1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 28 */ 29 30 /* 31 * Pool import support functions. 32 * 33 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 34 * these commands are expected to run in the global zone, we can assume 35 * that the devices are all readable when called. 36 * 37 * To import a pool, we rely on reading the configuration information from the 38 * ZFS label of each device. If we successfully read the label, then we 39 * organize the configuration information in the following hierarchy: 40 * 41 * pool guid -> toplevel vdev guid -> label txg 42 * 43 * Duplicate entries matching this same tuple will be discarded. Once we have 44 * examined every device, we pick the best label txg config for each toplevel 45 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 46 * update any paths that have changed. Finally, we attempt to import the pool 47 * using our derived config, and record the results. 48 */ 49 50 #include <aio.h> 51 #include <ctype.h> 52 #include <dirent.h> 53 #include <errno.h> 54 #include <libintl.h> 55 #include <libgen.h> 56 #include <stddef.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <sys/stat.h> 60 #include <unistd.h> 61 #include <fcntl.h> 62 #include <sys/dktp/fdisk.h> 63 #include <sys/vdev_impl.h> 64 #include <sys/fs/zfs.h> 65 66 #include <thread_pool.h> 67 #include <libzutil.h> 68 #include <libnvpair.h> 69 70 #include "zutil_import.h" 71 72 static __attribute__((format(printf, 2, 3))) void 73 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 74 { 75 va_list ap; 76 77 va_start(ap, fmt); 78 79 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 80 hdl->lpc_desc_active = B_TRUE; 81 82 va_end(ap); 83 } 84 85 static void 86 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 87 va_list ap) 88 { 89 char action[1024]; 90 91 (void) vsnprintf(action, sizeof (action), fmt, ap); 92 93 if (hdl->lpc_desc_active) 94 hdl->lpc_desc_active = B_FALSE; 95 else 96 hdl->lpc_desc[0] = '\0'; 97 98 if (hdl->lpc_printerr) { 99 if (hdl->lpc_desc[0] != '\0') 100 error = hdl->lpc_desc; 101 102 (void) fprintf(stderr, "%s: %s\n", action, error); 103 } 104 } 105 106 static __attribute__((format(printf, 3, 4))) int 107 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 108 { 109 va_list ap; 110 111 va_start(ap, fmt); 112 113 zutil_verror(hdl, error, fmt, ap); 114 115 va_end(ap); 116 117 return (-1); 118 } 119 120 static int 121 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 122 { 123 return (zutil_error_fmt(hdl, error, "%s", msg)); 124 } 125 126 static int 127 zutil_no_memory(libpc_handle_t *hdl) 128 { 129 zutil_error(hdl, EZFS_NOMEM, "internal error"); 130 exit(1); 131 } 132 133 void * 134 zutil_alloc(libpc_handle_t *hdl, size_t size) 135 { 136 void *data; 137 138 if ((data = calloc(1, size)) == NULL) 139 (void) zutil_no_memory(hdl); 140 141 return (data); 142 } 143 144 char * 145 zutil_strdup(libpc_handle_t *hdl, const char *str) 146 { 147 char *ret; 148 149 if ((ret = strdup(str)) == NULL) 150 (void) zutil_no_memory(hdl); 151 152 return (ret); 153 } 154 155 static char * 156 zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n) 157 { 158 char *ret; 159 160 if ((ret = strndup(str, n)) == NULL) 161 (void) zutil_no_memory(hdl); 162 163 return (ret); 164 } 165 166 /* 167 * Intermediate structures used to gather configuration information. 168 */ 169 typedef struct config_entry { 170 uint64_t ce_txg; 171 nvlist_t *ce_config; 172 struct config_entry *ce_next; 173 } config_entry_t; 174 175 typedef struct vdev_entry { 176 uint64_t ve_guid; 177 config_entry_t *ve_configs; 178 struct vdev_entry *ve_next; 179 } vdev_entry_t; 180 181 typedef struct pool_entry { 182 uint64_t pe_guid; 183 vdev_entry_t *pe_vdevs; 184 struct pool_entry *pe_next; 185 } pool_entry_t; 186 187 typedef struct name_entry { 188 char *ne_name; 189 uint64_t ne_guid; 190 uint64_t ne_order; 191 uint64_t ne_num_labels; 192 struct name_entry *ne_next; 193 } name_entry_t; 194 195 typedef struct pool_list { 196 pool_entry_t *pools; 197 name_entry_t *names; 198 } pool_list_t; 199 200 /* 201 * Go through and fix up any path and/or devid information for the given vdev 202 * configuration. 203 */ 204 static int 205 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 206 { 207 nvlist_t **child; 208 uint_t c, children; 209 uint64_t guid; 210 name_entry_t *ne, *best; 211 char *path; 212 213 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 214 &child, &children) == 0) { 215 for (c = 0; c < children; c++) 216 if (fix_paths(hdl, child[c], names) != 0) 217 return (-1); 218 return (0); 219 } 220 221 /* 222 * This is a leaf (file or disk) vdev. In either case, go through 223 * the name list and see if we find a matching guid. If so, replace 224 * the path and see if we can calculate a new devid. 225 * 226 * There may be multiple names associated with a particular guid, in 227 * which case we have overlapping partitions or multiple paths to the 228 * same disk. In this case we prefer to use the path name which 229 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 230 * use the lowest order device which corresponds to the first match 231 * while traversing the ZPOOL_IMPORT_PATH search path. 232 */ 233 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 234 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 235 path = NULL; 236 237 best = NULL; 238 for (ne = names; ne != NULL; ne = ne->ne_next) { 239 if (ne->ne_guid == guid) { 240 if (path == NULL) { 241 best = ne; 242 break; 243 } 244 245 if ((strlen(path) == strlen(ne->ne_name)) && 246 strncmp(path, ne->ne_name, strlen(path)) == 0) { 247 best = ne; 248 break; 249 } 250 251 if (best == NULL) { 252 best = ne; 253 continue; 254 } 255 256 /* Prefer paths with move vdev labels. */ 257 if (ne->ne_num_labels > best->ne_num_labels) { 258 best = ne; 259 continue; 260 } 261 262 /* Prefer paths earlier in the search order. */ 263 if (ne->ne_num_labels == best->ne_num_labels && 264 ne->ne_order < best->ne_order) { 265 best = ne; 266 continue; 267 } 268 } 269 } 270 271 if (best == NULL) 272 return (0); 273 274 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 275 return (-1); 276 277 update_vdev_config_dev_strs(nv); 278 279 return (0); 280 } 281 282 /* 283 * Add the given configuration to the list of known devices. 