xref: /freebsd/sys/contrib/openzfs/module/icp/algs/modes/ccm.c (revision c7046f76c2c027b00c0e6ba57cfd28f1a78f5e23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <modes/modes.h>
28 #include <sys/crypto/common.h>
29 #include <sys/crypto/impl.h>
30 
31 #ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
32 #include <sys/byteorder.h>
33 #define	UNALIGNED_POINTERS_PERMITTED
34 #endif
35 
36 /*
37  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
38  * is done in another function.
39  */
40 int
41 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
42     crypto_data_t *out, size_t block_size,
43     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
44     void (*copy_block)(uint8_t *, uint8_t *),
45     void (*xor_block)(uint8_t *, uint8_t *))
46 {
47 	size_t remainder = length;
48 	size_t need = 0;
49 	uint8_t *datap = (uint8_t *)data;
50 	uint8_t *blockp;
51 	uint8_t *lastp;
52 	void *iov_or_mp;
53 	offset_t offset;
54 	uint8_t *out_data_1;
55 	uint8_t *out_data_2;
56 	size_t out_data_1_len;
57 	uint64_t counter;
58 	uint8_t *mac_buf;
59 
60 	if (length + ctx->ccm_remainder_len < block_size) {
61 		/* accumulate bytes here and return */
62 		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
63 		    datap,
64 		    length);
65 		ctx->ccm_remainder_len += length;
66 		ctx->ccm_copy_to = datap;
67 		return (CRYPTO_SUCCESS);
68 	}
69 
70 	lastp = (uint8_t *)ctx->ccm_cb;
71 	crypto_init_ptrs(out, &iov_or_mp, &offset);
72 
73 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
74 
75 	do {
76 		/* Unprocessed data from last call. */
77 		if (ctx->ccm_remainder_len > 0) {
78 			need = block_size - ctx->ccm_remainder_len;
79 
80 			if (need > remainder)
81 				return (CRYPTO_DATA_LEN_RANGE);
82 
83 			memcpy(&((uint8_t *)ctx->ccm_remainder)
84 			    [ctx->ccm_remainder_len], datap, need);
85 
86 			blockp = (uint8_t *)ctx->ccm_remainder;
87 		} else {
88 			blockp = datap;
89 		}
90 
91 		/*
92 		 * do CBC MAC
93 		 *
94 		 * XOR the previous cipher block current clear block.
95 		 * mac_buf always contain previous cipher block.
96 		 */
97 		xor_block(blockp, mac_buf);
98 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
99 
100 		/* ccm_cb is the counter block */
101 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
102 		    (uint8_t *)ctx->ccm_tmp);
103 
104 		lastp = (uint8_t *)ctx->ccm_tmp;
105 
106 		/*
107 		 * Increment counter. Counter bits are confined
108 		 * to the bottom 64 bits of the counter block.
109 		 */
110 #ifdef _ZFS_LITTLE_ENDIAN
111 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
112 		counter = htonll(counter + 1);
113 #else
114 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
115 		counter++;
116 #endif	/* _ZFS_LITTLE_ENDIAN */
117 		counter &= ctx->ccm_counter_mask;
118 		ctx->ccm_cb[1] =
119 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
120 
121 		/*
122 		 * XOR encrypted counter block with the current clear block.
