1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 28 */ 29 30 /* 31 * Pool import support functions. 32 * 33 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 34 * these commands are expected to run in the global zone, we can assume 35 * that the devices are all readable when called. 36 * 37 * To import a pool, we rely on reading the configuration information from the 38 * ZFS label of each device. If we successfully read the label, then we 39 * organize the configuration information in the following hierarchy: 40 * 41 * pool guid -> toplevel vdev guid -> label txg 42 * 43 * Duplicate entries matching this same tuple will be discarded. Once we have 44 * examined every device, we pick the best label txg config for each toplevel 45 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 46 * update any paths that have changed. Finally, we attempt to import the pool 47 * using our derived config, and record the results. 48 */ 49 50 #include <aio.h> 51 #include <ctype.h> 52 #include <dirent.h> 53 #include <errno.h> 54 #include <libintl.h> 55 #include <libgen.h> 56 #include <stddef.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <sys/stat.h> 60 #include <unistd.h> 61 #include <fcntl.h> 62 #include <sys/dktp/fdisk.h> 63 #include <sys/vdev_impl.h> 64 #include <sys/fs/zfs.h> 65 66 #include <thread_pool.h> 67 #include <libzutil.h> 68 #include <libnvpair.h> 69 70 #include "zutil_import.h" 71 72 /*PRINTFLIKE2*/ 73 static void 74 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 75 { 76 va_list ap; 77 78 va_start(ap, fmt); 79 80 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 81 hdl->lpc_desc_active = B_TRUE; 82 83 va_end(ap); 84 } 85 86 static void 87 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 88 va_list ap) 89 { 90 char action[1024]; 91 92 (void) vsnprintf(action, sizeof (action), fmt, ap); 93 94 if (hdl->lpc_desc_active) 95 hdl->lpc_desc_active = B_FALSE; 96 else 97 hdl->lpc_desc[0] = '\0'; 98 99 if (hdl->lpc_printerr) { 100 if (hdl->lpc_desc[0] != '\0') 101 error = hdl->lpc_desc; 102 103 (void) fprintf(stderr, "%s: %s\n", action, error); 104 } 105 } 106 107 /*PRINTFLIKE3*/ 108 static int 109 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 110 { 111 va_list ap; 112 113 va_start(ap, fmt); 114 115 zutil_verror(hdl, error, fmt, ap); 116 117 va_end(ap); 118 119 return (-1); 120 } 121 122 static int 123 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 124 { 125 return (zutil_error_fmt(hdl, error, "%s", msg)); 126 } 127 128 static int 129 zutil_no_memory(libpc_handle_t *hdl) 130 { 131 zutil_error(hdl, EZFS_NOMEM, "internal error"); 132 exit(1); 133 } 134 135 void * 136 zutil_alloc(libpc_handle_t *hdl, size_t size) 137 { 138 void *data; 139 140 if ((data = calloc(1, size)) == NULL) 141 (void) zutil_no_memory(hdl); 142 143 return (data); 144 } 145 146 char * 147 zutil_strdup(libpc_handle_t *hdl, const char *str) 148 { 149 char *ret; 150 151 if ((ret = strdup(str)) == NULL) 152 (void) zutil_no_memory(hdl); 153 154 return (ret); 155 } 156 157 static char * 158 zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n) 159 { 160 char *ret; 161 162 if ((ret = strndup(str, n)) == NULL) 163 (void) zutil_no_memory(hdl); 164 165 return (ret); 166 } 167 168 /* 169 * Intermediate structures used to gather configuration information. 170 */ 171 typedef struct config_entry { 172 uint64_t ce_txg; 173 nvlist_t *ce_config; 174 struct config_entry *ce_next; 175 } config_entry_t; 176 177 typedef struct vdev_entry { 178 uint64_t ve_guid; 179 config_entry_t *ve_configs; 180 struct vdev_entry *ve_next; 181 } vdev_entry_t; 182 183 typedef struct pool_entry { 184 uint64_t pe_guid; 185 vdev_entry_t *pe_vdevs; 186 struct pool_entry *pe_next; 187 } pool_entry_t; 188 189 typedef struct name_entry { 190 char *ne_name; 191 uint64_t ne_guid; 192 uint64_t ne_order; 193 uint64_t ne_num_labels; 194 struct name_entry *ne_next; 195 } name_entry_t; 196 197 typedef struct pool_list { 198 pool_entry_t *pools; 199 name_entry_t *names; 200 } pool_list_t; 201 202 /* 203 * Go through and fix up any path and/or devid information for the given vdev 204 * configuration. 205 */ 206 static int 207 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 208 { 209 nvlist_t **child; 210 uint_t c, children; 211 uint64_t guid; 212 name_entry_t *ne, *best; 213 char *path; 214 215 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 216 &child, &children) == 0) { 217 for (c = 0; c < children; c++) 218 if (fix_paths(hdl, child[c], names) != 0) 219 return (-1); 220 return (0); 221 } 222 223 /* 224 * This is a leaf (file or disk) vdev. In either case, go through 225 * the name list and see if we find a matching guid. If so, replace 226 * the path and see if we can calculate a new devid. 