1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 28 */ 29 30 /* 31 * Pool import support functions. 32 * 33 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 34 * these commands are expected to run in the global zone, we can assume 35 * that the devices are all readable when called. 36 * 37 * To import a pool, we rely on reading the configuration information from the 38 * ZFS label of each device. If we successfully read the label, then we 39 * organize the configuration information in the following hierarchy: 40 * 41 * pool guid -> toplevel vdev guid -> label txg 42 * 43 * Duplicate entries matching this same tuple will be discarded. Once we have 44 * examined every device, we pick the best label txg config for each toplevel 45 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 46 * update any paths that have changed. Finally, we attempt to import the pool 47 * using our derived config, and record the results. 48 */ 49 50 #include <aio.h> 51 #include <ctype.h> 52 #include <dirent.h> 53 #include <errno.h> 54 #include <libintl.h> 55 #include <libgen.h> 56 #include <stddef.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <sys/stat.h> 60 #include <unistd.h> 61 #include <fcntl.h> 62 #include <sys/dktp/fdisk.h> 63 #include <sys/vdev_impl.h> 64 #include <sys/fs/zfs.h> 65 66 #include <thread_pool.h> 67 #include <libzutil.h> 68 #include <libnvpair.h> 69 70 #include "zutil_import.h" 71 72 /*PRINTFLIKE2*/ 73 static void 74 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 75 { 76 va_list ap; 77 78 va_start(ap, fmt); 79 80 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 81 hdl->lpc_desc_active = B_TRUE; 82 83 va_end(ap); 84 } 85 86 static void 87 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 88 va_list ap) 89 { 90 char action[1024]; 91 92 (void) vsnprintf(action, sizeof (action), fmt, ap); 93 94 if (hdl->lpc_desc_active) 95 hdl->lpc_desc_active = B_FALSE; 96 else 97 hdl->lpc_desc[0] = '\0'; 98 99 if (hdl->lpc_printerr) { 100 if (hdl->lpc_desc[0] != '\0') 101 error = hdl->lpc_desc; 102 103 (void) fprintf(stderr, "%s: %s\n", action, error); 104 } 105 } 106 107 /*PRINTFLIKE3*/ 108 static int 109 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 110 { 111 va_list ap; 112 113 va_start(ap, fmt); 114 115 zutil_verror(hdl, error, fmt, ap); 116 117 va_end(ap); 118 119 return (-1); 120 } 121 122 static int 123 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 124 { 125 return (zutil_error_fmt(hdl, error, "%s", msg)); 126 } 127 128 static int 129 zutil_no_memory(libpc_handle_t *hdl) 130 { 131 zutil_error(hdl, EZFS_NOMEM, "internal error"); 132 exit(1); 133 } 134 135 void * 136 zutil_alloc(libpc_handle_t *hdl, size_t size) 137 { 138 void *data; 139 140 if ((data = calloc(1, size)) == NULL) 141 (void) zutil_no_memory(hdl); 142 143 return (data); 144 } 145 146 char * 147 zutil_strdup(libpc_handle_t *hdl, const char *str) 148 { 149 char *ret; 150 151 if ((ret = strdup(str)) == NULL) 152 (void) zutil_no_memory(hdl); 153 154 return (ret); 155 } 156 157 /* 158 * Intermediate structures used to gather configuration information. 159 */ 160 typedef struct config_entry { 161 uint64_t ce_txg; 162 nvlist_t *ce_config; 163 struct config_entry *ce_next; 164 } config_entry_t; 165 166 typedef struct vdev_entry { 167 uint64_t ve_guid; 168 config_entry_t *ve_configs; 169 struct vdev_entry *ve_next; 170 } vdev_entry_t; 171 172 typedef struct pool_entry { 173 uint64_t pe_guid; 174 vdev_entry_t *pe_vdevs; 175 struct pool_entry *pe_next; 176 } pool_entry_t; 177 178 typedef struct name_entry { 179 char *ne_name; 180 uint64_t ne_guid; 181 uint64_t ne_order; 182 uint64_t ne_num_labels; 183 struct name_entry *ne_next; 184 } name_entry_t; 185 186 typedef struct pool_list { 187 pool_entry_t *pools; 188 name_entry_t *names; 189 } pool_list_t; 190 191 /* 192 * Go through and fix up any path and/or devid information for the given vdev 193 * configuration. 194 */ 195 static int 196 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 197 { 198 nvlist_t **child; 199 uint_t c, children; 200 uint64_t guid; 201 name_entry_t *ne, *best; 202 char *path; 203 204 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 205 &child, &children) == 0) { 206 for (c = 0; c < children; c++) 207 if (fix_paths(hdl, child[c], names) != 0) 208 return (-1); 209 return (0); 210 } 211 212 /* 213 * This is a leaf (file or disk) vdev. In either case, go through 214 * the name list and see if we find a matching guid. If so, replace 215 * the path and see if we can calculate a new devid. 216 * 217 * There may be multiple names associated with a particular guid, in 218 * which case we have overlapping partitions or multiple paths to the 219 * same disk. In this case we prefer to use the path name which 220 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 221 * use the lowest order device which corresponds to the first match 222 * while traversing the ZPOOL_IMPORT_PATH search path. 223 */ 224 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 225 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 226 path = NULL; 227 228 best = NULL; 229 for (ne = names; ne != NULL; ne = ne->ne_next) { 230 if (ne->ne_guid == guid) { 231 if (path == NULL) { 232 best = ne; 233 break; 234 } 235 236 if ((strlen(path) == strlen(ne->ne_name)) && 237 strncmp(path, ne->ne_name, strlen(path)) == 0) { 238 best = ne; 239 break; 240 } 241 242 if (best == NULL) { 243 best = ne; 244 continue; 245 } 246 247 /* Prefer paths with move vdev labels. */ 248 if (ne->ne_num_labels > best->ne_num_labels) { 249 best = ne; 250 continue; 251 } 252 253 /* Prefer paths earlier in the search order. */ 254 if (ne->ne_num_labels == best->ne_num_labels && 255 ne->ne_order < best->ne_order) { 256 best = ne; 257 continue; 258 } 259 } 260 } 261 262 if (best == NULL) 263 return (0); 264 265 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 266 return (-1); 267 268 update_vdev_config_dev_strs(nv); 269 270 return (0); 271 } 272 273 /* 274 * Add the given configuration to the list of known devices. 