123 		 */
124 		xor_block(blockp, lastp);
125 
126 		ctx->ccm_processed_data_len += block_size;
127 
128 		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
129 		    &out_data_1_len, &out_data_2, block_size);
130 
131 		/* copy block to where it belongs */
132 		if (out_data_1_len == block_size) {
133 			copy_block(lastp, out_data_1);
134 		} else {
135 			memcpy(out_data_1, lastp, out_data_1_len);
136 			if (out_data_2 != NULL) {
137 				memcpy(out_data_2,
138 				    lastp + out_data_1_len,
139 				    block_size - out_data_1_len);
140 			}
141 		}
142 		/* update offset */
143 		out->cd_offset += block_size;
144 
145 		/* Update pointer to next block of data to be processed. */
146 		if (ctx->ccm_remainder_len != 0) {
147 			datap += need;
148 			ctx->ccm_remainder_len = 0;
149 		} else {
150 			datap += block_size;
151 		}
152 
153 		remainder = (size_t)&data[length] - (size_t)datap;
154 
155 		/* Incomplete last block. */
156 		if (remainder > 0 && remainder < block_size) {
157 			memcpy(ctx->ccm_remainder, datap, remainder);
158 			ctx->ccm_remainder_len = remainder;
159 			ctx->ccm_copy_to = datap;
160 			goto out;
161 		}
162 		ctx->ccm_copy_to = NULL;
163 
164 	} while (remainder > 0);
165 
166 out:
167 	return (CRYPTO_SUCCESS);
168 }
169 
170 void
171 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
172     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
173 {
174 	uint64_t counter;
175 	uint8_t *counterp, *mac_buf;
176 	int i;
177 
178 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
179 
180 	/* first counter block start with index 0 */
181 	counter = 0;
182 	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
183 
184 	counterp = (uint8_t *)ctx->ccm_tmp;
185 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
186 
187 	/* calculate XOR of MAC with first counter block */
188 	for (i = 0; i < ctx->ccm_mac_len; i++) {
189 		ccm_mac[i] = mac_buf[i] ^ counterp[i];
190 	}
191 }
192 
193 int
194 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
195     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
196     void (*xor_block)(uint8_t *, uint8_t *))
197 {
198 	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
199 	void *iov_or_mp;
200 	offset_t offset;
201 	uint8_t *out_data_1;
202 	uint8_t *out_data_2;
203 	size_t out_data_1_len;
204 	int i;
205 
206 	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
207 		return (CRYPTO_DATA_LEN_RANGE);
208 	}
209 
210 	/*
211 	 * When we get here, the number of bytes of payload processed
212 	 * plus whatever data remains, if any,
213 	 * should be the same as the number of bytes that's being
214 	 * passed in the argument during init time.
215 	 */
216 	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
217 	    != (ctx->ccm_data_len)) {
218 		return (CRYPTO_DATA_LEN_RANGE);
219 	}
220 
221 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
222 
223 	if (ctx->ccm_remainder_len > 0) {
224 
225 		/* ccm_mac_input_buf is not used for encryption */
226 		macp = (uint8_t *)ctx->ccm_mac_input_buf;
227 		memset(macp, 0, block_size);
228 
229 		/* copy remainder to temporary buffer */
230 		memcpy(macp, ctx->ccm_remainder, ctx->ccm_remainder_len);
231 
232 		/* calculate the CBC MAC */
233 		xor_block(macp, mac_buf);
234 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
235 
236 		/* calculate the counter mode */
237 		lastp = (uint8_t *)ctx->ccm_tmp;
238 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
239 
240 		/* XOR with counter block */
241 		for (i = 0; i < ctx->ccm_remainder_len; i++) {
242 			macp[i] ^= lastp[i];
243 		}
244 		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
245 	}
246 
247 	/* Calculate the CCM MAC */
248 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
249 	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
250 
251 	crypto_init_ptrs(out, &iov_or_mp, &offset);
252 	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
253 	    &out_data_1_len, &out_data_2,
254 	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
255 
256 	if (ctx->ccm_remainder_len > 0) {
257 		/* copy temporary block to where it belongs */
258 		if (out_data_2 == NULL) {
259 			/* everything will fit in out_data_1 */
260 			memcpy(out_data_1, macp, ctx->ccm_remainder_len);
261 			memcpy(out_data_1 + ctx->ccm_remainder_len, ccm_mac_p,