227 * 228 * There may be multiple names associated with a particular guid, in 229 * which case we have overlapping partitions or multiple paths to the 230 * same disk. In this case we prefer to use the path name which 231 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 232 * use the lowest order device which corresponds to the first match 233 * while traversing the ZPOOL_IMPORT_PATH search path. 234 */ 235 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 236 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 237 path = NULL; 238 239 best = NULL; 240 for (ne = names; ne != NULL; ne = ne->ne_next) { 241 if (ne->ne_guid == guid) { 242 if (path == NULL) { 243 best = ne; 244 break; 245 } 246 247 if ((strlen(path) == strlen(ne->ne_name)) && 248 strncmp(path, ne->ne_name, strlen(path)) == 0) { 249 best = ne; 250 break; 251 } 252 253 if (best == NULL) { 254 best = ne; 255 continue; 256 } 257 258 /* Prefer paths with move vdev labels. */ 259 if (ne->ne_num_labels > best->ne_num_labels) { 260 best = ne; 261 continue; 262 } 263 264 /* Prefer paths earlier in the search order. */ 265 if (ne->ne_num_labels == best->ne_num_labels && 266 ne->ne_order < best->ne_order) { 267 best = ne; 268 continue; 269 } 270 } 271 } 272 273 if (best == NULL) 274 return (0); 275 276 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 277 return (-1); 278 279 update_vdev_config_dev_strs(nv); 280 281 return (0); 282 } 283 284 /* 285 * Add the given configuration to the list of known devices. 286 */ 287 static int 288 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 289 int order, int num_labels, nvlist_t *config) 290 { 291 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 292 pool_entry_t *pe; 293 vdev_entry_t *ve; 294 config_entry_t *ce; 295 name_entry_t *ne; 296 297 /* 298 * If this is a hot spare not currently in use or level 2 cache 299 * device, add it to the list of names to translate, but don't do 300 * anything else. 301 */ 302 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 303 &state) == 0 && 304 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 305 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 306 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 307 return (-1); 308 309 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 310 free(ne); 311 return (-1); 312 } 313 ne->ne_guid = vdev_guid; 314 ne->ne_order = order; 315 ne->ne_num_labels = num_labels; 316 ne->ne_next = pl->names; 317 pl->names = ne; 318 319 return (0); 320 } 321 322 /* 323 * If we have a valid config but cannot read any of these fields, then 324 * it means we have a half-initialized label. In vdev_label_init() 325 * we write a label with txg == 0 so that we can identify the device 326 * in case the user refers to the same disk later on. If we fail to 327 * create the pool, we'll be left with a label in this state 328 * which should not be considered part of a valid pool. 329 */ 330 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 331 &pool_guid) != 0 || 332 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 333 &vdev_guid) != 0 || 334 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 335 &top_guid) != 0 || 336 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 337 &txg) != 0 || txg == 0) { 338 return (0); 339 } 340 341 /* 342 * First, see if we know about this pool. If not, then add it to the 343 * list of known pools. 344 */ 345 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 346 if (pe->pe_guid == pool_guid) 347 break; 348 } 349 350 if (pe == NULL) { 351 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 352 return (-1); 353 } 354 pe->pe_guid = pool_guid; 355 pe->pe_next = pl->pools; 356 pl->pools = pe; 357 } 358 359 /* 360 * Second, see if we know about this toplevel vdev. Add it if its 361 * missing. 362 */ 363 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 364 if (ve->ve_guid == top_guid) 365 break; 366 } 367 368 if (ve == NULL) { 369 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 370 return (-1); 371 } 372 ve->ve_guid = top_guid; 373 ve->ve_next = pe->pe_vdevs; 374 pe->pe_vdevs = ve; 375 } 376 377 /* 378 * Third, see if we have a config with a matching transaction group. If 379 * so, then we do nothing. Otherwise, add it to the list of known 380 * configs. 381 */ 382 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 383 if (ce->ce_txg == txg) 384 break; 385 } 386 387 if (ce == NULL) { 388 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 389 return (-1); 390 } 391 ce->ce_txg = txg; 392 ce->ce_config = fnvlist_dup(config); 393 ce->ce_next = ve->ve_configs; 394 ve->ve_configs = ce; 395 } 396 397 /* 398 * At this point we've successfully added our config to the list of 399 * known configs. The last thing to do is add the vdev guid -> path 400 * mappings so that we can fix up the configuration as necessary before 401 * doing the import. 