1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <modes/modes.h> 28 #include <sys/crypto/common.h> 29 #include <sys/crypto/impl.h> 30 31 #ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS 32 #include <sys/byteorder.h> 33 #define UNALIGNED_POINTERS_PERMITTED 34 #endif 35 36 /* 37 * Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode 38 * is done in another function. 39 */ 40 int 41 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length, 42 crypto_data_t *out, size_t block_size, 43 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 44 void (*copy_block)(uint8_t *, uint8_t *), 45 void (*xor_block)(uint8_t *, uint8_t *)) 46 { 47 size_t remainder = length; 48 size_t need = 0; 49 uint8_t *datap = (uint8_t *)data; 50 uint8_t *blockp; 51 uint8_t *lastp; 52 void *iov_or_mp; 53 offset_t offset; 54 uint8_t *out_data_1; 55 uint8_t *out_data_2; 56 size_t out_data_1_len; 57 uint64_t counter; 58 uint8_t *mac_buf; 59 60 if (length + ctx->ccm_remainder_len < block_size) { 61 /* accumulate bytes here and return */ 62 bcopy(datap, 63 (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len, 64 length); 65 ctx->ccm_remainder_len += length; 66 ctx->ccm_copy_to = datap; 67 return (CRYPTO_SUCCESS); 68 } 69 70 lastp = (uint8_t *)ctx->ccm_cb; 71 crypto_init_ptrs(out, &iov_or_mp, &offset); 72 73 mac_buf = (uint8_t *)ctx->ccm_mac_buf; 74 75 do { 76 /* Unprocessed data from last call. */ 77 if (ctx->ccm_remainder_len > 0) { 78 need = block_size - ctx->ccm_remainder_len; 79 80 if (need > remainder) 81 return (CRYPTO_DATA_LEN_RANGE); 82 83 bcopy(datap, &((uint8_t *)ctx->ccm_remainder) 84 [ctx->ccm_remainder_len], need); 85 86 blockp = (uint8_t *)ctx->ccm_remainder; 87 } else { 88 blockp = datap; 89 } 90 91 /* 92 * do CBC MAC 93 * 94 * XOR the previous cipher block current clear block. 95 * mac_buf always contain previous cipher block. 96 */ 97 xor_block(blockp, mac_buf); 98 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 99 100 /* ccm_cb is the counter block */ 101 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, 102 (uint8_t *)ctx->ccm_tmp); 103 104 lastp = (uint8_t *)ctx->ccm_tmp; 105 106 /* 107 * Increment counter. Counter bits are confined 108 * to the bottom 64 bits of the counter block. 109 */ 110 #ifdef _ZFS_LITTLE_ENDIAN 111 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask); 112 counter = htonll(counter + 1); 113 #else 114 counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask; 115 counter++; 116 #endif /* _ZFS_LITTLE_ENDIAN */ 117 counter &= ctx->ccm_counter_mask; 118 ctx->ccm_cb[1] = 119 (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; 120 121 /* 122 * XOR encrypted counter block with the current clear block. 123 */ 124 xor_block(blockp, lastp); 125 126 ctx->ccm_processed_data_len += block_size; 127 128 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, 129 &out_data_1_len, &out_data_2, block_size); 130 131 /* copy block to where it belongs */ 132 if (out_data_1_len == block_size) { 133 copy_block(lastp, out_data_1); 134 } else { 135 bcopy(lastp, out_data_1, out_data_1_len); 136 if (out_data_2 != NULL) { 137 bcopy(lastp + out_data_1_len, 138 out_data_2, 139 block_size - out_data_1_len); 140 } 141 } 142 /* update offset */ 143 out->cd_offset += block_size; 144 145 /* Update pointer to next block of data to be processed. */ 146 if (ctx->ccm_remainder_len != 0) { 147 datap += need; 148 ctx->ccm_remainder_len = 0; 149 } else { 150 datap += block_size; 151 } 152 153 remainder = (size_t)&data[length] - (size_t)datap; 154 155 /* Incomplete last block. */ 156 if (remainder > 0 && remainder < block_size) { 157 