262 			    ctx->ccm_mac_len);
263 		} else {
264 			if (out_data_1_len < ctx->ccm_remainder_len) {
265 				size_t data_2_len_used;
266 
267 				memcpy(out_data_1, macp, out_data_1_len);
268 
269 				data_2_len_used = ctx->ccm_remainder_len
270 				    - out_data_1_len;
271 
272 				memcpy(out_data_2,
273 				    (uint8_t *)macp + out_data_1_len,
274 				    data_2_len_used);
275 				memcpy(out_data_2 + data_2_len_used,
276 				    ccm_mac_p,
277 				    ctx->ccm_mac_len);
278 			} else {
279 				memcpy(out_data_1, macp, out_data_1_len);
280 				if (out_data_1_len == ctx->ccm_remainder_len) {
281 					/* mac will be in out_data_2 */
282 					memcpy(out_data_2, ccm_mac_p,
283 					    ctx->ccm_mac_len);
284 				} else {
285 					size_t len_not_used = out_data_1_len -
286 					    ctx->ccm_remainder_len;
287 					/*
288 					 * part of mac in will be in
289 					 * out_data_1, part of the mac will be
290 					 * in out_data_2
291 					 */
292 					memcpy(out_data_1 +
293 					    ctx->ccm_remainder_len,
294 					    ccm_mac_p, len_not_used);
295 					memcpy(out_data_2,
296 					    ccm_mac_p + len_not_used,
297 					    ctx->ccm_mac_len - len_not_used);
298 
299 				}
300 			}
301 		}
302 	} else {
303 		/* copy block to where it belongs */
304 		memcpy(out_data_1, ccm_mac_p, out_data_1_len);
305 		if (out_data_2 != NULL) {
306 			memcpy(out_data_2, ccm_mac_p + out_data_1_len,
307 			    block_size - out_data_1_len);
308 		}
309 	}
310 	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
311 	ctx->ccm_remainder_len = 0;
312 	return (CRYPTO_SUCCESS);
313 }
314 
315 /*
316  * This will only deal with decrypting the last block of the input that
317  * might not be a multiple of block length.
318  */
319 static void
320 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
321     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
322 {
323 	uint8_t *datap, *outp, *counterp;
324 	int i;
325 
326 	datap = (uint8_t *)ctx->ccm_remainder;
327 	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
328 
329 	counterp = (uint8_t *)ctx->ccm_tmp;
330 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
331 
332 	/* XOR with counter block */
333 	for (i = 0; i < ctx->ccm_remainder_len; i++) {
334 		outp[i] = datap[i] ^ counterp[i];
335 	}
336 }
337 
338 /*
339  * This will decrypt the cipher text.  However, the plaintext won't be
340  * returned to the caller.  It will be returned when decrypt_final() is
341  * called if the MAC matches
342  */
343 int
344 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
345     crypto_data_t *out, size_t block_size,
346     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
347     void (*copy_block)(uint8_t *, uint8_t *),
348     void (*xor_block)(uint8_t *, uint8_t *))
349 {
350 	(void) out;
351 	size_t remainder = length;
352 	size_t need = 0;
353 	uint8_t *datap = (uint8_t *)data;
354 	uint8_t *blockp;
355 	uint8_t *cbp;
356 	uint64_t counter;
357 	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
358 	uint8_t *resultp;
359 
360 
361 	pm_len = ctx->ccm_processed_mac_len;
362 
363 	if (pm_len > 0) {
364 		uint8_t *tmp;
365 		/*
366 		 * all ciphertext has been processed, just waiting for
367 		 * part of the value of the mac
368 		 */
369 		if ((pm_len + length) > ctx->ccm_mac_len) {
370 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
371 		}
372 		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
373 
374 		memcpy(tmp + pm_len, datap, length);
375 
376 		ctx->ccm_processed_mac_len += length;
377 		return (CRYPTO_SUCCESS);
378 	}
379 
380 	/*
381 	 * If we decrypt the given data, what total amount of data would
382 	 * have been decrypted?
383 	 */
384 	pd_len = ctx->ccm_processed_data_len;
385 	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
386 
387 	if (total_decrypted_len >
388 	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
389 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
390 	}
391 
392 	pt_len = ctx->ccm_data_len;
393 
394 	if (total_decrypted_len > pt_len) {
395 		/*
396 		 * part of the input will be the MAC, need to isolate that
397 		 * to be dealt with later.  The left-over data in
398 		 * ccm_remainder_len from last time will not be part of the
399 		 * MAC.  Otherwise, it would have already been taken out
400 		 * when this call is made last time.
