1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 25 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor 26 * Copyright (c) 2021-2022 Tino Reichardt <milky-zfs@mcmilk.de> 27 */ 28 29 #include <sys/simd.h> 30 #include <sys/zfs_context.h> 31 #include <sys/blake3.h> 32 33 #include "blake3_impl.h" 34 35 /* 36 * We need 1056 byte stack for blake3_compress_subtree_wide() 37 * - we define this pragma to make gcc happy 38 */ 39 #if defined(__GNUC__) 40 #pragma GCC diagnostic ignored "-Wframe-larger-than=" 41 #endif 42 43 /* internal used */ 44 typedef struct { 45 uint32_t input_cv[8]; 46 uint64_t counter; 47 uint8_t block[BLAKE3_BLOCK_LEN]; 48 uint8_t block_len; 49 uint8_t flags; 50 } output_t; 51 52 /* internal flags */ 53 enum blake3_flags { 54 CHUNK_START = 1 << 0, 55 CHUNK_END = 1 << 1, 56 PARENT = 1 << 2, 57 ROOT = 1 << 3, 58 KEYED_HASH = 1 << 4, 59 DERIVE_KEY_CONTEXT = 1 << 5, 60 DERIVE_KEY_MATERIAL = 1 << 6, 61 }; 62 63 /* internal start */ 64 static void chunk_state_init(blake3_chunk_state_t *ctx, 65 const uint32_t key[8], uint8_t flags) 66 { 67 memcpy(ctx->cv, key, BLAKE3_KEY_LEN); 68 ctx->chunk_counter = 0; 69 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 70 ctx->buf_len = 0; 71 ctx->blocks_compressed = 0; 72 ctx->flags = flags; 73 } 74 75 static void chunk_state_reset(blake3_chunk_state_t *ctx, 76 const uint32_t key[8], uint64_t chunk_counter) 77 { 78 memcpy(ctx->cv, key, BLAKE3_KEY_LEN); 79 ctx->chunk_counter = chunk_counter; 80 ctx->blocks_compressed = 0; 81 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 82 ctx->buf_len = 0; 83 } 84 85 static size_t chunk_state_len(const blake3_chunk_state_t *ctx) 86 { 87 return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) + 88 ((size_t)ctx->buf_len); 89 } 90 91 static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx, 92 const uint8_t *input, size_t input_len) 93 { 94 size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len); 95 if (take > input_len) { 96 take = input_len; 97 } 98 uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len); 99 memcpy(dest, input, take); 100 ctx->buf_len += (uint8_t)take; 101 return (take); 102 } 103 104 static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx) 105 { 106 if (ctx->blocks_compressed == 0) { 107 return (CHUNK_START); 108 } else { 109 return (0); 110 } 111 } 112 113 static output_t make_output(const uint32_t input_cv[8], 114 const uint8_t *block, uint8_t block_len, 115 uint64_t counter, uint8_t flags) 116 { 117 output_t ret; 118 memcpy(ret.input_cv, input_cv, 32); 119 memcpy(ret.block, block, BLAKE3_BLOCK_LEN); 120 ret.block_len = block_len; 121 ret.counter = counter; 122 ret.flags = flags; 123 return (ret); 124 } 125 126 /* 127 * Chaining values within a given chunk (specifically the compress_in_place 128 * interface) are represented as words. This avoids unnecessary bytes<->words 129 * conversion overhead in the portable implementation. However, the hash_many 130 * interface handles both user input and parent node blocks, so it accepts 131 * bytes. For that reason, chaining values in the CV stack are represented as 132 * bytes. 133 */ 134 static void output_chaining_value(const blake3_ops_t *ops, 135 const output_t *ctx, uint8_t cv[32]) 136 { 137 uint32_t cv_words[8]; 138 memcpy(cv_words, ctx->input_cv, 32); 139 ops->compress_in_place(cv_words, ctx->block, ctx->block_len, 140 ctx->counter, ctx->flags); 141 store_cv_words(cv, cv_words); 142 } 143 144 static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx, 145 uint64_t seek, uint8_t *out, size_t out_len) 146 { 147 uint64_t output_block_counter = seek / 64; 148 size_t offset_within_block = seek % 64; 149 uint8_t wide_buf[64]; 150 while (out_len > 0) { 151 ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len, 152 output_block_counter, ctx->flags | ROOT, wide_buf); 153 size_t available_bytes = 64 - offset_within_block; 154 size_t memcpy_len; 155 if (out_len > available_bytes) { 156 memcpy_len = available_bytes; 157 } else { 158 memcpy_len = out_len; 159 } 160 memcpy(out, wide_buf + offset_within_block, memcpy_len); 161 out += memcpy_len; 162 out_len -= memcpy_len; 163 output_block_counter += 1; 164 offset_within_block = 0; 165 } 166 } 167 168 static void chunk_state_update(const blake3_ops_t *ops, 169 blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) 170 { 171 if (ctx->buf_len > 0) { 172 size_t take = chunk_state_fill_buf(ctx, input, input_len); 173 input += take; 174 input_len -= take; 175 if (input_len > 0) { 176 ops->compress_in_place(ctx->cv, ctx->buf, 177 BLAKE3_BLOCK_LEN, ctx->chunk_counter, 178 ctx->flags|chunk_state_maybe_start_flag(ctx)); 179 ctx->blocks_compressed += 1; 180 ctx->buf_len = 0; 181 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 182 } 183 } 184 185 while (input_len > BLAKE3_BLOCK_LEN) { 186 ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN, 187 ctx->chunk_counter, 188 ctx->flags|chunk_state_maybe_start_flag(ctx)); 189 ctx->blocks_compressed += 1; 190 input += BLAKE3_BLOCK_LEN; 191 input_len -= BLAKE3_BLOCK_LEN; 192 } 193 194 chunk_state_fill_buf(ctx, input, input_len); 195 } 196 197 static output_t chunk_state_output(const blake3_chunk_state_t *ctx) 198 { 199 uint8_t block_flags = 200 ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END; 201 return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter, 202 block_flags)); 203 } 204 205 static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], 206 const uint32_t key[8], uint8_t flags) 207 { 208 return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT)); 209 } 210 211 /* 212 * Given some input larger than one chunk, return the number of bytes that 213 * should go in the left subtree. This is the largest power-of-2 number of 214 * chunks that leaves at least 1 byte for the right subtree. 215 */ 216 static size_t left_len(size_t content_len) 217 { 218 /* 219 * Subtract 1 to reserve at least one byte for the right side. 220 * content_len 221 * should always be greater than BLAKE3_CHUNK_LEN. 222 */ 223 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; 224 return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN); 225 } 226 227 /* 228 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time 229 * on a single thread. Write out the chunk chaining values and return the 230 * number of chunks hashed. These chunks are never the root and never empty; 231 * those cases use a different codepath. 232 */ 233 static size_t compress_chunks_parallel(const blake3_ops_t *ops, 234 const uint8_t *input, size_t input_len, const uint32_t key[8], 235 uint64_t chunk_counter, uint8_t flags, uint8_t *out) 236 { 237 const uint8_t *chunks_array[MAX_SIMD_DEGREE]; 238 size_t input_position = 0; 239 size_t chunks_array_len = 0; 240 while (input_len - input_position >= BLAKE3_CHUNK_LEN) { 241 chunks_array[chunks_array_len] = &input[input_position]; 242 input_position += BLAKE3_CHUNK_LEN; 243 chunks_array_len += 1; 244 } 245 246 ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN / 247 BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START, 248 CHUNK_END, out); 249 250 /* 251 * Hash the remaining partial chunk, if there is one. Note that the 252 * empty chunk (meaning the empty message) is a different codepath. 253 */ 254 if (input_len > input_position) { 255 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; 256 blake3_chunk_state_t chunk_state; 257 chunk_state_init(&chunk_state, key, flags); 258 chunk_state.chunk_counter = counter; 259 chunk_state_update(ops, &chunk_state, &input[input_position], 260 input_len - input_position); 261 output_t output = chunk_state_output(&chunk_state); 262 output_chaining_value(ops, &output, &out[chunks_array_len * 263 BLAKE3_OUT_LEN]); 264 return (chunks_array_len + 1); 265 } else { 266 return (chunks_array_len); 267 } 268 } 269 270 /* 271 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time 272 * on a single thread. Write out the parent chaining values and return the 273 * number of parents hashed. (If there's an odd input chaining value left over, 274 * return it as an additional output.) These parents are never the root and 275 * never empty; those cases use a different codepath. 276 */ 277 static size_t compress_parents_parallel(const blake3_ops_t *ops, 278 const uint8_t *child_chaining_values, size_t num_chaining_values, 279 const uint32_t key[8], uint8_t flags, uint8_t *out) 280 { 281 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2] = {0}; 282 size_t parents_array_len = 0; 283 284 while (num_chaining_values - (2 * parents_array_len) >= 2) { 285 parents_array[parents_array_len] = &child_chaining_values[2 * 286 parents_array_len * BLAKE3_OUT_LEN]; 287 parents_array_len += 1; 288 } 289 290 ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE, 291 flags | PARENT, 0, 0, out); 292 293 /* If there's an odd child left over, it becomes an output. */ 294 if (num_chaining_values > 2 * parents_array_len) { 295 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], 296 &child_chaining_values[2 * parents_array_len * 297 BLAKE3_OUT_LEN], BLAKE3_OUT_LEN); 298 return (parents_array_len + 1); 299 } else { 300 return (parents_array_len); 301 } 302 } 303 304 /* 305 * The wide helper function returns (writes out) an array of chaining values 306 * and returns the length of that array. The number of chaining values returned 307 * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, 308 * if the input is shorter than that many chunks. The reason for maintaining a 309 * wide array of chaining values going back up the tree, is to allow the 310 * implementation to hash as many parents in parallel as possible. 