1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 28 */ 29 30 /* 31 * Pool import support functions. 32 * 33 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 34 * these commands are expected to run in the global zone, we can assume 35 * that the devices are all readable when called. 36 * 37 * To import a pool, we rely on reading the configuration information from the 38 * ZFS label of each device. If we successfully read the label, then we 39 * organize the configuration information in the following hierarchy: 40 * 41 * pool guid -> toplevel vdev guid -> label txg 42 * 43 * Duplicate entries matching this same tuple will be discarded. Once we have 44 * examined every device, we pick the best label txg config for each toplevel 45 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 46 * update any paths that have changed. Finally, we attempt to import the pool 47 * using our derived config, and record the results. 48 */ 49 50 #ifdef HAVE_AIO_H 51 #include <aio.h> 52 #endif 53 #include <ctype.h> 54 #include <dirent.h> 55 #include <errno.h> 56 #include <libintl.h> 57 #include <libgen.h> 58 #include <stddef.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <sys/stat.h> 62 #include <unistd.h> 63 #include <fcntl.h> 64 #include <sys/dktp/fdisk.h> 65 #include <sys/vdev_impl.h> 66 #include <sys/fs/zfs.h> 67 68 #include <thread_pool.h> 69 #include <libzutil.h> 70 #include <libnvpair.h> 71 72 #include "zutil_import.h" 73 74 static __attribute__((format(printf, 2, 3))) void 75 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 76 { 77 va_list ap; 78 79 va_start(ap, fmt); 80 81 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 82 hdl->lpc_desc_active = B_TRUE; 83 84 va_end(ap); 85 } 86 87 static void 88 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 89 va_list ap) 90 { 91 char action[1024]; 92 93 (void) vsnprintf(action, sizeof (action), fmt, ap); 94 95 if (hdl->lpc_desc_active) 96 hdl->lpc_desc_active = B_FALSE; 97 else 98 hdl->lpc_desc[0] = '\0'; 99 100 if (hdl->lpc_printerr) { 101 if (hdl->lpc_desc[0] != '\0') 102 error = hdl->lpc_desc; 103 104 (void) fprintf(stderr, "%s: %s\n", action, error); 105 } 106 } 107 108 static __attribute__((format(printf, 3, 4))) int 109 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 110 { 111 va_list ap; 112 113 va_start(ap, fmt); 114 115 zutil_verror(hdl, error, fmt, ap); 116 117 va_end(ap); 118 119 return (-1); 120 } 121 122 static int 123 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 124 { 125 return (zutil_error_fmt(hdl, error, "%s", msg)); 126 } 127 128 static int 129 zutil_no_memory(libpc_handle_t *hdl) 130 { 131 zutil_error(hdl, EZFS_NOMEM, "internal error"); 132 exit(1); 133 } 134 135 void * 136 zutil_alloc(libpc_handle_t *hdl, size_t size) 137 { 138 void *data; 139 140 if ((data = calloc(1, size)) == NULL) 141 (void) zutil_no_memory(hdl); 142 143 return (data); 144 } 145 146 char * 147 zutil_strdup(libpc_handle_t *hdl, const char *str) 148 { 149 char *ret; 150 151 if ((ret = strdup(str)) == NULL) 152 (void) zutil_no_memory(hdl); 153 154 return (ret); 155 } 156 157 static char * 158 zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n) 159 { 160 char *ret; 161 162 if ((ret = strndup(str, n)) == NULL) 163 (void) zutil_no_memory(hdl); 164 165 return (ret); 166 } 167 168 /* 169 * Intermediate structures used to gather configuration information. 170 */ 171 typedef struct config_entry { 172 uint64_t ce_txg; 173 nvlist_t *ce_config; 174 struct config_entry *ce_next; 175 } config_entry_t; 176 177 typedef struct vdev_entry { 178 uint64_t ve_guid; 179 config_entry_t *ve_configs; 180 struct vdev_entry *ve_next; 181 } vdev_entry_t; 182 183 typedef struct pool_entry { 184 uint64_t pe_guid; 185 vdev_entry_t *pe_vdevs; 186 struct pool_entry *pe_next; 187 } pool_entry_t; 188 189 typedef struct name_entry { 190 char *ne_name; 191 uint64_t ne_guid; 192 uint64_t ne_order; 193 uint64_t ne_num_labels; 194 struct name_entry *ne_next; 195 } name_entry_t; 196 197 typedef struct pool_list { 198 pool_entry_t *pools; 199 name_entry_t *names; 200 } pool_list_t; 201 202 /* 203 * Go through and fix up any path and/or devid information for the given vdev 204 * configuration. 205 */ 206 static int 207 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 208 { 209 nvlist_t **child; 210 uint_t c, children; 211 uint64_t guid; 212 name_entry_t *ne, *best; 213 char *path; 214 215 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 216 &child, &children) == 0) { 217 for (c = 0; c < children; c++) 218 if (fix_paths(hdl, child[c], names) != 0) 219 return (-1); 220 return (0); 221 } 222 223 /* 224 * This is a leaf (file or disk) vdev. In either case, go through 225 * the name list and see if we find a matching guid. If so, replace 226 * the path and see if we can calculate a new devid. 227 * 228 * There may be multiple names associated with a particular guid, in 229 * which case we have overlapping partitions or multiple paths to the 230 * same disk. In this case we prefer to use the path name which 231 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 232 * use the lowest order device which corresponds to the first match 233 * while traversing the ZPOOL_IMPORT_PATH search path. 234 */ 235 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 236 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 237 path = NULL; 238 239 best = NULL; 240 for (ne = names; ne != NULL; ne = ne->ne_next) { 241 if (ne->ne_guid == guid) { 242 if (path == NULL) { 243 best = ne; 244 break; 245 } 246 247 if ((strlen(path) == strlen(ne->ne_name)) && 248 strncmp(path, ne->ne_name, strlen(path)) == 0) { 249 best = ne; 250 break; 251 } 252 253 if (best == NULL) { 254 best = ne; 255 continue; 256 } 257 258 /* Prefer paths with move vdev labels. */ 259 if (ne->ne_num_labels > best->ne_num_labels) { 260 best = ne; 261 continue; 262 } 263 264 /* Prefer paths earlier in the search order. */ 265 if (ne->ne_num_labels == best->ne_num_labels && 266 ne->ne_order < best->ne_order) { 267 best = ne; 268 continue; 269 } 270 } 271 } 272 273 if (best == NULL) 274 return (0); 275 276 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 277 return (-1); 278 279 update_vdev_config_dev_strs(nv); 280 281 return (0); 282 } 283 284 /* 285 * Add the given configuration to the list of known devices. 