1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2015 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * AVL - generic AVL tree implementation for kernel use 33 * 34 * A complete description of AVL trees can be found in many CS textbooks. 35 * 36 * Here is a very brief overview. An AVL tree is a binary search tree that is 37 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 38 * any given node, the left and right subtrees are allowed to differ in height 39 * by at most 1 level. 40 * 41 * This relaxation from a perfectly balanced binary tree allows doing 42 * insertion and deletion relatively efficiently. Searching the tree is 43 * still a fast operation, roughly O(log(N)). 44 * 45 * The key to insertion and deletion is a set of tree manipulations called 46 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 47 * 48 * This implementation of AVL trees has the following peculiarities: 49 * 50 * - The AVL specific data structures are physically embedded as fields 51 * in the "using" data structures. To maintain generality the code 52 * must constantly translate between "avl_node_t *" and containing 53 * data structure "void *"s by adding/subtracting the avl_offset. 54 * 55 * - Since the AVL data is always embedded in other structures, there is 56 * no locking or memory allocation in the AVL routines. This must be 57 * provided for by the enclosing data structure's semantics. Typically, 58 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 59 * exclusive write lock. Other operations require a read lock. 60 * 61 * - The implementation uses iteration instead of explicit recursion, 62 * since it is intended to run on limited size kernel stacks. Since 63 * there is no recursion stack present to move "up" in the tree, 64 * there is an explicit "parent" link in the avl_node_t. 65 * 66 * - The left/right children pointers of a node are in an array. 67 * In the code, variables (instead of constants) are used to represent 68 * left and right indices. The implementation is written as if it only 69 * dealt with left handed manipulations. By changing the value assigned 70 * to "left", the code also works for right handed trees. The 71 * following variables/terms are frequently used: 72 * 73 * int left; // 0 when dealing with left children, 74 * // 1 for dealing with right children 75 * 76 * int left_heavy; // -1 when left subtree is taller at some node, 77 * // +1 when right subtree is taller 78 * 79 * int right; // will be the opposite of left (0 or 1) 80 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 81 * 82 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 83 * 84 * Though it is a little more confusing to read the code, the approach 85 * allows using half as much code (and hence cache footprint) for tree 86 * manipulations and eliminates many conditional branches. 87 * 88 * - The avl_index_t is an opaque "cookie" used to find nodes at or 89 * adjacent to where a new value would be inserted in the tree. The value 90 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 91 * pointer) is set to indicate if that the new node has a value greater 92 * than the value of the indicated "avl_node_t *". 93 * 94 * Note - in addition to userland (e.g. libavl and libutil) and the kernel 95 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module, 96 * which each have their own compilation environments and subsequent 97 * requirements. Each of these environments must be considered when adding 98 * dependencies from avl.c. 99 * 100 * Link to Illumos.org for more information on avl function: 101 * [1] https://illumos.org/man/9f/avl 102 */ 103 104 #include <sys/types.h> 105 #include <sys/param.h> 106 #include <sys/debug.h> 107 #include <sys/avl.h> 108 #include <sys/cmn_err.h> 109 #include <sys/mod.h> 110 111 /* 112 * Small arrays to translate between balance (or diff) values and child indices. 