1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2015 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * AVL - generic AVL tree implementation for kernel use 33 * 34 * A complete description of AVL trees can be found in many CS textbooks. 35 * 36 * Here is a very brief overview. An AVL tree is a binary search tree that is 37 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 38 * any given node, the left and right subtrees are allowed to differ in height 39 * by at most 1 level. 40 * 41 * This relaxation from a perfectly balanced binary tree allows doing 42 * insertion and deletion relatively efficiently. Searching the tree is 43 * still a fast operation, roughly O(log(N)). 44 * 45 * The key to insertion and deletion is a set of tree manipulations called 46 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 47 * 48 * This implementation of AVL trees has the following peculiarities: 49 * 50 * - The AVL specific data structures are physically embedded as fields 51 * in the "using" data structures. To maintain generality the code 52 * must constantly translate between "avl_node_t *" and containing 53 * data structure "void *"s by adding/subtracting the avl_offset. 54 * 55 * - Since the AVL data is always embedded in other structures, there is 56 * no locking or memory allocation in the AVL routines. This must be 57 * provided for by the enclosing data structure's semantics. Typically, 58 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 59 * exclusive write lock. Other operations require a read lock. 60 * 61 * - The implementation uses iteration instead of explicit recursion, 62 * since it is intended to run on limited size kernel stacks. Since 63 * there is no recursion stack present to move "up" in the tree, 64 * there is an explicit "parent" link in the avl_node_t. 65 * 66 * - The left/right children pointers of a node are in an array. 67 * In the code, variables (instead of constants) are used to represent 68 * left and right indices. The implementation is written as if it only 69 * dealt with left handed manipulations. By changing the value assigned 70 * to "left", the code also works for right handed trees. The 71 * following variables/terms are frequently used: 72 * 73 * int left; // 0 when dealing with left children, 74 * // 1 for dealing with right children 75 * 76 * int left_heavy; // -1 when left subtree is taller at some node, 77 * // +1 when right subtree is taller 78 * 79 * int right; // will be the opposite of left (0 or 1) 80 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 81 * 82 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 83 * 84 * Though it is a little more confusing to read the code, the approach 85 * allows using half as much code (and hence cache footprint) for tree 86 * manipulations and eliminates many conditional branches. 87 * 88 * - The avl_index_t is an opaque "cookie" used to find nodes at or 89 * adjacent to where a new value would be inserted in the tree. The value 90 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 91 * pointer) is set to indicate if that the new node has a value greater 92 * than the value of the indicated "avl_node_t *". 93 * 94 * Note - in addition to userland (e.g. libavl and libutil) and the kernel 95 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module, 96 * which each have their own compilation environments and subsequent 97 * requirements. Each of these environments must be considered when adding 98 * dependencies from avl.c. 99 * 100 * Link to Illumos.org for more information on avl function: 101 * [1] https://illumos.org/man/9f/avl 102 */ 103 104 #include <sys/types.h> 105 #include <sys/param.h> 106 #include <sys/debug.h> 107 #include <sys/avl.h> 108 #include <sys/cmn_err.h> 109 #include <sys/mod.h> 110 111 /* 112 * Small arrays to translate between balance (or diff) values and child indices. 