bcopy(datap, ctx->ccm_remainder, remainder); 158 ctx->ccm_remainder_len = remainder; 159 ctx->ccm_copy_to = datap; 160 goto out; 161 } 162 ctx->ccm_copy_to = NULL; 163 164 } while (remainder > 0); 165 166 out: 167 return (CRYPTO_SUCCESS); 168 } 169 170 void 171 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac, 172 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) 173 { 174 uint64_t counter; 175 uint8_t *counterp, *mac_buf; 176 int i; 177 178 mac_buf = (uint8_t *)ctx->ccm_mac_buf; 179 180 /* first counter block start with index 0 */ 181 counter = 0; 182 ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; 183 184 counterp = (uint8_t *)ctx->ccm_tmp; 185 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp); 186 187 /* calculate XOR of MAC with first counter block */ 188 for (i = 0; i < ctx->ccm_mac_len; i++) { 189 ccm_mac[i] = mac_buf[i] ^ counterp[i]; 190 } 191 } 192 193 int 194 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size, 195 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 196 void (*xor_block)(uint8_t *, uint8_t *)) 197 { 198 uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL; 199 void *iov_or_mp; 200 offset_t offset; 201 uint8_t *out_data_1; 202 uint8_t *out_data_2; 203 size_t out_data_1_len; 204 int i; 205 206 if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) { 207 return (CRYPTO_DATA_LEN_RANGE); 208 } 209 210 /* 211 * When we get here, the number of bytes of payload processed 212 * plus whatever data remains, if any, 213 * should be the same as the number of bytes that's being 214 * passed in the argument during init time. 215 */ 216 if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len) 217 != (ctx->ccm_data_len)) { 218 return (CRYPTO_DATA_LEN_RANGE); 219 } 220 221 mac_buf = (uint8_t *)ctx->ccm_mac_buf; 222 223 if (ctx->ccm_remainder_len > 0) { 224 225 /* ccm_mac_input_buf is not used for encryption */ 226 macp = (uint8_t *)ctx->ccm_mac_input_buf; 227 bzero(macp, block_size); 228 229 /* copy remainder to temporary buffer */ 230 bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len); 231 232 /* calculate the CBC MAC */ 233 xor_block(macp, mac_buf); 234 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 235 236 /* calculate the counter mode */ 237 lastp = (uint8_t *)ctx->ccm_tmp; 238 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp); 239 240 /* XOR with counter block */ 241 for (i = 0; i < ctx->ccm_remainder_len; i++) { 242 macp[i] ^= lastp[i]; 243 } 244 ctx->ccm_processed_data_len += ctx->ccm_remainder_len; 245 } 246 247 /* Calculate the CCM MAC */ 248 ccm_mac_p = (uint8_t *)ctx->ccm_tmp; 249 calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block); 250 251 crypto_init_ptrs(out, &iov_or_mp, &offset); 252 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, 253 &out_data_1_len, &out_data_2, 254 ctx->ccm_remainder_len + ctx->ccm_mac_len); 255 256 if (ctx->ccm_remainder_len > 0) { 257 258 /* copy temporary block to where it belongs */ 259 if (out_data_2 == NULL) { 260 /* everything will fit in out_data_1 */ 261 bcopy(macp, out_data_1, ctx->ccm_remainder_len); 262 bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len, 263 ctx->ccm_mac_len); 264 } else { 265 266 if (out_data_1_len < ctx->ccm_remainder_len) { 267 268 size_t data_2_len_used; 269 270 bcopy(macp, out_data_1, out_data_1_len); 271 272 data_2_len_used = ctx->ccm_remainder_len 273 - out_data_1_len; 274 275 bcopy((uint8_t *)macp + out_data_1_len, 276 out_data_2, data_2_len_used); 277 bcopy(ccm_mac_p, out_data_2 + data_2_len_used, 278 ctx->ccm_mac_len); 279 } else { 280 bcopy(macp, out_data_1, out_data_1_len); 