xref: /freebsd/sys/contrib/openzfs/module/avl/avl.c (revision 5c4aa6257210502c93ad65882a8a4842d984bae2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2015 by Delphix. All rights reserved.
29  */
30 
31 /*
32  * AVL - generic AVL tree implementation for kernel use
33  *
34  * A complete description of AVL trees can be found in many CS textbooks.
35  *
36  * Here is a very brief overview. An AVL tree is a binary search tree that is
37  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
38  * any given node, the left and right subtrees are allowed to differ in height
39  * by at most 1 level.
40  *
41  * This relaxation from a perfectly balanced binary tree allows doing
42  * insertion and deletion relatively efficiently. Searching the tree is
43  * still a fast operation, roughly O(log(N)).
44  *
45  * The key to insertion and deletion is a set of tree manipulations called
46  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
47  *
48  * This implementation of AVL trees has the following peculiarities:
49  *
50  *	- The AVL specific data structures are physically embedded as fields
51  *	  in the "using" data structures.  To maintain generality the code
52  *	  must constantly translate between "avl_node_t *" and containing
53  *	  data structure "void *"s by adding/subtracting the avl_offset.
54  *
55  *	- Since the AVL data is always embedded in other structures, there is
56  *	  no locking or memory allocation in the AVL routines. This must be
57  *	  provided for by the enclosing data structure's semantics. Typically,
58  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
59  *	  exclusive write lock. Other operations require a read lock.
60  *
61  *      - The implementation uses iteration instead of explicit recursion,
62  *	  since it is intended to run on limited size kernel stacks. Since
63  *	  there is no recursion stack present to move "up" in the tree,
64  *	  there is an explicit "parent" link in the avl_node_t.
65  *
66  *      - The left/right children pointers of a node are in an array.
67  *	  In the code, variables (instead of constants) are used to represent
68  *	  left and right indices.  The implementation is written as if it only
69  *	  dealt with left handed manipulations.  By changing the value assigned
70  *	  to "left", the code also works for right handed trees.  The
71  *	  following variables/terms are frequently used:
72  *
73  *		int left;	// 0 when dealing with left children,
74  *				// 1 for dealing with right children
75  *
76  *		int left_heavy;	// -1 when left subtree is taller at some node,
77  *				// +1 when right subtree is taller
78  *
79  *		int right;	// will be the opposite of left (0 or 1)
80  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
81  *
82  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
83  *
84  *	  Though it is a little more confusing to read the code, the approach
85  *	  allows using half as much code (and hence cache footprint) for tree
86  *	  manipulations and eliminates many conditional branches.
87  *
88  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
89  *	  adjacent to where a new value would be inserted in the tree. The value
90  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
91  *	  pointer) is set to indicate if that the new node has a value greater
92  *	  than the value of the indicated "avl_node_t *".
93  *
94  * Note - in addition to userland (e.g. libavl and libutil) and the kernel
95  * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
96  * which each have their own compilation environments and subsequent
97  * requirements. Each of these environments must be considered when adding
98  * dependencies from avl.c.
99  *
100  * Link to Illumos.org for more information on avl function:
101  * [1] https://illumos.org/man/9f/avl
102  */
103 
104 #include <sys/types.h>
105 #include <sys/param.h>
106 #include <sys/debug.h>
107 #include <sys/avl.h>
108 #include <sys/cmn_err.h>
109 #include <sys/mod.h>
110 
111 /*
112  * Small arrays to translate between balance (or diff) values and child indices.
113  *
114  * Code that deals with binary tree data structures will randomly use
115  * left and right children when examining a tree.  C "if()" statements
116  * which evaluate randomly suffer from very poor hardware branch prediction.
117  * In this code we avoid some of the branch mispredictions by using the
118  * following translation arrays. They replace random branches with an
119  * additional memory reference. Since the translation arrays are both very
120  * small the data should remain efficiently in cache.
121  */
122 static const int  avl_child2balance[]	= {-1, 1};
123 static const int  avl_balance2child[]	= {0, 0, 1};
124 
125 
126 /*
127  * Walk from one node to the previous valued node (ie. an infix walk
128  * towards the left). At any given node we do one of 2 things:
129  *
130  * - If there is a left child, go to it, then to it's rightmost descendant.
