1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Based on Edon-R implementation for SUPERCOP, based on NIST API. 24 * Copyright (c) 2009, 2010, Jørn Amundsen <jorn.amundsen@ntnu.no> 25 * Copyright (c) 2013 Saso Kiselkov, All rights reserved 26 * Copyright (c) 2023 Tino Reichardt <milky-zfs@mcmilk.de> 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/string.h> 31 #include <sys/edonr.h> 32 33 /* 34 * We need 1196 byte stack for Q512() on i386 35 * - we define this pragma to make gcc happy 36 */ 37 #if defined(__GNUC__) && defined(_ILP32) 38 #pragma GCC diagnostic ignored "-Wframe-larger-than=" 39 #endif 40 41 /* 42 * Insert compiler memory barriers to reduce stack frame size. 43 */ 44 #define MEMORY_BARRIER asm volatile("" ::: "memory"); 45 46 #if defined(_ZFS_BIG_ENDIAN) 47 #define ld_swap64(s, d) (d = __builtin_bswap64(*(s))) 48 #define st_swap64(s, d) (*(d) = __builtin_bswap64(s)) 49 #else 50 #define ld_swap64(s, d) (d = *(s)) 51 #define st_swap64(s, d) (*(d) = s) 52 #endif 53 54 #define hashState512(x) ((x)->pipe->p512) 55 56 /* rotate shortcuts */ 57 #define rotl64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) 58 59 /* EdonR512 initial double chaining pipe */ 60 static const uint64_t i512p2[16] = { 61 0x8081828384858687ull, 0x88898a8b8c8d8e8full, 62 0x9091929394959697ull, 0x98999a9b9c9d9e9full, 63 0xa0a1a2a3a4a5a6a7ull, 0xa8a9aaabacadaeafull, 64 0xb0b1b2b3b4b5b6b7ull, 0xb8b9babbbcbdbebfull, 65 0xc0c1c2c3c4c5c6c7ull, 0xc8c9cacbcccdcecfull, 66 0xd0d1d2d3d4d5d6d7ull, 0xd8d9dadbdcdddedfull, 67 0xe0e1e2e3e4e5e6e7ull, 0xe8e9eaebecedeeefull, 68 0xf0f1f2f3f4f5f6f7ull, 0xf8f9fafbfcfdfeffull 69 }; 70 71 #define LS1_512(x0, x1, x2, x3, x4, x5, x6, x7) \ 72 { \ 73 MEMORY_BARRIER \ 74 z1 = x0 + x4, z2 = x1 + x7; z5 = z1 + z2; \ 75 s0 = 0xaaaaaaaaaaaaaaaaull + z5 + x2; \ 76 s1 = rotl64(z5 + x3, 5); \ 77 s2 = rotl64(z5 + x6, 15); z3 = x2 + x3; \ 78 s5 = rotl64(z1 + z3 + x5, 40); z4 = x5 + x6; \ 79 s6 = rotl64(z2 + z4 + x0, 50); z6 = z3 + z4; \ 80 s3 = rotl64(z6 + x7, 22); \ 81 s4 = rotl64(z6 + x1, 31); \ 82 s7 = rotl64(z6 + x4, 59); \ 83 } 84 85 #define LS2_512(y0, y1, y2, y3, y4, y5, y6, y7) \ 86 { \ 87 z1 = y0 + y1, z2 = y2 + y5; z6 = z1 + z2; \ 88 t0 = ~0xaaaaaaaaaaaaaaaaull + z6 + y7; \ 89 t2 = rotl64(z6 + y3, 19); \ 90 z3 = y3 + y4, z5 = z1 + z3; \ 91 t1 = rotl64(z5 + y6, 10); \ 92 t4 = rotl64(z5 + y5, 36); \ 93 z4 = y6 + y7, z8 = z3 + z4; \ 94 t3 = rotl64(z8 + y2, 29); \ 95 t7 = rotl64(z8 + y0, 55); z7 = z2 + z4; \ 96 t5 = rotl64(z7 + y4, 44); \ 97 t6 = rotl64(z7 + y1, 48); \ 98 } 99 100 #define QEF_512(r0, r1, r2, r3, r4, r5, r6, r7) \ 101 { \ 102 z1 = s0 ^ s4, z5 = t0 ^ t1; \ 103 r0 = (z1 ^ s1) + (z5 ^ t5); z8 = t6 ^ t7; \ 104 r1 = (z1 ^ s7) + (t2 ^ z8); z3 = s2 ^ s3; \ 105 r7 = (z3 ^ s5) + (t4 ^ z8); z7 = t3 ^ t4; \ 106 r3 = (z3 ^ s4) + (t0 ^ z7); z4 = s5 ^ s6; \ 107 r5 = (s3 ^ z4) + (z7 ^ t6); z6 = t2 ^ t5; \ 108 r6 = (s2 ^ z4) + (z6 ^ t7); z2 = s1 ^ s7; \ 109 r4 = (s0 ^ z2) + (t1 ^ z6); \ 110 r2 = (z2 ^ s6) + (z5 ^ t3); \ 111 } 112 113 static inline size_t 114 Q512(size_t bitlen, const uint64_t *data, uint64_t *p) 115 { 116 size_t bl; 