284 */ 285 static int 286 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 287 int order, int num_labels, nvlist_t *config) 288 { 289 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 290 pool_entry_t *pe; 291 vdev_entry_t *ve; 292 config_entry_t *ce; 293 name_entry_t *ne; 294 295 /* 296 * If this is a hot spare not currently in use or level 2 cache 297 * device, add it to the list of names to translate, but don't do 298 * anything else. 299 */ 300 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 301 &state) == 0 && 302 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 303 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 304 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 305 return (-1); 306 307 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 308 free(ne); 309 return (-1); 310 } 311 ne->ne_guid = vdev_guid; 312 ne->ne_order = order; 313 ne->ne_num_labels = num_labels; 314 ne->ne_next = pl->names; 315 pl->names = ne; 316 317 return (0); 318 } 319 320 /* 321 * If we have a valid config but cannot read any of these fields, then 322 * it means we have a half-initialized label. In vdev_label_init() 323 * we write a label with txg == 0 so that we can identify the device 324 * in case the user refers to the same disk later on. If we fail to 325 * create the pool, we'll be left with a label in this state 326 * which should not be considered part of a valid pool. 327 */ 328 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 329 &pool_guid) != 0 || 330 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 331 &vdev_guid) != 0 || 332 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 333 &top_guid) != 0 || 334 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 335 &txg) != 0 || txg == 0) { 336 return (0); 337 } 338 339 /* 340 * First, see if we know about this pool. If not, then add it to the 341 * list of known pools. 342 */ 343 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 344 if (pe->pe_guid == pool_guid) 345 break; 346 } 347 348 if (pe == NULL) { 349 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 350 return (-1); 351 } 352 pe->pe_guid = pool_guid; 353 pe->pe_next = pl->pools; 354 pl->pools = pe; 355 } 356 357 /* 358 * Second, see if we know about this toplevel vdev. Add it if its 359 * missing. 360 */ 361 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 362 if (ve->ve_guid == top_guid) 363 break; 364 } 365 366 if (ve == NULL) { 367 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 368 return (-1); 369 } 370 ve->ve_guid = top_guid; 371 ve->ve_next = pe->pe_vdevs; 372 pe->pe_vdevs = ve; 373 } 374 375 /* 376 * Third, see if we have a config with a matching transaction group. If 377 * so, then we do nothing. Otherwise, add it to the list of known 378 * configs. 379 */ 380 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 381 if (ce->ce_txg == txg) 382 break; 383 } 384 385 if (ce == NULL) { 386 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 387 return (-1); 388 } 389 ce->ce_txg = txg; 390 ce->ce_config = fnvlist_dup(config); 391 ce->ce_next = ve->ve_configs; 392 ve->ve_configs = ce; 393 } 394 395 /* 396 * At this point we've successfully added our config to the list of 397 * known configs. The last thing to do is add the vdev guid -> path 398 * mappings so that we can fix up the configuration as necessary before 399 * doing the import. 400 */ 401 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 402 return (-1); 403 404 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 405 free(ne); 406 return (-1); 407 } 408 409 ne->ne_guid = vdev_guid; 410 ne->ne_order = order; 411 ne->ne_num_labels = num_labels; 412 ne->ne_next = pl->names; 413 pl->names = ne; 414 415 return (0); 416 } 417 418 static int 419 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 420 boolean_t *isactive) 421 { 422 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 423 424 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 425 guid, isactive); 426 427 return (error); 428 } 429 430 static nvlist_t * 431 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 432 { 433 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 434 435 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 436 tryconfig)); 437 } 438 439 /* 440 * Determine if the vdev id is a hole in the namespace. 441 */ 442 static boolean_t 443 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 444 { 445 int c; 446 447 for (c = 0; c < holes; c++) { 448 449 /* Top-level is a hole */ 450 if (hole_array[c] == id) 451 return (B_TRUE); 452 } 453 return (B_FALSE); 454 } 455 456 /* 457 * Convert our list of pools into the definitive set of configurations. We 458 * start by picking the best config for each toplevel vdev. Once that's done, 459 * we assemble the toplevel vdevs into a full config for the pool. We make a 460 * pass to fix up any incorrect paths, and then add it to the main list to 461 * return to the user. 462 */ 463 static nvlist_t * 464 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 465 nvlist_t *policy) 466 { 467 pool_entry_t *pe; 468 vdev_entry_t *ve; 469 config_entry_t *ce; 470 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 471 nvlist_t **spares, **l2cache; 472 uint_t i, nspares, nl2cache; 473 boolean_t config_seen; 474 uint64_t best_txg; 475 char *name, *hostname = NULL; 476 uint64_t guid; 477 uint_t children = 0; 478 nvlist_t **child = NULL; 479 uint_t holes; 480 uint64_t *hole_array, max_id; 481 uint_t c; 482 boolean_t isactive; 483 uint64_t hostid; 484 nvlist_t *nvl; 485 boolean_t valid_top_config = B_FALSE; 486 487 if (nvlist_alloc(&ret, 0, 0) != 0) 488 goto nomem; 489 490 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 491 uint64_t id, max_txg = 0; 492 493 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 494 goto nomem; 495 config_seen = B_FALSE; 496 497 /* 498 * Iterate over all toplevel vdevs. Grab the pool configuration 499 * from the first one we find, and then go through the rest and 500 * add them as necessary to the 'vdevs' member of the config. 501 */ 502 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 503 504 /* 505 * Determine the best configuration for this vdev by 506 * selecting the config with the latest transaction 507 * group. 