281 if (out_data_1_len == ctx->ccm_remainder_len) { 282 /* mac will be in out_data_2 */ 283 bcopy(ccm_mac_p, out_data_2, 284 ctx->ccm_mac_len); 285 } else { 286 size_t len_not_used = out_data_1_len - 287 ctx->ccm_remainder_len; 288 /* 289 * part of mac in will be in 290 * out_data_1, part of the mac will be 291 * in out_data_2 292 */ 293 bcopy(ccm_mac_p, 294 out_data_1 + ctx->ccm_remainder_len, 295 len_not_used); 296 bcopy(ccm_mac_p + len_not_used, 297 out_data_2, 298 ctx->ccm_mac_len - len_not_used); 299 300 } 301 } 302 } 303 } else { 304 /* copy block to where it belongs */ 305 bcopy(ccm_mac_p, out_data_1, out_data_1_len); 306 if (out_data_2 != NULL) { 307 bcopy(ccm_mac_p + out_data_1_len, out_data_2, 308 block_size - out_data_1_len); 309 } 310 } 311 out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len; 312 ctx->ccm_remainder_len = 0; 313 return (CRYPTO_SUCCESS); 314 } 315 316 /* 317 * This will only deal with decrypting the last block of the input that 318 * might not be a multiple of block length. 319 */ 320 static void 321 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx, 322 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *)) 323 { 324 uint8_t *datap, *outp, *counterp; 325 int i; 326 327 datap = (uint8_t *)ctx->ccm_remainder; 328 outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]); 329 330 counterp = (uint8_t *)ctx->ccm_tmp; 331 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp); 332 333 /* XOR with counter block */ 334 for (i = 0; i < ctx->ccm_remainder_len; i++) { 335 outp[i] = datap[i] ^ counterp[i]; 336 } 337 } 338 339 /* 340 * This will decrypt the cipher text. However, the plaintext won't be 341 * returned to the caller. It will be returned when decrypt_final() is 342 * called if the MAC matches 343 */ 344 int 345 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length, 346 crypto_data_t *out, size_t block_size, 347 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 348 void (*copy_block)(uint8_t *, uint8_t *), 349 void (*xor_block)(uint8_t *, uint8_t *)) 350 { 351 (void) out; 352 size_t remainder = length; 353 size_t need = 0; 354 uint8_t *datap = (uint8_t *)data; 355 uint8_t *blockp; 356 uint8_t *cbp; 357 uint64_t counter; 358 size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len; 359 uint8_t *resultp; 360 361 362 pm_len = ctx->ccm_processed_mac_len; 363 364 if (pm_len > 0) { 365 uint8_t *tmp; 366 /* 367 * all ciphertext has been processed, just waiting for 368 * part of the value of the mac 369 */ 370 if ((pm_len + length) > ctx->ccm_mac_len) { 371 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); 372 } 373 tmp = (uint8_t *)ctx->ccm_mac_input_buf; 374 375 bcopy(datap, tmp + pm_len, length); 376 377 ctx->ccm_processed_mac_len += length; 378 return (CRYPTO_SUCCESS); 379 } 380 381 /* 382 * If we decrypt the given data, what total amount of data would 383 * have been decrypted? 384 */ 385 pd_len = ctx->ccm_processed_data_len; 386 total_decrypted_len = pd_len + length + ctx->ccm_remainder_len; 387 388 if (total_decrypted_len > 389 (ctx->ccm_data_len + ctx->ccm_mac_len)) { 390 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); 391 } 392 393 pt_len = ctx->ccm_data_len; 394 395 if (total_decrypted_len > pt_len) { 396 /* 397 * part of the input will be the MAC, need to isolate that 398 * to be dealt with later. The left-over data in 399 * ccm_remainder_len from last time will not be part of the 400 * MAC. Otherwise, it would have already been taken out 401 * when this call is made last time. 402 */ 403 size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len; 404 405 mac_len = length - pt_part; 406 407 ctx->ccm_processed_mac_len = mac_len; 408 bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len); 409 410 if (pt_part + ctx->ccm_remainder_len < block_size) { 411 /* 412 * since this is last of the ciphertext, will 413 * just decrypt with it here 414 */ 415 bcopy(datap, &((uint8_t *)ctx->ccm_remainder) 416 [ctx->ccm_remainder_len], pt_part); 417 ctx->ccm_remainder_len += pt_part; 418 ccm_decrypt_incomplete_block(ctx, encrypt_block); 419 ctx->ccm_processed_data_len += ctx->ccm_remainder_len; 420 ctx->ccm_remainder_len = 0; 421 return (CRYPTO_SUCCESS); 422 } else { 423 /* let rest of the code handle this */ 424 length = pt_part; 425 } 426 } else if (length + ctx->ccm_remainder_len < block_size) { 427 /* accumulate bytes here and return */ 428 bcopy(datap, 429 (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len, 430 length); 431 ctx->ccm_remainder_len += length; 432 ctx->ccm_copy_to = datap; 433 return (CRYPTO_SUCCESS); 434 } 435 436 do { 437 /* Unprocessed data from last call. */ 438 if (ctx->ccm_remainder_len > 0) { 439 need = block_size - ctx->ccm_remainder_len; 440 441 if (need > remainder) 442 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); 443 444 bcopy(datap, &((uint8_t *)ctx->ccm_remainder) 445 [ctx->ccm_remainder_len], need); 446 447 blockp = (uint8_t *)ctx->ccm_remainder; 448 } else { 449 blockp = datap; 450 } 451 452 /* Calculate the counter mode, ccm_cb is the counter block */ 453 cbp = (uint8_t *)ctx->ccm_tmp; 454 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp); 455 456 /* 457 * Increment counter. 458 * Counter bits are confined to the bottom 64 bits 459 */ 460 #ifdef _ZFS_LITTLE_ENDIAN 461 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask); 462 counter = htonll(counter + 1); 463 #else 464 counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask; 465 counter++; 466 #endif /* _ZFS_LITTLE_ENDIAN */ 467 counter &= ctx->ccm_counter_mask; 468 ctx->ccm_cb[1] = 469 (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter; 470 471 /* XOR with the ciphertext */ 472 xor_block(blockp, cbp); 473 474 /* Copy the plaintext to the "holding buffer" */ 475 resultp = (uint8_t *)ctx->ccm_pt_buf + 476 ctx->ccm_processed_data_len; 477 copy_block(cbp, resultp); 478 479 ctx->ccm_processed_data_len += block_size; 480 481 ctx->ccm_lastp = blockp; 482 483 /* Update pointer to next block of data to be processed. */ 484 if (ctx->ccm_remainder_len != 0) { 485 datap += need; 486 ctx->ccm_remainder_len = 0; 487 } else { 488 datap += block_size; 489 } 490 491 remainder = (size_t)&data[length] - (size_t)datap; 492 493 /* Incomplete last block */ 494 if (remainder > 0 && remainder < block_size) { 495 bcopy(datap, ctx->ccm_remainder, remainder); 496 ctx->ccm_remainder_len = remainder; 497 ctx->ccm_copy_to = datap; 498 if (ctx->ccm_processed_mac_len > 0) { 499 /* 500 * not expecting anymore ciphertext, just 501 * compute plaintext for the remaining input 502 */ 503 ccm_decrypt_incomplete_block(ctx, 504 encrypt_block); 505 ctx->ccm_processed_data_len += remainder; 506 ctx->ccm_remainder_len = 0; 507 } 508 goto out; 509 } 510 ctx->ccm_copy_to = NULL; 511 512 } while (remainder > 0); 513 514 out: 515 return (CRYPTO_SUCCESS); 516 } 517 518 int 519 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size, 520 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 521 void (*copy_block)(uint8_t *, uint8_t *), 522 void (*xor_block)(uint8_t *, uint8_t *)) 523 { 524 size_t mac_remain, pt_len; 525 uint8_t *pt, *mac_buf, *macp, *ccm_mac_p; 526 int rv; 527 528 pt_len = ctx->ccm_data_len; 529 530 /* Make sure output