113 * 114 * Code that deals with binary tree data structures will randomly use 115 * left and right children when examining a tree. C "if()" statements 116 * which evaluate randomly suffer from very poor hardware branch prediction. 117 * In this code we avoid some of the branch mispredictions by using the 118 * following translation arrays. They replace random branches with an 119 * additional memory reference. Since the translation arrays are both very 120 * small the data should remain efficiently in cache. 121 */ 122 static const int avl_child2balance[2] = {-1, 1}; 123 static const int avl_balance2child[] = {0, 0, 1}; 124 125 126 /* 127 * Walk from one node to the previous valued node (ie. an infix walk 128 * towards the left). At any given node we do one of 2 things: 129 * 130 * - If there is a left child, go to it, then to it's rightmost descendant. 131 * 132 * - otherwise we return through parent nodes until we've come from a right 133 * child. 134 * 135 * Return Value: 136 * NULL - if at the end of the nodes 137 * otherwise next node 138 */ 139 void * 140 avl_walk(avl_tree_t *tree, void *oldnode, int left) 141 { 142 size_t off = tree->avl_offset; 143 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 144 int right = 1 - left; 145 int was_child; 146 147 148 /* 149 * nowhere to walk to if tree is empty 150 */ 151 if (node == NULL) 152 return (NULL); 153 154 /* 155 * Visit the previous valued node. There are two possibilities: 156 * 157 * If this node has a left child, go down one left, then all 158 * the way right. 159 */ 160 if (node->avl_child[left] != NULL) { 161 for (node = node->avl_child[left]; 162 node->avl_child[right] != NULL; 163 node = node->avl_child[right]) 164 ; 165 /* 166 * Otherwise, return through left children as far as we can. 167 */ 168 } else { 169 for (;;) { 170 was_child = AVL_XCHILD(node); 171 node = AVL_XPARENT(node); 172 if (node == NULL) 173 return (NULL); 174 if (was_child == right) 175 break; 176 } 177 } 178 179 return (AVL_NODE2DATA(node, off)); 180 } 181 182 /* 183 * Return the lowest valued node in a tree or NULL. 184 * (leftmost child from root of tree) 185 */ 186 void * 187 avl_first(avl_tree_t *tree) 188 { 189 avl_node_t *node; 190 avl_node_t *prev = NULL; 191 size_t off = tree->avl_offset; 192 193 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 194 prev = node; 195 196 if (prev != NULL) 197 return (AVL_NODE2DATA(prev, off)); 198 return (NULL); 199 } 200 201 /* 202 * Return the highest valued node in a tree or NULL. 203 * (rightmost child from root of tree) 204 */ 205 void * 206 avl_last(avl_tree_t *tree) 207 { 208 avl_node_t *node; 209 avl_node_t *prev = NULL; 210 size_t off = tree->avl_offset; 211 212 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 213 prev = node; 214 215 if (prev != NULL) 216 return (AVL_NODE2DATA(prev, off)); 217 return (NULL); 218 } 219 220 /* 221 * Access the node immediately before or after an insertion point. 222 * 223 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 224 * 225 * Return value: 226 * NULL: no node in the given direction 227 * "void *" of the found tree node 228 */ 229 void * 230 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 231 { 232 int child = AVL_INDEX2CHILD(where); 233 avl_node_t *node = AVL_INDEX2NODE(where); 234 void *data; 235 size_t off = tree->avl_offset; 236 237 if (node == NULL) { 238 ASSERT(tree->avl_root == NULL); 239 return (NULL); 240 } 241 data = AVL_NODE2DATA(node, off); 242 if (child != direction) 243 return (data); 244 245 return (avl_walk(tree, data, direction)); 246 } 247 248 249 /* 250 * Search for the node which contains "value". The algorithm is a 251 * simple binary tree search. 