508 */ 509 best_txg = 0; 510 for (ce = ve->ve_configs; ce != NULL; 511 ce = ce->ce_next) { 512 513 if (ce->ce_txg > best_txg) { 514 tmp = ce->ce_config; 515 best_txg = ce->ce_txg; 516 } 517 } 518 519 /* 520 * We rely on the fact that the max txg for the 521 * pool will contain the most up-to-date information 522 * about the valid top-levels in the vdev namespace. 523 */ 524 if (best_txg > max_txg) { 525 (void) nvlist_remove(config, 526 ZPOOL_CONFIG_VDEV_CHILDREN, 527 DATA_TYPE_UINT64); 528 (void) nvlist_remove(config, 529 ZPOOL_CONFIG_HOLE_ARRAY, 530 DATA_TYPE_UINT64_ARRAY); 531 532 max_txg = best_txg; 533 hole_array = NULL; 534 holes = 0; 535 max_id = 0; 536 valid_top_config = B_FALSE; 537 538 if (nvlist_lookup_uint64(tmp, 539 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 540 verify(nvlist_add_uint64(config, 541 ZPOOL_CONFIG_VDEV_CHILDREN, 542 max_id) == 0); 543 valid_top_config = B_TRUE; 544 } 545 546 if (nvlist_lookup_uint64_array(tmp, 547 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 548 &holes) == 0) { 549 verify(nvlist_add_uint64_array(config, 550 ZPOOL_CONFIG_HOLE_ARRAY, 551 hole_array, holes) == 0); 552 } 553 } 554 555 if (!config_seen) { 556 /* 557 * Copy the relevant pieces of data to the pool 558 * configuration: 559 * 560 * version 561 * pool guid 562 * name 563 * comment (if available) 564 * compatibility features (if available) 565 * pool state 566 * hostid (if available) 567 * hostname (if available) 568 */ 569 uint64_t state, version; 570 char *comment = NULL; 571 char *compatibility = NULL; 572 573 version = fnvlist_lookup_uint64(tmp, 574 ZPOOL_CONFIG_VERSION); 575 fnvlist_add_uint64(config, 576 ZPOOL_CONFIG_VERSION, version); 577 guid = fnvlist_lookup_uint64(tmp, 578 ZPOOL_CONFIG_POOL_GUID); 579 fnvlist_add_uint64(config, 580 ZPOOL_CONFIG_POOL_GUID, guid); 581 name = fnvlist_lookup_string(tmp, 582 ZPOOL_CONFIG_POOL_NAME); 583 fnvlist_add_string(config, 584 ZPOOL_CONFIG_POOL_NAME, name); 585 586 if (nvlist_lookup_string(tmp, 587 ZPOOL_CONFIG_COMMENT, &comment) == 0) 588 fnvlist_add_string(config, 589 ZPOOL_CONFIG_COMMENT, comment); 590 591 if (nvlist_lookup_string(tmp, 592 ZPOOL_CONFIG_COMPATIBILITY, 593 &compatibility) == 0) 594 fnvlist_add_string(config, 595 ZPOOL_CONFIG_COMPATIBILITY, 596 compatibility); 597 598 state = fnvlist_lookup_uint64(tmp, 599 ZPOOL_CONFIG_POOL_STATE); 600 fnvlist_add_uint64(config, 601 ZPOOL_CONFIG_POOL_STATE, state); 602 603 hostid = 0; 604 if (nvlist_lookup_uint64(tmp, 605 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 606 fnvlist_add_uint64(config, 607 ZPOOL_CONFIG_HOSTID, hostid); 608 hostname = fnvlist_lookup_string(tmp, 609 ZPOOL_CONFIG_HOSTNAME); 610 fnvlist_add_string(config, 611 ZPOOL_CONFIG_HOSTNAME, hostname); 612 } 613 614 config_seen = B_TRUE; 615 } 616 617 /* 618 * Add this top-level vdev to the child array. 619 */ 620 verify(nvlist_lookup_nvlist(tmp, 621 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 622 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 623 &id) == 0); 624 625 if (id >= children) { 626 nvlist_t **newchild; 627 628 newchild = zutil_alloc(hdl, (id + 1) * 629 sizeof (nvlist_t *)); 630 if (newchild == NULL) 631 goto nomem; 632 633 for (c = 0; c < children; c++) 634 newchild[c] = child[c]; 635 636 free(child); 637 child = newchild; 638 children = id + 1; 639 } 640 if (nvlist_dup(nvtop, &child[id], 0) != 0) 641 goto nomem; 642 643 } 644 645 /* 646 * If we have information about all the top-levels then 647 * clean up the nvlist which we've constructed. This 648 * means removing any extraneous devices that are 649 * beyond the valid range or adding devices to the end 650 * of our array which appear to be missing. 651 */ 652 if (valid_top_config) { 653 if (max_id < children) { 654 for (c = max_id; c < children; c++) 655 nvlist_free(child[c]); 656 children = max_id; 657 } else if (max_id > children) { 658 nvlist_t **newchild; 659 660 newchild = zutil_alloc(hdl, (max_id) * 661 sizeof (nvlist_t *)); 662 if (newchild == NULL) 663 goto nomem; 664 665 for (c = 0; c < children; c++) 666 newchild[c] = child[c]; 667 668 free(child); 669 child = newchild; 670 children = max_id; 671 } 672 } 673 674 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 675 &guid) == 0); 676 677 /* 678 * The vdev namespace may contain holes as a result of 679 * device removal. We must add them back into the vdev 680 * tree before we process any missing devices. 681 */ 682 if (holes > 0) { 683 ASSERT(valid_top_config); 684 685 for (c = 0; c < children; c++) { 686 nvlist_t *holey; 687 688 if (child[c] != NULL || 689 !vdev_is_hole(hole_array, holes, c)) 690 continue; 691 692 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 693 0) != 0) 694 goto nomem; 695 696 /* 697 * Holes in the namespace are treated as 698 * "hole" top-level vdevs and have a 699 * special flag set on them. 700 */ 701 if (nvlist_add_string(holey, 702 ZPOOL_CONFIG_TYPE, 703 VDEV_TYPE_HOLE) != 0 || 704 nvlist_add_uint64(holey, 705 ZPOOL_CONFIG_ID, c) != 0 || 706 nvlist_add_uint64(holey, 707 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 708 nvlist_free(holey); 709 goto nomem; 710 } 711 child[c] = holey; 712 } 713 } 714 715 /* 716 * Look for any missing top-level vdevs. If this is the case, 717 * create a faked up 'missing' vdev as a placeholder. We cannot 718 * simply compress the child array, because the kernel performs 719 * certain checks to make sure the vdev IDs match their location 720 * in the configuration. 721 */ 722 for (c = 0; c < children; c++) { 723 if (child[c] == NULL) { 724 nvlist_t *missing; 725 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 726 0) != 0) 727 goto nomem; 728 if (nvlist_add_string(missing, 729 ZPOOL_CONFIG_TYPE, 730 VDEV_TYPE_MISSING) != 0 || 731 nvlist_add_uint64(missing, 732 ZPOOL_CONFIG_ID, c) != 0 || 733 nvlist_add_uint64(missing, 734 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 735 nvlist_free(missing); 736 goto nomem; 737 } 738 child[c] = missing; 739 } 740 } 741 742 /* 743 * Put all of this pool's top-level vdevs into a root vdev. 744 */ 745 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 746 goto nomem; 747 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 748 VDEV_TYPE_ROOT) != 0 || 749 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 750 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 751 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 752 (const nvlist_t **)child, children) != 0) { 753 nvlist_free(nvroot); 754 goto nomem; 755 } 756 757 for (c = 0; c < children; c++) 758 nvlist_free(child[c]); 759 free(child); 760 children = 0; 761 child = NULL; 762 763 /* 764 * Go through and fix up any paths and/or devids based on our 765 * known list of vdev GUID -> path mappings. 