113 * 114 * Code that deals with binary tree data structures will randomly use 115 * left and right children when examining a tree. C "if()" statements 116 * which evaluate randomly suffer from very poor hardware branch prediction. 117 * In this code we avoid some of the branch mispredictions by using the 118 * following translation arrays. They replace random branches with an 119 * additional memory reference. Since the translation arrays are both very 120 * small the data should remain efficiently in cache. 121 */ 122 static const int avl_child2balance[] = {-1, 1}; 123 static const int avl_balance2child[] = {0, 0, 1}; 124 125 126 /* 127 * Walk from one node to the previous valued node (ie. an infix walk 128 * towards the left). At any given node we do one of 2 things: 129 * 130 * - If there is a left child, go to it, then to it's rightmost descendant. 131 * 132 * - otherwise we return through parent nodes until we've come from a right 133 * child. 134 * 135 * Return Value: 136 * NULL - if at the end of the nodes 137 * otherwise next node 138 */ 139 void * 140 avl_walk(avl_tree_t *tree, void *oldnode, int left) 141 { 142 size_t off = tree->avl_offset; 143 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 144 int right = 1 - left; 145 int was_child; 146 147 148 /* 149 * nowhere to walk to if tree is empty 150 */ 151 if (node == NULL) 152 return (NULL); 153 154 /* 155 * Visit the previous valued node. There are two possibilities: 156 * 157 * If this node has a left child, go down one left, then all 158 * the way right. 159 */ 160 if (node->avl_child[left] != NULL) { 161 for (node = node->avl_child[left]; 162 node->avl_child[right] != NULL; 163 node = node->avl_child[right]) 164 ; 165 /* 166 * Otherwise, return through left children as far as we can. 167 */ 168 } else { 169 for (;;) { 170 was_child = AVL_XCHILD(node); 171 node = AVL_XPARENT(node); 172 if (node == NULL) 173 return (NULL); 174 if (was_child == right) 175 break; 176 } 177 } 178 179 return (AVL_NODE2DATA(node, off)); 180 } 181 182 /* 183 * Return the lowest valued node in a tree or NULL. 184 * (leftmost child from root of tree) 185 */ 186 void * 187 avl_first(avl_tree_t *tree) 188 { 189 avl_node_t *node; 190 avl_node_t *prev = NULL; 191 size_t off = tree->avl_offset; 192 193 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 194 prev = node; 195 196 if (prev != NULL) 197 return (AVL_NODE2DATA(prev, off)); 198 return (NULL); 199 } 200 201 /* 202 * Return the highest valued node in a tree or NULL. 203 * (rightmost child from root of tree) 204 */ 205 void * 206 avl_last(avl_tree_t *tree) 207 { 208 avl_node_t *node; 209 avl_node_t *prev = NULL; 210 size_t off = tree->avl_offset; 211 212 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 213 prev = node; 214 215 if (prev != NULL) 216 return (AVL_NODE2DATA(prev, off)); 217 return (NULL); 218 } 219 220 /* 221 * Access the node immediately before or after an insertion point. 