xref: /freebsd/sys/contrib/openzfs/module/icp/algs/modes/ccm.c (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <modes/modes.h>
28 #include <sys/crypto/common.h>
29 #include <sys/crypto/impl.h>
30 
31 #ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
32 #include <sys/byteorder.h>
33 #define	UNALIGNED_POINTERS_PERMITTED
34 #endif
35 
36 /*
37  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
38  * is done in another function.
39  */
40 int
41 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
42     crypto_data_t *out, size_t block_size,
43     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
44     void (*copy_block)(uint8_t *, uint8_t *),
45     void (*xor_block)(uint8_t *, uint8_t *))
46 {
47 	size_t remainder = length;
48 	size_t need = 0;
49 	uint8_t *datap = (uint8_t *)data;
50 	uint8_t *blockp;
51 	uint8_t *lastp;
52 	void *iov_or_mp;
53 	offset_t offset;
54 	uint8_t *out_data_1;
55 	uint8_t *out_data_2;
56 	size_t out_data_1_len;
57 	uint64_t counter;
58 	uint8_t *mac_buf;
59 
60 	if (length + ctx->ccm_remainder_len < block_size) {
61 		/* accumulate bytes here and return */
62 		bcopy(datap,
63 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
64 		    length);
65 		ctx->ccm_remainder_len += length;
66 		ctx->ccm_copy_to = datap;
67 		return (CRYPTO_SUCCESS);
68 	}
69 
70 	lastp = (uint8_t *)ctx->ccm_cb;
71 	crypto_init_ptrs(out, &iov_or_mp, &offset);
72 
73 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
74 
75 	do {
76 		/* Unprocessed data from last call. */
77 		if (ctx->ccm_remainder_len > 0) {
78 			need = block_size - ctx->ccm_remainder_len;
79 
80 			if (need > remainder)
81 				return (CRYPTO_DATA_LEN_RANGE);
82 
83 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
84 			    [ctx->ccm_remainder_len], need);
85 
86 			blockp = (uint8_t *)ctx->ccm_remainder;
87 		} else {
88 			blockp = datap;
89 		}
90 
91 		/*
92 		 * do CBC MAC
93 		 *
94 		 * XOR the previous cipher block current clear block.
95 		 * mac_buf always contain previous cipher block.
96 		 */
97 		xor_block(blockp, mac_buf);
98 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
99 
100 		/* ccm_cb is the counter block */
101 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
102 		    (uint8_t *)ctx->ccm_tmp);
103 
104 		lastp = (uint8_t *)ctx->ccm_tmp;
105 
106 		/*
107 		 * Increment counter. Counter bits are confined
108 		 * to the bottom 64 bits of the counter block.
109 		 */
110 #ifdef _ZFS_LITTLE_ENDIAN
111 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
112 		counter = htonll(counter + 1);
113 #else
114 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
115 		counter++;
116 #endif	/* _ZFS_LITTLE_ENDIAN */
117 		counter &= ctx->ccm_counter_mask;
118 		ctx->ccm_cb[1] =
119 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
120 
121 		/*
122 		 * XOR encrypted counter block with the current clear block.