402 */ 403 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 404 return (-1); 405 406 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 407 free(ne); 408 return (-1); 409 } 410 411 ne->ne_guid = vdev_guid; 412 ne->ne_order = order; 413 ne->ne_num_labels = num_labels; 414 ne->ne_next = pl->names; 415 pl->names = ne; 416 417 return (0); 418 } 419 420 static int 421 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 422 boolean_t *isactive) 423 { 424 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 425 426 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 427 guid, isactive); 428 429 return (error); 430 } 431 432 static nvlist_t * 433 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 434 { 435 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 436 437 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 438 tryconfig)); 439 } 440 441 /* 442 * Determine if the vdev id is a hole in the namespace. 443 */ 444 static boolean_t 445 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 446 { 447 int c; 448 449 for (c = 0; c < holes; c++) { 450 451 /* Top-level is a hole */ 452 if (hole_array[c] == id) 453 return (B_TRUE); 454 } 455 return (B_FALSE); 456 } 457 458 /* 459 * Convert our list of pools into the definitive set of configurations. We 460 * start by picking the best config for each toplevel vdev. Once that's done, 461 * we assemble the toplevel vdevs into a full config for the pool. We make a 462 * pass to fix up any incorrect paths, and then add it to the main list to 463 * return to the user. 464 */ 465 static nvlist_t * 466 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 467 nvlist_t *policy) 468 { 469 pool_entry_t *pe; 470 vdev_entry_t *ve; 471 config_entry_t *ce; 472 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 473 nvlist_t **spares, **l2cache; 474 uint_t i, nspares, nl2cache; 475 boolean_t config_seen; 476 uint64_t best_txg; 477 char *name, *hostname = NULL; 478 uint64_t guid; 479 uint_t children = 0; 480 nvlist_t **child = NULL; 481 uint_t holes; 482 uint64_t *hole_array, max_id; 483 uint_t c; 484 boolean_t isactive; 485 uint64_t hostid; 486 nvlist_t *nvl; 487 boolean_t valid_top_config = B_FALSE; 488 489 if (nvlist_alloc(&ret, 0, 0) != 0) 490 goto nomem; 491 492 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 493 uint64_t id, max_txg = 0; 494 495 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 496 goto nomem; 497 config_seen = B_FALSE; 498 499 /* 500 * Iterate over all toplevel vdevs. Grab the pool configuration 501 * from the first one we find, and then go through the rest and 502 * add them as necessary to the 'vdevs' member of the config. 503 */ 504 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 505 506 /* 507 * Determine the best configuration for this vdev by 508 * selecting the config with the latest transaction 509 * group. 510 */ 511 best_txg = 0; 512 for (ce = ve->ve_configs; ce != NULL; 513 ce = ce->ce_next) { 514 515 if (ce->ce_txg > best_txg) { 516 tmp = ce->ce_config; 517 best_txg = ce->ce_txg; 518 } 519 } 520 521 /* 522 * We rely on the fact that the max txg for the 523 * pool will contain the most up-to-date information 524 * about the valid top-levels in the vdev namespace. 525 */ 526 if (best_txg > max_txg) { 527 (void) nvlist_remove(config, 528 ZPOOL_CONFIG_VDEV_CHILDREN, 529 DATA_TYPE_UINT64); 530 (void) nvlist_remove(config, 531 ZPOOL_CONFIG_HOLE_ARRAY, 532 DATA_TYPE_UINT64_ARRAY); 533 534 max_txg = best_txg; 535 hole_array = NULL; 536 holes = 0; 537 max_id = 0; 538 valid_top_config = B_FALSE; 539 540 if (nvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 542 verify(nvlist_add_uint64(config, 543 ZPOOL_CONFIG_VDEV_CHILDREN, 544 max_id) == 0); 545 valid_top_config = B_TRUE; 546 } 547 548 if (nvlist_lookup_uint64_array(tmp, 549 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 550 &holes) == 0) { 551 verify(nvlist_add_uint64_array(config, 552 ZPOOL_CONFIG_HOLE_ARRAY, 553 hole_array, holes) == 0); 554 } 555 } 556 557 if (!config_seen) { 558 /* 559 * Copy the relevant pieces of data to the pool 560 * configuration: 561 * 562 * version 563 * pool guid 564 * name 565 * comment (if available) 566 * compatibility features (if available) 567 * pool state 568 * hostid (if available) 569 * hostname (if available) 570 */ 571 uint64_t state, version; 572 char *comment = NULL; 573 char *compatibility = NULL; 574 575 version = fnvlist_lookup_uint64(tmp, 576 ZPOOL_CONFIG_VERSION); 577 fnvlist_add_uint64(config, 578 ZPOOL_CONFIG_VERSION, version); 579 guid = fnvlist_lookup_uint64(tmp, 580 ZPOOL_CONFIG_POOL_GUID); 581 fnvlist_add_uint64(config, 582 ZPOOL_CONFIG_POOL_GUID, guid); 583 name = fnvlist_lookup_string(tmp, 584 ZPOOL_CONFIG_POOL_NAME); 585 fnvlist_add_string(config, 586 ZPOOL_CONFIG_POOL_NAME, name); 587 588 if (nvlist_lookup_string(tmp, 589 ZPOOL_CONFIG_COMMENT, &comment) == 0) 590 fnvlist_add_string(config, 591 ZPOOL_CONFIG_COMMENT, comment); 592 593 if (nvlist_lookup_string(tmp, 594 ZPOOL_CONFIG_COMPATIBILITY, 595 &compatibility) == 0) 596 fnvlist_add_string(config, 597 ZPOOL_CONFIG_COMPATIBILITY, 598 compatibility); 599 600 state = fnvlist_lookup_uint64(tmp, 601 ZPOOL_CONFIG_POOL_STATE); 602 fnvlist_add_uint64(config, 603 ZPOOL_CONFIG_POOL_STATE, state); 604 605 hostid = 0; 606 if (nvlist_lookup_uint64(tmp, 607 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 608 fnvlist_add_uint64(config, 609 ZPOOL_CONFIG_HOSTID, hostid); 610 hostname = fnvlist_lookup_string(tmp, 611 ZPOOL_CONFIG_HOSTNAME); 612 fnvlist_add_string(config, 613 ZPOOL_CONFIG_HOSTNAME, hostname); 614 } 615 616 config_seen = B_TRUE; 617 } 618 619 /* 620 * Add this top-level vdev to the child array. 