131  *
132  * - otherwise we return through parent nodes until we've come from a right
133  *   child.
134  *
135  * Return Value:
136  * NULL - if at the end of the nodes
137  * otherwise next node
138  */
139 void *
140 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
141 {
142 	size_t off = tree->avl_offset;
143 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
144 	int right = 1 - left;
145 	int was_child;
146 
147 
148 	/*
149 	 * nowhere to walk to if tree is empty
150 	 */
151 	if (node == NULL)
152 		return (NULL);
153 
154 	/*
155 	 * Visit the previous valued node. There are two possibilities:
156 	 *
157 	 * If this node has a left child, go down one left, then all
158 	 * the way right.
159 	 */
160 	if (node->avl_child[left] != NULL) {
161 		for (node = node->avl_child[left];
162 		    node->avl_child[right] != NULL;
163 		    node = node->avl_child[right])
164 			;
165 	/*
166 	 * Otherwise, return through left children as far as we can.
167 	 */
168 	} else {
169 		for (;;) {
170 			was_child = AVL_XCHILD(node);
171 			node = AVL_XPARENT(node);
172 			if (node == NULL)
173 				return (NULL);
174 			if (was_child == right)
175 				break;
176 		}
177 	}
178 
179 	return (AVL_NODE2DATA(node, off));
180 }
181 
182 /*
183  * Return the lowest valued node in a tree or NULL.
184  * (leftmost child from root of tree)
185  */
186 void *
187 avl_first(avl_tree_t *tree)
188 {
189 	avl_node_t *node;
190 	avl_node_t *prev = NULL;
191 	size_t off = tree->avl_offset;
192 
193 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
194 		prev = node;
195 
196 	if (prev != NULL)
197 		return (AVL_NODE2DATA(prev, off));
198 	return (NULL);
199 }
200 
201 /*
202  * Return the highest valued node in a tree or NULL.
203  * (rightmost child from root of tree)
204  */
205 void *
206 avl_last(avl_tree_t *tree)
207 {
208 	avl_node_t *node;
209 	avl_node_t *prev = NULL;
210 	size_t off = tree->avl_offset;
211 
212 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
213 		prev = node;
214 
215 	if (prev != NULL)
216 		return (AVL_NODE2DATA(prev, off));
217 	return (NULL);
218 }
219 
220 /*
221  * Access the node immediately before or after an insertion point.
222  *
223  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
224  *
225  * Return value:
226  *	NULL: no node in the given direction
227  *	"void *"  of the found tree node
228  */
229 void *
230 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
231 {
232 	int child = AVL_INDEX2CHILD(where);
233 	avl_node_t *node = AVL_INDEX2NODE(where);
234 	void *data;
235 	size_t off = tree->avl_offset;
236 
237 	if (node == NULL) {
238 		ASSERT(tree->avl_root == NULL);
239 		return (NULL);
240 	}
241 	data = AVL_NODE2DATA(node, off);
242 	if (child != direction)
243 		return (data);
244 
245 	return (avl_walk(tree, data, direction));
246 }
247 
248 
249 /*
250  * Search for the node which contains "value".  The algorithm is a
251  * simple binary tree search.
252  *
253  * return value:
254  *	NULL: the value is not in the AVL tree
255  *		*where (if not NULL)  is set to indicate the insertion point
256  *	"void *"  of the found tree node
257  */
258 void *
259 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
260 {
261 	avl_node_t *node;
262 	avl_node_t *prev = NULL;
263 	int child = 0;
264 	int diff;
265 	size_t off = tree->avl_offset;
266 
267 	for (node = tree->avl_root; node != NULL;
268 	    node = node->avl_child[child]) {
269 
270 		prev = node;
271 
272 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
273 		ASSERT(-1 <= diff && diff <= 1);
274 		if (diff == 0) {
275 #ifdef ZFS_DEBUG
276 			if (where != NULL)
277 				*where = 0;
278 #endif
279 			return (AVL_NODE2DATA(node, off));
280 		}
281 		child = avl_balance2child[1 + diff];
282 
283 	}
284 
285 	if (where != NULL)
286 		*where = AVL_MKINDEX(prev, child);
287 
288 	return (NULL);
289 }
290 
291 
292 /*
293  * Perform a rotation to restore balance at the subtree given by depth.