311 * 312 * As a special case when the SIMD degree is 1, this function will still return 313 * at least 2 outputs. This guarantees that this function doesn't perform the 314 * root compression. (If it did, it would use the wrong flags, and also we 315 * wouldn't be able to implement exendable ouput.) Note that this function is 316 * not used when the whole input is only 1 chunk long; that's a different 317 * codepath. 318 * 319 * Why not just have the caller split the input on the first update(), instead 320 * of implementing this special rule? Because we don't want to limit SIMD or 321 * multi-threading parallelism for that update(). 322 */ 323 static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops, 324 const uint8_t *input, size_t input_len, const uint32_t key[8], 325 uint64_t chunk_counter, uint8_t flags, uint8_t *out) 326 { 327 /* 328 * Note that the single chunk case does *not* bump the SIMD degree up 329 * to 2 when it is 1. If this implementation adds multi-threading in 330 * the future, this gives us the option of multi-threading even the 331 * 2-chunk case, which can help performance on smaller platforms. 332 */ 333 if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) { 334 return (compress_chunks_parallel(ops, input, input_len, key, 335 chunk_counter, flags, out)); 336 } 337 338 339 /* 340 * With more than simd_degree chunks, we need to recurse. Start by 341 * dividing the input into left and right subtrees. (Note that this is 342 * only optimal as long as the SIMD degree is a power of 2. If we ever 343 * get a SIMD degree of 3 or something, we'll need a more complicated 344 * strategy.) 345 */ 346 size_t left_input_len = left_len(input_len); 347 size_t right_input_len = input_len - left_input_len; 348 const uint8_t *right_input = &input[left_input_len]; 349 uint64_t right_chunk_counter = chunk_counter + 350 (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); 351 352 /* 353 * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 354 * to account for the special case of returning 2 outputs when the 355 * SIMD degree is 1. 356 */ 357 uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 358 size_t degree = ops->degree; 359 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { 360 361 /* 362 * The special case: We always use a degree of at least two, 363 * to make sure there are two outputs. Except, as noted above, 364 * at the chunk level, where we allow degree=1. (Note that the 365 * 1-chunk-input case is a different codepath.) 366 */ 367 degree = 2; 368 } 369 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; 370 371 /* 372 * Recurse! If this implementation adds multi-threading support in the 373 * future, this is where it will go. 374 */ 375 size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len, 376 key, chunk_counter, flags, cv_array); 377 size_t right_n = blake3_compress_subtree_wide(ops, right_input, 378 right_input_len, key, right_chunk_counter, flags, right_cvs); 379 380 /* 381 * The special case again. If simd_degree=1, then we'll have left_n=1 382 * and right_n=1. Rather than compressing them into a single output, 383 * return them directly, to make sure we always have at least two 384 * outputs. 385 */ 386 if (left_n == 1) { 387 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 388 return (2); 389 } 390 391 /* Otherwise, do one layer of parent node compression. */ 392 size_t num_chaining_values = left_n + right_n; 393 return compress_parents_parallel(ops, cv_array, 394 num_chaining_values, key, flags, out); 395 } 396 397 /* 398 * Hash a subtree with compress_subtree_wide(), and then condense the resulting 399 * list of chaining values down to a single parent node. Don't compress that 400 * last parent node, however. Instead, return its message bytes (the 401 * concatenated chaining values of its children). This is necessary when the 402 * first call to update() supplies a complete subtree, because the topmost 403 * parent node of that subtree could end up being the root. It's also necessary 404 * for extended output in the general case. 405 * 406 * As with compress_subtree_wide(), this function is not used on inputs of 1 407 * chunk or less. That's a different codepath. 