621 */ 622 verify(nvlist_lookup_nvlist(tmp, 623 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 624 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 625 &id) == 0); 626 627 if (id >= children) { 628 nvlist_t **newchild; 629 630 newchild = zutil_alloc(hdl, (id + 1) * 631 sizeof (nvlist_t *)); 632 if (newchild == NULL) 633 goto nomem; 634 635 for (c = 0; c < children; c++) 636 newchild[c] = child[c]; 637 638 free(child); 639 child = newchild; 640 children = id + 1; 641 } 642 if (nvlist_dup(nvtop, &child[id], 0) != 0) 643 goto nomem; 644 645 } 646 647 /* 648 * If we have information about all the top-levels then 649 * clean up the nvlist which we've constructed. This 650 * means removing any extraneous devices that are 651 * beyond the valid range or adding devices to the end 652 * of our array which appear to be missing. 653 */ 654 if (valid_top_config) { 655 if (max_id < children) { 656 for (c = max_id; c < children; c++) 657 nvlist_free(child[c]); 658 children = max_id; 659 } else if (max_id > children) { 660 nvlist_t **newchild; 661 662 newchild = zutil_alloc(hdl, (max_id) * 663 sizeof (nvlist_t *)); 664 if (newchild == NULL) 665 goto nomem; 666 667 for (c = 0; c < children; c++) 668 newchild[c] = child[c]; 669 670 free(child); 671 child = newchild; 672 children = max_id; 673 } 674 } 675 676 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 677 &guid) == 0); 678 679 /* 680 * The vdev namespace may contain holes as a result of 681 * device removal. We must add them back into the vdev 682 * tree before we process any missing devices. 683 */ 684 if (holes > 0) { 685 ASSERT(valid_top_config); 686 687 for (c = 0; c < children; c++) { 688 nvlist_t *holey; 689 690 if (child[c] != NULL || 691 !vdev_is_hole(hole_array, holes, c)) 692 continue; 693 694 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 695 0) != 0) 696 goto nomem; 697 698 /* 699 * Holes in the namespace are treated as 700 * "hole" top-level vdevs and have a 701 * special flag set on them. 702 */ 703 if (nvlist_add_string(holey, 704 ZPOOL_CONFIG_TYPE, 705 VDEV_TYPE_HOLE) != 0 || 706 nvlist_add_uint64(holey, 707 ZPOOL_CONFIG_ID, c) != 0 || 708 nvlist_add_uint64(holey, 709 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 710 nvlist_free(holey); 711 goto nomem; 712 } 713 child[c] = holey; 714 } 715 } 716 717 /* 718 * Look for any missing top-level vdevs. If this is the case, 719 * create a faked up 'missing' vdev as a placeholder. We cannot 720 * simply compress the child array, because the kernel performs 721 * certain checks to make sure the vdev IDs match their location 722 * in the configuration. 723 */ 724 for (c = 0; c < children; c++) { 725 if (child[c] == NULL) { 726 nvlist_t *missing; 727 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 728 0) != 0) 729 goto nomem; 730 if (nvlist_add_string(missing, 731 ZPOOL_CONFIG_TYPE, 732 VDEV_TYPE_MISSING) != 0 || 733 nvlist_add_uint64(missing, 734 ZPOOL_CONFIG_ID, c) != 0 || 735 nvlist_add_uint64(missing, 736 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 737 nvlist_free(missing); 738 goto nomem; 739 } 740 child[c] = missing; 741 } 742 } 743 744 /* 745 * Put all of this pool's top-level vdevs into a root vdev. 746 */ 747 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 748 goto nomem; 749 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 750 VDEV_TYPE_ROOT) != 0 || 751 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 752 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 753 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 754 child, children) != 0) { 755 nvlist_free(nvroot); 756 goto nomem; 757 } 758 759 for (c = 0; c < children; c++) 760 nvlist_free(child[c]); 761 free(child); 762 children = 0; 763 child = NULL; 764 765 /* 766 * Go through and fix up any paths and/or devids based on our 767 * known list of vdev GUID -> path mappings. 768 */ 769 if (fix_paths(hdl, nvroot, pl->names) != 0) { 770 nvlist_free(nvroot); 771 goto nomem; 772 } 773 774 /* 775 * Add the root vdev to this pool's configuration. 