294  *
295  * This routine is used by both insertion and deletion. The return value
296  * indicates:
297  *	 0 : subtree did not change height
298  *	!0 : subtree was reduced in height
299  *
300  * The code is written as if handling left rotations, right rotations are
301  * symmetric and handled by swapping values of variables right/left[_heavy]
302  *
303  * On input balance is the "new" balance at "node". This value is either
304  * -2 or +2.
305  */
306 static int
307 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
308 {
309 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
310 	int right = 1 - left;
311 	int left_heavy = balance >> 1;
312 	int right_heavy = -left_heavy;
313 	avl_node_t *parent = AVL_XPARENT(node);
314 	avl_node_t *child = node->avl_child[left];
315 	avl_node_t *cright;
316 	avl_node_t *gchild;
317 	avl_node_t *gright;
318 	avl_node_t *gleft;
319 	int which_child = AVL_XCHILD(node);
320 	int child_bal = AVL_XBALANCE(child);
321 
322 	/*
323 	 * case 1 : node is overly left heavy, the left child is balanced or
324 	 * also left heavy. This requires the following rotation.
325 	 *
326 	 *                   (node bal:-2)
327 	 *                    /           \
328 	 *                   /             \
329 	 *              (child bal:0 or -1)
330 	 *              /    \
331 	 *             /      \
332 	 *                     cright
333 	 *
334 	 * becomes:
335 	 *
336 	 *              (child bal:1 or 0)
337 	 *              /        \
338 	 *             /          \
339 	 *                        (node bal:-1 or 0)
340 	 *                         /     \
341 	 *                        /       \
342 	 *                     cright
343 	 *
344 	 * we detect this situation by noting that child's balance is not
345 	 * right_heavy.
346 	 */
347 	if (child_bal != right_heavy) {
348 
349 		/*
350 		 * compute new balance of nodes
351 		 *
352 		 * If child used to be left heavy (now balanced) we reduced
353 		 * the height of this sub-tree -- used in "return...;" below
354 		 */
355 		child_bal += right_heavy; /* adjust towards right */
356 
357 		/*
358 		 * move "cright" to be node's left child
359 		 */
360 		cright = child->avl_child[right];
361 		node->avl_child[left] = cright;
362 		if (cright != NULL) {
363 			AVL_SETPARENT(cright, node);
364 			AVL_SETCHILD(cright, left);
365 		}
366 
367 		/*
368 		 * move node to be child's right child
369 		 */
370 		child->avl_child[right] = node;
371 		AVL_SETBALANCE(node, -child_bal);
372 		AVL_SETCHILD(node, right);
373 		AVL_SETPARENT(node, child);
374 
375 		/*
376 		 * update the pointer into this subtree
377 		 */
378 		AVL_SETBALANCE(child, child_bal);
379 		AVL_SETCHILD(child, which_child);
380 		AVL_SETPARENT(child, parent);
381 		if (parent != NULL)
382 			parent->avl_child[which_child] = child;
383 		else
384 			tree->avl_root = child;
385 
386 		return (child_bal == 0);
387 	}
388 
389 	/*
390 	 * case 2 : When node is left heavy, but child is right heavy we use
391 	 * a different rotation.
392 	 *
393 	 *                   (node b:-2)
394 	 *                    /   \
395 	 *                   /     \
396 	 *                  /       \
397 	 *             (child b:+1)
398 	 *              /     \
399 	 *             /       \
400 	 *                   (gchild b: != 0)
401 	 *                     /  \
402 	 *                    /    \
403 	 *                 gleft   gright
404 	 *
405 	 * becomes:
406 	 *
407 	 *              (gchild b:0)
408 	 *              /       \
409 	 *             /         \
410 	 *            /           \
411 	 *        (child b:?)   (node b:?)