408 */ 409 static void compress_subtree_to_parent_node(const blake3_ops_t *ops, 410 const uint8_t *input, size_t input_len, const uint32_t key[8], 411 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) 412 { 413 uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 414 size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len, 415 key, chunk_counter, flags, cv_array); 416 417 /* 418 * If MAX_SIMD_DEGREE is greater than 2 and there's enough input, 419 * compress_subtree_wide() returns more than 2 chaining values. Condense 420 * them into 2 by forming parent nodes repeatedly. 421 */ 422 uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; 423 while (num_cvs > 2) { 424 num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key, 425 flags, out_array); 426 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); 427 } 428 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 429 } 430 431 static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8], 432 uint8_t flags) 433 { 434 memcpy(ctx->key, key, BLAKE3_KEY_LEN); 435 chunk_state_init(&ctx->chunk, key, flags); 436 ctx->cv_stack_len = 0; 437 ctx->ops = blake3_get_ops(); 438 } 439 440 /* 441 * As described in hasher_push_cv() below, we do "lazy merging", delaying 442 * merges until right before the next CV is about to be added. This is 443 * different from the reference implementation. Another difference is that we 444 * aren't always merging 1 chunk at a time. Instead, each CV might represent 445 * any power-of-two number of chunks, as long as the smaller-above-larger 446 * stack order is maintained. Instead of the "count the trailing 0-bits" 447 * algorithm described in the spec, we use a "count the total number of 448 * 1-bits" variant that doesn't require us to retain the subtree size of the 449 * CV on top of the stack. The principle is the same: each CV that should 450 * remain in the stack is represented by a 1-bit in the total number of chunks 451 * (or bytes) so far. 452 */ 453 static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len) 454 { 455 size_t post_merge_stack_len = (size_t)popcnt(total_len); 456 while (ctx->cv_stack_len > post_merge_stack_len) { 457 uint8_t *parent_node = 458 &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN]; 459 output_t output = 460 parent_output(parent_node, ctx->key, ctx->chunk.flags); 461 output_chaining_value(ctx->ops, &output, parent_node); 462 ctx->cv_stack_len -= 1; 463 } 464 } 465 466 /* 467 * In reference_impl.rs, we merge the new CV with existing CVs from the stack 468 * before pushing it. We can do that because we know more input is coming, so 469 * we know none of the merges are root. 470 * 471 * This setting is different. We want to feed as much input as possible to 472 * compress_subtree_wide(), without setting aside anything for the chunk_state. 473 * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once 474 * as a single subtree, if at all possible. 475 * 476 * This leads to two problems: 477 * 1) This 64 KiB input might be the only call that ever gets made to update. 478 * In this case, the root node of the 64 KiB subtree would be the root node 479 * of the whole tree, and it would need to be ROOT finalized. We can't 480 * compress it until we know. 481 * 2) This 64 KiB input might complete a larger tree, whose root node is 482 * similarly going to be the the root of the whole tree. For example, maybe 483 * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the 484 * node at the root of the 256 KiB subtree until we know how to finalize it. 485 * 486 * The second problem is solved with "lazy merging". That is, when we're about 487 * to add a CV to the stack, we don't merge it with anything first, as the 488 * reference impl does. Instead we do merges using the *previous* CV that was 489 * added, which is sitting on top of the stack, and we put the new CV 490 * (unmerged) on top of the stack afterwards. This guarantees that we never 491 * merge the root node until finalize(). 