286 */ 287 static int 288 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 289 int order, int num_labels, nvlist_t *config) 290 { 291 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 292 pool_entry_t *pe; 293 vdev_entry_t *ve; 294 config_entry_t *ce; 295 name_entry_t *ne; 296 297 /* 298 * If this is a hot spare not currently in use or level 2 cache 299 * device, add it to the list of names to translate, but don't do 300 * anything else. 301 */ 302 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 303 &state) == 0 && 304 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 305 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 306 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 307 return (-1); 308 309 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 310 free(ne); 311 return (-1); 312 } 313 ne->ne_guid = vdev_guid; 314 ne->ne_order = order; 315 ne->ne_num_labels = num_labels; 316 ne->ne_next = pl->names; 317 pl->names = ne; 318 319 return (0); 320 } 321 322 /* 323 * If we have a valid config but cannot read any of these fields, then 324 * it means we have a half-initialized label. In vdev_label_init() 325 * we write a label with txg == 0 so that we can identify the device 326 * in case the user refers to the same disk later on. If we fail to 327 * create the pool, we'll be left with a label in this state 328 * which should not be considered part of a valid pool. 329 */ 330 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 331 &pool_guid) != 0 || 332 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 333 &vdev_guid) != 0 || 334 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 335 &top_guid) != 0 || 336 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 337 &txg) != 0 || txg == 0) { 338 return (0); 339 } 340 341 /* 342 * First, see if we know about this pool. If not, then add it to the 343 * list of known pools. 344 */ 345 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 346 if (pe->pe_guid == pool_guid) 347 break; 348 } 349 350 if (pe == NULL) { 351 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 352 return (-1); 353 } 354 pe->pe_guid = pool_guid; 355 pe->pe_next = pl->pools; 356 pl->pools = pe; 357 } 358 359 /* 360 * Second, see if we know about this toplevel vdev. Add it if its 361 * missing. 362 */ 363 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 364 if (ve->ve_guid == top_guid) 365 break; 366 } 367 368 if (ve == NULL) { 369 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 370 return (-1); 371 } 372 ve->ve_guid = top_guid; 373 ve->ve_next = pe->pe_vdevs; 374 pe->pe_vdevs = ve; 375 } 376 377 /* 378 * Third, see if we have a config with a matching transaction group. If 379 * so, then we do nothing. Otherwise, add it to the list of known 380 * configs. 381 */ 382 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 383 if (ce->ce_txg == txg) 384 break; 385 } 386 387 if (ce == NULL) { 388 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 389 return (-1); 390 } 391 ce->ce_txg = txg; 392 ce->ce_config = fnvlist_dup(config); 393 ce->ce_next = ve->ve_configs; 394 ve->ve_configs = ce; 395 } 396 397 /* 398 * At this point we've successfully added our config to the list of 399 * known configs. The last thing to do is add the vdev guid -> path 400 * mappings so that we can fix up the configuration as necessary before 401 * doing the import. 402 */ 403 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 404 return (-1); 405 406 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 407 free(ne); 408 return (-1); 409 } 410 411 ne->ne_guid = vdev_guid; 412 ne->ne_order = order; 413 ne->ne_num_labels = num_labels; 414 ne->ne_next = pl->names; 415 pl->names = ne; 416 417 return (0); 418 } 419 420 static int 421 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 422 boolean_t *isactive) 423 { 424 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 425 426 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 427 guid, isactive); 428 429 return (error); 430 } 431 432 static nvlist_t * 433 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 434 { 435 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 436 437 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 438 tryconfig)); 439 } 440 441 /* 442 * Determine if the vdev id is a hole in the namespace. 443 */ 444 static boolean_t 445 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 446 { 447 int c; 448 449 for (c = 0; c < holes; c++) { 450 451 /* Top-level is a hole */ 452 if (hole_array[c] == id) 453 return (B_TRUE); 454 } 455 return (B_FALSE); 456 } 457 458 /* 459 * Convert our list of pools into the definitive set of configurations. We 460 * start by picking the best config for each toplevel vdev. Once that's done, 461 * we assemble the toplevel vdevs into a full config for the pool. We make a 462 * pass to fix up any incorrect paths, and then add it to the main list to 463 * return to the user. 464 */ 465 static nvlist_t * 466 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 467 nvlist_t *policy) 468 { 469 pool_entry_t *pe; 470 vdev_entry_t *ve; 471 config_entry_t *ce; 472 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 473 nvlist_t **spares, **l2cache; 474 uint_t i, nspares, nl2cache; 475 boolean_t config_seen; 476 uint64_t best_txg; 477 char *name, *hostname = NULL; 478 uint64_t guid; 479 uint_t children = 0; 480 nvlist_t **child = NULL; 481 uint_t holes; 482 uint64_t *hole_array, max_id; 483 uint_t c; 484 boolean_t isactive; 485 uint64_t hostid; 486 nvlist_t *nvl; 487 boolean_t valid_top_config = B_FALSE; 488 489 if (nvlist_alloc(&ret, 0, 0) != 0) 490 goto nomem; 491 492 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 493 uint64_t id, max_txg = 0; 494 495 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 496 goto nomem; 497 config_seen = B_FALSE; 498 499 /* 500 * Iterate over all toplevel vdevs. Grab the pool configuration 501 * from the first one we find, and then go through the rest and 502 * add them as necessary to the 'vdevs' member of the config. 503 */ 504 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 505 506 /* 507 * Determine the best configuration for this vdev by 508 * selecting the config with the latest transaction 509 * group. 