412 	 *         /  \          /   \
413 	 *        /    \        /     \
414 	 *            gleft   gright
415 	 *
416 	 * computing the new balances is more complicated. As an example:
417 	 *	 if gchild was right_heavy, then child is now left heavy
418 	 *		else it is balanced
419 	 */
420 	gchild = child->avl_child[right];
421 	gleft = gchild->avl_child[left];
422 	gright = gchild->avl_child[right];
423 
424 	/*
425 	 * move gright to left child of node and
426 	 *
427 	 * move gleft to right child of node
428 	 */
429 	node->avl_child[left] = gright;
430 	if (gright != NULL) {
431 		AVL_SETPARENT(gright, node);
432 		AVL_SETCHILD(gright, left);
433 	}
434 
435 	child->avl_child[right] = gleft;
436 	if (gleft != NULL) {
437 		AVL_SETPARENT(gleft, child);
438 		AVL_SETCHILD(gleft, right);
439 	}
440 
441 	/*
442 	 * move child to left child of gchild and
443 	 *
444 	 * move node to right child of gchild and
445 	 *
446 	 * fixup parent of all this to point to gchild
447 	 */
448 	balance = AVL_XBALANCE(gchild);
449 	gchild->avl_child[left] = child;
450 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
451 	AVL_SETPARENT(child, gchild);
452 	AVL_SETCHILD(child, left);
453 
454 	gchild->avl_child[right] = node;
455 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
456 	AVL_SETPARENT(node, gchild);
457 	AVL_SETCHILD(node, right);
458 
459 	AVL_SETBALANCE(gchild, 0);
460 	AVL_SETPARENT(gchild, parent);
461 	AVL_SETCHILD(gchild, which_child);
462 	if (parent != NULL)
463 		parent->avl_child[which_child] = gchild;
464 	else
465 		tree->avl_root = gchild;
466 
467 	return (1);	/* the new tree is always shorter */
468 }
469 
470 
471 /*
472  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
473  *
474  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
475  * searches out to the leaf positions.  The avl_index_t indicates the node
476  * which will be the parent of the new node.
477  *
478  * After the node is inserted, a single rotation further up the tree may
479  * be necessary to maintain an acceptable AVL balance.
480  */
481 void
482 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
483 {
484 	avl_node_t *node;
485 	avl_node_t *parent = AVL_INDEX2NODE(where);
486 	int old_balance;
487 	int new_balance;
488 	int which_child = AVL_INDEX2CHILD(where);
489 	size_t off = tree->avl_offset;
490 
491 #ifdef _LP64
492 	ASSERT(((uintptr_t)new_data & 0x7) == 0);
493 #endif
494 
495 	node = AVL_DATA2NODE(new_data, off);
496 
497 	/*
498 	 * First, add the node to the tree at the indicated position.
499 	 */
500 	++tree->avl_numnodes;
501 
502 	node->avl_child[0] = NULL;
503 	node->avl_child[1] = NULL;
504 
505 	AVL_SETCHILD(node, which_child);
506 	AVL_SETBALANCE(node, 0);
507 	AVL_SETPARENT(node, parent);
508 	if (parent != NULL) {
509 		ASSERT(parent->avl_child[which_child] == NULL);
510 		parent->avl_child[which_child] = node;
511 	} else {
512 		ASSERT(tree->avl_root == NULL);
513 		tree->avl_root = node;
514 	}
515 	/*
516 	 * Now, back up the tree modifying the balance of all nodes above the
517 	 * insertion point. If we get to a highly unbalanced ancestor, we
518 	 * need to do a rotation.  If we back out of the tree we are done.
519 	 * If we brought any subtree into perfect balance (0), we are also done.
520 	 */
521 	for (;;) {
522 		node = parent;
523 		if (node == NULL)
524 			return;
525 
526 		/*
527 		 * Compute the new balance
528 		 */
529 		old_balance = AVL_XBALANCE(node);
530 		new_balance = old_balance + avl_child2balance[which_child];
531 
532 		/*
533 		 * If we introduced equal balance, then we are done immediately
534 		 */
535 		if (new_balance == 0) {
536 			AVL_SETBALANCE(node, 0);
537 			return;
538 		}
539 
540 		/*
541 		 * If both old and new are not zero we went
542 		 * from -1 to -2 balance, do a rotation.
543 		 */
544 		if (old_balance != 0)
545 			break;
546 
547 		AVL_SETBALANCE(node, new_balance);
548 		parent = AVL_XPARENT(node);
549 		which_child = AVL_XCHILD(node);
550 	}
551 
552 	/*
553 	 * perform a rotation to fix the tree and return
554 	 */
555 	(void) avl_rotation(tree, node, new_balance);
556 }
557 
558 /*
559  * Insert "new_data" in "tree" in the given "direction" either after or
560  * before (AVL_AFTER, AVL_BEFORE) the data "here".