252 * 253 * return value: 254 * NULL: the value is not in the AVL tree 255 * *where (if not NULL) is set to indicate the insertion point 256 * "void *" of the found tree node 257 */ 258 void * 259 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 260 { 261 avl_node_t *node; 262 avl_node_t *prev = NULL; 263 int child = 0; 264 int diff; 265 size_t off = tree->avl_offset; 266 267 for (node = tree->avl_root; node != NULL; 268 node = node->avl_child[child]) { 269 270 prev = node; 271 272 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 273 ASSERT(-1 <= diff && diff <= 1); 274 if (diff == 0) { 275 #ifdef ZFS_DEBUG 276 if (where != NULL) 277 *where = 0; 278 #endif 279 return (AVL_NODE2DATA(node, off)); 280 } 281 child = avl_balance2child[1 + diff]; 282 283 } 284 285 if (where != NULL) 286 *where = AVL_MKINDEX(prev, child); 287 288 return (NULL); 289 } 290 291 292 /* 293 * Perform a rotation to restore balance at the subtree given by depth. 294 * 295 * This routine is used by both insertion and deletion. The return value 296 * indicates: 297 * 0 : subtree did not change height 298 * !0 : subtree was reduced in height 299 * 300 * The code is written as if handling left rotations, right rotations are 301 * symmetric and handled by swapping values of variables right/left[_heavy] 302 * 303 * On input balance is the "new" balance at "node". This value is either 304 * -2 or +2. 305 */ 306 static int 307 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 308 { 309 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 310 int right = 1 - left; 311 int left_heavy = balance >> 1; 312 int right_heavy = -left_heavy; 313 avl_node_t *parent = AVL_XPARENT(node); 314 avl_node_t *child = node->avl_child[left]; 315 avl_node_t *cright; 316 avl_node_t *gchild; 317 avl_node_t *gright; 318 avl_node_t *gleft; 319 int which_child = AVL_XCHILD(node); 320 int child_bal = AVL_XBALANCE(child); 321 322 /* BEGIN CSTYLED */ 323 /* 324 * case 1 : node is overly left heavy, the left child is balanced or 325 * also left heavy. This requires the following rotation. 326 * 327 * (node bal:-2) 328 * / \ 329 * / \ 330 * (child bal:0 or -1) 331 * / \ 332 * / \ 333 * cright 334 * 335 * becomes: 336 * 337 * (child bal:1 or 0) 338 * / \ 339 * / \ 340 * (node bal:-1 or 0) 341 * / \ 342 * / \ 343 * cright 344 * 345 * we detect this situation by noting that child's balance is not 346 * right_heavy. 347 */ 348 /* END CSTYLED */ 349 if (child_bal != right_heavy) { 350 351 /* 352 * compute new balance of nodes 353 * 354 * If child used to be left heavy (now balanced) we reduced 355 * the height of this sub-tree -- used in "return...;" below 356 */ 357 child_bal += right_heavy; /* adjust towards right */ 358 359 /* 360 * move "cright" to be node's left child 361 */ 362 cright = child->avl_child[right]; 363 node->avl_child[left] = cright; 364 if (cright != NULL) { 365 AVL_SETPARENT(cright, node); 366 AVL_SETCHILD(cright, left); 367 } 368 369 /* 370 * move node to be child's right child 371 */ 372 child->avl_child[right] = node; 373 AVL_SETBALANCE(node, -child_bal); 374 AVL_SETCHILD(node, right); 375 AVL_SETPARENT(node, child); 376 377 /* 378 * update the pointer into this subtree 379 */ 380 AVL_SETBALANCE(child, child_bal); 381 AVL_SETCHILD(child, which_child); 382 AVL_SETPARENT(child, parent); 383 if (parent != NULL) 384 parent->avl_child[which_child] = child; 385 else 386 tree->avl_root = child; 387 388 return (child_bal == 0); 389 } 390 391 /* BEGIN CSTYLED */ 392 /* 393 * case 2 : When node is left heavy, but child is right heavy we use 394 * a different rotation. 