222 * 223 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 224 * 225 * Return value: 226 * NULL: no node in the given direction 227 * "void *" of the found tree node 228 */ 229 void * 230 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 231 { 232 int child = AVL_INDEX2CHILD(where); 233 avl_node_t *node = AVL_INDEX2NODE(where); 234 void *data; 235 size_t off = tree->avl_offset; 236 237 if (node == NULL) { 238 ASSERT(tree->avl_root == NULL); 239 return (NULL); 240 } 241 data = AVL_NODE2DATA(node, off); 242 if (child != direction) 243 return (data); 244 245 return (avl_walk(tree, data, direction)); 246 } 247 248 249 /* 250 * Search for the node which contains "value". The algorithm is a 251 * simple binary tree search. 252 * 253 * return value: 254 * NULL: the value is not in the AVL tree 255 * *where (if not NULL) is set to indicate the insertion point 256 * "void *" of the found tree node 257 */ 258 void * 259 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 260 { 261 avl_node_t *node; 262 avl_node_t *prev = NULL; 263 int child = 0; 264 int diff; 265 size_t off = tree->avl_offset; 266 267 for (node = tree->avl_root; node != NULL; 268 node = node->avl_child[child]) { 269 270 prev = node; 271 272 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 273 ASSERT(-1 <= diff && diff <= 1); 274 if (diff == 0) { 275 #ifdef ZFS_DEBUG 276 if (where != NULL) 277 *where = 0; 278 #endif 279 return (AVL_NODE2DATA(node, off)); 280 } 281 child = avl_balance2child[1 + diff]; 282 283 } 284 285 if (where != NULL) 286 *where = AVL_MKINDEX(prev, child); 287 288 return (NULL); 289 } 290 291 292 /* 293 * Perform a rotation to restore balance at the subtree given by depth. 294 * 295 * This routine is used by both insertion and deletion. The return value 296 * indicates: 297 * 0 : subtree did not change height 298 * !0 : subtree was reduced in height 299 * 300 * The code is written as if handling left rotations, right rotations are 301 * symmetric and handled by swapping values of variables right/left[_heavy] 302 * 303 * On input balance is the "new" balance at "node". This value is either 304 * -2 or +2. 305 */ 306 static int 307 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 308 { 309 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 310 int right = 1 - left; 311 int left_heavy = balance >> 1; 312 int right_heavy = -left_heavy; 313 avl_node_t *parent = AVL_XPARENT(node); 314 avl_node_t *child = node->avl_child[left]; 315 avl_node_t *cright; 316 avl_node_t *gchild; 317 avl_node_t *gright; 318 avl_node_t *gleft; 319 int which_child = AVL_XCHILD(node); 320 int child_bal = AVL_XBALANCE(child); 321 322 /* 323 * case 1 : node is overly left heavy, the left child is balanced or 324 * also left heavy. This requires the following rotation. 325 * 326 * (node bal:-2) 327 * / \ 328 * / \ 329 * (child bal:0 or -1) 330 * / \ 331 * / \ 332 * cright 333 * 334 * becomes: 335 * 336 * (child bal:1 or 0) 337 * / \ 338 * / \ 339 * (node bal:-1 or 0) 340 * / \ 341 * / \ 342 * cright 343 * 344 * we detect this situation by noting that child's balance is not 345 * right_heavy. 346 */ 347 if (child_bal != right_heavy) { 348 349 /* 350 * compute new balance of nodes 351 * 352 * If child used to be left heavy (now balanced) we reduced 353 * the height of this sub-tree -- used in "return...;" below 354 */ 355 child_bal += right_heavy; /* adjust towards right */ 356 357 /* 358 * move "cright" to be node's left child 359 */ 360 cright = child->avl_child[right]; 361 node->avl_child[left] = cright; 362 if (cright != NULL) { 363 AVL_SETPARENT(cright, node); 364 AVL_SETCHILD(cright, left); 365 } 366 367 /* 368 * move node to be child's right child 369 */ 370 child->avl_child[right] = node; 371 AVL_SETBALANCE(node, -child_bal); 372 AVL_SETCHILD(node, right); 373 AVL_SETPARENT(node, child); 374 375 /* 376 * update the pointer into this subtree 377 */ 378 AVL_SETBALANCE(child, child_bal); 379 AVL_SETCHILD(child, which_child); 380 AVL_SETPARENT(child, parent); 381 if (parent != NULL) 382 parent->avl_child[which_child] = child; 383 else 384 tree->avl_root = child; 385 386 return (child_bal == 0); 387 } 388 389 /* 390 * case 2 : When node is left heavy, but child is right heavy we use 391 * a different rotation. 