561  *
562  * Insertions can only be done at empty leaf points in the tree, therefore
563  * if the given child of the node is already present we move to either
564  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
565  * every other node in the tree is a leaf, this always works.
566  *
567  * To help developers using this interface, we assert that the new node
568  * is correctly ordered at every step of the way in DEBUG kernels.
569  */
570 void
571 avl_insert_here(
572 	avl_tree_t *tree,
573 	void *new_data,
574 	void *here,
575 	int direction)
576 {
577 	avl_node_t *node;
578 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
579 #ifdef ZFS_DEBUG
580 	int diff;
581 #endif
582 
583 	ASSERT(tree != NULL);
584 	ASSERT(new_data != NULL);
585 	ASSERT(here != NULL);
586 	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
587 
588 	/*
589 	 * If corresponding child of node is not NULL, go to the neighboring
590 	 * node and reverse the insertion direction.
591 	 */
592 	node = AVL_DATA2NODE(here, tree->avl_offset);
593 
594 #ifdef ZFS_DEBUG
595 	diff = tree->avl_compar(new_data, here);
596 	ASSERT(-1 <= diff && diff <= 1);
597 	ASSERT(diff != 0);
598 	ASSERT(diff > 0 ? child == 1 : child == 0);
599 #endif
600 
601 	if (node->avl_child[child] != NULL) {
602 		node = node->avl_child[child];
603 		child = 1 - child;
604 		while (node->avl_child[child] != NULL) {
605 #ifdef ZFS_DEBUG
606 			diff = tree->avl_compar(new_data,
607 			    AVL_NODE2DATA(node, tree->avl_offset));
608 			ASSERT(-1 <= diff && diff <= 1);
609 			ASSERT(diff != 0);
610 			ASSERT(diff > 0 ? child == 1 : child == 0);
611 #endif
612 			node = node->avl_child[child];
613 		}
614 #ifdef ZFS_DEBUG
615 		diff = tree->avl_compar(new_data,
616 		    AVL_NODE2DATA(node, tree->avl_offset));
617 		ASSERT(-1 <= diff && diff <= 1);
618 		ASSERT(diff != 0);
619 		ASSERT(diff > 0 ? child == 1 : child == 0);
620 #endif
621 	}
622 	ASSERT(node->avl_child[child] == NULL);
623 
624 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
625 }
626 
627 /*
628  * Add a new node to an AVL tree.  Strictly enforce that no duplicates can
629  * be added to the tree with a VERIFY which is enabled for non-DEBUG builds.
630  */
631 void
632 avl_add(avl_tree_t *tree, void *new_node)
633 {
634 	avl_index_t where = 0;
635 
636 	VERIFY(avl_find(tree, new_node, &where) == NULL);
637 
638 	avl_insert(tree, new_node, where);
639 }
640 
641 /*
642  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
643  * with 2 complications.
644  *
645  * First, we may be deleting an interior node. Consider the following subtree:
646  *
647  *     d           c            c
648  *    / \         / \          / \
649  *   b   e       b   e        b   e
650  *  / \	        / \          /
651  * a   c       a            a
652  *
653  * When we are deleting node (d), we find and bring up an adjacent valued leaf
654  * node, say (c), to take the interior node's place. In the code this is
655  * handled by temporarily swapping (d) and (c) in the tree and then using
656  * common code to delete (d) from the leaf position.
657  *
658  * Secondly, an interior deletion from a deep tree may require more than one
659  * rotation to fix the balance. This is handled by moving up the tree through
660  * parents and applying rotations as needed. The return value from
661  * avl_rotation() is used to detect when a subtree did not change overall
662  * height due to a rotation.
663  */
664 void
665 avl_remove(avl_tree_t *tree, void *data)
666 {
667 	avl_node_t *delete;
668 	avl_node_t *parent;
669 	avl_node_t *node;
670 	avl_node_t tmp;
671 	int old_balance;
672 	int new_balance;
673 	int left;
674 	int right;
675 	int which_child;
676 	size_t off = tree->avl_offset;
677 
678 	delete = AVL_DATA2NODE(data, off);
679 
680 	/*
681 	 * Deletion is easiest with a node that has at most 1 child.