117 118 for (bl = bitlen; bl >= EdonR512_BLOCK_BITSIZE; 119 bl -= EdonR512_BLOCK_BITSIZE, data += 16) { 120 uint64_t q0, q1, q2, q3, q4, q5, q6, q7; 121 uint64_t p0, p1, p2, p3, p4, p5, p6, p7; 122 uint64_t s0, s1, s2, s3, s4, s5, s6, s7; 123 uint64_t t0, t1, t2, t3, t4, t5, t6, t7; 124 uint64_t z1, z2, z3, z4, z5, z6, z7, z8; 125 126 #if defined(_ZFS_BIG_ENDIAN) 127 uint64_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, 128 swp8, swp9, swp10, swp11, swp12, swp13, swp14, swp15; 129 #define d(j) swp##j 130 #define s64(j) ld_swap64((uint64_t *)data+j, swp##j) 131 s64(0); 132 s64(1); 133 s64(2); 134 s64(3); 135 s64(4); 136 s64(5); 137 s64(6); 138 s64(7); 139 s64(8); 140 s64(9); 141 s64(10); 142 s64(11); 143 s64(12); 144 s64(13); 145 s64(14); 146 s64(15); 147 #else 148 #define d(j) data[j] 149 #endif 150 151 /* First row of quasigroup e-transformations */ 152 LS1_512(d(15), d(14), d(13), d(12), d(11), d(10), d(9), d(8)); 153 LS2_512(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7)); 154 QEF_512(p0, p1, p2, p3, p4, p5, p6, p7); 155 156 LS1_512(p0, p1, p2, p3, p4, p5, p6, p7); 157 LS2_512(d(8), d(9), d(10), d(11), d(12), d(13), d(14), d(15)); 158 QEF_512(q0, q1, q2, q3, q4, q5, q6, q7); 159 160 /* Second row of quasigroup e-transformations */ 161 LS1_512(p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 162 LS2_512(p0, p1, p2, p3, p4, p5, p6, p7); 163 QEF_512(p0, p1, p2, p3, p4, p5, p6, p7); 164 165 LS1_512(p0, p1, p2, p3, p4, p5, p6, p7); 166 LS2_512(q0, q1, q2, q3, q4, q5, q6, q7); 167 QEF_512(q0, q1, q2, q3, q4, q5, q6, q7); 168 169 /* Third row of quasigroup e-transformations */ 170 LS1_512(p0, p1, p2, p3, p4, p5, p6, p7); 171 LS2_512(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); 172 QEF_512(p0, p1, p2, p3, p4, p5, p6, p7); 173 174 LS1_512(q0, q1, q2, q3, q4, q5, q6, q7); 175 LS2_512(p0, p1, p2, p3, p4, p5, p6, p7); 176 QEF_512(q0, q1, q2, q3, q4, q5, q6, q7); 177 178 /* Fourth row of quasigroup e-transformations */ 179 LS1_512(d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0)); 180 LS2_512(p0, p1, p2, p3, p4, p5, p6, p7); 181 QEF_512(p0, p1, p2, p3, p4, p5, p6, p7); 182 183 LS1_512(p0, p1, p2, p3, p4, p5, p6, p7); 184 LS2_512(q0, q1, q2, q3, q4, q5, q6, q7); 185 QEF_512(q0, q1, q2, q3, q4, q5, q6, q7); 186 187 /* Edon-R tweak on the original SHA-3 Edon-R submission. */ 188 p[0] ^= d(8) ^ p0; 189 p[1] ^= d(9) ^ p1; 190 p[2] ^= d(10) ^ p2; 191 p[3] ^= d(11) ^ p3; 192 p[4] ^= d(12) ^ p4; 193 p[5] ^= d(13) ^ p5; 194 p[6] ^= d(14) ^ p6; 195 p[7] ^= d(15) ^ p7; 196 p[8] ^= d(0) ^ q0; 197 p[9] ^= d(1) ^ q1; 198 p[10] ^= d(2) ^ q2; 199 p[11] ^= d(3) ^ q3; 200 p[12] ^= d(4) ^ q4; 201 p[13] ^= d(5) ^ q5; 202 p[14] ^= d(6) ^ q6; 203 p[15] ^= d(7) ^ q7; 204 } 205 206 #undef s64 207 #undef d 208 return (bitlen - bl); 209 } 210 211 void 212 EdonRInit(EdonRState *state) 213 { 214 state->bits_processed = 0; 215 state->unprocessed_bits = 0; 216 memcpy(hashState512(state)->DoublePipe, i512p2, sizeof (i512p2)); 217 } 218 219 void 220 EdonRUpdate(EdonRState *state, const uint8_t *data, size_t databitlen) 221 { 222 uint64_t *data64; 223 