275 */ 276 static int 277 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 278 int order, int num_labels, nvlist_t *config) 279 { 280 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 281 pool_entry_t *pe; 282 vdev_entry_t *ve; 283 config_entry_t *ce; 284 name_entry_t *ne; 285 286 /* 287 * If this is a hot spare not currently in use or level 2 cache 288 * device, add it to the list of names to translate, but don't do 289 * anything else. 290 */ 291 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 292 &state) == 0 && 293 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 294 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 295 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 296 return (-1); 297 298 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 299 free(ne); 300 return (-1); 301 } 302 ne->ne_guid = vdev_guid; 303 ne->ne_order = order; 304 ne->ne_num_labels = num_labels; 305 ne->ne_next = pl->names; 306 pl->names = ne; 307 308 return (0); 309 } 310 311 /* 312 * If we have a valid config but cannot read any of these fields, then 313 * it means we have a half-initialized label. In vdev_label_init() 314 * we write a label with txg == 0 so that we can identify the device 315 * in case the user refers to the same disk later on. If we fail to 316 * create the pool, we'll be left with a label in this state 317 * which should not be considered part of a valid pool. 318 */ 319 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 320 &pool_guid) != 0 || 321 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 322 &vdev_guid) != 0 || 323 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 324 &top_guid) != 0 || 325 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 326 &txg) != 0 || txg == 0) { 327 return (0); 328 } 329 330 /* 331 * First, see if we know about this pool. If not, then add it to the 332 * list of known pools. 333 */ 334 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 335 if (pe->pe_guid == pool_guid) 336 break; 337 } 338 339 if (pe == NULL) { 340 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 341 return (-1); 342 } 343 pe->pe_guid = pool_guid; 344 pe->pe_next = pl->pools; 345 pl->pools = pe; 346 } 347 348 /* 349 * Second, see if we know about this toplevel vdev. Add it if its 350 * missing. 351 */ 352 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 353 if (ve->ve_guid == top_guid) 354 break; 355 } 356 357 if (ve == NULL) { 358 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 359 return (-1); 360 } 361 ve->ve_guid = top_guid; 362 ve->ve_next = pe->pe_vdevs; 363 pe->pe_vdevs = ve; 364 } 365 366 /* 367 * Third, see if we have a config with a matching transaction group. If 368 * so, then we do nothing. Otherwise, add it to the list of known 369 * configs. 370 */ 371 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 372 if (ce->ce_txg == txg) 373 break; 374 } 375 376 if (ce == NULL) { 377 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 378 return (-1); 379 } 380 ce->ce_txg = txg; 381 ce->ce_config = fnvlist_dup(config); 382 ce->ce_next = ve->ve_configs; 383 ve->ve_configs = ce; 384 } 385 386 /* 387 * At this point we've successfully added our config to the list of 388 * known configs. The last thing to do is add the vdev guid -> path 389 * mappings so that we can fix up the configuration as necessary before 390 * doing the import. 391 */ 392 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 393 return (-1); 394 395 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 396 free(ne); 397 return (-1); 398 } 399 400 ne->ne_guid = vdev_guid; 401 ne->ne_order = order; 402 ne->ne_num_labels = num_labels; 403 ne->ne_next = pl->names; 404 pl->names = ne; 405 406 return (0); 407 } 408 409 static int 410 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 411 boolean_t *isactive) 412 { 413 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 414 415 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 416 guid, isactive); 417 418 return (error); 419 } 420 421 static nvlist_t * 422 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 423 { 424 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 425 426 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 427 tryconfig)); 428 } 429 430 /* 431 * Determine if the vdev id is a hole in the namespace. 432 */ 433 static boolean_t 434 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 435 { 436 int c; 437 438 for (c = 0; c < holes; c++) { 439 440 /* Top-level is a hole */ 441 if (hole_array[c] == id) 442 return (B_TRUE); 443 } 444 return (B_FALSE); 445 } 446 447 /* 448 * Convert our list of pools into the definitive set of configurations. We 449 * start by picking the best config for each toplevel vdev. Once that's done, 450 * we assemble the toplevel vdevs into a full config for the pool. We make a 451 * pass to fix up any incorrect paths, and then add it to the main list to 452 * return to the user. 453 */ 454 static nvlist_t * 455 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 456 nvlist_t *policy) 457 { 458 pool_entry_t *pe; 459 vdev_entry_t *ve; 460 config_entry_t *ce; 461 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 462 nvlist_t **spares, **l2cache; 463 uint_t i, nspares, nl2cache; 464 boolean_t config_seen; 465 uint64_t best_txg; 466 char *name, *hostname = NULL; 467 uint64_t guid; 468 uint_t children = 0; 469 nvlist_t **child = NULL; 470 uint_t holes; 471 uint64_t *hole_array, max_id; 472 uint_t c; 473 boolean_t isactive; 474 uint64_t hostid; 475 nvlist_t *nvl; 476 boolean_t valid_top_config = B_FALSE; 477 478 if (nvlist_alloc(&ret, 0, 0) != 0) 479 goto nomem; 480 481 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 482 uint64_t id, max_txg = 0; 483 484 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 485 goto nomem; 486 config_seen = B_FALSE; 487 488 /* 489 * Iterate over all toplevel vdevs. Grab the pool configuration 490 * from the first one we find, and then go through the rest and 491 * add them as necessary to the 'vdevs' member of the config. 