123 		 */
124 		xor_block(blockp, lastp);
125 
126 		ctx->ccm_processed_data_len += block_size;
127 
128 		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
129 		    &out_data_1_len, &out_data_2, block_size);
130 
131 		/* copy block to where it belongs */
132 		if (out_data_1_len == block_size) {
133 			copy_block(lastp, out_data_1);
134 		} else {
135 			bcopy(lastp, out_data_1, out_data_1_len);
136 			if (out_data_2 != NULL) {
137 				bcopy(lastp + out_data_1_len,
138 				    out_data_2,
139 				    block_size - out_data_1_len);
140 			}
141 		}
142 		/* update offset */
143 		out->cd_offset += block_size;
144 
145 		/* Update pointer to next block of data to be processed. */
146 		if (ctx->ccm_remainder_len != 0) {
147 			datap += need;
148 			ctx->ccm_remainder_len = 0;
149 		} else {
150 			datap += block_size;
151 		}
152 
153 		remainder = (size_t)&data[length] - (size_t)datap;
154 
155 		/* Incomplete last block. */
156 		if (remainder > 0 && remainder < block_size) {
157 			bcopy(datap, ctx->ccm_remainder, remainder);
158 			ctx->ccm_remainder_len = remainder;
159 			ctx->ccm_copy_to = datap;
160 			goto out;
161 		}
162 		ctx->ccm_copy_to = NULL;
163 
164 	} while (remainder > 0);
165 
166 out:
167 	return (CRYPTO_SUCCESS);
168 }
169 
170 void
171 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
172     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
173 {
174 	uint64_t counter;
175 	uint8_t *counterp, *mac_buf;
176 	int i;
177 
178 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
179 
180 	/* first counter block start with index 0 */
181 	counter = 0;
182 	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
183 
184 	counterp = (uint8_t *)ctx->ccm_tmp;
185 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
186 
187 	/* calculate XOR of MAC with first counter block */
188 	for (i = 0; i < ctx->ccm_mac_len; i++) {
189 		ccm_mac[i] = mac_buf[i] ^ counterp[i];
190 	}
191 }
192 
193 /* ARGSUSED */
194 int
195 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
196     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
197     void (*xor_block)(uint8_t *, uint8_t *))
198 {
199 	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
200 	void *iov_or_mp;
201 	offset_t offset;
202 	uint8_t *out_data_1;
203 	uint8_t *out_data_2;
204 	size_t out_data_1_len;
205 	int i;
206 
207 	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
208 		return (CRYPTO_DATA_LEN_RANGE);
209 	}
210 
211 	/*
212 	 * When we get here, the number of bytes of payload processed
213 	 * plus whatever data remains, if any,
214 	 * should be the same as the number of bytes that's being
215 	 * passed in the argument during init time.
216 	 */
217 	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
218 	    != (ctx->ccm_data_len)) {
219 		return (CRYPTO_DATA_LEN_RANGE);
220 	}
221 
222 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
223 
224 	if (ctx->ccm_remainder_len > 0) {
225 
226 		/* ccm_mac_input_buf is not used for encryption */
227 		macp = (uint8_t *)ctx->ccm_mac_input_buf;
228 		bzero(macp, block_size);
229 
230 		/* copy remainder to temporary buffer */
231 		bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
232 
233 		/* calculate the CBC MAC */
234 		xor_block(macp, mac_buf);
235 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
236 
237 		/* calculate the counter mode */
238 		lastp = (uint8_t *)ctx->ccm_tmp;
239 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
240 
241 		/* XOR with counter block */
242 		for (i = 0; i < ctx->ccm_remainder_len; i++) {
243 			macp[i] ^= lastp[i];
244 		}
245 		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
246 	}
247 
248 	/* Calculate the CCM MAC */
249 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
250 	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
251 
252 	crypto_init_ptrs(out, &iov_or_mp, &offset);
253 	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
254 	    &out_data_1_len, &out_data_2,
255 	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
256 
257 	if (ctx->ccm_remainder_len > 0) {
258 
259 		/* copy temporary block to where it belongs */
260 		if (out_data_2 == NULL) {
261 			/* everything will fit in out_data_1 */
262 			bcopy(macp, out_data_1, ctx->ccm_remainder_len);
263 			bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