776 */ 777 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 778 nvroot) != 0) { 779 nvlist_free(nvroot); 780 goto nomem; 781 } 782 nvlist_free(nvroot); 783 784 /* 785 * zdb uses this path to report on active pools that were 786 * imported or created using -R. 787 */ 788 if (active_ok) 789 goto add_pool; 790 791 /* 792 * Determine if this pool is currently active, in which case we 793 * can't actually import it. 794 */ 795 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 796 &name) == 0); 797 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 798 &guid) == 0); 799 800 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 801 goto error; 802 803 if (isactive) { 804 nvlist_free(config); 805 config = NULL; 806 continue; 807 } 808 809 if (policy != NULL) { 810 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 811 policy) != 0) 812 goto nomem; 813 } 814 815 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 816 nvlist_free(config); 817 config = NULL; 818 continue; 819 } 820 821 nvlist_free(config); 822 config = nvl; 823 824 /* 825 * Go through and update the paths for spares, now that we have 826 * them. 827 */ 828 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 829 &nvroot) == 0); 830 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 831 &spares, &nspares) == 0) { 832 for (i = 0; i < nspares; i++) { 833 if (fix_paths(hdl, spares[i], pl->names) != 0) 834 goto nomem; 835 } 836 } 837 838 /* 839 * Update the paths for l2cache devices. 840 */ 841 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 842 &l2cache, &nl2cache) == 0) { 843 for (i = 0; i < nl2cache; i++) { 844 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 845 goto nomem; 846 } 847 } 848 849 /* 850 * Restore the original information read from the actual label. 851 */ 852 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 853 DATA_TYPE_UINT64); 854 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 855 DATA_TYPE_STRING); 856 if (hostid != 0) { 857 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 858 hostid) == 0); 859 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 860 hostname) == 0); 861 } 862 863 add_pool: 864 /* 865 * Add this pool to the list of configs. 866 */ 867 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 868 &name) == 0); 869 870 if (nvlist_add_nvlist(ret, name, config) != 0) 871 goto nomem; 872 873 nvlist_free(config); 874 config = NULL; 875 } 876 877 return (ret); 878 879 nomem: 880 (void) zutil_no_memory(hdl); 881 error: 882 nvlist_free(config); 883 nvlist_free(ret); 884 for (c = 0; c < children; c++) 885 nvlist_free(child[c]); 886 free(child); 887 888 return (NULL); 889 } 890 891 /* 892 * Return the offset of the given label. 893 */ 894 static uint64_t 895 label_offset(uint64_t size, int l) 896 { 897 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 898 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 899 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 900 } 901 902 /* 903 * The same description applies as to zpool_read_label below, 904 * except here we do it without aio, presumably because an aio call 905 * errored out in a way we think not using it could circumvent. 906 */ 907 static int 908 zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels) 909 { 910 struct stat64 statbuf; 911 int l, count = 0; 912 vdev_phys_t *label; 913 nvlist_t *expected_config = NULL; 914 uint64_t expected_guid = 0, size; 915 int error; 916 917 *config = NULL; 918 919 if (fstat64_blk(fd, &statbuf) == -1) 920 return (0); 921 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 922 923 error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label)); 924 if (error) 925 return (-1); 926 927 for (l = 0; l < VDEV_LABELS; l++) { 928 uint64_t state, guid, txg; 929 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 930 931 if (pread64(fd, label, sizeof (vdev_phys_t), 932 offset) != sizeof (vdev_phys_t)) 933 continue; 934 935 if (nvlist_unpack(label->vp_nvlist, 936 sizeof (label->vp_nvlist), config, 0) != 0) 937 continue; 938 939 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 940 &guid) != 0 || guid == 0) { 941 nvlist_free(*config); 942 continue; 943 } 944 945 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 946 &state) != 0 || state > POOL_STATE_L2CACHE) { 947 nvlist_free(*config); 948 continue; 949 } 950 951 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 952 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 953 &txg) != 0 || txg == 0)) { 954 nvlist_free(*config); 955 continue; 956 } 957 958 if (expected_guid) { 959 if (expected_guid == guid) 960 count++; 961 962 nvlist_free(*config); 963 } else { 964 expected_config = *config; 965 expected_guid = guid; 966 count++; 967 } 968 } 969 970 if (num_labels != NULL) 971 *num_labels = count; 972 973 free(label); 974 *config = expected_config; 975 976 return (0); 977 } 978 979 /* 980 * Given a file descriptor, read the label information and return an nvlist 981 * describing the configuration, if there is one. The number of valid 982 * labels found will be returned in num_labels when non-NULL. 983 */ 984 int 985 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 986 { 987 struct stat64 statbuf; 988 struct aiocb aiocbs[VDEV_LABELS]; 989 struct aiocb *aiocbps[VDEV_LABELS]; 990 vdev_phys_t *labels; 991 nvlist_t *expected_config = NULL; 992 uint64_t expected_guid = 0, size; 993 int error, l, count = 0; 994 995 *config = NULL; 996 997 if (fstat64_blk(fd, &statbuf) == -1) 998 return (0); 999 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1000 1001 error = posix_memalign((void **)&labels, PAGESIZE, 1002 VDEV_LABELS * sizeof (*labels)); 1003 if (error) 1004 return (-1); 1005 1006 memset(aiocbs, 0, sizeof (aiocbs)); 1007 for (l = 0; l < VDEV_LABELS; l++) { 1008 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 1009 1010 aiocbs[l].aio_fildes = fd; 1011 aiocbs[l].aio_offset = offset; 1012 aiocbs[l].aio_buf = &labels[l]; 1013 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 1014 aiocbs[l].aio_lio_opcode = LIO_READ; 1015 aiocbps[l] = &aiocbs[l]; 1016 } 1017 1018 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 1019 int saved_errno = errno; 1020 boolean_t do_slow = B_FALSE; 1021 error = -1; 1022 1023 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 1024 /* 1025 * A portion of the requests may have been submitted. 