492 * 493 * Solving the first problem requires an additional tool, 494 * compress_subtree_to_parent_node(). That function always returns the top 495 * *two* chaining values of the subtree it's compressing. We then do lazy 496 * merging with each of them separately, so that the second CV will always 497 * remain unmerged. (That also helps us support extendable output when we're 498 * hashing an input all-at-once.) 499 */ 500 static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN], 501 uint64_t chunk_counter) 502 { 503 hasher_merge_cv_stack(ctx, chunk_counter); 504 memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv, 505 BLAKE3_OUT_LEN); 506 ctx->cv_stack_len += 1; 507 } 508 509 void 510 Blake3_Init(BLAKE3_CTX *ctx) 511 { 512 hasher_init_base(ctx, BLAKE3_IV, 0); 513 } 514 515 void 516 Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN]) 517 { 518 uint32_t key_words[8]; 519 load_key_words(key, key_words); 520 hasher_init_base(ctx, key_words, KEYED_HASH); 521 } 522 523 static void 524 Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len) 525 { 526 /* 527 * Explicitly checking for zero avoids causing UB by passing a null 528 * pointer to memcpy. This comes up in practice with things like: 529 * std::vector<uint8_t> v; 530 * blake3_hasher_update(&hasher, v.data(), v.size()); 531 */ 532 if (input_len == 0) { 533 return; 534 } 535 536 const uint8_t *input_bytes = (const uint8_t *)input; 537 538 /* 539 * If we have some partial chunk bytes in the internal chunk_state, we 540 * need to finish that chunk first. 541 */ 542 if (chunk_state_len(&ctx->chunk) > 0) { 543 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk); 544 if (take > input_len) { 545 take = input_len; 546 } 547 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take); 548 input_bytes += take; 549 input_len -= take; 550 /* 551 * If we've filled the current chunk and there's more coming, 552 * finalize this chunk and proceed. In this case we know it's 553 * not the root. 554 */ 555 if (input_len > 0) { 556 output_t output = chunk_state_output(&ctx->chunk); 557 uint8_t chunk_cv[32]; 558 output_chaining_value(ctx->ops, &output, chunk_cv); 559 hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter); 560 chunk_state_reset(&ctx->chunk, ctx->key, 561 ctx->chunk.chunk_counter + 1); 562 } else { 563 return; 564 } 565 } 566 567 /* 568 * Now the chunk_state is clear, and we have more input. If there's 569 * more than a single chunk (so, definitely not the root chunk), hash 570 * the largest whole subtree we can, with the full benefits of SIMD 571 * (and maybe in the future, multi-threading) parallelism. Two 572 * restrictions: 573 * - The subtree has to be a power-of-2 number of chunks. Only 574 * subtrees along the right edge can be incomplete, and we don't know 575 * where the right edge is going to be until we get to finalize(). 576 * - The subtree must evenly divide the total number of chunks up 577 * until this point (if total is not 0). If the current incomplete 578 * subtree is only waiting for 1 more chunk, we can't hash a subtree 579 * of 4 chunks. We have to complete the current subtree first. 580 * Because we might need to break up the input to form powers of 2, or 581 * to evenly divide what we already have, this part runs in a loop. 582 */ 583 while (input_len > BLAKE3_CHUNK_LEN) { 584 size_t subtree_len = round_down_to_power_of_2(input_len); 585 uint64_t count_so_far = 586 ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN; 587 /* 588 * Shrink the subtree_len until it evenly divides the count so 589 * far. We know that subtree_len itself is a power of 2, so we 590 * can use a bitmasking trick instead of an actual remainder 591 * operation. (Note that if the caller consistently passes 592 * power-of-2 inputs of the same size, as is hopefully 593 * typical, this loop condition will always fail, and 594 * subtree_len will always be the full length of the input.) 595 * 596 * An aside: We don't have to shrink subtree_len quite this 597 * much. For example, if count_so_far is 1, we could pass 2 598 * chunks to compress_subtree_to_parent_node. Since we'll get 599 * 2 CVs back, we'll still get the right answer in the end, 600 * and we might get to use 2-way SIMD parallelism. The problem 601 * with this optimization, is that it gets us stuck always 602 * hashing 2 chunks. The total number of chunks will remain 603 * odd, and we'll never graduate to higher degrees of 604 * parallelism. See 605 * https://github.com/BLAKE3-team/BLAKE3/issues/69. 