766 */ 767 if (fix_paths(hdl, nvroot, pl->names) != 0) { 768 nvlist_free(nvroot); 769 goto nomem; 770 } 771 772 /* 773 * Add the root vdev to this pool's configuration. 774 */ 775 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 776 nvroot) != 0) { 777 nvlist_free(nvroot); 778 goto nomem; 779 } 780 nvlist_free(nvroot); 781 782 /* 783 * zdb uses this path to report on active pools that were 784 * imported or created using -R. 785 */ 786 if (active_ok) 787 goto add_pool; 788 789 /* 790 * Determine if this pool is currently active, in which case we 791 * can't actually import it. 792 */ 793 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 794 &name) == 0); 795 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 796 &guid) == 0); 797 798 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 799 goto error; 800 801 if (isactive) { 802 nvlist_free(config); 803 config = NULL; 804 continue; 805 } 806 807 if (policy != NULL) { 808 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 809 policy) != 0) 810 goto nomem; 811 } 812 813 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 814 nvlist_free(config); 815 config = NULL; 816 continue; 817 } 818 819 nvlist_free(config); 820 config = nvl; 821 822 /* 823 * Go through and update the paths for spares, now that we have 824 * them. 825 */ 826 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 827 &nvroot) == 0); 828 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 829 &spares, &nspares) == 0) { 830 for (i = 0; i < nspares; i++) { 831 if (fix_paths(hdl, spares[i], pl->names) != 0) 832 goto nomem; 833 } 834 } 835 836 /* 837 * Update the paths for l2cache devices. 838 */ 839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 840 &l2cache, &nl2cache) == 0) { 841 for (i = 0; i < nl2cache; i++) { 842 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 843 goto nomem; 844 } 845 } 846 847 /* 848 * Restore the original information read from the actual label. 849 */ 850 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 851 DATA_TYPE_UINT64); 852 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 853 DATA_TYPE_STRING); 854 if (hostid != 0) { 855 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 856 hostid) == 0); 857 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 858 hostname) == 0); 859 } 860 861 add_pool: 862 /* 863 * Add this pool to the list of configs. 864 */ 865 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 866 &name) == 0); 867 868 if (nvlist_add_nvlist(ret, name, config) != 0) 869 goto nomem; 870 871 nvlist_free(config); 872 config = NULL; 873 } 874 875 return (ret); 876 877 nomem: 878 (void) zutil_no_memory(hdl); 879 error: 880 nvlist_free(config); 881 nvlist_free(ret); 882 for (c = 0; c < children; c++) 883 nvlist_free(child[c]); 884 free(child); 885 886 return (NULL); 887 } 888 889 /* 890 * Return the offset of the given label. 891 */ 892 static uint64_t 893 label_offset(uint64_t size, int l) 894 { 895 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 896 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 897 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 898 } 899 900 /* 901 * The same description applies as to zpool_read_label below, 902 * except here we do it without aio, presumably because an aio call 903 * errored out in a way we think not using it could circumvent. 904 */ 905 static int 906 zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels) 907 { 908 struct stat64 statbuf; 909 int l, count = 0; 910 vdev_phys_t *label; 911 nvlist_t *expected_config = NULL; 912 uint64_t expected_guid = 0, size; 913 int error; 914 915 *config = NULL; 916 917 if (fstat64_blk(fd, &statbuf) == -1) 918 return (0); 919 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 920 921 error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label)); 922 if (error) 923 return (-1); 924 925 for (l = 0; l < VDEV_LABELS; l++) { 926 uint64_t state, guid, txg; 927 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 928 929 if (pread64(fd, label, sizeof (vdev_phys_t), 930 offset) != sizeof (vdev_phys_t)) 931 continue; 932 933 if (nvlist_unpack(label->vp_nvlist, 934 sizeof (label->vp_nvlist), config, 0) != 0) 935 continue; 936 937 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 938 &guid) != 0 || guid == 0) { 939 nvlist_free(*config); 940 continue; 941 } 942 943 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 944 &state) != 0 || state > POOL_STATE_L2CACHE) { 945 nvlist_free(*config); 946 continue; 947 } 948 949 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 950 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 951 &txg) != 0 || txg == 0)) { 952 nvlist_free(*config); 953 continue; 954 } 955 956 if (expected_guid) { 957 if (expected_guid == guid) 958 count++; 959 960 nvlist_free(*config); 961 } else { 962 expected_config = *config; 963 expected_guid = guid; 964 count++; 965 } 966 } 967 968 if (num_labels != NULL) 969 *num_labels = count; 970 971 free(label); 972 *config = expected_config; 973 974 return (0); 975 } 976 977 /* 978 * Given a file descriptor, read the label information and return an nvlist 979 * describing the configuration, if there is one. The number of valid 980 * labels found will be returned in num_labels when non-NULL. 981 */ 982 int 983 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 984 { 985 struct stat64 statbuf; 986 struct aiocb aiocbs[VDEV_LABELS]; 987 struct aiocb *aiocbps[VDEV_LABELS]; 988 vdev_phys_t *labels; 989 nvlist_t *expected_config = NULL; 990 uint64_t expected_guid = 0, size; 991 int error, l, count = 0; 992 993 *config = NULL; 994 995 if (fstat64_blk(fd, &statbuf) == -1) 996 return (0); 997 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 998 999 error = posix_memalign((void **)&labels, PAGESIZE, 1000 VDEV_LABELS * sizeof (*labels)); 1001 if (error) 1002 return (-1); 1003 1004 memset(aiocbs, 0, sizeof (aiocbs)); 1005 for (l = 0; l < VDEV_LABELS; l++) { 1006 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 1007 1008 aiocbs[l].aio_fildes = fd; 1009 aiocbs[l].aio_offset = offset; 1010 aiocbs[l].aio_buf = &labels[l]; 1011 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 1012 aiocbs[l].aio_lio_opcode = LIO_READ; 1013 aiocbps[l] = &aiocbs[l]; 1014 } 1015 1016 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 1017 int saved_errno = errno; 1018 boolean_t do_slow = B_FALSE; 1019 error = -1; 1020 1021 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 1022 /* 1023 * A portion of the requests may have been submitted. 