682 	 * We swap a node with 2 children with a sequentially valued
683 	 * neighbor node. That node will have at most 1 child. Note this
684 	 * has no effect on the ordering of the remaining nodes.
685 	 *
686 	 * As an optimization, we choose the greater neighbor if the tree
687 	 * is right heavy, otherwise the left neighbor. This reduces the
688 	 * number of rotations needed.
689 	 */
690 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
691 
692 		/*
693 		 * choose node to swap from whichever side is taller
694 		 */
695 		old_balance = AVL_XBALANCE(delete);
696 		left = avl_balance2child[old_balance + 1];
697 		right = 1 - left;
698 
699 		/*
700 		 * get to the previous value'd node
701 		 * (down 1 left, as far as possible right)
702 		 */
703 		for (node = delete->avl_child[left];
704 		    node->avl_child[right] != NULL;
705 		    node = node->avl_child[right])
706 			;
707 
708 		/*
709 		 * create a temp placeholder for 'node'
710 		 * move 'node' to delete's spot in the tree
711 		 */
712 		tmp = *node;
713 
714 		*node = *delete;
715 		if (node->avl_child[left] == node)
716 			node->avl_child[left] = &tmp;
717 
718 		parent = AVL_XPARENT(node);
719 		if (parent != NULL)
720 			parent->avl_child[AVL_XCHILD(node)] = node;
721 		else
722 			tree->avl_root = node;
723 		AVL_SETPARENT(node->avl_child[left], node);
724 		AVL_SETPARENT(node->avl_child[right], node);
725 
726 		/*
727 		 * Put tmp where node used to be (just temporary).
728 		 * It always has a parent and at most 1 child.
729 		 */
730 		delete = &tmp;
731 		parent = AVL_XPARENT(delete);
732 		parent->avl_child[AVL_XCHILD(delete)] = delete;
733 		which_child = (delete->avl_child[1] != 0);
734 		if (delete->avl_child[which_child] != NULL)
735 			AVL_SETPARENT(delete->avl_child[which_child], delete);
736 	}
737 
738 
739 	/*
740 	 * Here we know "delete" is at least partially a leaf node. It can
741 	 * be easily removed from the tree.
742 	 */
743 	ASSERT(tree->avl_numnodes > 0);
744 	--tree->avl_numnodes;
745 	parent = AVL_XPARENT(delete);
746 	which_child = AVL_XCHILD(delete);
747 	if (delete->avl_child[0] != NULL)
748 		node = delete->avl_child[0];
749 	else
750 		node = delete->avl_child[1];
751 
752 	/*
753 	 * Connect parent directly to node (leaving out delete).
754 	 */
755 	if (node != NULL) {
756 		AVL_SETPARENT(node, parent);
757 		AVL_SETCHILD(node, which_child);
758 	}
759 	if (parent == NULL) {
760 		tree->avl_root = node;
761 		return;
762 	}
763 	parent->avl_child[which_child] = node;
764 
765 
766 	/*
767 	 * Since the subtree is now shorter, begin adjusting parent balances
768 	 * and performing any needed rotations.
769 	 */
770 	do {
771 
772 		/*
773 		 * Move up the tree and adjust the balance
774 		 *
775 		 * Capture the parent and which_child values for the next
776 		 * iteration before any rotations occur.
777 		 */
778 		node = parent;
779 		old_balance = AVL_XBALANCE(node);
780 		new_balance = old_balance - avl_child2balance[which_child];
781 		parent = AVL_XPARENT(node);
782 		which_child = AVL_XCHILD(node);
783 
784 		/*
785 		 * If a node was in perfect balance but isn't anymore then
786 		 * we can stop, since the height didn't change above this point
787 		 * due to a deletion.
788 		 */
789 		if (old_balance == 0) {
790 			AVL_SETBALANCE(node, new_balance);
791 			break;
792 		}
793 
794 		/*
795 		 * If the new balance is zero, we don't need to rotate
796 		 * else
797 		 * need a rotation to fix the balance.
798 		 * If the rotation doesn't change the height
799 		 * of the sub-tree we have finished adjusting.