510 */ 511 best_txg = 0; 512 for (ce = ve->ve_configs; ce != NULL; 513 ce = ce->ce_next) { 514 515 if (ce->ce_txg > best_txg) { 516 tmp = ce->ce_config; 517 best_txg = ce->ce_txg; 518 } 519 } 520 521 /* 522 * We rely on the fact that the max txg for the 523 * pool will contain the most up-to-date information 524 * about the valid top-levels in the vdev namespace. 525 */ 526 if (best_txg > max_txg) { 527 (void) nvlist_remove(config, 528 ZPOOL_CONFIG_VDEV_CHILDREN, 529 DATA_TYPE_UINT64); 530 (void) nvlist_remove(config, 531 ZPOOL_CONFIG_HOLE_ARRAY, 532 DATA_TYPE_UINT64_ARRAY); 533 534 max_txg = best_txg; 535 hole_array = NULL; 536 holes = 0; 537 max_id = 0; 538 valid_top_config = B_FALSE; 539 540 if (nvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 542 verify(nvlist_add_uint64(config, 543 ZPOOL_CONFIG_VDEV_CHILDREN, 544 max_id) == 0); 545 valid_top_config = B_TRUE; 546 } 547 548 if (nvlist_lookup_uint64_array(tmp, 549 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 550 &holes) == 0) { 551 verify(nvlist_add_uint64_array(config, 552 ZPOOL_CONFIG_HOLE_ARRAY, 553 hole_array, holes) == 0); 554 } 555 } 556 557 if (!config_seen) { 558 /* 559 * Copy the relevant pieces of data to the pool 560 * configuration: 561 * 562 * version 563 * pool guid 564 * name 565 * comment (if available) 566 * compatibility features (if available) 567 * pool state 568 * hostid (if available) 569 * hostname (if available) 570 */ 571 uint64_t state, version; 572 char *comment = NULL; 573 char *compatibility = NULL; 574 575 version = fnvlist_lookup_uint64(tmp, 576 ZPOOL_CONFIG_VERSION); 577 fnvlist_add_uint64(config, 578 ZPOOL_CONFIG_VERSION, version); 579 guid = fnvlist_lookup_uint64(tmp, 580 ZPOOL_CONFIG_POOL_GUID); 581 fnvlist_add_uint64(config, 582 ZPOOL_CONFIG_POOL_GUID, guid); 583 name = fnvlist_lookup_string(tmp, 584 ZPOOL_CONFIG_POOL_NAME); 585 fnvlist_add_string(config, 586 ZPOOL_CONFIG_POOL_NAME, name); 587 588 if (nvlist_lookup_string(tmp, 589 ZPOOL_CONFIG_COMMENT, &comment) == 0) 590 fnvlist_add_string(config, 591 ZPOOL_CONFIG_COMMENT, comment); 592 593 if (nvlist_lookup_string(tmp, 594 ZPOOL_CONFIG_COMPATIBILITY, 595 &compatibility) == 0) 596 fnvlist_add_string(config, 597 ZPOOL_CONFIG_COMPATIBILITY, 598 compatibility); 599 600 state = fnvlist_lookup_uint64(tmp, 601 ZPOOL_CONFIG_POOL_STATE); 602 fnvlist_add_uint64(config, 603 ZPOOL_CONFIG_POOL_STATE, state); 604 605 hostid = 0; 606 if (nvlist_lookup_uint64(tmp, 607 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 608 fnvlist_add_uint64(config, 609 ZPOOL_CONFIG_HOSTID, hostid); 610 hostname = fnvlist_lookup_string(tmp, 611 ZPOOL_CONFIG_HOSTNAME); 612 fnvlist_add_string(config, 613 ZPOOL_CONFIG_HOSTNAME, hostname); 614 } 615 616 config_seen = B_TRUE; 617 } 618 619 /* 620 * Add this top-level vdev to the child array. 621 */ 622 verify(nvlist_lookup_nvlist(tmp, 623 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 624 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 625 &id) == 0); 626 627 if (id >= children) { 628 nvlist_t **newchild; 629 630 newchild = zutil_alloc(hdl, (id + 1) * 631 sizeof (nvlist_t *)); 632 if (newchild == NULL) 633 goto nomem; 634 635 for (c = 0; c < children; c++) 636 newchild[c] = child[c]; 637 638 free(child); 639 child = newchild; 640 children = id + 1; 641 } 642 if (nvlist_dup(nvtop, &child[id], 0) != 0) 643 goto nomem; 644 645 } 646 647 /* 648 * If we have information about all the top-levels then 649 * clean up the nvlist which we've constructed. This 650 * means removing any extraneous devices that are 651 * beyond the valid range or adding devices to the end 652 * of our array which appear to be missing. 653 */ 654 if (valid_top_config) { 655 if (max_id < children) { 656 for (c = max_id; c < children; c++) 657 nvlist_free(child[c]); 658 children = max_id; 659 } else if (max_id > children) { 660 nvlist_t **newchild; 661 662 newchild = zutil_alloc(hdl, (max_id) * 663 sizeof (nvlist_t *)); 664 if (newchild == NULL) 665 goto nomem; 666 667 for (c = 0; c < children; c++) 668 newchild[c] = child[c]; 669 670 free(child); 671 child = newchild; 672 children = max_id; 673 } 674 } 675 676 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 677 &guid) == 0); 678 679 /* 680 * The vdev namespace may contain holes as a result of 681 * device removal. We must add them back into the vdev 682 * tree before we process any missing devices. 683 */ 684 if (holes > 0) { 685 ASSERT(valid_top_config); 686 687 for (c = 0; c < children; c++) { 688 nvlist_t *holey; 689 690 if (child[c] != NULL || 691 !vdev_is_hole(hole_array, holes, c)) 692 continue; 693 694 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 695 0) != 0) 696 goto nomem; 697 698 /* 699 * Holes in the namespace are treated as 700 * "hole" top-level vdevs and have a 701 * special flag set on them. 702 */ 703 if (nvlist_add_string(holey, 704 ZPOOL_CONFIG_TYPE, 705 VDEV_TYPE_HOLE) != 0 || 706 nvlist_add_uint64(holey, 707 ZPOOL_CONFIG_ID, c) != 0 || 708 nvlist_add_uint64(holey, 709 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 710 nvlist_free(holey); 711 goto nomem; 712 } 713 child[c] = holey; 714 } 715 } 716 717 /* 718 * Look for any missing top-level vdevs. If this is the case, 719 * create a faked up 'missing' vdev as a placeholder. We cannot 720 * simply compress the child array, because the kernel performs 721 * certain checks to make sure the vdev IDs match their location 722 * in the configuration. 723 */ 724 for (c = 0; c < children; c++) { 725 if (child[c] == NULL) { 726 nvlist_t *missing; 727 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 728 0) != 0) 729 goto nomem; 730 if (nvlist_add_string(missing, 731 ZPOOL_CONFIG_TYPE, 732 VDEV_TYPE_MISSING) != 0 || 733 nvlist_add_uint64(missing, 734 ZPOOL_CONFIG_ID, c) != 0 || 735 nvlist_add_uint64(missing, 736 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 737 nvlist_free(missing); 738 goto nomem; 739 } 740 child[c] = missing; 741 } 742 } 743 744 /* 745 * Put all of this pool's top-level vdevs into a root vdev. 746 */ 747 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 748 goto nomem; 749 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 750 VDEV_TYPE_ROOT) != 0 || 751 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 752 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 753 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 754 (const nvlist_t **)child, children) != 0) { 755 nvlist_free(nvroot); 756 goto nomem; 757 } 758 759 for (c = 0; c < children; c++) 760 nvlist_free(child[c]); 761 free(child); 762 children = 0; 763 child = NULL; 764 765 /* 766 * Go through and fix up any paths and/or devids based on our 767 * known list of vdev GUID -> path mappings. 