1024 * Clean them up. 1025 */ 1026 for (l = 0; l < VDEV_LABELS; l++) { 1027 errno = 0; 1028 switch (aio_error(&aiocbs[l])) { 1029 case EINVAL: 1030 break; 1031 case EINPROGRESS: 1032 // This shouldn't be possible to 1033 // encounter, die if we do. 1034 ASSERT(B_FALSE); 1035 fallthrough; 1036 case EOPNOTSUPP: 1037 case ENOSYS: 1038 do_slow = B_TRUE; 1039 fallthrough; 1040 case 0: 1041 default: 1042 (void) aio_return(&aiocbs[l]); 1043 } 1044 } 1045 } 1046 if (do_slow) { 1047 /* 1048 * At least some IO involved access unsafe-for-AIO 1049 * files. Let's try again, without AIO this time. 1050 */ 1051 error = zpool_read_label_slow(fd, config, num_labels); 1052 saved_errno = errno; 1053 } 1054 free(labels); 1055 errno = saved_errno; 1056 return (error); 1057 } 1058 1059 for (l = 0; l < VDEV_LABELS; l++) { 1060 uint64_t state, guid, txg; 1061 1062 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 1063 continue; 1064 1065 if (nvlist_unpack(labels[l].vp_nvlist, 1066 sizeof (labels[l].vp_nvlist), config, 0) != 0) 1067 continue; 1068 1069 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 1070 &guid) != 0 || guid == 0) { 1071 nvlist_free(*config); 1072 continue; 1073 } 1074 1075 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 1076 &state) != 0 || state > POOL_STATE_L2CACHE) { 1077 nvlist_free(*config); 1078 continue; 1079 } 1080 1081 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1082 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 1083 &txg) != 0 || txg == 0)) { 1084 nvlist_free(*config); 1085 continue; 1086 } 1087 1088 if (expected_guid) { 1089 if (expected_guid == guid) 1090 count++; 1091 1092 nvlist_free(*config); 1093 } else { 1094 expected_config = *config; 1095 expected_guid = guid; 1096 count++; 1097 } 1098 } 1099 1100 if (num_labels != NULL) 1101 *num_labels = count; 1102 1103 free(labels); 1104 *config = expected_config; 1105 1106 return (0); 1107 } 1108 1109 /* 1110 * Sorted by full path and then vdev guid to allow for multiple entries with 1111 * the same full path name. This is required because it's possible to 1112 * have multiple block devices with labels that refer to the same 1113 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 1114 * entries need to be added to the cache. Scenarios where this can occur 1115 * include overwritten pool labels, devices which are visible from multiple 1116 * hosts and multipath devices. 1117 */ 1118 int 1119 slice_cache_compare(const void *arg1, const void *arg2) 1120 { 1121 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1122 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1123 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1124 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1125 int rv; 1126 1127 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1128 if (rv) 1129 return (rv); 1130 1131 return (TREE_CMP(guid1, guid2)); 1132 } 1133 1134 static int 1135 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1136 uint64_t vdev_guid, char **path, char **devid) 1137 { 1138 nvlist_t **child; 1139 uint_t c, children; 1140 uint64_t guid; 1141 char *val; 1142 int error; 1143 1144 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1145 &child, &children) == 0) { 1146 for (c = 0; c < children; c++) { 1147 error = label_paths_impl(hdl, child[c], 1148 pool_guid, vdev_guid, path, devid); 1149 if (error) 1150 return (error); 1151 } 1152 return (0); 1153 } 1154 1155 if (nvroot == NULL) 1156 return (0); 1157 1158 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1159 if ((error != 0) || (guid != vdev_guid)) 1160 return (0); 1161 1162 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1163 if (error == 0) 1164 *path = val; 1165 1166 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1167 if (error == 0) 1168 *devid = val; 1169 1170 return (0); 1171 } 1172 1173 /* 1174 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1175 * and store these strings as config_path and devid_path respectively. 1176 * The returned pointers are only valid as long as label remains valid. 1177 */ 1178 int 1179 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1180 { 1181 nvlist_t *nvroot; 1182 uint64_t pool_guid; 1183 uint64_t vdev_guid; 1184 1185 *path = NULL; 1186 *devid = NULL; 1187 1188 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1189 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1190 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1191 return (ENOENT); 1192 1193 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1194 devid)); 1195 } 1196 1197 static void 1198 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1199 avl_tree_t *cache, const char *path, const char *name, int order) 1200 { 1201 avl_index_t where; 1202 rdsk_node_t *slice; 1203 1204 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1205 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1206 free(slice); 1207 return; 1208 } 1209 slice->rn_vdev_guid = 0; 1210 slice->rn_lock = lock; 1211 slice->rn_avl = cache; 1212 slice->rn_hdl = hdl; 1213 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1214 slice->rn_labelpaths = B_FALSE; 1215 1216 pthread_mutex_lock(lock); 1217 if (avl_find(cache, slice, &where)) { 1218 free(slice->rn_name); 1219 free(slice); 1220 } else { 1221 avl_insert(cache, slice, where); 1222 } 1223 pthread_mutex_unlock(lock); 1224 } 1225 1226 static int 1227 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1228 avl_tree_t *cache, const char *dir, int order) 1229 { 1230 int error; 1231 char path[MAXPATHLEN]; 1232 struct dirent64 *dp; 1233 DIR *dirp; 1234 1235 if (realpath(dir, path) == NULL) { 1236 error = errno; 1237 if (error == ENOENT) 