size_t bits_processed; 224 225 if (state->unprocessed_bits > 0) { 226 /* LastBytes = databitlen / 8 */ 227 int LastBytes = (int)databitlen >> 3; 228 229 ASSERT(state->unprocessed_bits + databitlen <= 230 EdonR512_BLOCK_SIZE * 8); 231 232 memcpy(hashState512(state)->LastPart 233 + (state->unprocessed_bits >> 3), data, LastBytes); 234 state->unprocessed_bits += (int)databitlen; 235 databitlen = state->unprocessed_bits; 236 /* LINTED E_BAD_PTR_CAST_ALIGN */ 237 data64 = (uint64_t *)hashState512(state)->LastPart; 238 } else 239 /* LINTED E_BAD_PTR_CAST_ALIGN */ 240 data64 = (uint64_t *)data; 241 242 bits_processed = Q512(databitlen, data64, 243 hashState512(state)->DoublePipe); 244 state->bits_processed += bits_processed; 245 databitlen -= bits_processed; 246 state->unprocessed_bits = (int)databitlen; 247 if (databitlen > 0) { 248 /* LastBytes = Ceil(databitlen / 8) */ 249 int LastBytes = ((~(((-(int)databitlen) >> 3) & 0x03ff)) + 1) \ 250 & 0x03ff; 251 252 data64 += bits_processed >> 6; /* byte size update */ 253 memmove(hashState512(state)->LastPart, data64, LastBytes); 254 } 255 } 256 257 void 258 EdonRFinal(EdonRState *state, uint8_t *hashval) 259 { 260 uint64_t *data64, num_bits; 261 size_t databitlen; 262 int LastByte, PadOnePosition; 263 264 num_bits = state->bits_processed + state->unprocessed_bits; 265 LastByte = (int)state->unprocessed_bits >> 3; 266 PadOnePosition = 7 - (state->unprocessed_bits & 0x07); 267 hashState512(state)->LastPart[LastByte] = 268 (hashState512(state)->LastPart[LastByte] \ 269 & (0xff << (PadOnePosition + 1))) ^ (0x01 << PadOnePosition); 270 /* LINTED E_BAD_PTR_CAST_ALIGN */ 271 data64 = (uint64_t *)hashState512(state)->LastPart; 272 273 if (state->unprocessed_bits < 960) { 274 memset((hashState512(state)->LastPart) + 275 LastByte + 1, 0x00, EdonR512_BLOCK_SIZE - LastByte - 9); 276 databitlen = EdonR512_BLOCK_SIZE * 8; 277 #if defined(_ZFS_BIG_ENDIAN) 278 st_swap64(num_bits, data64 + 15); 279 #else 280 data64[15] = num_bits; 281 #endif 282 } else { 283 memset((hashState512(state)->LastPart) + LastByte + 1, 284 0x00, EdonR512_BLOCK_SIZE * 2 - LastByte - 9); 285 databitlen = EdonR512_BLOCK_SIZE * 16; 286 #if defined(_ZFS_BIG_ENDIAN) 287 st_swap64(num_bits, data64 + 31); 288 #else 289 data64[31] = num_bits; 290 #endif 291 } 292 293 state->bits_processed += Q512(databitlen, data64, 294 hashState512(state)->DoublePipe); 295 296 #if defined(_ZFS_BIG_ENDIAN) 297 data64 = (uint64_t *)hashval; 298 uint64_t *s64 = hashState512(state)->DoublePipe + 8; 299 int j; 300 301 for (j = 0; j < EdonR512_DIGEST_SIZE >> 3; j++) 302 st_swap64(s64[j], data64 + j); 303 #else 304 memcpy(hashval, hashState512(state)->DoublePipe + 8, 305 EdonR512_DIGEST_SIZE); 306 #endif 307 } 308 309 void 310 EdonRHash(const uint8_t *data, size_t databitlen, uint8_t *hashval) 311 { 312 EdonRState state; 313 314 EdonRInit(&state); 315 EdonRUpdate(&state, data, databitlen); 316 EdonRFinal(&state, hashval); 317 } 318 319 #ifdef _KERNEL 320 EXPORT_SYMBOL(EdonRInit); 321 EXPORT_SYMBOL(EdonRUpdate); 322 EXPORT_SYMBOL(EdonRHash); 323 EXPORT_SYMBOL(EdonRFinal); 324 #endif 325