492 */ 493 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 494 495 /* 496 * Determine the best configuration for this vdev by 497 * selecting the config with the latest transaction 498 * group. 499 */ 500 best_txg = 0; 501 for (ce = ve->ve_configs; ce != NULL; 502 ce = ce->ce_next) { 503 504 if (ce->ce_txg > best_txg) { 505 tmp = ce->ce_config; 506 best_txg = ce->ce_txg; 507 } 508 } 509 510 /* 511 * We rely on the fact that the max txg for the 512 * pool will contain the most up-to-date information 513 * about the valid top-levels in the vdev namespace. 514 */ 515 if (best_txg > max_txg) { 516 (void) nvlist_remove(config, 517 ZPOOL_CONFIG_VDEV_CHILDREN, 518 DATA_TYPE_UINT64); 519 (void) nvlist_remove(config, 520 ZPOOL_CONFIG_HOLE_ARRAY, 521 DATA_TYPE_UINT64_ARRAY); 522 523 max_txg = best_txg; 524 hole_array = NULL; 525 holes = 0; 526 max_id = 0; 527 valid_top_config = B_FALSE; 528 529 if (nvlist_lookup_uint64(tmp, 530 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 531 verify(nvlist_add_uint64(config, 532 ZPOOL_CONFIG_VDEV_CHILDREN, 533 max_id) == 0); 534 valid_top_config = B_TRUE; 535 } 536 537 if (nvlist_lookup_uint64_array(tmp, 538 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 539 &holes) == 0) { 540 verify(nvlist_add_uint64_array(config, 541 ZPOOL_CONFIG_HOLE_ARRAY, 542 hole_array, holes) == 0); 543 } 544 } 545 546 if (!config_seen) { 547 /* 548 * Copy the relevant pieces of data to the pool 549 * configuration: 550 * 551 * version 552 * pool guid 553 * name 554 * comment (if available) 555 * compatibility features (if available) 556 * pool state 557 * hostid (if available) 558 * hostname (if available) 559 */ 560 uint64_t state, version; 561 char *comment = NULL; 562 char *compatibility = NULL; 563 564 version = fnvlist_lookup_uint64(tmp, 565 ZPOOL_CONFIG_VERSION); 566 fnvlist_add_uint64(config, 567 ZPOOL_CONFIG_VERSION, version); 568 guid = fnvlist_lookup_uint64(tmp, 569 ZPOOL_CONFIG_POOL_GUID); 570 fnvlist_add_uint64(config, 571 ZPOOL_CONFIG_POOL_GUID, guid); 572 name = fnvlist_lookup_string(tmp, 573 ZPOOL_CONFIG_POOL_NAME); 574 fnvlist_add_string(config, 575 ZPOOL_CONFIG_POOL_NAME, name); 576 577 if (nvlist_lookup_string(tmp, 578 ZPOOL_CONFIG_COMMENT, &comment) == 0) 579 fnvlist_add_string(config, 580 ZPOOL_CONFIG_COMMENT, comment); 581 582 if (nvlist_lookup_string(tmp, 583 ZPOOL_CONFIG_COMPATIBILITY, 584 &compatibility) == 0) 585 fnvlist_add_string(config, 586 ZPOOL_CONFIG_COMPATIBILITY, 587 compatibility); 588 589 state = fnvlist_lookup_uint64(tmp, 590 ZPOOL_CONFIG_POOL_STATE); 591 fnvlist_add_uint64(config, 592 ZPOOL_CONFIG_POOL_STATE, state); 593 594 hostid = 0; 595 if (nvlist_lookup_uint64(tmp, 596 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 597 fnvlist_add_uint64(config, 598 ZPOOL_CONFIG_HOSTID, hostid); 599 hostname = fnvlist_lookup_string(tmp, 600 ZPOOL_CONFIG_HOSTNAME); 601 fnvlist_add_string(config, 602 ZPOOL_CONFIG_HOSTNAME, hostname); 603 } 604 605 config_seen = B_TRUE; 606 } 607 608 /* 609 * Add this top-level vdev to the child array. 610 */ 611 verify(nvlist_lookup_nvlist(tmp, 612 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 613 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 614 &id) == 0); 615 616 if (id >= children) { 617 nvlist_t **newchild; 618 619 newchild = zutil_alloc(hdl, (id + 1) * 620 sizeof (nvlist_t *)); 621 if (newchild == NULL) 622 goto nomem; 623 624 for (c = 0; c < children; c++) 625 newchild[c] = child[c]; 626 627 free(child); 628 child = newchild; 629 children = id + 1; 630 } 631 if (nvlist_dup(nvtop, &child[id], 0) != 0) 632 goto nomem; 633 634 } 635 636 /* 637 * If we have information about all the top-levels then 638 * clean up the nvlist which we've constructed. This 639 * means removing any extraneous devices that are 640 * beyond the valid range or adding devices to the end 641 * of our array which appear to be missing. 642 */ 643 if (valid_top_config) { 644 if (max_id < children) { 645 for (c = max_id; c < children; c++) 646 nvlist_free(child[c]); 647 children = max_id; 648 } else if (max_id > children) { 649 nvlist_t **newchild; 650 651 newchild = zutil_alloc(hdl, (max_id) * 652 sizeof (nvlist_t *)); 653 if (newchild == NULL) 654 goto nomem; 655 656 for (c = 0; c < children; c++) 657 newchild[c] = child[c]; 658 659 free(child); 660 child = newchild; 661 children = max_id; 662 } 663 } 664 665 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 666 &guid) == 0); 667 668 /* 669 * The vdev namespace may contain holes as a result of 670 * device removal. We must add them back into the vdev 671 * tree before we process any missing devices. 