 memset(remainder + rem_len, 0, block_size - rem_len); 1263 for (int i = 0; i < rem_len; i++) { 1264 remainder[i] ^= tmp[i]; 1265 } 1266 GHASH_AVX(ctx, remainder, block_size); 1267 ctx->gcm_processed_data_len += rem_len; 1268 /* No need to increment counter_block, it's the last block. */ 1269 } 1270 /* Finish tag. */ 1271 ctx->gcm_len_a_len_c[1] = 1272 htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len)); 1273 GHASH_AVX(ctx, (const uint8_t *)ctx->gcm_len_a_len_c, block_size); 1274 aes_encrypt_intel(keysched, aes_rounds, J0, J0); 1275 1276 gcm_xor_avx((uint8_t *)J0, ghash); 1277 clear_fpu_regs(); 1278 kfpu_end(); 1279 1280 /* Output remainder. */ 1281 if (rem_len > 0) { 1282 rv = crypto_put_output_data(remainder, out, rem_len); 1283 if (rv != CRYPTO_SUCCESS) 1284 return (rv); 1285 } 1286 out->cd_offset += rem_len; 1287 ctx->gcm_remainder_len = 0; 1288 rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len); 1289 if (rv != CRYPTO_SUCCESS) 1290 return (rv); 1291 1292 out->cd_offset += ctx->gcm_tag_len; 1293 return (CRYPTO_SUCCESS); 1294 } 1295 1296 /* 1297 * Finalize decryption: We just have accumulated crypto text, so now we 1298 * decrypt it here inplace. 1299 */ 1300 static int 1301 gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size) 1302 { 1303 ASSERT3U(ctx->gcm_processed_data_len, ==, ctx->gcm_pt_buf_len); 1304 ASSERT3U(block_size, ==, 16); 1305 ASSERT3S(((aes_key_t *)ctx->gcm_keysched)->ops->needs_byteswap, ==, 1306 B_FALSE); 1307 1308 size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ; 1309 size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len; 1310 uint8_t *datap = ctx->gcm_pt_buf; 1311 const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched); 1312 uint32_t *cb = (uint32_t *)ctx->gcm_cb; 1313 uint64_t *ghash = ctx->gcm_ghash; 1314 uint32_t *tmp = (uint32_t *)ctx->gcm_tmp; 1315 int rv = CRYPTO_SUCCESS; 1316 size_t bleft, done; 1317 1318 /* 1319 * Decrypt in chunks of gcm_avx_chunk_size, which is asserted to be 1320 * greater or equal than GCM_AVX_MIN_ENCRYPT_BYTES, and a multiple of 1321 * GCM_AVX_MIN_DECRYPT_BYTES. 1322 */ 1323 for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) { 1324 kfpu_begin(); 1325 done = aesni_gcm_decrypt(datap, datap, chunk_size, 1326 (const void *)key, ctx->gcm_cb, ghash); 1327 clear_fpu_regs(); 1328 kfpu_end(); 1329 if (done != chunk_size) { 1330 return (CRYPTO_FAILED); 1331 } 1332 datap += done; 1333 } 1334 /* Decrypt remainder, which is less than chunk size, in one go. */ 1335 kfpu_begin(); 1336 if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) { 1337 done = aesni_gcm_decrypt(datap, datap, bleft, 1338 (const void *)key, ctx->gcm_cb, ghash); 1339 if (done == 0) { 1340 clear_fpu_regs(); 1341 kfpu_end(); 1342 return (CRYPTO_FAILED); 1343 } 1344 datap += done; 1345 bleft -= done; 1346 } 1347 ASSERT(bleft < GCM_AVX_MIN_DECRYPT_BYTES); 1348 1349 /* 1350 * Now less than GCM_AVX_MIN_DECRYPT_BYTES bytes remain, 1351 * decrypt them block by block. 1352 */ 1353 while (bleft > 0) { 1354 /* Incomplete last block. */ 1355 if (bleft < block_size) { 1356 uint8_t *lastb = (uint8_t *)ctx->gcm_remainder; 1357 1358 memset(lastb, 0, block_size); 1359 memcpy(lastb, datap, bleft); 1360 /* The GCM processing. */ 1361 GHASH_AVX(ctx, lastb, block_size); 1362 aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp); 1363 for (size_t i = 0; i < bleft; i++) { 1364 datap[i] = lastb[i] ^ ((uint8_t *)tmp)[i]; 1365 } 1366 break; 1367 } 1368 /* The GCM processing. */ 1369 GHASH_AVX(ctx, datap, block_size); 1370 aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp); 1371 gcm_xor_avx((uint8_t *)tmp, datap); 1372 gcm_incr_counter_block(ctx); 1373 1374 datap += block_size; 1375 bleft -= block_size; 1376 } 1377 if (rv != CRYPTO_SUCCESS) { 1378 clear_fpu_regs(); 1379 kfpu_end(); 1380 return (rv); 1381 } 1382 /* Decryption done, finish the tag. */ 1383 ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len)); 1384 GHASH_AVX(ctx, (uint8_t *)ctx->gcm_len_a_len_c, block_size); 1385 aes_encrypt_intel(key->encr_ks.ks32, key->nr, (uint32_t *)ctx->gcm_J0, 1386 (uint32_t *)ctx->gcm_J0); 1387 1388 gcm_xor_avx((uint8_t *)ctx->gcm_J0, (uint8_t *)ghash); 1389 1390 /* We are done with the FPU, restore its state. */ 1391 clear_fpu_regs(); 1392 kfpu_end(); 1393 1394 /* Compare the input authentication tag with what we calculated. */ 1395 if (memcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) { 1396 /* They don't match. */ 1397 return (CRYPTO_INVALID_MAC); 1398 } 1399 rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len); 1400 if (rv != CRYPTO_SUCCESS) { 1401 return (rv); 1402 } 1403 out->cd_offset += pt_len; 1404 return (CRYPTO_SUCCESS); 1405 } 1406 1407 /* 1408 * Initialize the GCM params H, Htabtle and the counter block. Save the 1409 * initial counter block. 1410 */ 1411 static int 1412 gcm_init_avx(gcm_ctx_t *ctx, const uint8_t *iv, size_t iv_len, 1413 const uint8_t *auth_data, size_t auth_data_len, size_t block_size) 1414 { 1415 uint8_t *cb = (uint8_t *)ctx->gcm_cb; 1416 uint64_t *H = ctx->gcm_H; 1417 const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32; 1418 int aes_rounds = ((aes_key_t *)ctx->gcm_keysched)->nr; 1419 const uint8_t *datap = auth_data; 1420 size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ; 1421 size_t bleft; 1422 1423 ASSERT(block_size == GCM_BLOCK_LEN); 1424 ASSERT3S(((aes_key_t *)ctx->gcm_keysched)->ops->needs_byteswap, ==, 1425 B_FALSE); 1426 1427 /* Init H (encrypt zero block) and create the initial counter block. */ 1428 memset(H, 0, sizeof (ctx->gcm_H)); 1429 kfpu_begin(); 1430 aes_encrypt_intel(keysched, aes_rounds, 1431 (const uint32_t *)H, (uint32_t *)H); 1432 1433 gcm_init_htab_avx(ctx->gcm_Htable, H); 1434 1435 if (iv_len == 12) { 1436 memcpy(cb, iv, 12); 1437 cb[12] = 0; 1438 cb[13] = 0; 1439 cb[14] = 0; 1440 cb[15] = 1; 1441 /* We need the ICB later. */ 1442 memcpy(ctx->gcm_J0, cb, sizeof (ctx->gcm_J0)); 1443 } else { 1444 /* 1445 * Most consumers use 12 byte IVs, so it's OK to use the 1446 * original routines for other IV sizes, just avoid nesting 1447 * kfpu_begin calls. 1448 */ 1449 clear_fpu_regs(); 1450 kfpu_end(); 1451 gcm_format_initial_blocks(iv, iv_len, ctx, block_size, 1452 aes_copy_block, aes_xor_block); 1453 kfpu_begin(); 1454 } 1455 1456 memset(ctx->gcm_ghash, 0, sizeof (ctx->gcm_ghash)); 1457 1458 /* Openssl post increments the counter, adjust for that. */ 1459 gcm_incr_counter_block(ctx); 1460 1461 /* Ghash AAD in chunk_size blocks. */ 1462 for (bleft = auth_data_len; bleft >= chunk_size; bleft -= chunk_size) { 1463 GHASH_AVX(ctx, datap, chunk_size); 1464 datap += chunk_size; 1465 clear_fpu_regs(); 1466 kfpu_end(); 1467 kfpu_begin(); 1468 } 1469 /* Ghash the remainder and handle possible incomplete GCM block. */ 1470 if (bleft > 0) { 1471 size_t incomp = bleft % block_size; 1472 1473 bleft -= incomp; 1474 if (bleft > 0) { 1475 GHASH_AVX(ctx, datap, bleft); 1476 datap += bleft; 1477 } 1478 if (incomp > 0) { 1479 /* Zero pad and hash incomplete last block. */ 1480 uint8_t *authp = (uint8_t *)ctx->gcm_tmp; 1481 1482 memset(authp, 0, block_size); 1483 memcpy(authp, datap, incomp); 1484 GHASH_AVX(ctx, authp, block_size); 1485 } 1486 } 1487 clear_fpu_regs(); 1488 kfpu_end(); 1489 return (CRYPTO_SUCCESS); 1490 } 1491 1492 #if defined(_KERNEL) 1493 static int 1494 icp_gcm_avx_set_chunk_size(const char *buf, zfs_kernel_param_t *kp) 1495 { 1496 unsigned long val; 1497 char val_rounded[16]; 1498 int error = 0; 1499 1500 error = kstrtoul(buf, 0, &val); 1501 if (error) 1502 return (error); 1503 1504 val = (val / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES; 1505 1506 if (val < GCM_AVX_MIN_ENCRYPT_BYTES || val > GCM_AVX_MAX_CHUNK_SIZE) 1507 return (-EINVAL); 1508 1509 snprintf(val_rounded, 16, "%u", (uint32_t)val); 1510 error = param_set_uint(val_rounded, kp); 1511 return (error); 1512 } 1513 1514 module_param_call(icp_gcm_avx_chunk_size, icp_gcm_avx_set_chunk_size, 1515 param_get_uint, &gcm_avx_chunk_size, 0644); 1516 1517 MODULE_PARM_DESC(icp_gcm_avx_chunk_size, 1518 "How many bytes to process while owning the FPU"); 1519 1520 #endif /* defined(__KERNEL) */ 1521 #endif /* ifdef CAN_USE_GCM_ASM */ 1522