392 * 393 * (node b:-2) 394 * / \ 395 * / \ 396 * / \ 397 * (child b:+1) 398 * / \ 399 * / \ 400 * (gchild b: != 0) 401 * / \ 402 * / \ 403 * gleft gright 404 * 405 * becomes: 406 * 407 * (gchild b:0) 408 * / \ 409 * / \ 410 * / \ 411 * (child b:?) (node b:?) 412 * / \ / \ 413 * / \ / \ 414 * gleft gright 415 * 416 * computing the new balances is more complicated. As an example: 417 * if gchild was right_heavy, then child is now left heavy 418 * else it is balanced 419 */ 420 gchild = child->avl_child[right]; 421 gleft = gchild->avl_child[left]; 422 gright = gchild->avl_child[right]; 423 424 /* 425 * move gright to left child of node and 426 * 427 * move gleft to right child of node 428 */ 429 node->avl_child[left] = gright; 430 if (gright != NULL) { 431 AVL_SETPARENT(gright, node); 432 AVL_SETCHILD(gright, left); 433 } 434 435 child->avl_child[right] = gleft; 436 if (gleft != NULL) { 437 AVL_SETPARENT(gleft, child); 438 AVL_SETCHILD(gleft, right); 439 } 440 441 /* 442 * move child to left child of gchild and 443 * 444 * move node to right child of gchild and 445 * 446 * fixup parent of all this to point to gchild 447 */ 448 balance = AVL_XBALANCE(gchild); 449 gchild->avl_child[left] = child; 450 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 451 AVL_SETPARENT(child, gchild); 452 AVL_SETCHILD(child, left); 453 454 gchild->avl_child[right] = node; 455 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 456 AVL_SETPARENT(node, gchild); 457 AVL_SETCHILD(node, right); 458 459 AVL_SETBALANCE(gchild, 0); 460 AVL_SETPARENT(gchild, parent); 461 AVL_SETCHILD(gchild, which_child); 462 if (parent != NULL) 463 parent->avl_child[which_child] = gchild; 464 else 465 tree->avl_root = gchild; 466 467 return (1); /* the new tree is always shorter */ 468 } 469 470 471 /* 472 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 473 * 474 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 475 * searches out to the leaf positions. The avl_index_t indicates the node 476 * which will be the parent of the new node. 477 * 478 * After the node is inserted, a single rotation further up the tree may 479 * be necessary to maintain an acceptable AVL balance. 480 */ 481 void 482 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 483 { 484 avl_node_t *node; 485 avl_node_t *parent = AVL_INDEX2NODE(where); 486 int old_balance; 487 int new_balance; 488 int which_child = AVL_INDEX2CHILD(where); 489 size_t off = tree->avl_offset; 490 491 #ifdef _LP64 492 ASSERT(((uintptr_t)new_data & 0x7) == 0); 493 #endif 494 495 node = AVL_DATA2NODE(new_data, off); 496 497 /* 498 * First, add the node to the tree at the indicated position. 499 */ 500 ++tree->avl_numnodes; 501 502 node->avl_child[0] = NULL; 503 node->avl_child[1] = NULL; 504 505 AVL_SETCHILD(node, which_child); 506 AVL_SETBALANCE(node, 0); 507 AVL_SETPARENT(node, parent); 508 if (parent != NULL) { 509 ASSERT(parent->avl_child[which_child] == NULL); 510 parent->avl_child[which_child] = node; 511 } else { 512 ASSERT(tree->avl_root == NULL); 513 tree->avl_root = node; 514 } 515 /* 516 * Now, back up the tree modifying the balance of all nodes above the 517 * insertion point. If we get to a highly unbalanced ancestor, we 518 * need to do a rotation. If we back out of the tree we are