1026 * Clean them up. 1027 */ 1028 for (l = 0; l < VDEV_LABELS; l++) { 1029 errno = 0; 1030 switch (aio_error(&aiocbs[l])) { 1031 case EINVAL: 1032 break; 1033 case EINPROGRESS: 1034 // This shouldn't be possible to 1035 // encounter, die if we do. 1036 ASSERT(B_FALSE); 1037 case EOPNOTSUPP: 1038 case ENOSYS: 1039 do_slow = B_TRUE; 1040 case 0: 1041 default: 1042 (void) aio_return(&aiocbs[l]); 1043 } 1044 } 1045 } 1046 if (do_slow) { 1047 /* 1048 * At least some IO involved access unsafe-for-AIO 1049 * files. Let's try again, without AIO this time. 1050 */ 1051 error = zpool_read_label_slow(fd, config, num_labels); 1052 saved_errno = errno; 1053 } 1054 free(labels); 1055 errno = saved_errno; 1056 return (error); 1057 } 1058 1059 for (l = 0; l < VDEV_LABELS; l++) { 1060 uint64_t state, guid, txg; 1061 1062 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 1063 continue; 1064 1065 if (nvlist_unpack(labels[l].vp_nvlist, 1066 sizeof (labels[l].vp_nvlist), config, 0) != 0) 1067 continue; 1068 1069 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 1070 &guid) != 0 || guid == 0) { 1071 nvlist_free(*config); 1072 continue; 1073 } 1074 1075 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 1076 &state) != 0 || state > POOL_STATE_L2CACHE) { 1077 nvlist_free(*config); 1078 continue; 1079 } 1080 1081 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1082 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 1083 &txg) != 0 || txg == 0)) { 1084 nvlist_free(*config); 1085 continue; 1086 } 1087 1088 if (expected_guid) { 1089 if (expected_guid == guid) 1090 count++; 1091 1092 nvlist_free(*config); 1093 } else { 1094 expected_config = *config; 1095 expected_guid = guid; 1096 count++; 1097 } 1098 } 1099 1100 if (num_labels != NULL) 1101 *num_labels = count; 1102 1103 free(labels); 1104 *config = expected_config; 1105 1106 return (0); 1107 } 1108 1109 /* 1110 * Sorted by full path and then vdev guid to allow for multiple entries with 1111 * the same full path name. This is required because it's possible to 1112 * have multiple block devices with labels that refer to the same 1113 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 1114 * entries need to be added to the cache. Scenarios where this can occur 1115 * include overwritten pool labels, devices which are visible from multiple 1116 * hosts and multipath devices. 1117 */ 1118 int 1119 slice_cache_compare(const void *arg1, const void *arg2) 1120 { 1121 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1122 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1123 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1124 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1125 int rv; 1126 1127 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1128 if (rv) 1129 return (rv); 1130 1131 return (TREE_CMP(guid1, guid2)); 1132 } 1133 1134 static int 1135 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1136 uint64_t vdev_guid, char **path, char **devid) 1137 { 1138 nvlist_t **child; 1139 uint_t c, children; 1140 uint64_t guid; 1141 char *val; 1142 int error; 1143 1144 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1145 &child, &children) == 0) { 1146 for (c = 0; c < children; c++) { 1147 error = label_paths_impl(hdl, child[c], 1148 pool_guid, vdev_guid, path, devid); 1149 if (error) 1150 return (error); 1151 } 1152 return (0); 1153 } 1154 1155 if (nvroot == NULL) 1156 return (0); 1157 1158 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1159 if ((error != 0) || (guid != vdev_guid)) 1160 return (0); 1161 1162 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1163 if (error == 0) 1164 *path = val; 1165 1166 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1167 if (error == 0) 1168 *devid = val; 1169 1170 return (0); 1171 } 1172 1173 /* 1174 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1175 * and store these strings as config_path and devid_path respectively. 1176 * The returned pointers are only valid as long as label remains valid. 