1238 return (0); 1239 1240 zutil_error_aux(hdl, "%s", strerror(error)); 1241 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1242 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1243 return (error); 1244 } 1245 1246 dirp = opendir(path); 1247 if (dirp == NULL) { 1248 error = errno; 1249 zutil_error_aux(hdl, "%s", strerror(error)); 1250 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1251 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); 1252 return (error); 1253 } 1254 1255 while ((dp = readdir64(dirp)) != NULL) { 1256 const char *name = dp->d_name; 1257 if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) 1258 continue; 1259 1260 switch (dp->d_type) { 1261 case DT_UNKNOWN: 1262 case DT_BLK: 1263 case DT_LNK: 1264 #ifdef __FreeBSD__ 1265 case DT_CHR: 1266 #endif 1267 case DT_REG: 1268 break; 1269 default: 1270 continue; 1271 } 1272 1273 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1274 order); 1275 } 1276 1277 (void) closedir(dirp); 1278 return (0); 1279 } 1280 1281 static int 1282 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1283 avl_tree_t *cache, const char *dir, int order) 1284 { 1285 int error = 0; 1286 char path[MAXPATHLEN]; 1287 char *d = NULL; 1288 ssize_t dl; 1289 const char *dpath, *name; 1290 1291 /* 1292 * Separate the directory and the basename. 1293 * We do this so that we can get the realpath of 1294 * the directory. We don't get the realpath on the 1295 * whole path because if it's a symlink, we want the 1296 * path of the symlink not where it points to. 1297 */ 1298 name = zfs_basename(dir); 1299 if ((dl = zfs_dirnamelen(dir)) == -1) 1300 dpath = "."; 1301 else 1302 dpath = d = zutil_strndup(hdl, dir, dl); 1303 1304 if (realpath(dpath, path) == NULL) { 1305 error = errno; 1306 if (error == ENOENT) { 1307 error = 0; 1308 goto out; 1309 } 1310 1311 zutil_error_aux(hdl, "%s", strerror(error)); 1312 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1313 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1314 goto out; 1315 } 1316 1317 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1318 1319 out: 1320 free(d); 1321 return (error); 1322 } 1323 1324 /* 1325 * Scan a list of directories for zfs devices. 1326 */ 1327 static int 1328 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1329 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1330 { 1331 avl_tree_t *cache; 1332 rdsk_node_t *slice; 1333 void *cookie; 1334 int i, error; 1335 1336 *slice_cache = NULL; 1337 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1338 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1339 offsetof(rdsk_node_t, rn_node)); 1340 1341 for (i = 0; i < dirs; i++) { 1342 struct stat sbuf; 1343 1344 if (stat(dir[i], &sbuf) != 0) { 1345 error = errno; 1346 if (error == ENOENT) 1347 continue; 1348 1349 zutil_error_aux(hdl, "%s", strerror(error)); 1350 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1351 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1352 goto error; 1353 } 1354 1355 /* 1356 * If dir[i] is a directory, we walk through it and add all 1357 * the entries to the cache. If it's not a directory, we just 1358 * add it to the cache. 1359 */ 1360 if (S_ISDIR(sbuf.st_mode)) { 1361 if ((error = zpool_find_import_scan_dir(hdl, lock, 1362 cache, dir[i], i)) != 0) 1363 goto error; 1364 } else { 1365 if ((error = zpool_find_import_scan_path(hdl, lock, 1366 cache, dir[i], i)) != 0) 1367 goto error; 1368 } 1369 } 1370 1371 *slice_cache = cache; 1372 return (0); 1373 1374 error: 1375 cookie = NULL; 1376 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1377 free(slice->rn_name); 1378 free(slice); 1379 } 1380 free(cache); 1381 1382 return (error); 1383 } 1384 1385 /* 1386 * Given a list of directories to search, find all pools stored on disk. This 1387 * includes partial pools which are not available to import. If no args are 1388 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1389 * poolname or guid (but not both) are provided by the caller when trying 1390 * to import a specific pool. 1391 */ 1392 static nvlist_t * 1393 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg, 1394 pthread_mutex_t *lock, avl_tree_t *cache) 1395 { 1396 (void) lock; 1397 nvlist_t *ret = NULL; 1398 pool_list_t pools = { 0 }; 1399 pool_entry_t *pe, *penext; 1400 vdev_entry_t *ve, *venext; 1401 config_entry_t *ce, *cenext; 1402 name_entry_t *ne, *nenext; 1403 rdsk_node_t *slice; 1404 void *cookie; 1405 tpool_t *t; 1406 1407 verify(iarg->poolname == NULL || iarg->guid == 0); 1408 1409 /* 1410 * Create a thread pool to parallelize the process of reading and 1411 * validating labels, a large number of threads can be used due to 1412 * minimal contention. 1413 */ 1414 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1415 for (slice = avl_first(cache); slice; 1416 (slice = avl_walk(cache, slice, AVL_AFTER))) 1417 (void) tpool_dispatch(t, zpool_open_func, slice); 1418 1419 tpool_wait(t); 1420 tpool_destroy(t); 1421 1422 /* 1423 * Process the cache, filtering out any entries which are not 1424 * for the specified pool then adding matching label configs. 1425 */ 1426 cookie = NULL; 1427 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1428 if (slice->rn_config != NULL) { 1429 nvlist_t *config = slice->rn_config; 1430 boolean_t matched = B_TRUE; 1431 boolean_t aux = B_FALSE; 1432 int fd; 1433 1434 /* 1435 * Check if it's a spare or l2cache device. If it is, 1436 * we need to skip the name and guid check since they 1437 * don't exist on aux device label. 1438 */ 1439 if (iarg->poolname != NULL || iarg->guid != 0) { 1440 uint64_t state; 1441 aux = nvlist_lookup_uint64(config, 1442 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1443 (state == POOL_STATE_SPARE || 1444 state == POOL_STATE_L2CACHE); 1445 } 1446 1447 if (iarg->poolname != NULL && !aux) { 1448 char *pname; 1449 1450 matched = nvlist_lookup_string(config, 1451 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1452 strcmp(iarg->poolname, pname) == 0; 1453 } else if (iarg->guid != 0 && !aux) { 1454 uint64_t this_guid; 1455 1456 matched = nvlist_lookup_uint64(config, 1457 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1458 iarg->guid == this_guid; 1459 } 1460 if (matched) { 1461 /* 1462 * Verify all remaining entries can be opened 1463 * exclusively. This will prune all underlying 1464 * multipath devices which otherwise could 1465 * result in the vdev appearing as UNAVAIL. 