395 * 396 * (node b:-2) 397 * / \ 398 * / \ 399 * / \ 400 * (child b:+1) 401 * / \ 402 * / \ 403 * (gchild b: != 0) 404 * / \ 405 * / \ 406 * gleft gright 407 * 408 * becomes: 409 * 410 * (gchild b:0) 411 * / \ 412 * / \ 413 * / \ 414 * (child b:?) (node b:?) 415 * / \ / \ 416 * / \ / \ 417 * gleft gright 418 * 419 * computing the new balances is more complicated. As an example: 420 * if gchild was right_heavy, then child is now left heavy 421 * else it is balanced 422 */ 423 /* END CSTYLED */ 424 gchild = child->avl_child[right]; 425 gleft = gchild->avl_child[left]; 426 gright = gchild->avl_child[right]; 427 428 /* 429 * move gright to left child of node and 430 * 431 * move gleft to right child of node 432 */ 433 node->avl_child[left] = gright; 434 if (gright != NULL) { 435 AVL_SETPARENT(gright, node); 436 AVL_SETCHILD(gright, left); 437 } 438 439 child->avl_child[right] = gleft; 440 if (gleft != NULL) { 441 AVL_SETPARENT(gleft, child); 442 AVL_SETCHILD(gleft, right); 443 } 444 445 /* 446 * move child to left child of gchild and 447 * 448 * move node to right child of gchild and 449 * 450 * fixup parent of all this to point to gchild 451 */ 452 balance = AVL_XBALANCE(gchild); 453 gchild->avl_child[left] = child; 454 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 455 AVL_SETPARENT(child, gchild); 456 AVL_SETCHILD(child, left); 457 458 gchild->avl_child[right] = node; 459 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 460 AVL_SETPARENT(node, gchild); 461 AVL_SETCHILD(node, right); 462 463 AVL_SETBALANCE(gchild, 0); 464 AVL_SETPARENT(gchild, parent); 465 AVL_SETCHILD(gchild, which_child); 466 if (parent != NULL) 467 parent->avl_child[which_child] = gchild; 468 else 469 tree->avl_root = gchild; 470 471 return (1); /* the new tree is always shorter */ 472 } 473 474 475 /* 476 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 477 * 478 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 479 * searches out to the leaf positions. The avl_index_t indicates the node 480 * which will be the parent of the new node. 481 * 482 * After the node is inserted, a single rotation further up the tree may 483 * be necessary to maintain an acceptable AVL balance. 484 */ 485 void 486 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 487 { 488 avl_node_t *node; 489 avl_node_t *parent = AVL_INDEX2NODE(where); 490 int old_balance; 491 int new_balance; 492 int which_child = AVL_INDEX2CHILD(where); 493 size_t off = tree->avl_offset; 494 495 #ifdef _LP64 496 ASSERT(((uintptr_t)new_data & 0x7) == 0); 497 #endif 498 499 node = AVL_DATA2NODE(new_data, off); 500 501 /* 502 * First, add the node to the tree at the indicated position. 503 */ 504 ++tree->avl_numnodes; 505 506 node->avl_child[0] = NULL; 507 node->avl_child[1] = NULL; 508 509 AVL_SETCHILD(node, which_child); 510 AVL_SETBALANCE(node, 0); 511 AVL_SETPARENT(node, parent); 512 if (parent != NULL) { 513 ASSERT(parent->avl_child[which_child] == NULL); 514 parent->avl_child[which_child] = node; 515 } else { 516 ASSERT(tree->avl_root == NULL); 517 tree->avl_root = node; 518 } 519 /* 520 * Now, back up the tree modifying the balance of all nodes above the 521 * insertion point. If we get to a highly unbalanced ancestor, we 522 * need to do a rotation. If we back out of the tree we are done. 523 * If we brought any subtree into perfect balance (0), we are also done. 524 */ 525 for (;;) { 526 node = parent; 527 if (node == NULL) 528 return; 529 530 /* 531 * Compute the new balance 532 */ 533 old_balance = AVL_XBALANCE(node); 534 new_balance = old_balance + avl_child2balance[which_child]; 535 536 /* 537 * If we introduced equal balance, then we are done immediately 538 */ 539 if (new_balance == 0) { 540 AVL_SETBALANCE(node, 0); 541 return; 542 } 543 544 /* 545 * If both old and new are not zero we went 546 * from -1 to -2 balance, do a rotation. 