800 		 */
801 		if (new_balance == 0)
802 			AVL_SETBALANCE(node, new_balance);
803 		else if (!avl_rotation(tree, node, new_balance))
804 			break;
805 	} while (parent != NULL);
806 }
807 
808 #define	AVL_REINSERT(tree, obj)		\
809 	avl_remove((tree), (obj));	\
810 	avl_add((tree), (obj))
811 
812 boolean_t
813 avl_update_lt(avl_tree_t *t, void *obj)
814 {
815 	void *neighbor;
816 
817 	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
818 	    (t->avl_compar(obj, neighbor) <= 0));
819 
820 	neighbor = AVL_PREV(t, obj);
821 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
822 		AVL_REINSERT(t, obj);
823 		return (B_TRUE);
824 	}
825 
826 	return (B_FALSE);
827 }
828 
829 boolean_t
830 avl_update_gt(avl_tree_t *t, void *obj)
831 {
832 	void *neighbor;
833 
834 	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
835 	    (t->avl_compar(obj, neighbor) >= 0));
836 
837 	neighbor = AVL_NEXT(t, obj);
838 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
839 		AVL_REINSERT(t, obj);
840 		return (B_TRUE);
841 	}
842 
843 	return (B_FALSE);
844 }
845 
846 boolean_t
847 avl_update(avl_tree_t *t, void *obj)
848 {
849 	void *neighbor;
850 
851 	neighbor = AVL_PREV(t, obj);
852 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
853 		AVL_REINSERT(t, obj);
854 		return (B_TRUE);
855 	}
856 
857 	neighbor = AVL_NEXT(t, obj);
858 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
859 		AVL_REINSERT(t, obj);
860 		return (B_TRUE);
861 	}
862 
863 	return (B_FALSE);
864 }
865 
866 void
867 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
868 {
869 	avl_node_t *temp_node;
870 	ulong_t temp_numnodes;
871 
872 	ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
873 	ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
874 
875 	temp_node = tree1->avl_root;
876 	temp_numnodes = tree1->avl_numnodes;
877 	tree1->avl_root = tree2->avl_root;
878 	tree1->avl_numnodes = tree2->avl_numnodes;
879 	tree2->avl_root = temp_node;
880 	tree2->avl_numnodes = temp_numnodes;
881 }
882 
883 /*
884  * initialize a new AVL tree
885  */
886 void
887 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
888     size_t size, size_t offset)
889 {
890 	ASSERT(tree);
891 	ASSERT(compar);
892 	ASSERT(size > 0);
893 	ASSERT(size >= offset + sizeof (avl_node_t));
894 #ifdef _LP64
895 	ASSERT((offset & 0x7) == 0);
896 #endif
897 
898 	tree->avl_compar = compar;
899 	tree->avl_root = NULL;
900 	tree->avl_numnodes = 0;
901 	tree->avl_offset = offset;
902 }
903 
904 /*
905  * Delete a tree.
906  */
907 void
908 avl_destroy(avl_tree_t *tree)
909 {
910 	ASSERT(tree);
911 	ASSERT(tree->avl_numnodes == 0);
912 	ASSERT(tree->avl_root == NULL);
913 }
914 
915 
916 /*
917  * Return the number of nodes in an AVL tree.
918  */
919 ulong_t
920 avl_numnodes(avl_tree_t *tree)
921 {
922 	ASSERT(tree);
923 	return (tree->avl_numnodes);
924 }
925 
926 boolean_t
927 avl_is_empty(avl_tree_t *tree)
928 {
929 	ASSERT(tree);
930 	return (tree->avl_numnodes == 0);
931 }
932 
933 #define	CHILDBIT	(1L)
934 
935 /*
936  * Post-order tree walk used to visit all tree nodes and destroy the tree
937  * in post order. This is used for removing all the nodes from a tree without
938  * paying any cost for rebalancing it.
939  *
940  * example:
941  *
942  *	void *cookie = NULL;
943  *	my_data_t *node;
944  *
945  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
946  *		free(node);
947  *	avl_destroy(tree);
948  *
949  * The cookie is really an avl_node_t to the current node's parent and
950  * an indication of which child you looked at last.
951  *
952  * On input, a cookie value of CHILDBIT indicates the tree is done.
953  */
954 void *
955 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
956 {
957 	avl_node_t	*node;
958 	avl_node_t	*parent;
959 	int		child;
960 	void		*first;
961 	size_t		off = tree->avl_offset;
962 
963 	/*
964 	 * Initial calls go to the first node or it's right descendant.