672 */ 673 if (holes > 0) { 674 ASSERT(valid_top_config); 675 676 for (c = 0; c < children; c++) { 677 nvlist_t *holey; 678 679 if (child[c] != NULL || 680 !vdev_is_hole(hole_array, holes, c)) 681 continue; 682 683 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 684 0) != 0) 685 goto nomem; 686 687 /* 688 * Holes in the namespace are treated as 689 * "hole" top-level vdevs and have a 690 * special flag set on them. 691 */ 692 if (nvlist_add_string(holey, 693 ZPOOL_CONFIG_TYPE, 694 VDEV_TYPE_HOLE) != 0 || 695 nvlist_add_uint64(holey, 696 ZPOOL_CONFIG_ID, c) != 0 || 697 nvlist_add_uint64(holey, 698 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 699 nvlist_free(holey); 700 goto nomem; 701 } 702 child[c] = holey; 703 } 704 } 705 706 /* 707 * Look for any missing top-level vdevs. If this is the case, 708 * create a faked up 'missing' vdev as a placeholder. We cannot 709 * simply compress the child array, because the kernel performs 710 * certain checks to make sure the vdev IDs match their location 711 * in the configuration. 712 */ 713 for (c = 0; c < children; c++) { 714 if (child[c] == NULL) { 715 nvlist_t *missing; 716 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 717 0) != 0) 718 goto nomem; 719 if (nvlist_add_string(missing, 720 ZPOOL_CONFIG_TYPE, 721 VDEV_TYPE_MISSING) != 0 || 722 nvlist_add_uint64(missing, 723 ZPOOL_CONFIG_ID, c) != 0 || 724 nvlist_add_uint64(missing, 725 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 726 nvlist_free(missing); 727 goto nomem; 728 } 729 child[c] = missing; 730 } 731 } 732 733 /* 734 * Put all of this pool's top-level vdevs into a root vdev. 735 */ 736 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 737 goto nomem; 738 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 739 VDEV_TYPE_ROOT) != 0 || 740 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 741 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 742 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 743 child, children) != 0) { 744 nvlist_free(nvroot); 745 goto nomem; 746 } 747 748 for (c = 0; c < children; c++) 749 nvlist_free(child[c]); 750 free(child); 751 children = 0; 752 child = NULL; 753 754 /* 755 * Go through and fix up any paths and/or devids based on our 756 * known list of vdev GUID -> path mappings. 757 */ 758 if (fix_paths(hdl, nvroot, pl->names) != 0) { 759 nvlist_free(nvroot); 760 goto nomem; 761 } 762 763 /* 764 * Add the root vdev to this pool's configuration. 765 */ 766 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 767 nvroot) != 0) { 768 nvlist_free(nvroot); 769 goto nomem; 770 } 771 nvlist_free(nvroot); 772 773 /* 774 * zdb uses this path to report on active pools that were 775 * imported or created using -R. 776 */ 777 if (active_ok) 778 goto add_pool; 779 780 /* 781 * Determine if this pool is currently active, in which case we 782 * can't actually import it. 783 */ 784 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 785 &name) == 0); 786 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 787 &guid) == 0); 788 789 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 790 goto error; 791 792 if (isactive) { 793 nvlist_free(config); 794 config = NULL; 795 continue; 796 } 797 798 if (policy != NULL) { 799 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 800 policy) != 0) 801 goto nomem; 802 } 803 804 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 805 nvlist_free(config); 806 config = NULL; 807 continue; 808 } 809 810 nvlist_free(config); 811 config = nvl; 812 813 /* 814 * Go through and update the paths for spares, now that we have 815 * them. 816 */ 817 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 818 &nvroot) == 0); 819 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 820 &spares, &nspares) == 0) { 821 for (i = 0; i < nspares; i++) { 822 if (fix_paths(hdl, spares[i], pl->names) != 0) 823 goto nomem; 824 } 825 } 826 827 /* 828 * Update the paths for l2cache devices. 829 */ 830 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 831 &l2cache, &nl2cache) == 0) { 832 for (i = 0; i < nl2cache; i++) { 833 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 834 goto nomem; 835 } 836 } 837 838 /* 839 * Restore the original information read from the actual label. 840 */ 841 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 842 DATA_TYPE_UINT64); 843 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 844 DATA_TYPE_STRING); 845 if (hostid != 0) { 846 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 847 hostid) == 0); 848 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 849 hostname) == 0); 850 } 851 852 add_pool: 853 /* 854 * Add this pool to the list of configs. 855 */ 856 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 857 &name) == 0); 858 859 if (nvlist_add_nvlist(ret, name, config) != 0) 860 goto nomem; 861 862 nvlist_free(config); 863 config = NULL; 864 } 865 866 return (ret); 867 868 nomem: 869 (void) zutil_no_memory(hdl); 870 error: 871 nvlist_free(config); 872 nvlist_free(ret); 873 for (c = 0; c < children; c++) 874 nvlist_free(child[c]); 875 free(child); 876 877 return (NULL); 878 } 879 880 /* 881 * Return the offset of the given label. 