264 			    ctx->ccm_mac_len);
265 		} else {
266 
267 			if (out_data_1_len < ctx->ccm_remainder_len) {
268 
269 				size_t data_2_len_used;
270 
271 				bcopy(macp, out_data_1, out_data_1_len);
272 
273 				data_2_len_used = ctx->ccm_remainder_len
274 				    - out_data_1_len;
275 
276 				bcopy((uint8_t *)macp + out_data_1_len,
277 				    out_data_2, data_2_len_used);
278 				bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
279 				    ctx->ccm_mac_len);
280 			} else {
281 				bcopy(macp, out_data_1, out_data_1_len);
282 				if (out_data_1_len == ctx->ccm_remainder_len) {
283 					/* mac will be in out_data_2 */
284 					bcopy(ccm_mac_p, out_data_2,
285 					    ctx->ccm_mac_len);
286 				} else {
287 					size_t len_not_used = out_data_1_len -
288 					    ctx->ccm_remainder_len;
289 					/*
290 					 * part of mac in will be in
291 					 * out_data_1, part of the mac will be
292 					 * in out_data_2
293 					 */
294 					bcopy(ccm_mac_p,
295 					    out_data_1 + ctx->ccm_remainder_len,
296 					    len_not_used);
297 					bcopy(ccm_mac_p + len_not_used,
298 					    out_data_2,
299 					    ctx->ccm_mac_len - len_not_used);
300 
301 				}
302 			}
303 		}
304 	} else {
305 		/* copy block to where it belongs */
306 		bcopy(ccm_mac_p, out_data_1, out_data_1_len);
307 		if (out_data_2 != NULL) {
308 			bcopy(ccm_mac_p + out_data_1_len, out_data_2,
309 			    block_size - out_data_1_len);
310 		}
311 	}
312 	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
313 	ctx->ccm_remainder_len = 0;
314 	return (CRYPTO_SUCCESS);
315 }
316 
317 /*
318  * This will only deal with decrypting the last block of the input that
319  * might not be a multiple of block length.
320  */
321 static void
322 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
323     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
324 {
325 	uint8_t *datap, *outp, *counterp;
326 	int i;
327 
328 	datap = (uint8_t *)ctx->ccm_remainder;
329 	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
330 
331 	counterp = (uint8_t *)ctx->ccm_tmp;
332 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
333 
334 	/* XOR with counter block */
335 	for (i = 0; i < ctx->ccm_remainder_len; i++) {
336 		outp[i] = datap[i] ^ counterp[i];
337 	}
338 }
339 
340 /*
341  * This will decrypt the cipher text.  However, the plaintext won't be
342  * returned to the caller.  It will be returned when decrypt_final() is
343  * called if the MAC matches
344  */
345 /* ARGSUSED */
346 int
347 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
348     crypto_data_t *out, size_t block_size,
349     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
350     void (*copy_block)(uint8_t *, uint8_t *),
351     void (*xor_block)(uint8_t *, uint8_t *))
352 {
353 	size_t remainder = length;
354 	size_t need = 0;
355 	uint8_t *datap = (uint8_t *)data;
356 	uint8_t *blockp;
357 	uint8_t *cbp;
358 	uint64_t counter;
359 	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
360 	uint8_t *resultp;
361 
362 
363 	pm_len = ctx->ccm_processed_mac_len;
364 
365 	if (pm_len > 0) {
366 		uint8_t *tmp;
367 		/*
368 		 * all ciphertext has been processed, just waiting for
369 		 * part of the value of the mac
370 		 */
371 		if ((pm_len + length) > ctx->ccm_mac_len) {
372 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
373 		}
374 		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
375 
376 		bcopy(datap, tmp + pm_len, length);
377 
378 		ctx->ccm_processed_mac_len += length;
379 		return (CRYPTO_SUCCESS);
380 	}
381 
382 	/*
383 	 * If we decrypt the given data, what total amount of data would
384 	 * have been decrypted?
385 	 */
386 	pd_len = ctx->ccm_processed_data_len;
387 	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
388 
389 	if (total_decrypted_len >
390 	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
391 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
392 	}
393 
394 	pt_len = ctx->ccm_data_len;
395 
396 	if (total_decrypted_len > pt_len) {
397 		/*
398 		 * part of the input will be the MAC, need to isolate that
399 		 * to be dealt with later.  The left-over data in
400 		 * ccm_remainder_len from last time will not be part of the
401 		 * MAC.  Otherwise, it would have already been taken out
402 		 * when this call is made last time.