768 */ 769 if (fix_paths(hdl, nvroot, pl->names) != 0) { 770 nvlist_free(nvroot); 771 goto nomem; 772 } 773 774 /* 775 * Add the root vdev to this pool's configuration. 776 */ 777 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 778 nvroot) != 0) { 779 nvlist_free(nvroot); 780 goto nomem; 781 } 782 nvlist_free(nvroot); 783 784 /* 785 * zdb uses this path to report on active pools that were 786 * imported or created using -R. 787 */ 788 if (active_ok) 789 goto add_pool; 790 791 /* 792 * Determine if this pool is currently active, in which case we 793 * can't actually import it. 794 */ 795 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 796 &name) == 0); 797 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 798 &guid) == 0); 799 800 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 801 goto error; 802 803 if (isactive) { 804 nvlist_free(config); 805 config = NULL; 806 continue; 807 } 808 809 if (policy != NULL) { 810 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 811 policy) != 0) 812 goto nomem; 813 } 814 815 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 816 nvlist_free(config); 817 config = NULL; 818 continue; 819 } 820 821 nvlist_free(config); 822 config = nvl; 823 824 /* 825 * Go through and update the paths for spares, now that we have 826 * them. 827 */ 828 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 829 &nvroot) == 0); 830 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 831 &spares, &nspares) == 0) { 832 for (i = 0; i < nspares; i++) { 833 if (fix_paths(hdl, spares[i], pl->names) != 0) 834 goto nomem; 835 } 836 } 837 838 /* 839 * Update the paths for l2cache devices. 840 */ 841 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 842 &l2cache, &nl2cache) == 0) { 843 for (i = 0; i < nl2cache; i++) { 844 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 845 goto nomem; 846 } 847 } 848 849 /* 850 * Restore the original information read from the actual label. 851 */ 852 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 853 DATA_TYPE_UINT64); 854 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 855 DATA_TYPE_STRING); 856 if (hostid != 0) { 857 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 858 hostid) == 0); 859 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 860 hostname) == 0); 861 } 862 863 add_pool: 864 /* 865 * Add this pool to the list of configs. 866 */ 867 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 868 &name) == 0); 869 870 if (nvlist_add_nvlist(ret, name, config) != 0) 871 goto nomem; 872 873 nvlist_free(config); 874 config = NULL; 875 } 876 877 return (ret); 878 879 nomem: 880 (void) zutil_no_memory(hdl); 881 error: 882 nvlist_free(config); 883 nvlist_free(ret); 884 for (c = 0; c < children; c++) 885 nvlist_free(child[c]); 886 free(child); 887 888 return (NULL); 889 } 890 891 /* 892 * Return the offset of the given label. 893 */ 894 static uint64_t 895 label_offset(uint64_t size, int l) 896 { 897 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 898 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 899 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 900 } 901 902 /* 903 * The same description applies as to zpool_read_label below, 904 * except here we do it without aio, presumably because an aio call 905 * errored out in a way we think not using it could circumvent. 906 */ 907 static int 908 zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels) 909 { 910 struct stat64 statbuf; 911 int l, count = 0; 912 vdev_phys_t *label; 913 nvlist_t *expected_config = NULL; 914 uint64_t expected_guid = 0, size; 915 int error; 916 917 *config = NULL; 918 919 if (fstat64_blk(fd, &statbuf) == -1) 920 return (0); 921 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 922 923 error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label)); 924 if (error) 925 return (-1); 926 927 for (l = 0; l < VDEV_LABELS; l++) { 928 uint64_t state, guid, txg; 929 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 930 931 if (pread64(fd, label, sizeof (vdev_phys_t), 932 offset) != sizeof (vdev_phys_t)) 933 continue; 934 935 if (nvlist_unpack(label->vp_nvlist, 936 sizeof (label->vp_nvlist), config, 0) != 0) 937 continue; 938 939 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 940 &guid) != 0 || guid == 0) { 941 nvlist_free(*config); 942 continue; 943 } 944 945 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 946 &state) != 0 || state > POOL_STATE_L2CACHE) { 947 nvlist_free(*config); 948 continue; 949 } 950 951 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 952 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 953 &txg) != 0 || txg == 0)) { 954 nvlist_free(*config); 955 continue; 956 } 957 958 if (expected_guid) { 959 if (expected_guid == guid) 960 count++; 961 962 nvlist_free(*config); 963 } else { 964 expected_config = *config; 965 expected_guid = guid; 966 count++; 967 } 968 } 969 970 if (num_labels != NULL) 971 *num_labels = count; 972 973 free(label); 974 *config = expected_config; 975 976 return (0); 977 } 978 979 /* 980 * Given a file descriptor, read the label information and return an nvlist 981 * describing the configuration, if there is one. The number of valid 982 * labels found will be returned in num_labels when non-NULL. 983 */ 984 int 985 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 986 { 987 #ifndef HAVE_AIO_H 988 return (zpool_read_label_slow(fd, config, num_labels)); 989 #else 990 struct stat64 statbuf; 991 struct aiocb aiocbs[VDEV_LABELS]; 992 struct aiocb *aiocbps[VDEV_LABELS]; 993 vdev_phys_t *labels; 994 nvlist_t *expected_config = NULL; 995 uint64_t expected_guid = 0, size; 996 int error, l, count = 0; 997 998 *config = NULL; 999 1000 if (fstat64_blk(fd, &statbuf) == -1) 1001 return (0); 1002 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1003 1004 error = posix_memalign((void **)&labels, PAGESIZE, 1005 VDEV_LABELS * sizeof (*labels)); 1006 if (error) 1007 return (-1); 1008 1009 memset(aiocbs, 0, sizeof (aiocbs)); 1010 for (l = 0; l < VDEV_LABELS; l++) { 1011 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 1012 1013 aiocbs[l].aio_fildes = fd; 1014 aiocbs[l].aio_offset = offset; 1015 aiocbs[l].aio_buf = &labels[l]; 1016 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 1017 aiocbs[l].aio_lio_opcode = LIO_READ; 1018 aiocbps[l] = &aiocbs[l]; 1019 } 1020 1021 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 1022 int saved_errno = errno; 1023 boolean_t do_slow = B_FALSE; 1024 error = -1; 1025 1026 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 1027 /* 1028 * A portion of the requests may have been submitted. 