buffer can fit all of the plaintext */ 531 if (out->cd_length < pt_len) { 532 return (CRYPTO_DATA_LEN_RANGE); 533 } 534 535 pt = ctx->ccm_pt_buf; 536 mac_remain = ctx->ccm_processed_data_len; 537 mac_buf = (uint8_t *)ctx->ccm_mac_buf; 538 539 macp = (uint8_t *)ctx->ccm_tmp; 540 541 while (mac_remain > 0) { 542 543 if (mac_remain < block_size) { 544 bzero(macp, block_size); 545 bcopy(pt, macp, mac_remain); 546 mac_remain = 0; 547 } else { 548 copy_block(pt, macp); 549 mac_remain -= block_size; 550 pt += block_size; 551 } 552 553 /* calculate the CBC MAC */ 554 xor_block(macp, mac_buf); 555 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 556 } 557 558 /* Calculate the CCM MAC */ 559 ccm_mac_p = (uint8_t *)ctx->ccm_tmp; 560 calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block); 561 562 /* compare the input CCM MAC value with what we calculated */ 563 if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) { 564 /* They don't match */ 565 return (CRYPTO_INVALID_MAC); 566 } else { 567 rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len); 568 if (rv != CRYPTO_SUCCESS) 569 return (rv); 570 out->cd_offset += pt_len; 571 } 572 return (CRYPTO_SUCCESS); 573 } 574 575 static int 576 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init) 577 { 578 size_t macSize, nonceSize; 579 uint8_t q; 580 uint64_t maxValue; 581 582 /* 583 * Check the length of the MAC. The only valid 584 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16 585 */ 586 macSize = ccm_param->ulMACSize; 587 if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) { 588 return (CRYPTO_MECHANISM_PARAM_INVALID); 589 } 590 591 /* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */ 592 nonceSize = ccm_param->ulNonceSize; 593 if ((nonceSize < 7) || (nonceSize > 13)) { 594 return (CRYPTO_MECHANISM_PARAM_INVALID); 595 } 596 597 /* q is the length of the field storing the length, in bytes */ 598 q = (uint8_t)((15 - nonceSize) & 0xFF); 599 600 601 /* 602 * If it is decrypt, need to make sure size of ciphertext is at least 603 * bigger than MAC len 604 */ 605 if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) { 606 return (CRYPTO_MECHANISM_PARAM_INVALID); 607 } 608 609 /* 610 * Check to make sure the length of the payload is within the 611 * range of values allowed by q 612 */ 613 if (q < 8) { 614 maxValue = (1ULL << (q * 8)) - 1; 615 } else { 616 maxValue = ULONG_MAX; 617 } 618 619 if (ccm_param->ulDataSize > maxValue) { 620 return (CRYPTO_MECHANISM_PARAM_INVALID); 621 } 622 return (CRYPTO_SUCCESS); 623 } 624 625 /* 626 * Format the first block used in CBC-MAC (B0) and the initial counter 627 * block based on formatting functions and counter generation functions 628 * specified in RFC 3610 and NIST publication 800-38C, appendix A 629 * 630 * b0 is the first block used in CBC-MAC 631 * cb0 is the first counter block 632 * 633 * It's assumed that the arguments b0 and cb0 are preallocated AES blocks 634 * 635 */ 636 static void 637 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize, 638 ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx) 639 { 640 uint64_t payloadSize; 641 uint8_t t, q, have_adata = 0; 642 size_t limit; 643 int i, j, k; 644 uint64_t mask = 0; 645 uint8_t *cb; 646 647 q = (uint8_t)((15 - nonceSize) & 0xFF); 648 t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF); 649 650 /* Construct the first octet of b0 */ 651 if (authDataSize > 0) { 652 have_adata = 1; 653 } 654 b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1); 655 656 /* copy the nonce value into b0 */ 657 bcopy(nonce, &(b0[1]), nonceSize); 658 659 /* store the length of the payload into b0 */ 660 bzero(&(b0[1+nonceSize]), q); 661 662 payloadSize = aes_ctx->ccm_data_len; 663 limit = 8 < q ? 