403 		 */
404 		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
405 
406 		mac_len = length - pt_part;
407 
408 		ctx->ccm_processed_mac_len = mac_len;
409 		bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
410 
411 		if (pt_part + ctx->ccm_remainder_len < block_size) {
412 			/*
413 			 * since this is last of the ciphertext, will
414 			 * just decrypt with it here
415 			 */
416 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
417 			    [ctx->ccm_remainder_len], pt_part);
418 			ctx->ccm_remainder_len += pt_part;
419 			ccm_decrypt_incomplete_block(ctx, encrypt_block);
420 			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
421 			ctx->ccm_remainder_len = 0;
422 			return (CRYPTO_SUCCESS);
423 		} else {
424 			/* let rest of the code handle this */
425 			length = pt_part;
426 		}
427 	} else if (length + ctx->ccm_remainder_len < block_size) {
428 			/* accumulate bytes here and return */
429 		bcopy(datap,
430 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
431 		    length);
432 		ctx->ccm_remainder_len += length;
433 		ctx->ccm_copy_to = datap;
434 		return (CRYPTO_SUCCESS);
435 	}
436 
437 	do {
438 		/* Unprocessed data from last call. */
439 		if (ctx->ccm_remainder_len > 0) {
440 			need = block_size - ctx->ccm_remainder_len;
441 
442 			if (need > remainder)
443 				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
444 
445 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
446 			    [ctx->ccm_remainder_len], need);
447 
448 			blockp = (uint8_t *)ctx->ccm_remainder;
449 		} else {
450 			blockp = datap;
451 		}
452 
453 		/* Calculate the counter mode, ccm_cb is the counter block */
454 		cbp = (uint8_t *)ctx->ccm_tmp;
455 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
456 
457 		/*
458 		 * Increment counter.
459 		 * Counter bits are confined to the bottom 64 bits
460 		 */
461 #ifdef _ZFS_LITTLE_ENDIAN
462 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
463 		counter = htonll(counter + 1);
464 #else
465 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
466 		counter++;
467 #endif	/* _ZFS_LITTLE_ENDIAN */
468 		counter &= ctx->ccm_counter_mask;
469 		ctx->ccm_cb[1] =
470 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
471 
472 		/* XOR with the ciphertext */
473 		xor_block(blockp, cbp);
474 
475 		/* Copy the plaintext to the "holding buffer" */
476 		resultp = (uint8_t *)ctx->ccm_pt_buf +
477 		    ctx->ccm_processed_data_len;
478 		copy_block(cbp, resultp);
479 
480 		ctx->ccm_processed_data_len += block_size;
481 
482 		ctx->ccm_lastp = blockp;
483 
484 		/* Update pointer to next block of data to be processed. */
485 		if (ctx->ccm_remainder_len != 0) {
486 			datap += need;
487 			ctx->ccm_remainder_len = 0;
488 		} else {
489 			datap += block_size;
490 		}
491 
492 		remainder = (size_t)&data[length] - (size_t)datap;
493 
494 		/* Incomplete last block */
495 		if (remainder > 0 && remainder < block_size) {
496 			bcopy(datap, ctx->ccm_remainder, remainder);
497 			ctx->ccm_remainder_len = remainder;
498 			ctx->ccm_copy_to = datap;
499 			if (ctx->ccm_processed_mac_len > 0) {
500 				/*
501 				 * not expecting anymore ciphertext, just
502 				 * compute plaintext for the remaining input
503 				 */
504 				ccm_decrypt_incomplete_block(ctx,
505 				    encrypt_block);
506 				ctx->ccm_processed_data_len += remainder;
507 				ctx->ccm_remainder_len = 0;
508 			}
509 			goto out;
510 		}
511 		ctx->ccm_copy_to = NULL;
512 
513 	} while (remainder > 0);
514 
515 out:
516 	return (CRYPTO_SUCCESS);
517 }
518 
519 int
520 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
521     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
522     void (*copy_block)(uint8_t *, uint8_t *),
523     void (*xor_block)(uint8_t *, uint8_t *))
524 {
525 	size_t mac_remain, pt_len;
526 	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
527 	int rv;
528 
529 	pt_len = ctx->ccm_data_len;
530 
531 	/* Make sure output buffer can fit all of the plaintext */
532 	if (out->cd_length < pt_len) {
533 		return (CRYPTO_DATA_LEN_RANGE);
534 	}
535 
536 	pt = ctx->ccm_pt_buf;
537 	mac_remain = ctx->ccm_processed_data_len;
538 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
539 
540 	macp = (uint8_t *)ctx->ccm_tmp;
541 
542 	while (mac_remain > 0) {
543 