1029 * Clean them up. 1030 */ 1031 for (l = 0; l < VDEV_LABELS; l++) { 1032 errno = 0; 1033 switch (aio_error(&aiocbs[l])) { 1034 case EINVAL: 1035 break; 1036 case EINPROGRESS: 1037 // This shouldn't be possible to 1038 // encounter, die if we do. 1039 ASSERT(B_FALSE); 1040 zfs_fallthrough; 1041 case EOPNOTSUPP: 1042 case ENOSYS: 1043 do_slow = B_TRUE; 1044 zfs_fallthrough; 1045 case 0: 1046 default: 1047 (void) aio_return(&aiocbs[l]); 1048 } 1049 } 1050 } 1051 if (do_slow) { 1052 /* 1053 * At least some IO involved access unsafe-for-AIO 1054 * files. Let's try again, without AIO this time. 1055 */ 1056 error = zpool_read_label_slow(fd, config, num_labels); 1057 saved_errno = errno; 1058 } 1059 free(labels); 1060 errno = saved_errno; 1061 return (error); 1062 } 1063 1064 for (l = 0; l < VDEV_LABELS; l++) { 1065 uint64_t state, guid, txg; 1066 1067 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 1068 continue; 1069 1070 if (nvlist_unpack(labels[l].vp_nvlist, 1071 sizeof (labels[l].vp_nvlist), config, 0) != 0) 1072 continue; 1073 1074 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 1075 &guid) != 0 || guid == 0) { 1076 nvlist_free(*config); 1077 continue; 1078 } 1079 1080 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 1081 &state) != 0 || state > POOL_STATE_L2CACHE) { 1082 nvlist_free(*config); 1083 continue; 1084 } 1085 1086 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1087 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 1088 &txg) != 0 || txg == 0)) { 1089 nvlist_free(*config); 1090 continue; 1091 } 1092 1093 if (expected_guid) { 1094 if (expected_guid == guid) 1095 count++; 1096 1097 nvlist_free(*config); 1098 } else { 1099 expected_config = *config; 1100 expected_guid = guid; 1101 count++; 1102 } 1103 } 1104 1105 if (num_labels != NULL) 1106 *num_labels = count; 1107 1108 free(labels); 1109 *config = expected_config; 1110 1111 return (0); 1112 #endif 1113 } 1114 1115 /* 1116 * Sorted by full path and then vdev guid to allow for multiple entries with 1117 * the same full path name. This is required because it's possible to 1118 * have multiple block devices with labels that refer to the same 1119 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 1120 * entries need to be added to the cache. Scenarios where this can occur 1121 * include overwritten pool labels, devices which are visible from multiple 1122 * hosts and multipath devices. 1123 */ 1124 int 1125 slice_cache_compare(const void *arg1, const void *arg2) 1126 { 1127 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1128 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1129 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1130 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1131 int rv; 1132 1133 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1134 if (rv) 1135 return (rv); 1136 1137 return (TREE_CMP(guid1, guid2)); 1138 } 1139 1140 static int 1141 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1142 uint64_t vdev_guid, char **path, char **devid) 1143 { 1144 nvlist_t **child; 1145 uint_t c, children; 1146 uint64_t guid; 1147 char *val; 1148 int error; 1149 1150 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1151 &child, &children) == 0) { 1152 for (c = 0; c < children; c++) { 1153 error = label_paths_impl(hdl, child[c], 1154 pool_guid, vdev_guid, path, devid); 1155 if (error) 1156 return (error); 1157 } 1158 return (0); 1159 } 1160 1161 if (nvroot == NULL) 1162 return (0); 1163 1164 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1165 if ((error != 0) || (guid != vdev_guid)) 1166 return (0); 1167 1168 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1169 if (error == 0) 1170 *path = val; 1171 1172 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1173 if (error == 0) 1174 *devid = val; 1175 1176 return (0); 1177 } 1178 1179 /* 1180 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1181 * and store these strings as config_path and devid_path respectively. 1182 * The returned pointers are only valid as long as label remains valid. 1183 */ 1184 int 1185 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1186 { 1187 nvlist_t *nvroot; 1188 uint64_t pool_guid; 1189 uint64_t vdev_guid; 1190 1191 *path = NULL; 1192 *devid = NULL; 1193 1194 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1195 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1196 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1197 return (ENOENT); 1198 1199 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1200 devid)); 1201 } 1202 1203 static void 1204 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1205 avl_tree_t *cache, const char *path, const char *name, int order) 1206 { 1207 avl_index_t where; 1208 rdsk_node_t *slice; 1209 1210 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1211 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1212 free(slice); 1213 return; 1214 } 1215 slice->rn_vdev_guid = 0; 1216 slice->rn_lock = lock; 1217 slice->rn_avl = cache; 1218 slice->rn_hdl = hdl; 1219 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1220 slice->rn_labelpaths = B_FALSE; 1221 1222 pthread_mutex_lock(lock); 1223 if (avl_find(cache, slice, &where)) { 1224 free(slice->rn_name); 1225 free(slice); 1226 } else { 1227 avl_insert(cache, slice, where); 1228 } 1229 pthread_mutex_unlock(lock); 1230 } 1231 1232 static int 1233 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1234 avl_tree_t *cache, const char *dir, int order) 1235 { 1236 int error; 1237 char path[MAXPATHLEN]; 1238 struct dirent64 *dp; 1239 DIR *dirp; 1240 1241 if (realpath(dir, path) == NULL) { 