1466 * 1467 * Under zdb, this step isn't required and 1468 * would prevent a zdb -e of active pools with 1469 * no cachefile. 1470 */ 1471 fd = open(slice->rn_name, 1472 O_RDONLY | O_EXCL | O_CLOEXEC); 1473 if (fd >= 0 || iarg->can_be_active) { 1474 if (fd >= 0) 1475 close(fd); 1476 add_config(hdl, &pools, 1477 slice->rn_name, slice->rn_order, 1478 slice->rn_num_labels, config); 1479 } 1480 } 1481 nvlist_free(config); 1482 } 1483 free(slice->rn_name); 1484 free(slice); 1485 } 1486 avl_destroy(cache); 1487 free(cache); 1488 1489 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1490 1491 for (pe = pools.pools; pe != NULL; pe = penext) { 1492 penext = pe->pe_next; 1493 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1494 venext = ve->ve_next; 1495 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1496 cenext = ce->ce_next; 1497 nvlist_free(ce->ce_config); 1498 free(ce); 1499 } 1500 free(ve); 1501 } 1502 free(pe); 1503 } 1504 1505 for (ne = pools.names; ne != NULL; ne = nenext) { 1506 nenext = ne->ne_next; 1507 free(ne->ne_name); 1508 free(ne); 1509 } 1510 1511 return (ret); 1512 } 1513 1514 /* 1515 * Given a config, discover the paths for the devices which 1516 * exist in the config. 1517 */ 1518 static int 1519 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv, 1520 avl_tree_t *cache, pthread_mutex_t *lock) 1521 { 1522 char *path = NULL; 1523 ssize_t dl; 1524 uint_t children; 1525 nvlist_t **child; 1526 1527 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1528 &child, &children) == 0) { 1529 for (int c = 0; c < children; c++) { 1530 discover_cached_paths(hdl, child[c], cache, lock); 1531 } 1532 } 1533 1534 /* 1535 * Once we have the path, we need to add the directory to 1536 * our directory cache. 1537 */ 1538 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { 1539 if ((dl = zfs_dirnamelen(path)) == -1) 1540 path = "."; 1541 else 1542 path[dl] = '\0'; 1543 return (zpool_find_import_scan_dir(hdl, lock, cache, 1544 path, 0)); 1545 } 1546 return (0); 1547 } 1548 1549 /* 1550 * Given a cache file, return the contents as a list of importable pools. 1551 * poolname or guid (but not both) are provided by the caller when trying 1552 * to import a specific pool. 1553 */ 1554 static nvlist_t * 1555 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg) 1556 { 1557 char *buf; 1558 int fd; 1559 struct stat64 statbuf; 1560 nvlist_t *raw, *src, *dst; 1561 nvlist_t *pools; 1562 nvpair_t *elem; 1563 char *name; 1564 uint64_t this_guid; 1565 boolean_t active; 1566 1567 verify(iarg->poolname == NULL || iarg->guid == 0); 1568 1569 if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) { 1570 zutil_error_aux(hdl, "%s", strerror(errno)); 1571 (void) zutil_error(hdl, EZFS_BADCACHE, 1572 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1573 return (NULL); 1574 } 1575 1576 if (fstat64(fd, &statbuf) != 0) { 1577 zutil_error_aux(hdl, "%s", strerror(errno)); 1578 (void) close(fd); 1579 (void) zutil_error(hdl, EZFS_BADCACHE, 1580 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1581 return (NULL); 1582 } 1583 1584 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1585 (void) close(fd); 1586 return (NULL); 1587 } 1588 1589 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1590 (void) close(fd); 1591 free(buf); 1592 (void) zutil_error(hdl, EZFS_BADCACHE, 1593 dgettext(TEXT_DOMAIN, 1594 "failed to read cache file contents")); 1595 return (NULL); 1596 } 1597 1598 (void) close(fd); 1599 1600 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1601 free(buf); 1602 (void) zutil_error(hdl, EZFS_BADCACHE, 1603 dgettext(TEXT_DOMAIN, 1604 "invalid or corrupt cache file contents")); 1605 return (NULL); 1606 } 1607 1608 free(buf); 1609 1610 /* 1611 * Go through and get the current state of the pools and refresh their 1612 * state. 1613 */ 1614 if (nvlist_alloc(&pools, 0, 0) != 0) { 1615 (void) zutil_no_memory(hdl); 1616 nvlist_free(raw); 1617 return (NULL); 1618 } 1619 1620 elem = NULL; 1621 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1622 src = fnvpair_value_nvlist(elem); 1623 1624 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1625 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0) 1626 continue; 1627 1628 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1629 if (iarg->guid != 0 && iarg->guid != this_guid) 1630 continue; 1631 1632 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1633 nvlist_free(raw); 1634 nvlist_free(pools); 1635 return (NULL); 1636 } 1637 1638 if (active) 1639 continue; 1640 1641 if (iarg->scan) { 1642 uint64_t saved_guid = iarg->guid; 1643 const char *saved_poolname = iarg->poolname; 1644 pthread_mutex_t lock; 1645 1646 /* 1647 * Create the device cache that will hold the 1648 * devices we will scan based on the cachefile. 1649 * This will get destroyed and freed by 1650 * zpool_find_import_impl. 1651 */ 1652 avl_tree_t *cache = zutil_alloc(hdl, 1653 sizeof (avl_tree_t)); 1654 avl_create(cache, slice_cache_compare, 1655 sizeof (rdsk_node_t), 1656 offsetof(rdsk_node_t, rn_node)); 1657 nvlist_t *nvroot = fnvlist_lookup_nvlist(src, 1658 ZPOOL_CONFIG_VDEV_TREE); 1659 1660 /* 1661 * We only want to find the pool with this_guid. 1662 * We will reset these values back later. 1663 */ 1664 iarg->guid = this_guid; 1665 iarg->poolname = NULL; 1666 1667 /* 1668 * We need to build up a cache of devices that exists 1669 * in the paths pointed to by the cachefile. This allows 1670 * us to preserve the device namespace that was 1671 * originally specified by the user but also lets us 1672 * scan devices in those directories in case they had 1673 * been renamed. 1674 */ 1675 pthread_mutex_init(&lock, NULL); 1676 discover_cached_paths(hdl, nvroot, cache, &lock); 1677 nvlist_t *nv = zpool_find_import_impl(hdl, iarg, 1678 &lock, cache); 1679 pthread_mutex_destroy(&lock); 1680 1681 /* 1682 * zpool_find_import_impl will return back 1683 * a list of pools that it found based on the 1684 * device cache. There should only be one pool 1685 * since we're looking for a specific guid. 1686 * We will use that pool to build up the final 1687 * pool nvlist which is returned back to the 1688 * caller. 