401 		 */
402 		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
403 
404 		mac_len = length - pt_part;
405 
406 		ctx->ccm_processed_mac_len = mac_len;
407 		memcpy(ctx->ccm_mac_input_buf, data + pt_part, mac_len);
408 
409 		if (pt_part + ctx->ccm_remainder_len < block_size) {
410 			/*
411 			 * since this is last of the ciphertext, will
412 			 * just decrypt with it here
413 			 */
414 			memcpy(&((uint8_t *)ctx->ccm_remainder)
415 			    [ctx->ccm_remainder_len], datap, pt_part);
416 			ctx->ccm_remainder_len += pt_part;
417 			ccm_decrypt_incomplete_block(ctx, encrypt_block);
418 			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
419 			ctx->ccm_remainder_len = 0;
420 			return (CRYPTO_SUCCESS);
421 		} else {
422 			/* let rest of the code handle this */
423 			length = pt_part;
424 		}
425 	} else if (length + ctx->ccm_remainder_len < block_size) {
426 		/* accumulate bytes here and return */
427 		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
428 		    datap,
429 		    length);
430 		ctx->ccm_remainder_len += length;
431 		ctx->ccm_copy_to = datap;
432 		return (CRYPTO_SUCCESS);
433 	}
434 
435 	do {
436 		/* Unprocessed data from last call. */
437 		if (ctx->ccm_remainder_len > 0) {
438 			need = block_size - ctx->ccm_remainder_len;
439 
440 			if (need > remainder)
441 				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
442 
443 			memcpy(&((uint8_t *)ctx->ccm_remainder)
444 			    [ctx->ccm_remainder_len], datap, need);
445 
446 			blockp = (uint8_t *)ctx->ccm_remainder;
447 		} else {
448 			blockp = datap;
449 		}
450 
451 		/* Calculate the counter mode, ccm_cb is the counter block */
452 		cbp = (uint8_t *)ctx->ccm_tmp;
453 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
454 
455 		/*
456 		 * Increment counter.
457 		 * Counter bits are confined to the bottom 64 bits
458 		 */
459 #ifdef _ZFS_LITTLE_ENDIAN
460 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
461 		counter = htonll(counter + 1);
462 #else
463 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
464 		counter++;
465 #endif	/* _ZFS_LITTLE_ENDIAN */
466 		counter &= ctx->ccm_counter_mask;
467 		ctx->ccm_cb[1] =
468 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
469 
470 		/* XOR with the ciphertext */
471 		xor_block(blockp, cbp);
472 
473 		/* Copy the plaintext to the "holding buffer" */
474 		resultp = (uint8_t *)ctx->ccm_pt_buf +
475 		    ctx->ccm_processed_data_len;
476 		copy_block(cbp, resultp);
477 
478 		ctx->ccm_processed_data_len += block_size;
479 
480 		ctx->ccm_lastp = blockp;
481 
482 		/* Update pointer to next block of data to be processed. */
483 		if (ctx->ccm_remainder_len != 0) {
484 			datap += need;
485 			ctx->ccm_remainder_len = 0;
486 		} else {
487 			datap += block_size;
488 		}
489 
490 		remainder = (size_t)&data[length] - (size_t)datap;
491 
492 		/* Incomplete last block */
493 		if (remainder > 0 && remainder < block_size) {
494 			memcpy(ctx->ccm_remainder, datap, remainder);
495 			ctx->ccm_remainder_len = remainder;
496 			ctx->ccm_copy_to = datap;
497 			if (ctx->ccm_processed_mac_len > 0) {
498 				/*
499 				 * not expecting anymore ciphertext, just
500 				 * compute plaintext for the remaining input
501 				 */
502 				ccm_decrypt_incomplete_block(ctx,
503 				    encrypt_block);
504 				ctx->ccm_processed_data_len += remainder;
505 				ctx->ccm_remainder_len = 0;
506 			}
507 			goto out;
508 		}
509 		ctx->ccm_copy_to = NULL;
510 
511 	} while (remainder > 0);
512 
513 out:
514 	return (CRYPTO_SUCCESS);
515 }
516 
517 int
518 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
519     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
520     void (*copy_block)(uint8_t *, uint8_t *),
521     void (*xor_block)(uint8_t *, uint8_t *))
522 {
523 	size_t mac_remain, pt_len;
524 	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
525 	int rv;
526 
527 	pt_len = ctx->ccm_data_len;
528 
529 	/* Make sure output buffer can fit all of the plaintext */
530 	if (out->cd_length < pt_len) {
531 		return (CRYPTO_DATA_LEN_RANGE);
532 	}
533 
534 	pt = ctx->ccm_pt_buf;
535 	mac_remain = ctx->ccm_processed_data_len;
536 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
537 
538 	macp = (uint8_t *)ctx->ccm_tmp;
539 
540 	while (mac_remain > 0) {