1242 error = errno; 1243 if (error == ENOENT) 1244 return (0); 1245 1246 zutil_error_aux(hdl, "%s", strerror(error)); 1247 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1248 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1249 return (error); 1250 } 1251 1252 dirp = opendir(path); 1253 if (dirp == NULL) { 1254 error = errno; 1255 zutil_error_aux(hdl, "%s", strerror(error)); 1256 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1257 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); 1258 return (error); 1259 } 1260 1261 while ((dp = readdir64(dirp)) != NULL) { 1262 const char *name = dp->d_name; 1263 if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) 1264 continue; 1265 1266 switch (dp->d_type) { 1267 case DT_UNKNOWN: 1268 case DT_BLK: 1269 case DT_LNK: 1270 #ifdef __FreeBSD__ 1271 case DT_CHR: 1272 #endif 1273 case DT_REG: 1274 break; 1275 default: 1276 continue; 1277 } 1278 1279 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1280 order); 1281 } 1282 1283 (void) closedir(dirp); 1284 return (0); 1285 } 1286 1287 static int 1288 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1289 avl_tree_t *cache, const char *dir, int order) 1290 { 1291 int error = 0; 1292 char path[MAXPATHLEN]; 1293 char *d = NULL; 1294 ssize_t dl; 1295 const char *dpath, *name; 1296 1297 /* 1298 * Separate the directory and the basename. 1299 * We do this so that we can get the realpath of 1300 * the directory. We don't get the realpath on the 1301 * whole path because if it's a symlink, we want the 1302 * path of the symlink not where it points to. 1303 */ 1304 name = zfs_basename(dir); 1305 if ((dl = zfs_dirnamelen(dir)) == -1) 1306 dpath = "."; 1307 else 1308 dpath = d = zutil_strndup(hdl, dir, dl); 1309 1310 if (realpath(dpath, path) == NULL) { 1311 error = errno; 1312 if (error == ENOENT) { 1313 error = 0; 1314 goto out; 1315 } 1316 1317 zutil_error_aux(hdl, "%s", strerror(error)); 1318 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1319 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1320 goto out; 1321 } 1322 1323 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1324 1325 out: 1326 free(d); 1327 return (error); 1328 } 1329 1330 /* 1331 * Scan a list of directories for zfs devices. 1332 */ 1333 static int 1334 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1335 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1336 { 1337 avl_tree_t *cache; 1338 rdsk_node_t *slice; 1339 void *cookie; 1340 int i, error; 1341 1342 *slice_cache = NULL; 1343 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1344 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1345 offsetof(rdsk_node_t, rn_node)); 1346 1347 for (i = 0; i < dirs; i++) { 1348 struct stat sbuf; 1349 1350 if (stat(dir[i], &sbuf) != 0) { 1351 error = errno; 1352 if (error == ENOENT) 1353 continue; 1354 1355 zutil_error_aux(hdl, "%s", strerror(error)); 1356 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1357 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1358 goto error; 1359 } 1360 1361 /* 1362 * If dir[i] is a directory, we walk through it and add all 1363 * the entries to the cache. If it's not a directory, we just 1364 * add it to the cache. 1365 */ 1366 if (S_ISDIR(sbuf.st_mode)) { 1367 if ((error = zpool_find_import_scan_dir(hdl, lock, 1368 cache, dir[i], i)) != 0) 1369 goto error; 1370 } else { 1371 if ((error = zpool_find_import_scan_path(hdl, lock, 1372 cache, dir[i], i)) != 0) 1373 goto error; 1374 } 1375 } 1376 1377 *slice_cache = cache; 1378 return (0); 1379 1380 error: 1381 cookie = NULL; 1382 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1383 free(slice->rn_name); 1384 free(slice); 1385 } 1386 free(cache); 1387 1388 return (error); 1389 } 1390 1391 /* 1392 * Given a list of directories to search, find all pools stored on disk. This 1393 * includes partial pools which are not available to import. If no args are 1394 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1395 * poolname or guid (but not both) are provided by the caller when trying 1396 * to import a specific pool. 1397 */ 1398 static nvlist_t * 1399 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg, 1400 pthread_mutex_t *lock, avl_tree_t *cache) 1401 { 1402 (void) lock; 1403 nvlist_t *ret = NULL; 1404 pool_list_t pools = { 0 }; 1405 pool_entry_t *pe, *penext; 1406 vdev_entry_t *ve, *venext; 1407 config_entry_t *ce, *cenext; 1408 name_entry_t *ne, *nenext; 1409 rdsk_node_t *slice; 1410 void *cookie; 1411 tpool_t *t; 1412 1413 verify(iarg->poolname == NULL || iarg->guid == 0); 1414 1415 /* 1416 * Create a thread pool to parallelize the process of reading and 1417 * validating labels, a large number of threads can be used due to 1418 * minimal contention. 1419 */ 1420 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1421 for (slice = avl_first(cache); slice; 1422 (slice = avl_walk(cache, slice, AVL_AFTER))) 1423 (void) tpool_dispatch(t, zpool_open_func, slice); 1424 1425 tpool_wait(t); 1426 tpool_destroy(t); 1427 1428 /* 1429 * Process the cache, filtering out any entries which are not 1430 * for the specified pool then adding matching label configs. 1431 */ 1432 cookie = NULL; 1433 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1434 if (slice->rn_config != NULL) { 1435 nvlist_t *config = slice->rn_config; 1436 boolean_t matched = B_TRUE; 1437 boolean_t aux = B_FALSE; 1438 int fd; 1439 1440 /* 1441 * Check if it's a spare or l2cache device. If it is, 1442 * we need to skip the name and guid check since they 1443 * don't exist on aux device label. 1444 */ 1445 if (iarg->poolname != NULL || iarg->guid != 0) { 1446 uint64_t state; 1447 aux = nvlist_lookup_uint64(config, 1448 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1449 (state == POOL_STATE_SPARE || 1450 state == POOL_STATE_L2CACHE); 1451 } 1452 1453 if (iarg->poolname != NULL && !aux) { 1454 char *pname; 1455 1456 matched = nvlist_lookup_string(config, 1457 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1458 strcmp(iarg->poolname, pname) == 0; 1459 } else if (iarg->guid != 0 && !aux) { 1460 uint64_t this_guid; 1461 1462 matched = nvlist_lookup_uint64(config, 1463 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1464 iarg->guid == this_guid; 1465 } 1466 if (matched) { 1467 /* 1468 * Verify all remaining entries can be opened 1469 * exclusively. This will prune all underlying 1470 * multipath devices which otherwise could 1471 * result in the vdev appearing as UNAVAIL. 