1177 */ 1178 int 1179 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1180 { 1181 nvlist_t *nvroot; 1182 uint64_t pool_guid; 1183 uint64_t vdev_guid; 1184 1185 *path = NULL; 1186 *devid = NULL; 1187 1188 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1189 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1190 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1191 return (ENOENT); 1192 1193 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1194 devid)); 1195 } 1196 1197 static void 1198 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1199 avl_tree_t *cache, const char *path, const char *name, int order) 1200 { 1201 avl_index_t where; 1202 rdsk_node_t *slice; 1203 1204 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1205 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1206 free(slice); 1207 return; 1208 } 1209 slice->rn_vdev_guid = 0; 1210 slice->rn_lock = lock; 1211 slice->rn_avl = cache; 1212 slice->rn_hdl = hdl; 1213 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1214 slice->rn_labelpaths = B_FALSE; 1215 1216 pthread_mutex_lock(lock); 1217 if (avl_find(cache, slice, &where)) { 1218 free(slice->rn_name); 1219 free(slice); 1220 } else { 1221 avl_insert(cache, slice, where); 1222 } 1223 pthread_mutex_unlock(lock); 1224 } 1225 1226 static int 1227 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1228 avl_tree_t *cache, const char *dir, int order) 1229 { 1230 int error; 1231 char path[MAXPATHLEN]; 1232 struct dirent64 *dp; 1233 DIR *dirp; 1234 1235 if (realpath(dir, path) == NULL) { 1236 error = errno; 1237 if (error == ENOENT) 1238 return (0); 1239 1240 zutil_error_aux(hdl, strerror(error)); 1241 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1242 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1243 return (error); 1244 } 1245 1246 dirp = opendir(path); 1247 if (dirp == NULL) { 1248 error = errno; 1249 zutil_error_aux(hdl, strerror(error)); 1250 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1251 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); 1252 return (error); 1253 } 1254 1255 while ((dp = readdir64(dirp)) != NULL) { 1256 const char *name = dp->d_name; 1257 if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) 1258 continue; 1259 1260 switch (dp->d_type) { 1261 case DT_UNKNOWN: 1262 case DT_BLK: 1263 case DT_LNK: 1264 #ifdef __FreeBSD__ 1265 case DT_CHR: 1266 #endif 1267 case DT_REG: 1268 break; 1269 default: 1270 continue; 1271 } 1272 1273 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1274 order); 1275 } 1276 1277 (void) closedir(dirp); 1278 return (0); 1279 } 1280 1281 static int 1282 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1283 avl_tree_t *cache, const char *dir, int order) 1284 { 1285 int error = 0; 1286 char path[MAXPATHLEN]; 1287 char *d = NULL; 1288 ssize_t dl; 1289 const char *dpath, *name; 1290 1291 /* 1292 * Separate the directory and the basename. 1293 * We do this so that we can get the realpath of 1294 * the directory. We don't get the realpath on the 1295 * whole path because if it's a symlink, we want the 1296 * path of the symlink not where it points to. 1297 */ 1298 name = zfs_basename(dir); 1299 if ((dl = zfs_dirnamelen(dir)) == -1) 1300 dpath = "."; 1301 else 1302 dpath = d = zutil_strndup(hdl, dir, dl); 1303 1304 if (realpath(dpath, path) == NULL) { 1305 error = errno; 1306 if (error == ENOENT) { 1307 error = 0; 1308 goto out; 1309 } 1310 1311 zutil_error_aux(hdl, strerror(error)); 1312 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1313 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1314 goto out; 1315 } 1316 1317 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1318 1319 out: 1320 free(d); 1321 return (error); 1322 } 1323 1324 /* 1325 * Scan a list of directories for zfs devices. 1326 */ 1327 static int 1328 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1329 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1330 { 1331 avl_tree_t *cache; 1332 rdsk_node_t *slice; 1333 void *cookie; 1334 int i, error; 1335 1336 *slice_cache = NULL; 1337 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1338 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1339 offsetof(rdsk_node_t, rn_node)); 1340 1341 for (i = 0; i < dirs; i++) { 1342 struct stat sbuf; 1343 1344 if (stat(dir[i], &sbuf) != 0) { 1345 error = errno; 1346 if (error == ENOENT) 1347 continue; 1348 1349 zutil_error_aux(hdl, strerror(error)); 1350 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1351 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1352 goto error; 1353 } 1354 1355 /* 1356 * If dir[i] is a directory, we walk through it and add all 1357 * the entries to the cache. If it's not a directory, we just 1358 * add it to the cache. 