1689 */ 1690 nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 1691 fnvlist_add_nvlist(pools, nvpair_name(pair), 1692 fnvpair_value_nvlist(pair)); 1693 1694 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL); 1695 1696 iarg->guid = saved_guid; 1697 iarg->poolname = saved_poolname; 1698 continue; 1699 } 1700 1701 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1702 iarg->cachefile) != 0) { 1703 (void) zutil_no_memory(hdl); 1704 nvlist_free(raw); 1705 nvlist_free(pools); 1706 return (NULL); 1707 } 1708 1709 update_vdevs_config_dev_sysfs_path(src); 1710 1711 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1712 nvlist_free(raw); 1713 nvlist_free(pools); 1714 return (NULL); 1715 } 1716 1717 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1718 (void) zutil_no_memory(hdl); 1719 nvlist_free(dst); 1720 nvlist_free(raw); 1721 nvlist_free(pools); 1722 return (NULL); 1723 } 1724 nvlist_free(dst); 1725 } 1726 nvlist_free(raw); 1727 return (pools); 1728 } 1729 1730 static nvlist_t * 1731 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg) 1732 { 1733 pthread_mutex_t lock; 1734 avl_tree_t *cache; 1735 nvlist_t *pools = NULL; 1736 1737 verify(iarg->poolname == NULL || iarg->guid == 0); 1738 pthread_mutex_init(&lock, NULL); 1739 1740 /* 1741 * Locate pool member vdevs by blkid or by directory scanning. 1742 * On success a newly allocated AVL tree which is populated with an 1743 * entry for each discovered vdev will be returned in the cache. 1744 * It's the caller's responsibility to consume and destroy this tree. 1745 */ 1746 if (iarg->scan || iarg->paths != 0) { 1747 size_t dirs = iarg->paths; 1748 const char * const *dir = (const char * const *)iarg->path; 1749 1750 if (dirs == 0) 1751 dir = zpool_default_search_paths(&dirs); 1752 1753 if (zpool_find_import_scan(hdl, &lock, &cache, 1754 dir, dirs) != 0) { 1755 pthread_mutex_destroy(&lock); 1756 return (NULL); 1757 } 1758 } else { 1759 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) { 1760 pthread_mutex_destroy(&lock); 1761 return (NULL); 1762 } 1763 } 1764 1765 pools = zpool_find_import_impl(hdl, iarg, &lock, cache); 1766 pthread_mutex_destroy(&lock); 1767 return (pools); 1768 } 1769 1770 1771 nvlist_t * 1772 zpool_search_import(void *hdl, importargs_t *import, 1773 const pool_config_ops_t *pco) 1774 { 1775 libpc_handle_t handle = { 0 }; 1776 nvlist_t *pools = NULL; 1777 1778 handle.lpc_lib_handle = hdl; 1779 handle.lpc_ops = pco; 1780 handle.lpc_printerr = B_TRUE; 1781 1782 verify(import->poolname == NULL || import->guid == 0); 1783 1784 if (import->cachefile != NULL) 1785 pools = zpool_find_import_cached(&handle, import); 1786 else 1787 pools = zpool_find_import(&handle, import); 1788 1789 if ((pools == NULL || nvlist_empty(pools)) && 1790 handle.lpc_open_access_error && geteuid() != 0) { 1791 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1792 "no pools found")); 1793 } 1794 1795 return (pools); 1796 } 1797 1798 static boolean_t 1799 pool_match(nvlist_t *cfg, char *tgt) 1800 { 1801 uint64_t v, guid = strtoull(tgt, NULL, 0); 1802 char *s; 1803 1804 if (guid != 0) { 1805 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1806 return (v == guid); 1807 } else { 1808 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1809 return (strcmp(s, tgt) == 0); 1810 } 1811 return (B_FALSE); 1812 } 1813 1814 int 1815 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1816 importargs_t *args, const pool_config_ops_t *pco) 1817 { 1818 nvlist_t *pools; 1819 nvlist_t *match = NULL; 1820 nvlist_t *config = NULL; 1821 char *sepp = NULL; 1822 int count = 0; 1823 char *targetdup = strdup(target); 1824 1825 *configp = NULL; 1826 1827 if ((sepp = strpbrk(targetdup, "/@")) != NULL) 1828 *sepp = '\0'; 1829 1830 pools = zpool_search_import(hdl, args, pco); 1831 1832 if (pools != NULL) { 1833 nvpair_t *elem = NULL; 1834 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1835 VERIFY0(nvpair_value_nvlist(elem, &config)); 1836 if (pool_match(config, targetdup)) { 1837 count++; 1838 if (match != NULL) { 1839 /* multiple matches found */ 1840 continue; 1841 } else { 1842 match = fnvlist_dup(config); 1843 } 1844 } 1845 } 1846 fnvlist_free(pools); 1847 } 1848 1849 if (count == 0) { 1850 free(targetdup); 1851 return (ENOENT); 1852 } 1853 1854 if (count > 1) { 1855 free(targetdup); 1856 fnvlist_free(match); 1857 return (EINVAL); 1858 } 1859 1860 *configp = match; 1861 free(targetdup); 1862 1863 return (0); 1864 } 1865 1866 /* 1867 * Internal function for iterating over the vdevs. 1868 * 1869 * For each vdev, func() will be called and will be passed 'zhp' (which is 1870 * typically the zpool_handle_t cast as a void pointer), the vdev's nvlist, and 1871 * a user-defined data pointer). 1872 * 1873 * The return values from all the func() calls will be OR'd together and 1874 * returned. 1875 */ 1876 int 1877 for_each_vdev_cb(void *zhp, nvlist_t *nv, pool_vdev_iter_f func, 1878 void *data) 1879 { 1880 nvlist_t **child; 1881 uint_t c, children; 1882 int ret = 0; 1883 int i; 1884 char *type; 1885 1886 const char *list[] = { 1887 ZPOOL_CONFIG_SPARES, 1888 ZPOOL_CONFIG_L2CACHE, 1889 ZPOOL_CONFIG_CHILDREN 1890 }; 1891 1892 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 1893 return (ret); 1894 1895 /* Don't run our function on root or indirect vdevs */ 1896 if ((strcmp(type, VDEV_TYPE_ROOT) != 0) && 1897 (strcmp(type, VDEV_TYPE_INDIRECT) != 0)) { 1898 ret |= func(zhp, nv, data); 1899 } 1900 1901 for (i = 0; i < ARRAY_SIZE(list); i++) { 1902 if (nvlist_lookup_nvlist_array(nv, list[i], &child, 1903 &children) == 0) { 1904 for (c = 0; c < children; c++) { 1905 uint64_t ishole = 0; 1906 1907 (void) nvlist_lookup_uint64(child[c], 1908 ZPOOL_CONFIG_IS_HOLE, &ishole); 1909 1910 if (ishole) 1911 continue; 1912 1913 ret |= for_each_vdev_cb(zhp, child[c], 1914 func, data); 1915 } 1916 } 1917 } 1918 1919 return (ret); 1920 } 1921 1922 /* 1923 * Given an ZPOOL_CONFIG_VDEV_TREE nvpair, iterate over all the vdevs, calling 1924 * func() for each one. func() is passed the vdev's nvlist and an optional 1925 * user-defined 'data' pointer. 1926 */ 1927 int 1928 for_each_vdev_in_nvlist(nvlist_t *nvroot, pool_vdev_iter_f func, void *data) 1929 { 1930 return (for_each_vdev_cb(NULL, nvroot, func, data)); 1931 } 1932