1472 * 1473 * Under zdb, this step isn't required and 1474 * would prevent a zdb -e of active pools with 1475 * no cachefile. 1476 */ 1477 fd = open(slice->rn_name, 1478 O_RDONLY | O_EXCL | O_CLOEXEC); 1479 if (fd >= 0 || iarg->can_be_active) { 1480 if (fd >= 0) 1481 close(fd); 1482 add_config(hdl, &pools, 1483 slice->rn_name, slice->rn_order, 1484 slice->rn_num_labels, config); 1485 } 1486 } 1487 nvlist_free(config); 1488 } 1489 free(slice->rn_name); 1490 free(slice); 1491 } 1492 avl_destroy(cache); 1493 free(cache); 1494 1495 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1496 1497 for (pe = pools.pools; pe != NULL; pe = penext) { 1498 penext = pe->pe_next; 1499 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1500 venext = ve->ve_next; 1501 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1502 cenext = ce->ce_next; 1503 nvlist_free(ce->ce_config); 1504 free(ce); 1505 } 1506 free(ve); 1507 } 1508 free(pe); 1509 } 1510 1511 for (ne = pools.names; ne != NULL; ne = nenext) { 1512 nenext = ne->ne_next; 1513 free(ne->ne_name); 1514 free(ne); 1515 } 1516 1517 return (ret); 1518 } 1519 1520 /* 1521 * Given a config, discover the paths for the devices which 1522 * exist in the config. 1523 */ 1524 static int 1525 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv, 1526 avl_tree_t *cache, pthread_mutex_t *lock) 1527 { 1528 char *path = NULL; 1529 ssize_t dl; 1530 uint_t children; 1531 nvlist_t **child; 1532 1533 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1534 &child, &children) == 0) { 1535 for (int c = 0; c < children; c++) { 1536 discover_cached_paths(hdl, child[c], cache, lock); 1537 } 1538 } 1539 1540 /* 1541 * Once we have the path, we need to add the directory to 1542 * our directory cache. 1543 */ 1544 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { 1545 if ((dl = zfs_dirnamelen(path)) == -1) 1546 path = (char *)"."; 1547 else 1548 path[dl] = '\0'; 1549 return (zpool_find_import_scan_dir(hdl, lock, cache, 1550 path, 0)); 1551 } 1552 return (0); 1553 } 1554 1555 /* 1556 * Given a cache file, return the contents as a list of importable pools. 1557 * poolname or guid (but not both) are provided by the caller when trying 1558 * to import a specific pool. 1559 */ 1560 static nvlist_t * 1561 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg) 1562 { 1563 char *buf; 1564 int fd; 1565 struct stat64 statbuf; 1566 nvlist_t *raw, *src, *dst; 1567 nvlist_t *pools; 1568 nvpair_t *elem; 1569 char *name; 1570 uint64_t this_guid; 1571 boolean_t active; 1572 1573 verify(iarg->poolname == NULL || iarg->guid == 0); 1574 1575 if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) { 1576 zutil_error_aux(hdl, "%s", strerror(errno)); 1577 (void) zutil_error(hdl, EZFS_BADCACHE, 1578 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1579 return (NULL); 1580 } 1581 1582 if (fstat64(fd, &statbuf) != 0) { 1583 zutil_error_aux(hdl, "%s", strerror(errno)); 1584 (void) close(fd); 1585 (void) zutil_error(hdl, EZFS_BADCACHE, 1586 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1587 return (NULL); 1588 } 1589 1590 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1591 (void) close(fd); 1592 return (NULL); 1593 } 1594 1595 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1596 (void) close(fd); 1597 free(buf); 1598 (void) zutil_error(hdl, EZFS_BADCACHE, 1599 dgettext(TEXT_DOMAIN, 1600 "failed to read cache file contents")); 1601 return (NULL); 1602 } 1603 1604 (void) close(fd); 1605 1606 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1607 free(buf); 1608 (void) zutil_error(hdl, EZFS_BADCACHE, 1609 dgettext(TEXT_DOMAIN, 1610 "invalid or corrupt cache file contents")); 1611 return (NULL); 1612 } 1613 1614 free(buf); 1615 1616 /* 1617 * Go through and get the current state of the pools and refresh their 1618 * state. 1619 */ 1620 if (nvlist_alloc(&pools, 0, 0) != 0) { 1621 (void) zutil_no_memory(hdl); 1622 nvlist_free(raw); 1623 return (NULL); 1624 } 1625 1626 elem = NULL; 1627 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1628 src = fnvpair_value_nvlist(elem); 1629 1630 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1631 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0) 1632 continue; 1633 1634 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1635 if (iarg->guid != 0 && iarg->guid != this_guid) 1636 continue; 1637 1638 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1639 nvlist_free(raw); 1640 nvlist_free(pools); 1641 return (NULL); 1642 } 1643 1644 if (active) 1645 continue; 1646 1647 if (iarg->scan) { 1648 uint64_t saved_guid = iarg->guid; 1649 const char *saved_poolname = iarg->poolname; 1650 pthread_mutex_t lock; 1651 1652 /* 1653 * Create the device cache that will hold the 1654 * devices we will scan based on the cachefile. 1655 * This will get destroyed and freed by 1656 * zpool_find_import_impl. 1657 */ 1658 avl_tree_t *cache = zutil_alloc(hdl, 1659 sizeof (avl_tree_t)); 1660 avl_create(cache, slice_cache_compare, 1661 sizeof (rdsk_node_t), 1662 offsetof(rdsk_node_t, rn_node)); 1663 nvlist_t *nvroot = fnvlist_lookup_nvlist(src, 1664 ZPOOL_CONFIG_VDEV_TREE); 1665 1666 /* 1667 * We only want to find the pool with this_guid. 1668 * We will reset these values back later. 1669 */ 1670 iarg->guid = this_guid; 1671 iarg->poolname = NULL; 1672 1673 /* 1674 * We need to build up a cache of devices that exists 1675 * in the paths pointed to by the cachefile. This allows 1676 * us to preserve the device namespace that was 1677 * originally specified by the user but also lets us 1678 * scan devices in those directories in case they had 1679 * been renamed. 1680 */ 1681 pthread_mutex_init(&lock, NULL); 1682 discover_cached_paths(hdl, nvroot, cache, &lock); 1683 nvlist_t *nv = zpool_find_import_impl(hdl, iarg, 1684 &lock, cache); 1685 pthread_mutex_destroy(&lock); 1686 1687 /* 1688 * zpool_find_import_impl will return back 1689 * a list of pools that it found based on the 1690 * device cache. There should only be one pool 1691 * since we're looking for a specific guid. 1692 * We will use that pool to build up the final 1693 * pool nvlist which is returned back to the 1694 * caller. 