done. 519 * If we brought any subtree into perfect balance (0), we are also done. 520 */ 521 for (;;) { 522 node = parent; 523 if (node == NULL) 524 return; 525 526 /* 527 * Compute the new balance 528 */ 529 old_balance = AVL_XBALANCE(node); 530 new_balance = old_balance + avl_child2balance[which_child]; 531 532 /* 533 * If we introduced equal balance, then we are done immediately 534 */ 535 if (new_balance == 0) { 536 AVL_SETBALANCE(node, 0); 537 return; 538 } 539 540 /* 541 * If both old and new are not zero we went 542 * from -1 to -2 balance, do a rotation. 543 */ 544 if (old_balance != 0) 545 break; 546 547 AVL_SETBALANCE(node, new_balance); 548 parent = AVL_XPARENT(node); 549 which_child = AVL_XCHILD(node); 550 } 551 552 /* 553 * perform a rotation to fix the tree and return 554 */ 555 (void) avl_rotation(tree, node, new_balance); 556 } 557 558 /* 559 * Insert "new_data" in "tree" in the given "direction" either after or 560 * before (AVL_AFTER, AVL_BEFORE) the data "here". 561 * 562 * Insertions can only be done at empty leaf points in the tree, therefore 563 * if the given child of the node is already present we move to either 564 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 565 * every other node in the tree is a leaf, this always works. 566 * 567 * To help developers using this interface, we assert that the new node 568 * is correctly ordered at every step of the way in DEBUG kernels. 569 */ 570 void 571 avl_insert_here( 572 avl_tree_t *tree, 573 void *new_data, 574 void *here, 575 int direction) 576 { 577 avl_node_t *node; 578 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 579 #ifdef ZFS_DEBUG 580 int diff; 581 #endif 582 583 ASSERT(tree != NULL); 584 ASSERT(new_data != NULL); 585 ASSERT(here != NULL); 586 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 587 588 /* 589 * If corresponding child of node is not NULL, go to the neighboring 590 * node and reverse the insertion direction. 591 */ 592 node = AVL_DATA2NODE(here, tree->avl_offset); 593 594 #ifdef ZFS_DEBUG 595 diff = tree->avl_compar(new_data, here); 596 ASSERT(-1 <= diff && diff <= 1); 597 ASSERT(diff != 0); 598 ASSERT(diff > 0 ? child == 1 : child == 0); 599 #endif 600 601 if (node->avl_child[child] != NULL) { 602 node = node->avl_child[child]; 603 child = 1 - child; 604 while (node->avl_child[child] != NULL) { 605 #ifdef ZFS_DEBUG 606 diff = tree->avl_compar(new_data, 607 AVL_NODE2DATA(node, tree->avl_offset)); 608 ASSERT(-1 <= diff && diff <= 1); 609 ASSERT(diff != 0); 610 ASSERT(diff > 0 ? child == 1 : child == 0); 611 #endif 612 node = node->avl_child[child]; 613 } 614 #ifdef ZFS_DEBUG 615 diff = tree->avl_compar(new_data, 616 AVL_NODE2DATA(node, tree->avl_offset)); 617 ASSERT(-1 <= diff && diff <= 1); 618 ASSERT(diff != 0); 619 ASSERT(diff > 0 ? child == 1 : child == 0); 620 #endif 621 } 622 ASSERT(node->avl_child[child] == NULL); 623 624 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 625 } 626 627 /* 628 * Add a new node to an AVL tree. Strictly enforce that no duplicates can 629 * be added to the tree with a VERIFY which is enabled for non-DEBUG builds. 630 */ 631 void 632 avl_add(avl_tree_t *tree, void *new_node) 633 { 634 avl_index_t where = 0; 635 636 VERIFY(avl_find(tree, new_node, &where) == NULL); 637 638 avl_insert(tree, new_node, where); 639 } 640 641 /* 642 * Delete a node from the AVL tree. Deletion is similar to insertion, but 643 * with 2 complications. 