882 */ 883 static uint64_t 884 label_offset(uint64_t size, int l) 885 { 886 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 887 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 888 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 889 } 890 891 /* 892 * Given a file descriptor, read the label information and return an nvlist 893 * describing the configuration, if there is one. The number of valid 894 * labels found will be returned in num_labels when non-NULL. 895 */ 896 int 897 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 898 { 899 struct stat64 statbuf; 900 struct aiocb aiocbs[VDEV_LABELS]; 901 struct aiocb *aiocbps[VDEV_LABELS]; 902 vdev_phys_t *labels; 903 nvlist_t *expected_config = NULL; 904 uint64_t expected_guid = 0, size; 905 int error, l, count = 0; 906 907 *config = NULL; 908 909 if (fstat64_blk(fd, &statbuf) == -1) 910 return (0); 911 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 912 913 error = posix_memalign((void **)&labels, PAGESIZE, 914 VDEV_LABELS * sizeof (*labels)); 915 if (error) 916 return (-1); 917 918 memset(aiocbs, 0, sizeof (aiocbs)); 919 for (l = 0; l < VDEV_LABELS; l++) { 920 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 921 922 aiocbs[l].aio_fildes = fd; 923 aiocbs[l].aio_offset = offset; 924 aiocbs[l].aio_buf = &labels[l]; 925 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 926 aiocbs[l].aio_lio_opcode = LIO_READ; 927 aiocbps[l] = &aiocbs[l]; 928 } 929 930 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 931 int saved_errno = errno; 932 933 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 934 /* 935 * A portion of the requests may have been submitted. 936 * Clean them up. 937 */ 938 for (l = 0; l < VDEV_LABELS; l++) { 939 errno = 0; 940 int r = aio_error(&aiocbs[l]); 941 if (r != EINVAL) 942 (void) aio_return(&aiocbs[l]); 943 } 944 } 945 free(labels); 946 errno = saved_errno; 947 return (-1); 948 } 949 950 for (l = 0; l < VDEV_LABELS; l++) { 951 uint64_t state, guid, txg; 952 953 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 954 continue; 955 956 if (nvlist_unpack(labels[l].vp_nvlist, 957 sizeof (labels[l].vp_nvlist), config, 0) != 0) 958 continue; 959 960 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 961 &guid) != 0 || guid == 0) { 962 nvlist_free(*config); 963 continue; 964 } 965 966 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 967 &state) != 0 || state > POOL_STATE_L2CACHE) { 968 nvlist_free(*config); 969 continue; 970 } 971 972 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 973 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 974 &txg) != 0 || txg == 0)) { 975 nvlist_free(*config); 976 continue; 977 } 978 979 if (expected_guid) { 980 if (expected_guid == guid) 981 count++; 982 983 nvlist_free(*config); 984 } else { 985 expected_config = *config; 986 expected_guid = guid; 987 count++; 988 } 989 } 990 991 if (num_labels != NULL) 992 *num_labels = count; 993 994 free(labels); 995 *config = expected_config; 996 997 return (0); 998 } 999 1000 /* 1001 * Sorted by full path and then vdev guid to allow for multiple entries with 1002 * the same full path name. This is required because it's possible to 1003 * have multiple block devices with labels that refer to the same 1004 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 1005 * entries need to be added to the cache. Scenarios where this can occur 1006 * include overwritten pool labels, devices which are visible from multiple 1007 * hosts and multipath devices. 1008 */ 1009 int 1010 slice_cache_compare(const void *arg1, const void *arg2) 1011 { 1012 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1013 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1014 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1015 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1016 int rv; 1017 1018 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1019 if (rv) 1020 return (rv); 1021 1022 return (TREE_CMP(guid1, guid2)); 1023 } 1024 1025 static int 1026 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1027 uint64_t vdev_guid, char **path, char **devid) 1028 { 1029 nvlist_t **child; 1030 uint_t c, children; 1031 uint64_t guid; 1032 char *val; 1033 int error; 1034 1035 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1036 &child, &children) == 0) { 1037 for (c = 0; c < children; c++) { 1038 error = label_paths_impl(hdl, child[c], 1039 pool_guid, vdev_guid, path, devid); 1040 if (error) 1041 return (error); 1042 } 1043 return (0); 1044 } 1045 1046 if (nvroot == NULL) 1047 return (0); 1048 1049 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1050 if ((error != 0) || (guid != vdev_guid)) 1051 return (0); 1052 1053 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1054 if (error == 0) 1055 *path = val; 1056 1057 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1058 if (error == 0) 1059 *devid = val; 1060 1061 return (0); 1062 } 1063 1064 /* 1065 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1066 * and store these strings as config_path and devid_path respectively. 1067 * The returned pointers are only valid as long as label remains valid. 1068 */ 1069 int 1070 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1071 { 1072 nvlist_t *nvroot; 1073 uint64_t pool_guid; 1074 uint64_t vdev_guid; 1075 1076 *path = NULL; 1077 *devid = NULL; 1078 1079 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1080 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1081 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1082 return (ENOENT); 1083 1084 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1085 devid)); 1086 } 1087 1088 static void 1089 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1090 avl_tree_t *cache, const char *path, const char *name, int order) 1091 { 1092 avl_index_t where; 1093 rdsk_node_t *slice; 1094 1095 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1096 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1097 free(slice); 1098 return; 1099 } 1100 slice->rn_vdev_guid = 0; 1101 slice->rn_lock = lock; 1102 slice->rn_avl = cache; 1103 slice->rn_hdl = hdl; 1104 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1105 slice->rn_labelpaths = B_FALSE; 1106 1107 pthread_mutex_lock(lock); 1108 if (avl_find(cache, slice, &where)) { 1109 free(slice->rn_name); 1110 free(slice); 1111 } else { 1112 avl_insert(cache, slice, where); 1113 } 1114 pthread_mutex_unlock(lock); 