965 	 */
966 	if (*cookie == NULL) {
967 		first = avl_first(tree);
968 
969 		/*
970 		 * deal with an empty tree
971 		 */
972 		if (first == NULL) {
973 			*cookie = (void *)CHILDBIT;
974 			return (NULL);
975 		}
976 
977 		node = AVL_DATA2NODE(first, off);
978 		parent = AVL_XPARENT(node);
979 		goto check_right_side;
980 	}
981 
982 	/*
983 	 * If there is no parent to return to we are done.
984 	 */
985 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
986 	if (parent == NULL) {
987 		if (tree->avl_root != NULL) {
988 			ASSERT(tree->avl_numnodes == 1);
989 			tree->avl_root = NULL;
990 			tree->avl_numnodes = 0;
991 		}
992 		return (NULL);
993 	}
994 
995 	/*
996 	 * Remove the child pointer we just visited from the parent and tree.
997 	 */
998 	child = (uintptr_t)(*cookie) & CHILDBIT;
999 	parent->avl_child[child] = NULL;
1000 	ASSERT(tree->avl_numnodes > 1);
1001 	--tree->avl_numnodes;
1002 
1003 	/*
1004 	 * If we just removed a right child or there isn't one, go up to parent.
1005 	 */
1006 	if (child == 1 || parent->avl_child[1] == NULL) {
1007 		node = parent;
1008 		parent = AVL_XPARENT(parent);
1009 		goto done;
1010 	}
1011 
1012 	/*
1013 	 * Do parent's right child, then leftmost descendent.
1014 	 */
1015 	node = parent->avl_child[1];
1016 	while (node->avl_child[0] != NULL) {
1017 		parent = node;
1018 		node = node->avl_child[0];
1019 	}
1020 
1021 	/*
1022 	 * If here, we moved to a left child. It may have one
1023 	 * child on the right (when balance == +1).
1024 	 */
1025 check_right_side:
1026 	if (node->avl_child[1] != NULL) {
1027 		ASSERT(AVL_XBALANCE(node) == 1);
1028 		parent = node;
1029 		node = node->avl_child[1];
1030 		ASSERT(node->avl_child[0] == NULL &&
1031 		    node->avl_child[1] == NULL);
1032 	} else {
1033 		ASSERT(AVL_XBALANCE(node) <= 0);
1034 	}
1035 
1036 done:
1037 	if (parent == NULL) {
1038 		*cookie = (void *)CHILDBIT;
1039 		ASSERT(node == tree->avl_root);
1040 	} else {
1041 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1042 	}
1043 
1044 	return (AVL_NODE2DATA(node, off));
1045 }
1046 
1047 #if defined(_KERNEL)
1048 
1049 static int __init
1050 avl_init(void)
1051 {
1052 	return (0);
1053 }
1054 
1055 static void __exit
1056 avl_fini(void)
1057 {
1058 }
1059 
1060 module_init(avl_init);
1061 module_exit(avl_fini);
1062 #endif
1063 
1064 ZFS_MODULE_DESCRIPTION("Generic AVL tree implementation");
1065 ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR);
1066 ZFS_MODULE_LICENSE(ZFS_META_LICENSE);
1067 ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
1068 
1069 EXPORT_SYMBOL(avl_create);
1070 EXPORT_SYMBOL(avl_find);
1071 EXPORT_SYMBOL(avl_insert);
1072 EXPORT_SYMBOL(avl_insert_here);
1073 EXPORT_SYMBOL(avl_walk);
1074 EXPORT_SYMBOL(avl_first);
1075 EXPORT_SYMBOL(avl_last);
1076 EXPORT_SYMBOL(avl_nearest);
1077 EXPORT_SYMBOL(avl_add);
1078 EXPORT_SYMBOL(avl_swap);
1079 EXPORT_SYMBOL(avl_is_empty);
1080 EXPORT_SYMBOL(avl_remove);
1081 EXPORT_SYMBOL(avl_numnodes);
1082 EXPORT_SYMBOL(avl_destroy_nodes);
1083 EXPORT_SYMBOL(avl_destroy);
1084 EXPORT_SYMBOL(avl_update_lt);
1085 EXPORT_SYMBOL(avl_update_gt);
1086 EXPORT_SYMBOL(avl_update);
1087