544 		if (mac_remain < block_size) {
545 			bzero(macp, block_size);
546 			bcopy(pt, macp, mac_remain);
547 			mac_remain = 0;
548 		} else {
549 			copy_block(pt, macp);
550 			mac_remain -= block_size;
551 			pt += block_size;
552 		}
553 
554 		/* calculate the CBC MAC */
555 		xor_block(macp, mac_buf);
556 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
557 	}
558 
559 	/* Calculate the CCM MAC */
560 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
561 	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
562 
563 	/* compare the input CCM MAC value with what we calculated */
564 	if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
565 		/* They don't match */
566 		return (CRYPTO_INVALID_MAC);
567 	} else {
568 		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
569 		if (rv != CRYPTO_SUCCESS)
570 			return (rv);
571 		out->cd_offset += pt_len;
572 	}
573 	return (CRYPTO_SUCCESS);
574 }
575 
576 static int
577 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
578 {
579 	size_t macSize, nonceSize;
580 	uint8_t q;
581 	uint64_t maxValue;
582 
583 	/*
584 	 * Check the length of the MAC.  The only valid
585 	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
586 	 */
587 	macSize = ccm_param->ulMACSize;
588 	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
589 		return (CRYPTO_MECHANISM_PARAM_INVALID);
590 	}
591 
592 	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
593 	nonceSize = ccm_param->ulNonceSize;
594 	if ((nonceSize < 7) || (nonceSize > 13)) {
595 		return (CRYPTO_MECHANISM_PARAM_INVALID);
596 	}
597 
598 	/* q is the length of the field storing the length, in bytes */
599 	q = (uint8_t)((15 - nonceSize) & 0xFF);
600 
601 
602 	/*
603 	 * If it is decrypt, need to make sure size of ciphertext is at least
604 	 * bigger than MAC len
605 	 */
606 	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
607 		return (CRYPTO_MECHANISM_PARAM_INVALID);
608 	}
609 
610 	/*
611 	 * Check to make sure the length of the payload is within the
612 	 * range of values allowed by q
613 	 */
614 	if (q < 8) {
615 		maxValue = (1ULL << (q * 8)) - 1;
616 	} else {
617 		maxValue = ULONG_MAX;
618 	}
619 
620 	if (ccm_param->ulDataSize > maxValue) {
621 		return (CRYPTO_MECHANISM_PARAM_INVALID);
622 	}
623 	return (CRYPTO_SUCCESS);
624 }
625 
626 /*
627  * Format the first block used in CBC-MAC (B0) and the initial counter
628  * block based on formatting functions and counter generation functions
629  * specified in RFC 3610 and NIST publication 800-38C, appendix A
630  *
631  * b0 is the first block used in CBC-MAC
632  * cb0 is the first counter block
633  *
634  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
635  *
636  */
637 static void
638 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
639     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
640 {
641 	uint64_t payloadSize;
642 	uint8_t t, q, have_adata = 0;
643 	size_t limit;
644 	int i, j, k;
645 	uint64_t mask = 0;
646 	uint8_t *cb;
647 
648 	q = (uint8_t)((15 - nonceSize) & 0xFF);
649 	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
650 
651 	/* Construct the first octet of b0 */
652 	if (authDataSize > 0) {
653 		have_adata = 1;
654 	}
655 	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
656 
657 	/* copy the nonce value into b0 */
658 	bcopy(nonce, &(b0[1]), nonceSize);
659 
660 	/* store the length of the payload into b0 */
661 	bzero(&(b0[1+nonceSize]), q);
662 
663 	payloadSize = aes_ctx->ccm_data_len;
664 	limit = 8 < q ? 8 : q;
665 
666 	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
667 		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
668 	}
669 
670 	/* format the counter block */
671 
672 	cb = (uint8_t *)aes_ctx->ccm_cb;
673 
674 	cb[0] = 0x07 & (q-1); /* first byte */
675 
676 	/* copy the nonce value into the counter block */
677 	bcopy(nonce, &(cb[1]), nonceSize);
678 
679 	bzero(&(cb[1+nonceSize]), q);
680 
681 	/* Create the mask for the counter field based on the size of nonce */
682 	q <<= 3;
683 	while (q-- > 0) {
684 		mask |= (1ULL << q);
685 	}
686 
687 #ifdef _ZFS_LITTLE_ENDIAN
688 	mask = htonll(mask);
689 #endif
690 	aes_ctx->ccm_counter_mask = mask;
691 
692 	/*
693 	 * During calculation, we start using counter block 1, we will
694 	 * set it up right here.