1115 } 1116 1117 static int 1118 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1119 avl_tree_t *cache, const char *dir, int order) 1120 { 1121 int error; 1122 char path[MAXPATHLEN]; 1123 struct dirent64 *dp; 1124 DIR *dirp; 1125 1126 if (realpath(dir, path) == NULL) { 1127 error = errno; 1128 if (error == ENOENT) 1129 return (0); 1130 1131 zutil_error_aux(hdl, strerror(error)); 1132 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1133 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1134 return (error); 1135 } 1136 1137 dirp = opendir(path); 1138 if (dirp == NULL) { 1139 error = errno; 1140 zutil_error_aux(hdl, strerror(error)); 1141 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1142 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); 1143 return (error); 1144 } 1145 1146 while ((dp = readdir64(dirp)) != NULL) { 1147 const char *name = dp->d_name; 1148 if (name[0] == '.' && 1149 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1150 continue; 1151 1152 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1153 order); 1154 } 1155 1156 (void) closedir(dirp); 1157 return (0); 1158 } 1159 1160 static int 1161 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1162 avl_tree_t *cache, const char *dir, int order) 1163 { 1164 int error = 0; 1165 char path[MAXPATHLEN]; 1166 char *d, *b; 1167 char *dpath, *name; 1168 1169 /* 1170 * Separate the directory part and last part of the 1171 * path. We do this so that we can get the realpath of 1172 * the directory. We don't get the realpath on the 1173 * whole path because if it's a symlink, we want the 1174 * path of the symlink not where it points to. 1175 */ 1176 d = zutil_strdup(hdl, dir); 1177 b = zutil_strdup(hdl, dir); 1178 dpath = dirname(d); 1179 name = basename(b); 1180 1181 if (realpath(dpath, path) == NULL) { 1182 error = errno; 1183 if (error == ENOENT) { 1184 error = 0; 1185 goto out; 1186 } 1187 1188 zutil_error_aux(hdl, strerror(error)); 1189 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1190 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1191 goto out; 1192 } 1193 1194 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1195 1196 out: 1197 free(b); 1198 free(d); 1199 return (error); 1200 } 1201 1202 /* 1203 * Scan a list of directories for zfs devices. 1204 */ 1205 static int 1206 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1207 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1208 { 1209 avl_tree_t *cache; 1210 rdsk_node_t *slice; 1211 void *cookie; 1212 int i, error; 1213 1214 *slice_cache = NULL; 1215 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1216 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1217 offsetof(rdsk_node_t, rn_node)); 1218 1219 for (i = 0; i < dirs; i++) { 1220 struct stat sbuf; 1221 1222 if (stat(dir[i], &sbuf) != 0) { 1223 error = errno; 1224 if (error == ENOENT) 1225 continue; 1226 1227 zutil_error_aux(hdl, strerror(error)); 1228 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1229 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1230 goto error; 1231 } 1232 1233 /* 1234 * If dir[i] is a directory, we walk through it and add all 1235 * the entries to the cache. If it's not a directory, we just 1236 * add it to the cache. 1237 */ 1238 if (S_ISDIR(sbuf.st_mode)) { 1239 if ((error = zpool_find_import_scan_dir(hdl, lock, 1240 cache, dir[i], i)) != 0) 1241 goto error; 1242 } else { 1243 if ((error = zpool_find_import_scan_path(hdl, lock, 1244 cache, dir[i], i)) != 0) 1245 goto error; 1246 } 1247 } 1248 1249 *slice_cache = cache; 1250 return (0); 1251 1252 error: 1253 cookie = NULL; 1254 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1255 free(slice->rn_name); 1256 free(slice); 1257 } 1258 free(cache); 1259 1260 return (error); 1261 } 1262 1263 /* 1264 * Given a list of directories to search, find all pools stored on disk. This 1265 * includes partial pools which are not available to import. If no args are 1266 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1267 * poolname or guid (but not both) are provided by the caller when trying 1268 * to import a specific pool. 1269 */ 1270 static nvlist_t * 1271 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg, 1272 pthread_mutex_t *lock, avl_tree_t *cache) 1273 { 1274 nvlist_t *ret = NULL; 1275 pool_list_t pools = { 0 }; 1276 pool_entry_t *pe, *penext; 1277 vdev_entry_t *ve, *venext; 1278 config_entry_t *ce, *cenext; 1279 name_entry_t *ne, *nenext; 1280 rdsk_node_t *slice; 1281 void *cookie; 1282 tpool_t *t; 1283 1284 verify(iarg->poolname == NULL || iarg->guid == 0); 1285 1286 /* 1287 * Create a thread pool to parallelize the process of reading and 1288 * validating labels, a large number of threads can be used due to 1289 * minimal contention. 1290 */ 1291 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1292 for (slice = avl_first(cache); slice; 1293 (slice = avl_walk(cache, slice, AVL_AFTER))) 1294 (void) tpool_dispatch(t, zpool_open_func, slice); 1295 1296 tpool_wait(t); 1297 tpool_destroy(t); 1298 1299 /* 1300 * Process the cache, filtering out any entries which are not 1301 * for the specified pool then adding matching label configs. 1302 */ 1303 cookie = NULL; 1304 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1305 if (slice->rn_config != NULL) { 1306 nvlist_t *config = slice->rn_config; 1307 boolean_t matched = B_TRUE; 1308 boolean_t aux = B_FALSE; 1309 int fd; 1310 1311 /* 1312 * Check if it's a spare or l2cache device. If it is, 1313 * we need to skip the name and guid check since they 1314 * don't exist on aux device label. 