547 */ 548 if (old_balance != 0) 549 break; 550 551 AVL_SETBALANCE(node, new_balance); 552 parent = AVL_XPARENT(node); 553 which_child = AVL_XCHILD(node); 554 } 555 556 /* 557 * perform a rotation to fix the tree and return 558 */ 559 (void) avl_rotation(tree, node, new_balance); 560 } 561 562 /* 563 * Insert "new_data" in "tree" in the given "direction" either after or 564 * before (AVL_AFTER, AVL_BEFORE) the data "here". 565 * 566 * Insertions can only be done at empty leaf points in the tree, therefore 567 * if the given child of the node is already present we move to either 568 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 569 * every other node in the tree is a leaf, this always works. 570 * 571 * To help developers using this interface, we assert that the new node 572 * is correctly ordered at every step of the way in DEBUG kernels. 573 */ 574 void 575 avl_insert_here( 576 avl_tree_t *tree, 577 void *new_data, 578 void *here, 579 int direction) 580 { 581 avl_node_t *node; 582 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 583 #ifdef ZFS_DEBUG 584 int diff; 585 #endif 586 587 ASSERT(tree != NULL); 588 ASSERT(new_data != NULL); 589 ASSERT(here != NULL); 590 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 591 592 /* 593 * If corresponding child of node is not NULL, go to the neighboring 594 * node and reverse the insertion direction. 595 */ 596 node = AVL_DATA2NODE(here, tree->avl_offset); 597 598 #ifdef ZFS_DEBUG 599 diff = tree->avl_compar(new_data, here); 600 ASSERT(-1 <= diff && diff <= 1); 601 ASSERT(diff != 0); 602 ASSERT(diff > 0 ? child == 1 : child == 0); 603 #endif 604 605 if (node->avl_child[child] != NULL) { 606 node = node->avl_child[child]; 607 child = 1 - child; 608 while (node->avl_child[child] != NULL) { 609 #ifdef ZFS_DEBUG 610 diff = tree->avl_compar(new_data, 611 AVL_NODE2DATA(node, tree->avl_offset)); 612 ASSERT(-1 <= diff && diff <= 1); 613 ASSERT(diff != 0); 614 ASSERT(diff > 0 ? child == 1 : child == 0); 615 #endif 616 node = node->avl_child[child]; 617 } 618 #ifdef ZFS_DEBUG 619 diff = tree->avl_compar(new_data, 620 AVL_NODE2DATA(node, tree->avl_offset)); 621 ASSERT(-1 <= diff && diff <= 1); 622 ASSERT(diff != 0); 623 ASSERT(diff > 0 ? child == 1 : child == 0); 624 #endif 625 } 626 ASSERT(node->avl_child[child] == NULL); 627 628 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 629 } 630 631 /* 632 * Add a new node to an AVL tree. Strictly enforce that no duplicates can 633 * be added to the tree with a VERIFY which is enabled for non-DEBUG builds. 634 */ 635 void 636 avl_add(avl_tree_t *tree, void *new_node) 637 { 638 avl_index_t where = 0; 639 640 VERIFY(avl_find(tree, new_node, &where) == NULL); 641 642 avl_insert(tree, new_node, where); 643 } 644 645 /* 646 * Delete a node from the AVL tree. Deletion is similar to insertion, but 647 * with 2 complications. 648 * 649 * First, we may be deleting an interior node. Consider the following subtree: 650 * 651 * d c c 652 * / \ / \ / \ 653 * b e b e b e 654 * / \ / \ / 655 * a c a a 656 * 657 * When we are deleting node (d), we find and bring up an adjacent valued leaf 658 * node, say (c), to take the interior node's place. In the code this is 659 * handled by temporarily swapping (d) and (c) in the tree and then using 660 * common code to delete (d) from the leaf position. 