541 		if (mac_remain < block_size) {
542 			memset(macp, 0, block_size);
543 			memcpy(macp, pt, mac_remain);
544 			mac_remain = 0;
545 		} else {
546 			copy_block(pt, macp);
547 			mac_remain -= block_size;
548 			pt += block_size;
549 		}
550 
551 		/* calculate the CBC MAC */
552 		xor_block(macp, mac_buf);
553 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
554 	}
555 
556 	/* Calculate the CCM MAC */
557 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
558 	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
559 
560 	/* compare the input CCM MAC value with what we calculated */
561 	if (memcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
562 		/* They don't match */
563 		return (CRYPTO_INVALID_MAC);
564 	} else {
565 		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
566 		if (rv != CRYPTO_SUCCESS)
567 			return (rv);
568 		out->cd_offset += pt_len;
569 	}
570 	return (CRYPTO_SUCCESS);
571 }
572 
573 static int
574 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
575 {
576 	size_t macSize, nonceSize;
577 	uint8_t q;
578 	uint64_t maxValue;
579 
580 	/*
581 	 * Check the length of the MAC.  The only valid
582 	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
583 	 */
584 	macSize = ccm_param->ulMACSize;
585 	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
586 		return (CRYPTO_MECHANISM_PARAM_INVALID);
587 	}
588 
589 	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
590 	nonceSize = ccm_param->ulNonceSize;
591 	if ((nonceSize < 7) || (nonceSize > 13)) {
592 		return (CRYPTO_MECHANISM_PARAM_INVALID);
593 	}
594 
595 	/* q is the length of the field storing the length, in bytes */
596 	q = (uint8_t)((15 - nonceSize) & 0xFF);
597 
598 
599 	/*
600 	 * If it is decrypt, need to make sure size of ciphertext is at least
601 	 * bigger than MAC len
602 	 */
603 	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
604 		return (CRYPTO_MECHANISM_PARAM_INVALID);
605 	}
606 
607 	/*
608 	 * Check to make sure the length of the payload is within the
609 	 * range of values allowed by q
610 	 */
611 	if (q < 8) {
612 		maxValue = (1ULL << (q * 8)) - 1;
613 	} else {
614 		maxValue = ULONG_MAX;
615 	}
616 
617 	if (ccm_param->ulDataSize > maxValue) {
618 		return (CRYPTO_MECHANISM_PARAM_INVALID);
619 	}
620 	return (CRYPTO_SUCCESS);
621 }
622 
623 /*
624  * Format the first block used in CBC-MAC (B0) and the initial counter
625  * block based on formatting functions and counter generation functions
626  * specified in RFC 3610 and NIST publication 800-38C, appendix A
627  *
628  * b0 is the first block used in CBC-MAC
629  * cb0 is the first counter block
630  *
631  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
632  *
633  */
634 static void
635 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
636     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
637 {
638 	uint64_t payloadSize;
639 	uint8_t t, q, have_adata = 0;
640 	size_t limit;
641 	int i, j, k;
642 	uint64_t mask = 0;
643 	uint8_t *cb;
644 
645 	q = (uint8_t)((15 - nonceSize) & 0xFF);
646 	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
647 
648 	/* Construct the first octet of b0 */
649 	if (authDataSize > 0) {
650 		have_adata = 1;
651 	}
652 	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
653 
654 	/* copy the nonce value into b0 */
655 	memcpy(&(b0[1]), nonce, nonceSize);
656 
657 	/* store the length of the payload into b0 */
658 	memset(&(b0[1+nonceSize]), 0, q);
659 
660 	payloadSize = aes_ctx->ccm_data_len;
661 	limit = 8 < q ? 8 : q;
662 
663 	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
664 		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
665 	}
666 
667 	/* format the counter block */
668 
669 	cb = (uint8_t *)aes_ctx->ccm_cb;
670 
671 	cb[0] = 0x07 & (q-1); /* first byte */
672 
673 	/* copy the nonce value into the counter block */
674 	memcpy(&(cb[1]), nonce, nonceSize);
675 
676 	memset(&(cb[1+nonceSize]), 0, q);
677 
678 	/* Create the mask for the counter field based on the size of nonce */
679 	q <<= 3;
680 	while (q-- > 0) {
681 		mask |= (1ULL << q);
682 	}
683 
684 #ifdef _ZFS_LITTLE_ENDIAN
685 	mask = htonll(mask);
686 #endif
687 	aes_ctx->ccm_counter_mask = mask;
688 
689 	/*
690 	 * During calculation, we start using counter block 1, we will
691 	 * set it up right here.