1315 */ 1316 if (iarg->poolname != NULL || iarg->guid != 0) { 1317 uint64_t state; 1318 aux = nvlist_lookup_uint64(config, 1319 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1320 (state == POOL_STATE_SPARE || 1321 state == POOL_STATE_L2CACHE); 1322 } 1323 1324 if (iarg->poolname != NULL && !aux) { 1325 char *pname; 1326 1327 matched = nvlist_lookup_string(config, 1328 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1329 strcmp(iarg->poolname, pname) == 0; 1330 } else if (iarg->guid != 0 && !aux) { 1331 uint64_t this_guid; 1332 1333 matched = nvlist_lookup_uint64(config, 1334 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1335 iarg->guid == this_guid; 1336 } 1337 if (matched) { 1338 /* 1339 * Verify all remaining entries can be opened 1340 * exclusively. This will prune all underlying 1341 * multipath devices which otherwise could 1342 * result in the vdev appearing as UNAVAIL. 1343 * 1344 * Under zdb, this step isn't required and 1345 * would prevent a zdb -e of active pools with 1346 * no cachefile. 1347 */ 1348 fd = open(slice->rn_name, O_RDONLY | O_EXCL); 1349 if (fd >= 0 || iarg->can_be_active) { 1350 if (fd >= 0) 1351 close(fd); 1352 add_config(hdl, &pools, 1353 slice->rn_name, slice->rn_order, 1354 slice->rn_num_labels, config); 1355 } 1356 } 1357 nvlist_free(config); 1358 } 1359 free(slice->rn_name); 1360 free(slice); 1361 } 1362 avl_destroy(cache); 1363 free(cache); 1364 1365 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1366 1367 for (pe = pools.pools; pe != NULL; pe = penext) { 1368 penext = pe->pe_next; 1369 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1370 venext = ve->ve_next; 1371 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1372 cenext = ce->ce_next; 1373 nvlist_free(ce->ce_config); 1374 free(ce); 1375 } 1376 free(ve); 1377 } 1378 free(pe); 1379 } 1380 1381 for (ne = pools.names; ne != NULL; ne = nenext) { 1382 nenext = ne->ne_next; 1383 free(ne->ne_name); 1384 free(ne); 1385 } 1386 1387 return (ret); 1388 } 1389 1390 /* 1391 * Given a config, discover the paths for the devices which 1392 * exist in the config. 1393 */ 1394 static int 1395 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv, 1396 avl_tree_t *cache, pthread_mutex_t *lock) 1397 { 1398 char *path = NULL; 1399 uint_t children; 1400 nvlist_t **child; 1401 1402 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1403 &child, &children) == 0) { 1404 for (int c = 0; c < children; c++) { 1405 discover_cached_paths(hdl, child[c], cache, lock); 1406 } 1407 } 1408 1409 /* 1410 * Once we have the path, we need to add the directory to 1411 * our directoy cache. 1412 */ 1413 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { 1414 return (zpool_find_import_scan_dir(hdl, lock, cache, 1415 dirname(path), 0)); 1416 } 1417 return (0); 1418 } 1419 1420 /* 1421 * Given a cache file, return the contents as a list of importable pools. 1422 * poolname or guid (but not both) are provided by the caller when trying 1423 * to import a specific pool. 1424 */ 1425 static nvlist_t * 1426 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg) 1427 { 1428 char *buf; 1429 int fd; 1430 struct stat64 statbuf; 1431 nvlist_t *raw, *src, *dst; 1432 nvlist_t *pools; 1433 nvpair_t *elem; 1434 char *name; 1435 uint64_t this_guid; 1436 boolean_t active; 1437 1438 verify(iarg->poolname == NULL || iarg->guid == 0); 1439 1440 if ((fd = open(iarg->cachefile, O_RDONLY)) < 0) { 1441 zutil_error_aux(hdl, "%s", strerror(errno)); 1442 (void) zutil_error(hdl, EZFS_BADCACHE, 1443 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1444 return (NULL); 1445 } 1446 1447 if (fstat64(fd, &statbuf) != 0) { 1448 zutil_error_aux(hdl, "%s", strerror(errno)); 1449 (void) close(fd); 1450 (void) zutil_error(hdl, EZFS_BADCACHE, 1451 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1452 return (NULL); 1453 } 1454 1455 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1456 (void) close(fd); 1457 return (NULL); 1458 } 1459 1460 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1461 (void) close(fd); 1462 free(buf); 1463 (void) zutil_error(hdl, EZFS_BADCACHE, 1464 dgettext(TEXT_DOMAIN, 1465 "failed to read cache file contents")); 1466 return (NULL); 1467 } 1468 1469 (void) close(fd); 1470 1471 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1472 free(buf); 1473 (void) zutil_error(hdl, EZFS_BADCACHE, 1474 dgettext(TEXT_DOMAIN, 1475 "invalid or corrupt cache file contents")); 1476 return (NULL); 1477 } 1478 1479 free(buf); 1480 1481 /* 1482 * Go through and get the current state of the pools and refresh their 1483 * state. 1484 */ 1485 if (nvlist_alloc(&pools, 0, 0) != 0) { 1486 (void) zutil_no_memory(hdl); 1487 nvlist_free(raw); 1488 return (NULL); 1489 } 1490 1491 elem = NULL; 1492 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1493 src = fnvpair_value_nvlist(elem); 1494 1495 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1496 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0) 1497 continue; 1498 1499 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1500 if (iarg->guid != 0 && iarg->guid != this_guid) 1501 continue; 1502 1503 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1504 nvlist_free(raw); 1505 nvlist_free(pools); 1506 return (NULL); 1507 } 1508 1509 if (active) 1510 continue; 1511 1512 if (iarg->scan) { 1513 uint64_t saved_guid = iarg->guid; 1514 const char *saved_poolname = iarg->poolname; 1515 pthread_mutex_t lock; 1516 1517 /* 1518 * Create the device cache that will hold the 1519 * devices we will scan based on the cachefile. 