661 * 662 * Secondly, an interior deletion from a deep tree may require more than one 663 * rotation to fix the balance. This is handled by moving up the tree through 664 * parents and applying rotations as needed. The return value from 665 * avl_rotation() is used to detect when a subtree did not change overall 666 * height due to a rotation. 667 */ 668 void 669 avl_remove(avl_tree_t *tree, void *data) 670 { 671 avl_node_t *delete; 672 avl_node_t *parent; 673 avl_node_t *node; 674 avl_node_t tmp; 675 int old_balance; 676 int new_balance; 677 int left; 678 int right; 679 int which_child; 680 size_t off = tree->avl_offset; 681 682 delete = AVL_DATA2NODE(data, off); 683 684 /* 685 * Deletion is easiest with a node that has at most 1 child. 686 * We swap a node with 2 children with a sequentially valued 687 * neighbor node. That node will have at most 1 child. Note this 688 * has no effect on the ordering of the remaining nodes. 689 * 690 * As an optimization, we choose the greater neighbor if the tree 691 * is right heavy, otherwise the left neighbor. This reduces the 692 * number of rotations needed. 693 */ 694 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 695 696 /* 697 * choose node to swap from whichever side is taller 698 */ 699 old_balance = AVL_XBALANCE(delete); 700 left = avl_balance2child[old_balance + 1]; 701 right = 1 - left; 702 703 /* 704 * get to the previous value'd node 705 * (down 1 left, as far as possible right) 706 */ 707 for (node = delete->avl_child[left]; 708 node->avl_child[right] != NULL; 709 node = node->avl_child[right]) 710 ; 711 712 /* 713 * create a temp placeholder for 'node' 714 * move 'node' to delete's spot in the tree 715 */ 716 tmp = *node; 717 718 *node = *delete; 719 if (node->avl_child[left] == node) 720 node->avl_child[left] = &tmp; 721 722 parent = AVL_XPARENT(node); 723 if (parent != NULL) 724 parent->avl_child[AVL_XCHILD(node)] = node; 725 else 726 tree->avl_root = node; 727 AVL_SETPARENT(node->avl_child[left], node); 728 AVL_SETPARENT(node->avl_child[right], node); 729 730 /* 731 * Put tmp where node used to be (just temporary). 732 * It always has a parent and at most 1 child. 733 */ 734 delete = &tmp; 735 parent = AVL_XPARENT(delete); 736 parent->avl_child[AVL_XCHILD(delete)] = delete; 737 which_child = (delete->avl_child[1] != 0); 738 if (delete->avl_child[which_child] != NULL) 739 AVL_SETPARENT(delete->avl_child[which_child], delete); 740 } 741 742 743 /* 744 * Here we know "delete" is at least partially a leaf node. It can 745 * be easily removed from the tree. 746 */ 747 ASSERT(tree->avl_numnodes > 0); 748 --tree->avl_numnodes; 749 parent = AVL_XPARENT(delete); 750 which_child = AVL_XCHILD(delete); 751 if (delete->avl_child[0] != NULL) 752 node = delete->avl_child[0]; 753 else 754 node = delete->avl_child[1]; 755 756 /* 757 * Connect parent directly to node (leaving out delete). 758 */ 759 if (node != NULL) { 760 AVL_SETPARENT(node, parent); 761 AVL_SETCHILD(node, which_child); 762 } 763 if (parent == NULL) { 764 tree->avl_root = node; 765 return; 766 } 767 parent->avl_child[which_child] = node; 768 769 770 /* 771 * Since the subtree is now shorter, begin adjusting parent balances 772 * and performing any needed rotations. 773 */ 774 do { 775 776 /* 777 * Move up the tree and adjust the balance 778 * 779 * Capture the parent and which_child values for the next 780 * iteration before any rotations occur. 781 */ 782 node = parent; 783 old_balance = AVL_XBALANCE(node); 784 new_balance = old_balance - avl_child2balance[which_child]; 785 parent = AVL_XPARENT(node); 786 which_child = AVL_XCHILD(node); 787 788 /* 789 * If a node was in perfect balance but isn't anymore then 790 * we can stop, since the height didn't change above this point 791 * due to a deletion. 