692 	 * We can just set the last byte to have the value 1, because
693 	 * even with the biggest nonce of 13, the last byte of the
694 	 * counter block will be used for the counter value.
695 	 */
696 	cb[15] = 0x01;
697 }
698 
699 /*
700  * Encode the length of the associated data as
701  * specified in RFC 3610 and NIST publication 800-38C, appendix A
702  */
703 static void
704 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
705 {
706 #ifdef UNALIGNED_POINTERS_PERMITTED
707 	uint32_t	*lencoded_ptr;
708 #ifdef _LP64
709 	uint64_t	*llencoded_ptr;
710 #endif
711 #endif	/* UNALIGNED_POINTERS_PERMITTED */
712 
713 	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
714 		/* 0 < a < (2^16-2^8) */
715 		*encoded_len = 2;
716 		encoded[0] = (auth_data_len & 0xff00) >> 8;
717 		encoded[1] = auth_data_len & 0xff;
718 
719 	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
720 	    (auth_data_len < (1ULL << 31))) {
721 		/* (2^16-2^8) <= a < 2^32 */
722 		*encoded_len = 6;
723 		encoded[0] = 0xff;
724 		encoded[1] = 0xfe;
725 #ifdef UNALIGNED_POINTERS_PERMITTED
726 		lencoded_ptr = (uint32_t *)&encoded[2];
727 		*lencoded_ptr = htonl(auth_data_len);
728 #else
729 		encoded[2] = (auth_data_len & 0xff000000) >> 24;
730 		encoded[3] = (auth_data_len & 0xff0000) >> 16;
731 		encoded[4] = (auth_data_len & 0xff00) >> 8;
732 		encoded[5] = auth_data_len & 0xff;
733 #endif	/* UNALIGNED_POINTERS_PERMITTED */
734 
735 #ifdef _LP64
736 	} else {
737 		/* 2^32 <= a < 2^64 */
738 		*encoded_len = 10;
739 		encoded[0] = 0xff;
740 		encoded[1] = 0xff;
741 #ifdef UNALIGNED_POINTERS_PERMITTED
742 		llencoded_ptr = (uint64_t *)&encoded[2];
743 		*llencoded_ptr = htonl(auth_data_len);
744 #else
745 		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
746 		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
747 		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
748 		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
749 		encoded[6] = (auth_data_len & 0xff000000) >> 24;
750 		encoded[7] = (auth_data_len & 0xff0000) >> 16;
751 		encoded[8] = (auth_data_len & 0xff00) >> 8;
752 		encoded[9] = auth_data_len & 0xff;
753 #endif	/* UNALIGNED_POINTERS_PERMITTED */
754 #endif	/* _LP64 */
755 	}
756 }
757 
758 static int
759 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
760     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
761     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
762     void (*xor_block)(uint8_t *, uint8_t *))
763 {
764 	uint8_t *mac_buf, *datap, *ivp, *authp;
765 	size_t remainder, processed;
766 	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
767 	size_t encoded_a_len = 0;
768 
769 	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
770 
771 	/*
772 	 * Format the 1st block for CBC-MAC and construct the
773 	 * 1st counter block.