1520 * This will get destroyed and freed by 1521 * zpool_find_import_impl. 1522 */ 1523 avl_tree_t *cache = zutil_alloc(hdl, 1524 sizeof (avl_tree_t)); 1525 avl_create(cache, slice_cache_compare, 1526 sizeof (rdsk_node_t), 1527 offsetof(rdsk_node_t, rn_node)); 1528 nvlist_t *nvroot = fnvlist_lookup_nvlist(src, 1529 ZPOOL_CONFIG_VDEV_TREE); 1530 1531 /* 1532 * We only want to find the pool with this_guid. 1533 * We will reset these values back later. 1534 */ 1535 iarg->guid = this_guid; 1536 iarg->poolname = NULL; 1537 1538 /* 1539 * We need to build up a cache of devices that exists 1540 * in the paths pointed to by the cachefile. This allows 1541 * us to preserve the device namespace that was 1542 * originally specified by the user but also lets us 1543 * scan devices in those directories in case they had 1544 * been renamed. 1545 */ 1546 pthread_mutex_init(&lock, NULL); 1547 discover_cached_paths(hdl, nvroot, cache, &lock); 1548 nvlist_t *nv = zpool_find_import_impl(hdl, iarg, 1549 &lock, cache); 1550 pthread_mutex_destroy(&lock); 1551 1552 /* 1553 * zpool_find_import_impl will return back 1554 * a list of pools that it found based on the 1555 * device cache. There should only be one pool 1556 * since we're looking for a specific guid. 1557 * We will use that pool to build up the final 1558 * pool nvlist which is returned back to the 1559 * caller. 1560 */ 1561 nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 1562 fnvlist_add_nvlist(pools, nvpair_name(pair), 1563 fnvpair_value_nvlist(pair)); 1564 1565 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL); 1566 1567 iarg->guid = saved_guid; 1568 iarg->poolname = saved_poolname; 1569 continue; 1570 } 1571 1572 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1573 iarg->cachefile) != 0) { 1574 (void) zutil_no_memory(hdl); 1575 nvlist_free(raw); 1576 nvlist_free(pools); 1577 return (NULL); 1578 } 1579 1580 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1581 nvlist_free(raw); 1582 nvlist_free(pools); 1583 return (NULL); 1584 } 1585 1586 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1587 (void) zutil_no_memory(hdl); 1588 nvlist_free(dst); 1589 nvlist_free(raw); 1590 nvlist_free(pools); 1591 return (NULL); 1592 } 1593 nvlist_free(dst); 1594 } 1595 nvlist_free(raw); 1596 return (pools); 1597 } 1598 1599 static nvlist_t * 1600 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg) 1601 { 1602 pthread_mutex_t lock; 1603 avl_tree_t *cache; 1604 nvlist_t *pools = NULL; 1605 1606 verify(iarg->poolname == NULL || iarg->guid == 0); 1607 pthread_mutex_init(&lock, NULL); 1608 1609 /* 1610 * Locate pool member vdevs by blkid or by directory scanning. 1611 * On success a newly allocated AVL tree which is populated with an 1612 * entry for each discovered vdev will be returned in the cache. 1613 * It's the caller's responsibility to consume and destroy this tree. 1614 */ 1615 if (iarg->scan || iarg->paths != 0) { 1616 size_t dirs = iarg->paths; 1617 const char * const *dir = (const char * const *)iarg->path; 1618 1619 if (dirs == 0) 1620 dir = zpool_default_search_paths(&dirs); 1621 1622 if (zpool_find_import_scan(hdl, &lock, &cache, 1623 dir, dirs) != 0) { 1624 pthread_mutex_destroy(&lock); 1625 return (NULL); 1626 } 1627 } else { 1628 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) { 1629 pthread_mutex_destroy(&lock); 1630 return (NULL); 1631 } 1632 } 1633 1634 pools = zpool_find_import_impl(hdl, iarg, &lock, cache); 1635 pthread_mutex_destroy(&lock); 1636 return (pools); 1637 } 1638 1639 1640 nvlist_t * 1641 zpool_search_import(void *hdl, importargs_t *import, 1642 const pool_config_ops_t *pco) 1643 { 1644 libpc_handle_t handle = { 0 }; 1645 nvlist_t *pools = NULL; 1646 1647 handle.lpc_lib_handle = hdl; 1648 handle.lpc_ops = pco; 1649 handle.lpc_printerr = B_TRUE; 1650 1651 verify(import->poolname == NULL || import->guid == 0); 1652 1653 if (import->cachefile != NULL) 1654 pools = zpool_find_import_cached(&handle, import); 1655 else 1656 pools = zpool_find_import(&handle, import); 1657 1658 if ((pools == NULL || nvlist_empty(pools)) && 1659 handle.lpc_open_access_error && geteuid() != 0) { 1660 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1661 "no pools found")); 1662 } 1663 1664 return (pools); 1665 } 1666 1667 static boolean_t 1668 pool_match(nvlist_t *cfg, char *tgt) 1669 { 1670 uint64_t v, guid = strtoull(tgt, NULL, 0); 1671 char *s; 1672 1673 if (guid != 0) { 1674 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1675 return (v == guid); 1676 } else { 1677 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1678 return (strcmp(s, tgt) == 0); 1679 } 1680 return (B_FALSE); 1681 } 1682 1683 int 1684 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1685 importargs_t *args, const pool_config_ops_t *pco) 1686 { 1687 nvlist_t *pools; 1688 nvlist_t *match = NULL; 1689 nvlist_t *config = NULL; 1690 char *sepp = NULL; 1691 char sep = '\0'; 1692 int count = 0; 1693 char *targetdup = strdup(target); 1694 1695 *configp = NULL; 1696 1697 if ((sepp = strpbrk(targetdup, "/@")) != NULL) { 1698 sep = *sepp; 1699 *sepp = '\0'; 1700 } 1701 1702 pools = zpool_search_import(hdl, args, pco); 1703 1704 if (pools != NULL) { 1705 nvpair_t *elem = NULL; 1706 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1707 VERIFY0(nvpair_value_nvlist(elem, &config)); 1708 if (pool_match(config, targetdup)) { 1709 count++; 1710 if (match != NULL) { 1711 /* multiple matches found */ 1712 continue; 1713 } else { 1714 match = fnvlist_dup(config); 1715 } 1716 } 1717 } 1718 fnvlist_free(pools); 1719 } 1720 1721 if (count == 0) { 1722 free(targetdup); 1723 return (ENOENT); 1724 } 1725 1726 if (count > 1) { 1727 free(targetdup); 1728 fnvlist_free(match); 1729 return (EINVAL); 1730 } 1731 1732 *configp = match; 1733 free(targetdup); 1734 1735 return (0); 1736 } 1737