644 * 645 * First, we may be deleting an interior node. Consider the following subtree: 646 * 647 * d c c 648 * / \ / \ / \ 649 * b e b e b e 650 * / \ / \ / 651 * a c a a 652 * 653 * When we are deleting node (d), we find and bring up an adjacent valued leaf 654 * node, say (c), to take the interior node's place. In the code this is 655 * handled by temporarily swapping (d) and (c) in the tree and then using 656 * common code to delete (d) from the leaf position. 657 * 658 * Secondly, an interior deletion from a deep tree may require more than one 659 * rotation to fix the balance. This is handled by moving up the tree through 660 * parents and applying rotations as needed. The return value from 661 * avl_rotation() is used to detect when a subtree did not change overall 662 * height due to a rotation. 663 */ 664 void 665 avl_remove(avl_tree_t *tree, void *data) 666 { 667 avl_node_t *delete; 668 avl_node_t *parent; 669 avl_node_t *node; 670 avl_node_t tmp; 671 int old_balance; 672 int new_balance; 673 int left; 674 int right; 675 int which_child; 676 size_t off = tree->avl_offset; 677 678 delete = AVL_DATA2NODE(data, off); 679 680 /* 681 * Deletion is easiest with a node that has at most 1 child. 682 * We swap a node with 2 children with a sequentially valued 683 * neighbor node. That node will have at most 1 child. Note this 684 * has no effect on the ordering of the remaining nodes. 685 * 686 * As an optimization, we choose the greater neighbor if the tree 687 * is right heavy, otherwise the left neighbor. This reduces the 688 * number of rotations needed. 689 */ 690 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 691 692 /* 693 * choose node to swap from whichever side is taller 694 */ 695 old_balance = AVL_XBALANCE(delete); 696 left = avl_balance2child[old_balance + 1]; 697 right = 1 - left; 698 699 /* 700 * get to the previous value'd node 701 * (down 1 left, as far as possible right) 702 */ 703 for (node = delete->avl_child[left]; 704 node->avl_child[right] != NULL; 705 node = node->avl_child[right]) 706 ; 707 708 /* 709 * create a temp placeholder for 'node' 710 * move 'node' to delete's spot in the tree 711 */ 712 tmp = *node; 713 714 *node = *delete; 715 if (node->avl_child[left] == node) 716 node->avl_child[left] = &tmp; 717 718 parent = AVL_XPARENT(node); 719 if (parent != NULL) 720 parent->avl_child[AVL_XCHILD(node)] = node; 721 else 722 tree->avl_root = node; 723 AVL_SETPARENT(node->avl_child[left], node); 724 AVL_SETPARENT(node->avl_child[right], node); 725 726 /* 727 * Put tmp where node used to be (just temporary). 728 * It always has a parent and at most 1 child. 729 */ 730 delete = &tmp; 731 parent = AVL_XPARENT(delete); 732 parent->avl_child[AVL_XCHILD(delete)] = delete; 733 which_child = (delete->avl_child[1] != 0); 734 if (delete->avl_child[which_child] != NULL) 735 AVL_SETPARENT(delete->avl_child[which_child], delete); 736 } 737 738 739 /* 740 * Here we know "delete" is at least partially a leaf node. It can 741 * be easily removed from the tree. 742 */ 743 ASSERT(tree->avl_numnodes > 0); 744 --tree->avl_numnodes; 745 parent = AVL_XPARENT(delete); 746 which_child = AVL_XCHILD(delete); 747 if (delete->avl_child[0] != NULL) 748 node = delete->avl_child[0]; 749 else 750 node = delete->avl_child[1]; 751 752 /* 753 * Connect parent directly to node (leaving out delete). 754 */ 755 if (node != NULL) { 756 AVL_SETPARENT(node, parent); 757 AVL_SETCHILD(node, which_child); 758 } 759 if (parent == NULL) { 760 tree->avl_root = node; 761 return; 762 } 763 parent->avl_child[which_child] = node; 764 765 766 /* 767 * Since the subtree is now shorter, begin adjusting parent balances 768 * and performing any needed rotations. 