695 	 * We can just set the last byte to have the value 1, because
696 	 * even with the biggest nonce of 13, the last byte of the
697 	 * counter block will be used for the counter value.
698 	 */
699 	cb[15] = 0x01;
700 }
701 
702 /*
703  * Encode the length of the associated data as
704  * specified in RFC 3610 and NIST publication 800-38C, appendix A
705  */
706 static void
707 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
708 {
709 #ifdef UNALIGNED_POINTERS_PERMITTED
710 	uint32_t	*lencoded_ptr;
711 #ifdef _LP64
712 	uint64_t	*llencoded_ptr;
713 #endif
714 #endif	/* UNALIGNED_POINTERS_PERMITTED */
715 
716 	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
717 		/* 0 < a < (2^16-2^8) */
718 		*encoded_len = 2;
719 		encoded[0] = (auth_data_len & 0xff00) >> 8;
720 		encoded[1] = auth_data_len & 0xff;
721 
722 	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
723 	    (auth_data_len < (1ULL << 31))) {
724 		/* (2^16-2^8) <= a < 2^32 */
725 		*encoded_len = 6;
726 		encoded[0] = 0xff;
727 		encoded[1] = 0xfe;
728 #ifdef UNALIGNED_POINTERS_PERMITTED
729 		lencoded_ptr = (uint32_t *)&encoded[2];
730 		*lencoded_ptr = htonl(auth_data_len);
731 #else
732 		encoded[2] = (auth_data_len & 0xff000000) >> 24;
733 		encoded[3] = (auth_data_len & 0xff0000) >> 16;
734 		encoded[4] = (auth_data_len & 0xff00) >> 8;
735 		encoded[5] = auth_data_len & 0xff;
736 #endif	/* UNALIGNED_POINTERS_PERMITTED */
737 
738 #ifdef _LP64
739 	} else {
740 		/* 2^32 <= a < 2^64 */
741 		*encoded_len = 10;
742 		encoded[0] = 0xff;
743 		encoded[1] = 0xff;
744 #ifdef UNALIGNED_POINTERS_PERMITTED
745 		llencoded_ptr = (uint64_t *)&encoded[2];
746 		*llencoded_ptr = htonl(auth_data_len);
747 #else
748 		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
749 		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
750 		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
751 		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
752 		encoded[6] = (auth_data_len & 0xff000000) >> 24;
753 		encoded[7] = (auth_data_len & 0xff0000) >> 16;
754 		encoded[8] = (auth_data_len & 0xff00) >> 8;
755 		encoded[9] = auth_data_len & 0xff;
756 #endif	/* UNALIGNED_POINTERS_PERMITTED */
757 #endif	/* _LP64 */
758 	}
759 }
760 
761 static int
762 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
763     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
764     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
765     void (*xor_block)(uint8_t *, uint8_t *))
766 {
767 	uint8_t *mac_buf, *datap, *ivp, *authp;
768 	size_t remainder, processed;
769 	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
770 	size_t encoded_a_len = 0;
771 
772 	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
773 
774 	/*
775 	 * Format the 1st block for CBC-MAC and construct the
776 	 * 1st counter block.
777 	 *
778 	 * aes_ctx->ccm_iv is used for storing the counter block
779 	 * mac_buf will store b0 at this time.