606 */ 607 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { 608 subtree_len /= 2; 609 } 610 /* 611 * The shrunken subtree_len might now be 1 chunk long. If so, 612 * hash that one chunk by itself. Otherwise, compress the 613 * subtree into a pair of CVs. 614 */ 615 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; 616 if (subtree_len <= BLAKE3_CHUNK_LEN) { 617 blake3_chunk_state_t chunk_state; 618 chunk_state_init(&chunk_state, ctx->key, 619 ctx->chunk.flags); 620 chunk_state.chunk_counter = ctx->chunk.chunk_counter; 621 chunk_state_update(ctx->ops, &chunk_state, input_bytes, 622 subtree_len); 623 output_t output = chunk_state_output(&chunk_state); 624 uint8_t cv[BLAKE3_OUT_LEN]; 625 output_chaining_value(ctx->ops, &output, cv); 626 hasher_push_cv(ctx, cv, chunk_state.chunk_counter); 627 } else { 628 /* 629 * This is the high-performance happy path, though 630 * getting here depends on the caller giving us a long 631 * enough input. 632 */ 633 uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; 634 compress_subtree_to_parent_node(ctx->ops, input_bytes, 635 subtree_len, ctx->key, ctx-> chunk.chunk_counter, 636 ctx->chunk.flags, cv_pair); 637 hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter); 638 hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN], 639 ctx->chunk.chunk_counter + (subtree_chunks / 2)); 640 } 641 ctx->chunk.chunk_counter += subtree_chunks; 642 input_bytes += subtree_len; 643 input_len -= subtree_len; 644 } 645 646 /* 647 * If there's any remaining input less than a full chunk, add it to 648 * the chunk state. In that case, also do a final merge loop to make 649 * sure the subtree stack doesn't contain any unmerged pairs. The 650 * remaining input means we know these merges are non-root. This merge 651 * loop isn't strictly necessary here, because hasher_push_chunk_cv 652 * already does its own merge loop, but it simplifies 653 * blake3_hasher_finalize below. 654 */ 655 if (input_len > 0) { 656 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, 657 input_len); 658 hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter); 659 } 660 } 661 662 void 663 Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo) 664 { 665 size_t done = 0; 666 const uint8_t *data = input; 667 const size_t block_max = 1024 * 64; 668 669 /* max feed buffer to leave the stack size small */ 670 while (todo != 0) { 671 size_t block = (todo >= block_max) ? block_max : todo; 672 Blake3_Update2(ctx, data + done, block); 673 done += block; 674 todo -= block; 675 } 676 } 677 678 void 679 Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out) 680 { 681 Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN); 682 } 683 684 void 685 Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out, 686 size_t out_len) 687 { 688 /* 689 * Explicitly checking for zero avoids causing UB by passing a null 690 * pointer to memcpy. This comes up in practice with things like: 691 * std::vector<uint8_t> v; 692 * blake3_hasher_finalize(&hasher, v.data(), v.size()); 693 */ 694 if (out_len == 0) { 695 return; 696 } 697 /* If the subtree stack is empty, then the current chunk is the root. */ 698 if (ctx->cv_stack_len == 0) { 699 output_t output = chunk_state_output(&ctx->chunk); 700 output_root_bytes(ctx->ops, &output, seek, out, out_len); 701 return; 702 } 703 /* 704 * If there are any bytes in the chunk state, finalize that chunk and 705 * do a roll-up merge between that chunk hash and every subtree in the 706 * stack. In this case, the extra merge loop at the end of 707 * blake3_hasher_update guarantees that none of the subtrees in the 708 * stack need to be merged with each other first. Otherwise, if there 709 * are no bytes in the chunk state, then the top of the stack is a 710 * chunk hash, and we start the merge from that. 711 */ 712 output_t output; 713 size_t cvs_remaining; 714 if (chunk_state_len(&ctx->chunk) > 0) { 715 cvs_remaining = ctx->cv_stack_len; 716 output = chunk_state_output(&ctx->chunk); 717 } else { 718 /* There are always at least 2 CVs in the stack in this case. */ 719 cvs_remaining = ctx->cv_stack_len - 2; 720 output = parent_output(&ctx->cv_stack[cvs_remaining * 32], 721 ctx->key, ctx->chunk.flags); 722 } 723 while (cvs_remaining > 0) { 724 cvs_remaining -= 1; 725 uint8_t parent_block[BLAKE3_BLOCK_LEN]; 726 memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32); 727 output_chaining_value(ctx->ops, &output, &parent_block[32]); 728 output = parent_output(parent_block, ctx->key, 729 ctx->chunk.flags); 730 } 731 output_root_bytes(ctx->ops, &output, seek, out, out_len); 732 } 733