792 */ 793 if (old_balance == 0) { 794 AVL_SETBALANCE(node, new_balance); 795 break; 796 } 797 798 /* 799 * If the new balance is zero, we don't need to rotate 800 * else 801 * need a rotation to fix the balance. 802 * If the rotation doesn't change the height 803 * of the sub-tree we have finished adjusting. 804 */ 805 if (new_balance == 0) 806 AVL_SETBALANCE(node, new_balance); 807 else if (!avl_rotation(tree, node, new_balance)) 808 break; 809 } while (parent != NULL); 810 } 811 812 #define AVL_REINSERT(tree, obj) \ 813 avl_remove((tree), (obj)); \ 814 avl_add((tree), (obj)) 815 816 boolean_t 817 avl_update_lt(avl_tree_t *t, void *obj) 818 { 819 void *neighbor; 820 821 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 822 (t->avl_compar(obj, neighbor) <= 0)); 823 824 neighbor = AVL_PREV(t, obj); 825 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 826 AVL_REINSERT(t, obj); 827 return (B_TRUE); 828 } 829 830 return (B_FALSE); 831 } 832 833 boolean_t 834 avl_update_gt(avl_tree_t *t, void *obj) 835 { 836 void *neighbor; 837 838 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 839 (t->avl_compar(obj, neighbor) >= 0)); 840 841 neighbor = AVL_NEXT(t, obj); 842 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 843 AVL_REINSERT(t, obj); 844 return (B_TRUE); 845 } 846 847 return (B_FALSE); 848 } 849 850 boolean_t 851 avl_update(avl_tree_t *t, void *obj) 852 { 853 void *neighbor; 854 855 neighbor = AVL_PREV(t, obj); 856 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 857 AVL_REINSERT(t, obj); 858 return (B_TRUE); 859 } 860 861 neighbor = AVL_NEXT(t, obj); 862 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 863 AVL_REINSERT(t, obj); 864 return (B_TRUE); 865 } 866 867 return (B_FALSE); 868 } 869 870 void 871 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2) 872 { 873 avl_node_t *temp_node; 874 ulong_t temp_numnodes; 875 876 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar); 877 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset); 878 879 temp_node = tree1->avl_root; 880 temp_numnodes = tree1->avl_numnodes; 881 tree1->avl_root = tree2->avl_root; 882 tree1->avl_numnodes = tree2->avl_numnodes; 883 tree2->avl_root = temp_node; 884 tree2->avl_numnodes = temp_numnodes; 885 } 886 887 /* 888 * initialize a new AVL tree 889 */ 890 void 891 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 892 size_t size, size_t offset) 893 { 894 ASSERT(tree); 895 ASSERT(compar); 896 ASSERT(size > 0); 897 ASSERT(size >= offset + sizeof (avl_node_t)); 898 #ifdef _LP64 899 ASSERT((offset & 0x7) == 0); 900 #endif 901 902 tree->avl_compar = compar; 903 tree->avl_root = NULL; 904 tree->avl_numnodes = 0; 905 tree->avl_offset = offset; 906 } 907 908 /* 909 * Delete a tree. 910 */ 911 /* ARGSUSED */ 912 void 913 avl_destroy(avl_tree_t *tree) 914 { 915 ASSERT(tree); 916 ASSERT(tree->avl_numnodes == 0); 917 ASSERT(tree->avl_root == NULL); 918 } 919 920 921 /* 922 * Return the number of nodes in an AVL tree. 923 */ 924 ulong_t 925 avl_numnodes(avl_tree_t *tree) 926 { 927 ASSERT(tree); 928 return (tree->avl_numnodes); 929 } 930 931 boolean_t 932 avl_is_empty(avl_tree_t *tree) 933 { 934 ASSERT(tree); 935 return (tree->avl_numnodes == 0); 936 } 937 938 #define CHILDBIT (1L) 939 940 /* 941 * Post-order tree walk used to visit all tree nodes and destroy the tree 942 * in post order. This is used for removing all the nodes from a tree without 943 * paying any cost for rebalancing it. 944 * 945 * example: 946 * 947 * void *cookie = NULL; 948 * my_data_t *node; 949 * 950 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 951 * free(node); 952 * avl_destroy(tree); 953 * 954 * The cookie is really an avl_node_t to the current node's parent and 955 * an indication of which child you looked at last. 956 * 957 * On input, a cookie value of CHILDBIT indicates the tree is done. 958 */ 959 void * 960 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 961 { 962 avl_node_t *node; 963 avl_node_t *parent; 964 int child; 965 void *first; 966 size_t off = tree->avl_offset; 967 968 /* 969 * Initial calls go to the first node or it's right descendant. 970 */ 971 if (*cookie == NULL) { 972 first = avl_first(tree); 973 974 /* 975 * deal with an empty tree 976 */ 977 if (first == NULL) { 978 *cookie = (void *)CHILDBIT; 979 return (NULL); 980 } 981 982 node = AVL_DATA2NODE(first, off); 983 parent = AVL_XPARENT(node); 984 goto check_right_side; 985 } 986 987 /* 988 * If there is no parent to return to we are done. 989 */ 990 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 991 if (parent == NULL) { 992 if (tree->avl_root != NULL) { 993 ASSERT(tree->avl_numnodes == 1); 994 tree->avl_root = NULL; 995 tree->avl_numnodes = 0; 996 } 997 return (NULL); 998 } 999 1000 /* 1001 * Remove the child pointer we just visited from the parent and tree. 1002 */ 1003 child = (uintptr_t)(*cookie) & CHILDBIT; 1004 parent->avl_child[child] = NULL; 1005 ASSERT(tree->avl_numnodes > 1); 1006 --tree->avl_numnodes; 1007 1008 /* 1009 * If we just removed a right child or there isn't one, go up to parent. 1010 */ 1011 if (child == 1 || parent->avl_child[1] == NULL) { 1012 node = parent; 1013 parent = AVL_XPARENT(parent); 1014 goto done; 1015 } 1016 1017 /* 1018 * Do parent's right child, then leftmost descendent. 1019 */ 1020 node = parent->avl_child[1]; 1021 while (node->avl_child[0] != NULL) { 1022 parent = node; 1023 node = node->avl_child[0]; 1024 } 1025 1026 /* 1027 * If here, we moved to a left child. It may have one 1028 * child on the right (when balance == +1). 1029 */ 1030 check_right_side: 1031 if (node->avl_child[1] != NULL) { 1032 ASSERT(AVL_XBALANCE(node) == 1); 1033 parent = node; 1034 node = node->avl_child[1]; 1035 ASSERT(node->avl_child[0] == NULL && 1036 node->avl_child[1] == NULL); 1037 } else { 1038 ASSERT(AVL_XBALANCE(node) <= 0); 1039 } 1040 1041 done: 1042 if (parent == NULL) { 1043 *cookie = (void *)CHILDBIT; 1044 ASSERT(node == tree->avl_root); 1045 } else { 1046 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1047 } 1048 1049 return (AVL_NODE2DATA(node, off)); 1050 } 1051 1052 #if defined(_KERNEL) 1053 1054 static int __init 1055 avl_init(void) 1056 { 1057 return (0); 1058 } 1059 1060 static void __exit 1061 avl_fini(void) 1062 { 1063 } 1064 1065 module_init(avl_init); 1066 module_exit(avl_fini); 1067 #endif 1068 1069 ZFS_MODULE_DESCRIPTION("Generic AVL tree implementation"); 1070 ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR); 1071 ZFS_MODULE_LICENSE(ZFS_META_LICENSE); 1072 ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 1073 1074 EXPORT_SYMBOL(avl_create); 1075 EXPORT_SYMBOL(avl_find); 1076 EXPORT_SYMBOL(avl_insert); 1077 EXPORT_SYMBOL(avl_insert_here); 1078 EXPORT_SYMBOL(avl_walk); 1079 EXPORT_SYMBOL(avl_first); 1080 EXPORT_SYMBOL(avl_last); 1081 EXPORT_SYMBOL(avl_nearest); 1082 EXPORT_SYMBOL(avl_add); 1083 EXPORT_SYMBOL(avl_swap); 1084 EXPORT_SYMBOL(avl_is_empty); 1085 EXPORT_SYMBOL(avl_remove); 1086 EXPORT_SYMBOL(avl_numnodes); 1087 EXPORT_SYMBOL(avl_destroy_nodes); 1088 EXPORT_SYMBOL(avl_destroy); 1089 EXPORT_SYMBOL(avl_update_lt); 1090 EXPORT_SYMBOL(avl_update_gt); 1091 EXPORT_SYMBOL(avl_update); 1092