8 : q; 664 665 for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) { 666 b0[k] = (uint8_t)((payloadSize >> j) & 0xFF); 667 } 668 669 /* format the counter block */ 670 671 cb = (uint8_t *)aes_ctx->ccm_cb; 672 673 cb[0] = 0x07 & (q-1); /* first byte */ 674 675 /* copy the nonce value into the counter block */ 676 bcopy(nonce, &(cb[1]), nonceSize); 677 678 bzero(&(cb[1+nonceSize]), q); 679 680 /* Create the mask for the counter field based on the size of nonce */ 681 q <<= 3; 682 while (q-- > 0) { 683 mask |= (1ULL << q); 684 } 685 686 #ifdef _ZFS_LITTLE_ENDIAN 687 mask = htonll(mask); 688 #endif 689 aes_ctx->ccm_counter_mask = mask; 690 691 /* 692 * During calculation, we start using counter block 1, we will 693 * set it up right here. 694 * We can just set the last byte to have the value 1, because 695 * even with the biggest nonce of 13, the last byte of the 696 * counter block will be used for the counter value. 697 */ 698 cb[15] = 0x01; 699 } 700 701 /* 702 * Encode the length of the associated data as 703 * specified in RFC 3610 and NIST publication 800-38C, appendix A 704 */ 705 static void 706 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len) 707 { 708 #ifdef UNALIGNED_POINTERS_PERMITTED 709 uint32_t *lencoded_ptr; 710 #ifdef _LP64 711 uint64_t *llencoded_ptr; 712 #endif 713 #endif /* UNALIGNED_POINTERS_PERMITTED */ 714 715 if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) { 716 /* 0 < a < (2^16-2^8) */ 717 *encoded_len = 2; 718 encoded[0] = (auth_data_len & 0xff00) >> 8; 719 encoded[1] = auth_data_len & 0xff; 720 721 } else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) && 722 (auth_data_len < (1ULL << 31))) { 723 /* (2^16-2^8) <= a < 2^32 */ 724 *encoded_len = 6; 725 encoded[0] = 0xff; 726 encoded[1] = 0xfe; 727 #ifdef UNALIGNED_POINTERS_PERMITTED 728 lencoded_ptr = (uint32_t *)&encoded[2]; 729 *lencoded_ptr = htonl(auth_data_len); 730 #else 731 encoded[2] = (auth_data_len & 0xff000000) >> 24; 732 encoded[3] = (auth_data_len & 0xff0000) >> 16; 733 encoded[4] = (auth_data_len & 0xff00) >> 8; 734 encoded[5] = auth_data_len & 0xff; 735 #endif /* UNALIGNED_POINTERS_PERMITTED */ 736 737 #ifdef _LP64 738 } else { 739 /* 2^32 <= a < 2^64 */ 740 *encoded_len = 10; 741 encoded[0] = 0xff; 742 encoded[1] = 0xff; 743 #ifdef UNALIGNED_POINTERS_PERMITTED 744 llencoded_ptr = (uint64_t *)&encoded[2]; 745 *llencoded_ptr = htonl(auth_data_len); 746 #else 747 encoded[2] = (auth_data_len & 0xff00000000000000) >> 56; 748 encoded[3] = (auth_data_len & 0xff000000000000) >> 48; 749 encoded[4] = (auth_data_len & 0xff0000000000) >> 40; 750 encoded[5] = (auth_data_len & 0xff00000000) >> 32; 751 encoded[6] = (auth_data_len & 0xff000000) >> 24; 752 encoded[7] = (auth_data_len & 0xff0000) >> 16; 753 encoded[8] = (auth_data_len & 0xff00) >> 8; 754 encoded[9] = auth_data_len & 0xff; 755 #endif /* UNALIGNED_POINTERS_PERMITTED */ 756 #endif /* _LP64 */ 757 } 758 } 759 760 static int 761 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len, 762 unsigned char *auth_data, size_t auth_data_len, size_t block_size, 763 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 764 void (*xor_block)(uint8_t *, uint8_t *)) 765 { 766 uint8_t *mac_buf, *datap, *ivp, *authp; 767 size_t remainder, processed; 768 uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */ 769 size_t encoded_a_len = 0; 770 771 mac_buf = (uint8_t *)&(ctx->ccm_mac_buf); 772 773 /* 774 * Format the 1st block for CBC-MAC and construct the 775 * 1st counter block. 