769 */ 770 do { 771 772 /* 773 * Move up the tree and adjust the balance 774 * 775 * Capture the parent and which_child values for the next 776 * iteration before any rotations occur. 777 */ 778 node = parent; 779 old_balance = AVL_XBALANCE(node); 780 new_balance = old_balance - avl_child2balance[which_child]; 781 parent = AVL_XPARENT(node); 782 which_child = AVL_XCHILD(node); 783 784 /* 785 * If a node was in perfect balance but isn't anymore then 786 * we can stop, since the height didn't change above this point 787 * due to a deletion. 788 */ 789 if (old_balance == 0) { 790 AVL_SETBALANCE(node, new_balance); 791 break; 792 } 793 794 /* 795 * If the new balance is zero, we don't need to rotate 796 * else 797 * need a rotation to fix the balance. 798 * If the rotation doesn't change the height 799 * of the sub-tree we have finished adjusting. 800 */ 801 if (new_balance == 0) 802 AVL_SETBALANCE(node, new_balance); 803 else if (!avl_rotation(tree, node, new_balance)) 804 break; 805 } while (parent != NULL); 806 } 807 808 #define AVL_REINSERT(tree, obj) \ 809 avl_remove((tree), (obj)); \ 810 avl_add((tree), (obj)) 811 812 boolean_t 813 avl_update_lt(avl_tree_t *t, void *obj) 814 { 815 void *neighbor; 816 817 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 818 (t->avl_compar(obj, neighbor) <= 0)); 819 820 neighbor = AVL_PREV(t, obj); 821 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 822 AVL_REINSERT(t, obj); 823 return (B_TRUE); 824 } 825 826 return (B_FALSE); 827 } 828 829 boolean_t 830 avl_update_gt(avl_tree_t *t, void *obj) 831 { 832 void *neighbor; 833 834 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 835 (t->avl_compar(obj, neighbor) >= 0)); 836 837 neighbor = AVL_NEXT(t, obj); 838 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 839 AVL_REINSERT(t, obj); 840 return (B_TRUE); 841 } 842 843 return (B_FALSE); 844 } 845 846 boolean_t 847 avl_update(avl_tree_t *t, void *obj) 848 { 849 void *neighbor; 850 851 neighbor = AVL_PREV(t, obj); 852 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 853 AVL_REINSERT(t, obj); 854 return (B_TRUE); 855 } 856 857 neighbor = AVL_NEXT(t, obj); 858 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 859 AVL_REINSERT(t, obj); 860 return (B_TRUE); 861 } 862 863 return (B_FALSE); 864 } 865 866 void 867 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2) 868 { 869 avl_node_t *temp_node; 870 ulong_t temp_numnodes; 871 872 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar); 873 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset); 874 875 temp_node = tree1->avl_root; 876 temp_numnodes = tree1->avl_numnodes; 877 tree1->avl_root = tree2->avl_root; 878 tree1->avl_numnodes = tree2->avl_numnodes; 879 tree2->avl_root = temp_node; 880 tree2->avl_numnodes = temp_numnodes; 881 } 882 883 /* 884 * initialize a new AVL tree 885 */ 886 void 887 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 888 size_t size, size_t offset) 889 { 890 ASSERT(tree); 891 ASSERT(compar); 892 ASSERT(size > 0); 893 ASSERT(size >= offset + sizeof (avl_node_t)); 894 #ifdef _LP64 895 ASSERT((offset & 0x7) == 0); 896 #endif 897 898 tree->avl_compar = compar; 899 tree->avl_root = NULL; 900 tree->avl_numnodes = 0; 901 tree->avl_offset = offset; 902 } 903 904 /* 905 * Delete a tree. 906 */ 907 void 908 avl_destroy(avl_tree_t *tree) 909 { 910 ASSERT(tree); 911 ASSERT(tree->avl_numnodes == 0); 912 ASSERT(tree->avl_root == NULL); 913 } 914 915 916 /* 917 * Return the number of nodes in an AVL tree. 918 */ 919 ulong_t 920 avl_numnodes(avl_tree_t *tree) 921 { 922 ASSERT(tree); 923 return (tree->avl_numnodes); 924 } 925 926 boolean_t 927 avl_is_empty(avl_tree_t *tree) 928 { 929 ASSERT(tree); 930 return (tree->avl_numnodes == 0); 931 } 932 933 #define CHILDBIT (1L) 934 935 /* 936 * Post-order tree walk used to visit all tree nodes and destroy the tree 937 * in post order. This is used for removing all the nodes from a tree without 938 * paying any cost for rebalancing it. 939 * 940 * example: 941 * 942 * void *cookie = NULL; 943 * my_data_t *node; 944 * 945 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 946 * free(node); 947 * avl_destroy(tree); 948 * 949 * The cookie is really an avl_node_t to the current node's parent and 950 * an indication of which child you looked at last. 951 * 952 * On input, a cookie value of CHILDBIT indicates the tree is done. 953 */ 954 void * 955 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 956 { 957 avl_node_t *node; 958 avl_node_t *parent; 959 int child; 960 void *first; 961 size_t off = tree->avl_offset; 962 963 /* 964 * Initial calls go to the first node or it's right descendant. 965 */ 966 if (*cookie == NULL) { 967 first = avl_first(tree); 968 969 /* 970 * deal with an empty tree 971 */ 972 if (first == NULL) { 973 *cookie = (void *)CHILDBIT; 974 return (NULL); 975 } 976 977 node = AVL_DATA2NODE(first, off); 978 parent = AVL_XPARENT(node); 979 goto check_right_side; 980 } 981 982 /* 983 * If there is no parent to return to we are done. 984 */ 985 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 986 if (parent == NULL) { 987 if (tree->avl_root != NULL) { 988 ASSERT(tree->avl_numnodes == 1); 989 tree->avl_root = NULL; 990 tree->avl_numnodes = 0; 991 } 992 return (NULL); 993 } 994 995 /* 996 * Remove the child pointer we just visited from the parent and tree. 997 */ 998 child = (uintptr_t)(*cookie) & CHILDBIT; 999 parent->avl_child[child] = NULL; 1000 ASSERT(tree->avl_numnodes > 1); 1001 --tree->avl_numnodes; 1002 1003 /* 1004 * If we just removed a right child or there isn't one, go up to parent. 1005 */ 1006 if (child == 1 || parent->avl_child[1] == NULL) { 1007 node = parent; 1008 parent = AVL_XPARENT(parent); 1009 goto done; 1010 } 1011 1012 /* 1013 * Do parent's right child, then leftmost descendent. 1014 */ 1015 node = parent->avl_child[1]; 1016 while (node->avl_child[0] != NULL) { 1017 parent = node; 1018 node = node->avl_child[0]; 1019 } 1020 1021 /* 1022 * If here, we moved to a left child. It may have one 1023 * child on the right (when balance == +1). 1024 */ 1025 check_right_side: 1026 if (node->avl_child[1] != NULL) { 1027 ASSERT(AVL_XBALANCE(node) == 1); 1028 parent = node; 1029 node = node->avl_child[1]; 1030 ASSERT(node->avl_child[0] == NULL && 1031 node->avl_child[1] == NULL); 1032 } else { 1033 ASSERT(AVL_XBALANCE(node) <= 0); 1034 } 1035 1036 done: 1037 if (parent == NULL) { 1038 *cookie = (void *)CHILDBIT; 1039 ASSERT(node == tree->avl_root); 1040 } else { 1041 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1042 } 1043 1044 return (AVL_NODE2DATA(node, off)); 1045 } 1046 1047 EXPORT_SYMBOL(avl_create); 1048 EXPORT_SYMBOL(avl_find); 1049 EXPORT_SYMBOL(avl_insert); 1050 EXPORT_SYMBOL(avl_insert_here); 1051 EXPORT_SYMBOL(avl_walk); 1052 EXPORT_SYMBOL(avl_first); 1053 EXPORT_SYMBOL(avl_last); 1054 EXPORT_SYMBOL(avl_nearest); 1055 EXPORT_SYMBOL(avl_add); 1056 EXPORT_SYMBOL(avl_swap); 1057 EXPORT_SYMBOL(avl_is_empty); 1058 EXPORT_SYMBOL(avl_remove); 1059 EXPORT_SYMBOL(avl_numnodes); 1060 EXPORT_SYMBOL(avl_destroy_nodes); 1061 EXPORT_SYMBOL(avl_destroy); 1062 EXPORT_SYMBOL(avl_update_lt); 1063 EXPORT_SYMBOL(avl_update_gt); 1064 EXPORT_SYMBOL(avl_update); 1065