774 	 *
775 	 * aes_ctx->ccm_iv is used for storing the counter block
776 	 * mac_buf will store b0 at this time.
777 	 */
778 	ccm_format_initial_blocks(nonce, nonce_len,
779 	    auth_data_len, mac_buf, ctx);
780 
781 	/* The IV for CBC MAC for AES CCM mode is always zero */
782 	ivp = (uint8_t *)ctx->ccm_tmp;
783 	memset(ivp, 0, block_size);
784 
785 	xor_block(ivp, mac_buf);
786 
787 	/* encrypt the nonce */
788 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
789 
790 	/* take care of the associated data, if any */
791 	if (auth_data_len == 0) {
792 		return (CRYPTO_SUCCESS);
793 	}
794 
795 	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
796 
797 	remainder = auth_data_len;
798 
799 	/* 1st block: it contains encoded associated data, and some data */
800 	authp = (uint8_t *)ctx->ccm_tmp;
801 	memset(authp, 0, block_size);
802 	memcpy(authp, encoded_a, encoded_a_len);
803 	processed = block_size - encoded_a_len;
804 	if (processed > auth_data_len) {
805 		/* in case auth_data is very small */
806 		processed = auth_data_len;
807 	}
808 	memcpy(authp+encoded_a_len, auth_data, processed);
809 	/* xor with previous buffer */
810 	xor_block(authp, mac_buf);
811 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
812 	remainder -= processed;
813 	if (remainder == 0) {
814 		/* a small amount of associated data, it's all done now */
815 		return (CRYPTO_SUCCESS);
816 	}
817 
818 	do {
819 		if (remainder < block_size) {
820 			/*
821 			 * There's not a block full of data, pad rest of
822 			 * buffer with zero
823 			 */
824 			memset(authp, 0, block_size);
825 			memcpy(authp, &(auth_data[processed]), remainder);
826 			datap = (uint8_t *)authp;
827 			remainder = 0;
828 		} else {
829 			datap = (uint8_t *)(&(auth_data[processed]));
830 			processed += block_size;
831 			remainder -= block_size;
832 		}
833 
834 		xor_block(datap, mac_buf);
835 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
836 
837 	} while (remainder > 0);
838 
839 	return (CRYPTO_SUCCESS);
840 }
841 
842 /*
843  * The following function should be call at encrypt or decrypt init time
844  * for AES CCM mode.
845  */
846 int
847 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
848     boolean_t is_encrypt_init, size_t block_size,
849     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
850     void (*xor_block)(uint8_t *, uint8_t *))
851 {
852 	int rv;
853 	CK_AES_CCM_PARAMS *ccm_param;
854 
855 	if (param != NULL) {
856 		ccm_param = (CK_AES_CCM_PARAMS *)param;
857 
858 		if ((rv = ccm_validate_args(ccm_param,
859 		    is_encrypt_init)) != 0) {
860 			return (rv);
861 		}
862 
863 		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
864 		if (is_encrypt_init) {
865 			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
866 		} else {
867 			ccm_ctx->ccm_data_len =
868 			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
869 			ccm_ctx->ccm_processed_mac_len = 0;
870 		}
871 		ccm_ctx->ccm_processed_data_len = 0;
872 
873 		ccm_ctx->ccm_flags |= CCM_MODE;
874 	} else {
875 		return (CRYPTO_MECHANISM_PARAM_INVALID);
876 	}
877 
878 	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
879 	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
880 	    encrypt_block, xor_block) != 0) {
881 		return (CRYPTO_MECHANISM_PARAM_INVALID);
882 	}
883 	if (!is_encrypt_init) {
884 		/* allocate buffer for storing decrypted plaintext */
885 		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
886 		    kmflag);
887 		if (ccm_ctx->ccm_pt_buf == NULL) {
888 			rv = CRYPTO_HOST_MEMORY;
889 		}
890 	}
891 	return (rv);
892 }
893 
894 void *
895 ccm_alloc_ctx(int kmflag)
896 {
897 	ccm_ctx_t *ccm_ctx;
898 
899 	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
900 		return (NULL);
901 
902 	ccm_ctx->ccm_flags = CCM_MODE;
903 	return (ccm_ctx);
904 }
905