776 * 777 * aes_ctx->ccm_iv is used for storing the counter block 778 * mac_buf will store b0 at this time. 779 */ 780 ccm_format_initial_blocks(nonce, nonce_len, 781 auth_data_len, mac_buf, ctx); 782 783 /* The IV for CBC MAC for AES CCM mode is always zero */ 784 ivp = (uint8_t *)ctx->ccm_tmp; 785 bzero(ivp, block_size); 786 787 xor_block(ivp, mac_buf); 788 789 /* encrypt the nonce */ 790 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 791 792 /* take care of the associated data, if any */ 793 if (auth_data_len == 0) { 794 return (CRYPTO_SUCCESS); 795 } 796 797 encode_adata_len(auth_data_len, encoded_a, &encoded_a_len); 798 799 remainder = auth_data_len; 800 801 /* 1st block: it contains encoded associated data, and some data */ 802 authp = (uint8_t *)ctx->ccm_tmp; 803 bzero(authp, block_size); 804 bcopy(encoded_a, authp, encoded_a_len); 805 processed = block_size - encoded_a_len; 806 if (processed > auth_data_len) { 807 /* in case auth_data is very small */ 808 processed = auth_data_len; 809 } 810 bcopy(auth_data, authp+encoded_a_len, processed); 811 /* xor with previous buffer */ 812 xor_block(authp, mac_buf); 813 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 814 remainder -= processed; 815 if (remainder == 0) { 816 /* a small amount of associated data, it's all done now */ 817 return (CRYPTO_SUCCESS); 818 } 819 820 do { 821 if (remainder < block_size) { 822 /* 823 * There's not a block full of data, pad rest of 824 * buffer with zero 825 */ 826 bzero(authp, block_size); 827 bcopy(&(auth_data[processed]), authp, remainder); 828 datap = (uint8_t *)authp; 829 remainder = 0; 830 } else { 831 datap = (uint8_t *)(&(auth_data[processed])); 832 processed += block_size; 833 remainder -= block_size; 834 } 835 836 xor_block(datap, mac_buf); 837 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf); 838 839 } while (remainder > 0); 840 841 return (CRYPTO_SUCCESS); 842 } 843 844 /* 845 * The following function should be call at encrypt or decrypt init time 846 * for AES CCM mode. 847 */ 848 int 849 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag, 850 boolean_t is_encrypt_init, size_t block_size, 851 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), 852 void (*xor_block)(uint8_t *, uint8_t *)) 853 { 854 int rv; 855 CK_AES_CCM_PARAMS *ccm_param; 856 857 if (param != NULL) { 858 ccm_param = (CK_AES_CCM_PARAMS *)param; 859 860 if ((rv = ccm_validate_args(ccm_param, 861 is_encrypt_init)) != 0) { 862 return (rv); 863 } 864 865 ccm_ctx->ccm_mac_len = ccm_param->ulMACSize; 866 if (is_encrypt_init) { 867 ccm_ctx->ccm_data_len = ccm_param->ulDataSize; 868 } else { 869 ccm_ctx->ccm_data_len = 870 ccm_param->ulDataSize - ccm_ctx->ccm_mac_len; 871 ccm_ctx->ccm_processed_mac_len = 0; 872 } 873 ccm_ctx->ccm_processed_data_len = 0; 874 875 ccm_ctx->ccm_flags |= CCM_MODE; 876 } else { 877 return (CRYPTO_MECHANISM_PARAM_INVALID); 878 } 879 880 if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize, 881 ccm_param->authData, ccm_param->ulAuthDataSize, block_size, 882 encrypt_block, xor_block) != 0) { 883 return (CRYPTO_MECHANISM_PARAM_INVALID); 884 } 885 if (!is_encrypt_init) { 886 /* allocate buffer for storing decrypted plaintext */ 887 ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len, 888 kmflag); 889 if (ccm_ctx->ccm_pt_buf == NULL) { 890 rv = CRYPTO_HOST_MEMORY; 891 } 892 } 893 return (rv); 894 } 895 896 void * 897 ccm_alloc_ctx(int kmflag) 898 { 899 ccm_ctx_t *ccm_ctx; 900 901 if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL) 902 return (NULL); 903 904 ccm_ctx->ccm_flags = CCM_MODE; 905 return (ccm_ctx); 906 } 907