1695 */ 1696 nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 1697 fnvlist_add_nvlist(pools, nvpair_name(pair), 1698 fnvpair_value_nvlist(pair)); 1699 1700 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL); 1701 1702 iarg->guid = saved_guid; 1703 iarg->poolname = saved_poolname; 1704 continue; 1705 } 1706 1707 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1708 iarg->cachefile) != 0) { 1709 (void) zutil_no_memory(hdl); 1710 nvlist_free(raw); 1711 nvlist_free(pools); 1712 return (NULL); 1713 } 1714 1715 update_vdevs_config_dev_sysfs_path(src); 1716 1717 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1718 nvlist_free(raw); 1719 nvlist_free(pools); 1720 return (NULL); 1721 } 1722 1723 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1724 (void) zutil_no_memory(hdl); 1725 nvlist_free(dst); 1726 nvlist_free(raw); 1727 nvlist_free(pools); 1728 return (NULL); 1729 } 1730 nvlist_free(dst); 1731 } 1732 nvlist_free(raw); 1733 return (pools); 1734 } 1735 1736 static nvlist_t * 1737 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg) 1738 { 1739 pthread_mutex_t lock; 1740 avl_tree_t *cache; 1741 nvlist_t *pools = NULL; 1742 1743 verify(iarg->poolname == NULL || iarg->guid == 0); 1744 pthread_mutex_init(&lock, NULL); 1745 1746 /* 1747 * Locate pool member vdevs by blkid or by directory scanning. 1748 * On success a newly allocated AVL tree which is populated with an 1749 * entry for each discovered vdev will be returned in the cache. 1750 * It's the caller's responsibility to consume and destroy this tree. 1751 */ 1752 if (iarg->scan || iarg->paths != 0) { 1753 size_t dirs = iarg->paths; 1754 const char * const *dir = (const char * const *)iarg->path; 1755 1756 if (dirs == 0) 1757 dir = zpool_default_search_paths(&dirs); 1758 1759 if (zpool_find_import_scan(hdl, &lock, &cache, 1760 dir, dirs) != 0) { 1761 pthread_mutex_destroy(&lock); 1762 return (NULL); 1763 } 1764 } else { 1765 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) { 1766 pthread_mutex_destroy(&lock); 1767 return (NULL); 1768 } 1769 } 1770 1771 pools = zpool_find_import_impl(hdl, iarg, &lock, cache); 1772 pthread_mutex_destroy(&lock); 1773 return (pools); 1774 } 1775 1776 1777 nvlist_t * 1778 zpool_search_import(void *hdl, importargs_t *import, 1779 const pool_config_ops_t *pco) 1780 { 1781 libpc_handle_t handle = { 0 }; 1782 nvlist_t *pools = NULL; 1783 1784 handle.lpc_lib_handle = hdl; 1785 handle.lpc_ops = pco; 1786 handle.lpc_printerr = B_TRUE; 1787 1788 verify(import->poolname == NULL || import->guid == 0); 1789 1790 if (import->cachefile != NULL) 1791 pools = zpool_find_import_cached(&handle, import); 1792 else 1793 pools = zpool_find_import(&handle, import); 1794 1795 if ((pools == NULL || nvlist_empty(pools)) && 1796 handle.lpc_open_access_error && geteuid() != 0) { 1797 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1798 "no pools found")); 1799 } 1800 1801 return (pools); 1802 } 1803 1804 static boolean_t 1805 pool_match(nvlist_t *cfg, char *tgt) 1806 { 1807 uint64_t v, guid = strtoull(tgt, NULL, 0); 1808 char *s; 1809 1810 if (guid != 0) { 1811 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1812 return (v == guid); 1813 } else { 1814 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1815 return (strcmp(s, tgt) == 0); 1816 } 1817 return (B_FALSE); 1818 } 1819 1820 int 1821 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1822 importargs_t *args, const pool_config_ops_t *pco) 1823 { 1824 nvlist_t *pools; 1825 nvlist_t *match = NULL; 1826 nvlist_t *config = NULL; 1827 char *sepp = NULL; 1828 int count = 0; 1829 char *targetdup = strdup(target); 1830 1831 *configp = NULL; 1832 1833 if ((sepp = strpbrk(targetdup, "/@")) != NULL) 1834 *sepp = '\0'; 1835 1836 pools = zpool_search_import(hdl, args, pco); 1837 1838 if (pools != NULL) { 1839 nvpair_t *elem = NULL; 1840 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1841 VERIFY0(nvpair_value_nvlist(elem, &config)); 1842 if (pool_match(config, targetdup)) { 1843 count++; 1844 if (match != NULL) { 1845 /* multiple matches found */ 1846 continue; 1847 } else { 1848 match = fnvlist_dup(config); 1849 } 1850 } 1851 } 1852 fnvlist_free(pools); 1853 } 1854 1855 if (count == 0) { 1856 free(targetdup); 1857 return (ENOENT); 1858 } 1859 1860 if (count > 1) { 1861 free(targetdup); 1862 fnvlist_free(match); 1863 return (EINVAL); 1864 } 1865 1866 *configp = match; 1867 free(targetdup); 1868 1869 return (0); 1870 } 1871 1872 /* 1873 * Internal function for iterating over the vdevs. 1874 * 1875 * For each vdev, func() will be called and will be passed 'zhp' (which is 1876 * typically the zpool_handle_t cast as a void pointer), the vdev's nvlist, and 1877 * a user-defined data pointer). 1878 * 1879 * The return values from all the func() calls will be OR'd together and 1880 * returned. 1881 */ 1882 int 1883 for_each_vdev_cb(void *zhp, nvlist_t *nv, pool_vdev_iter_f func, 1884 void *data) 1885 { 1886 nvlist_t **child; 1887 uint_t c, children; 1888 int ret = 0; 1889 int i; 1890 char *type; 1891 1892 const char *list[] = { 1893 ZPOOL_CONFIG_SPARES, 1894 ZPOOL_CONFIG_L2CACHE, 1895 ZPOOL_CONFIG_CHILDREN 1896 }; 1897 1898 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 1899 return (ret); 1900 1901 /* Don't run our function on root or indirect vdevs */ 1902 if ((strcmp(type, VDEV_TYPE_ROOT) != 0) && 1903 (strcmp(type, VDEV_TYPE_INDIRECT) != 0)) { 1904 ret |= func(zhp, nv, data); 1905 } 1906 1907 for (i = 0; i < ARRAY_SIZE(list); i++) { 1908 if (nvlist_lookup_nvlist_array(nv, list[i], &child, 1909 &children) == 0) { 1910 for (c = 0; c < children; c++) { 1911 uint64_t ishole = 0; 1912 1913 (void) nvlist_lookup_uint64(child[c], 1914 ZPOOL_CONFIG_IS_HOLE, &ishole); 1915 1916 if (ishole) 1917 continue; 1918 1919 ret |= for_each_vdev_cb(zhp, child[c], 1920 func, data); 1921 } 1922 } 1923 } 1924 1925 return (ret); 1926 } 1927 1928 /* 1929 * Given an ZPOOL_CONFIG_VDEV_TREE nvpair, iterate over all the vdevs, calling 1930 * func() for each one. func() is passed the vdev's nvlist and an optional 1931 * user-defined 'data' pointer. 1932 */ 1933 int 1934 for_each_vdev_in_nvlist(nvlist_t *nvroot, pool_vdev_iter_f func, void *data) 1935 { 1936 return (for_each_vdev_cb(NULL, nvroot, func, data)); 1937 } 1938