780 	 */
781 	ccm_format_initial_blocks(nonce, nonce_len,
782 	    auth_data_len, mac_buf, ctx);
783 
784 	/* The IV for CBC MAC for AES CCM mode is always zero */
785 	ivp = (uint8_t *)ctx->ccm_tmp;
786 	bzero(ivp, block_size);
787 
788 	xor_block(ivp, mac_buf);
789 
790 	/* encrypt the nonce */
791 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
792 
793 	/* take care of the associated data, if any */
794 	if (auth_data_len == 0) {
795 		return (CRYPTO_SUCCESS);
796 	}
797 
798 	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
799 
800 	remainder = auth_data_len;
801 
802 	/* 1st block: it contains encoded associated data, and some data */
803 	authp = (uint8_t *)ctx->ccm_tmp;
804 	bzero(authp, block_size);
805 	bcopy(encoded_a, authp, encoded_a_len);
806 	processed = block_size - encoded_a_len;
807 	if (processed > auth_data_len) {
808 		/* in case auth_data is very small */
809 		processed = auth_data_len;
810 	}
811 	bcopy(auth_data, authp+encoded_a_len, processed);
812 	/* xor with previous buffer */
813 	xor_block(authp, mac_buf);
814 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
815 	remainder -= processed;
816 	if (remainder == 0) {
817 		/* a small amount of associated data, it's all done now */
818 		return (CRYPTO_SUCCESS);
819 	}
820 
821 	do {
822 		if (remainder < block_size) {
823 			/*
824 			 * There's not a block full of data, pad rest of
825 			 * buffer with zero
826 			 */
827 			bzero(authp, block_size);
828 			bcopy(&(auth_data[processed]), authp, remainder);
829 			datap = (uint8_t *)authp;
830 			remainder = 0;
831 		} else {
832 			datap = (uint8_t *)(&(auth_data[processed]));
833 			processed += block_size;
834 			remainder -= block_size;
835 		}
836 
837 		xor_block(datap, mac_buf);
838 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
839 
840 	} while (remainder > 0);
841 
842 	return (CRYPTO_SUCCESS);
843 }
844 
845 /*
846  * The following function should be call at encrypt or decrypt init time
847  * for AES CCM mode.
848  */
849 int
850 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
851     boolean_t is_encrypt_init, size_t block_size,
852     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
853     void (*xor_block)(uint8_t *, uint8_t *))
854 {
855 	int rv;
856 	CK_AES_CCM_PARAMS *ccm_param;
857 
858 	if (param != NULL) {
859 		ccm_param = (CK_AES_CCM_PARAMS *)param;
860 
861 		if ((rv = ccm_validate_args(ccm_param,
862 		    is_encrypt_init)) != 0) {
863 			return (rv);
864 		}
865 
866 		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
867 		if (is_encrypt_init) {
868 			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
869 		} else {
870 			ccm_ctx->ccm_data_len =
871 			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
872 			ccm_ctx->ccm_processed_mac_len = 0;
873 		}
874 		ccm_ctx->ccm_processed_data_len = 0;
875 
876 		ccm_ctx->ccm_flags |= CCM_MODE;
877 	} else {
878 		return (CRYPTO_MECHANISM_PARAM_INVALID);
879 	}
880 
881 	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
882 	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
883 	    encrypt_block, xor_block) != 0) {
884 		return (CRYPTO_MECHANISM_PARAM_INVALID);
885 	}
886 	if (!is_encrypt_init) {
887 		/* allocate buffer for storing decrypted plaintext */
888 		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
889 		    kmflag);
890 		if (ccm_ctx->ccm_pt_buf == NULL) {
891 			rv = CRYPTO_HOST_MEMORY;
892 		}
893 	}
894 	return (rv);
895 }
896 
897 void *
898 ccm_alloc_ctx(int kmflag)
899 {
900 	ccm_ctx_t *ccm_ctx;
901 
902 	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
903 		return (NULL);
904 
905 	ccm_ctx->ccm_flags = CCM_MODE;
906 	return (ccm_ctx);
907 }
908