1359 */ 1360 if (S_ISDIR(sbuf.st_mode)) { 1361 if ((error = zpool_find_import_scan_dir(hdl, lock, 1362 cache, dir[i], i)) != 0) 1363 goto error; 1364 } else { 1365 if ((error = zpool_find_import_scan_path(hdl, lock, 1366 cache, dir[i], i)) != 0) 1367 goto error; 1368 } 1369 } 1370 1371 *slice_cache = cache; 1372 return (0); 1373 1374 error: 1375 cookie = NULL; 1376 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1377 free(slice->rn_name); 1378 free(slice); 1379 } 1380 free(cache); 1381 1382 return (error); 1383 } 1384 1385 /* 1386 * Given a list of directories to search, find all pools stored on disk. This 1387 * includes partial pools which are not available to import. If no args are 1388 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1389 * poolname or guid (but not both) are provided by the caller when trying 1390 * to import a specific pool. 1391 */ 1392 static nvlist_t * 1393 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg, 1394 pthread_mutex_t *lock, avl_tree_t *cache) 1395 { 1396 nvlist_t *ret = NULL; 1397 pool_list_t pools = { 0 }; 1398 pool_entry_t *pe, *penext; 1399 vdev_entry_t *ve, *venext; 1400 config_entry_t *ce, *cenext; 1401 name_entry_t *ne, *nenext; 1402 rdsk_node_t *slice; 1403 void *cookie; 1404 tpool_t *t; 1405 1406 verify(iarg->poolname == NULL || iarg->guid == 0); 1407 1408 /* 1409 * Create a thread pool to parallelize the process of reading and 1410 * validating labels, a large number of threads can be used due to 1411 * minimal contention. 1412 */ 1413 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1414 for (slice = avl_first(cache); slice; 1415 (slice = avl_walk(cache, slice, AVL_AFTER))) 1416 (void) tpool_dispatch(t, zpool_open_func, slice); 1417 1418 tpool_wait(t); 1419 tpool_destroy(t); 1420 1421 /* 1422 * Process the cache, filtering out any entries which are not 1423 * for the specified pool then adding matching label configs. 1424 */ 1425 cookie = NULL; 1426 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1427 if (slice->rn_config != NULL) { 1428 nvlist_t *config = slice->rn_config; 1429 boolean_t matched = B_TRUE; 1430 boolean_t aux = B_FALSE; 1431 int fd; 1432 1433 /* 1434 * Check if it's a spare or l2cache device. If it is, 1435 * we need to skip the name and guid check since they 1436 * don't exist on aux device label. 1437 */ 1438 if (iarg->poolname != NULL || iarg->guid != 0) { 1439 uint64_t state; 1440 aux = nvlist_lookup_uint64(config, 1441 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1442 (state == POOL_STATE_SPARE || 1443 state == POOL_STATE_L2CACHE); 1444 } 1445 1446 if (iarg->poolname != NULL && !aux) { 1447 char *pname; 1448 1449 matched = nvlist_lookup_string(config, 1450 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1451 strcmp(iarg->poolname, pname) == 0; 1452 } else if (iarg->guid != 0 && !aux) { 1453 uint64_t this_guid; 1454 1455 matched = nvlist_lookup_uint64(config, 1456 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1457 iarg->guid == this_guid; 1458 } 1459 if (matched) { 1460 /* 1461 * Verify all remaining entries can be opened 1462 * exclusively. This will prune all underlying 1463 * multipath devices which otherwise could 1464 * result in the vdev appearing as UNAVAIL. 1465 * 1466 * Under zdb, this step isn't required and 1467 * would prevent a zdb -e of active pools with 1468 * no cachefile. 1469 */ 1470 fd = open(slice->rn_name, 1471 O_RDONLY | O_EXCL | O_CLOEXEC); 1472 if (fd >= 0 || iarg->can_be_active) { 1473 if (fd >= 0) 1474 close(fd); 1475 add_config(hdl, &pools, 1476 slice->rn_name, slice->rn_order, 1477 slice->rn_num_labels, config); 1478 } 1479 } 1480 nvlist_free(config); 1481 } 1482 free(slice->rn_name); 1483 free(slice); 1484 } 1485 avl_destroy(cache); 1486 free(cache); 1487 1488 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1489 1490 for (pe = pools.pools; pe != NULL; pe = penext) { 1491 penext = pe->pe_next; 1492 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1493 venext = ve->ve_next; 1494 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1495 cenext = ce->ce_next; 1496 nvlist_free(ce->ce_config); 1497 free(ce); 1498 } 1499 free(ve); 1500 } 1501 free(pe); 1502 } 1503 1504 for (ne = pools.names; ne != NULL; ne = nenext) { 1505 nenext = ne->ne_next; 1506 free(ne->ne_name); 1507 free(ne); 1508 } 1509 1510 return (ret); 1511 } 1512 1513 /* 1514 * Given a config, discover the paths for the devices which 1515 * exist in the config. 1516 */ 1517 static int 1518 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv, 1519 avl_tree_t *cache, pthread_mutex_t *lock) 1520 { 1521 char *path = NULL; 1522 ssize_t dl; 1523 uint_t children; 1524 nvlist_t **child; 1525 1526 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1527 &child, &children) == 0) { 1528 for (int c = 0; c < children; c++) { 1529 discover_cached_paths(hdl, child[c], cache, lock); 1530 } 1531 } 1532 1533 /* 1534 * Once we have the path, we need to add the directory to 1535 * our directory cache. 1536 */ 1537 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { 1538 if ((dl = zfs_dirnamelen(path)) == -1) 1539 path = "."; 1540 else 1541 path[dl] = '\0'; 1542 return (zpool_find_import_scan_dir(hdl, lock, cache, 1543 path, 0)); 1544 } 1545 return (0); 1546 } 1547 1548 /* 1549 * Given a cache file, return the contents as a list of importable pools. 1550 * poolname or guid (but not both) are provided by the caller when trying 1551 * to import a specific pool. 1552 */ 1553 static nvlist_t * 1554 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg) 1555 { 1556 char *buf; 1557 int fd; 1558 struct stat64 statbuf; 1559 nvlist_t *raw, *src, *dst; 1560 nvlist_t *pools; 1561 nvpair_t *elem; 1562 char *name; 1563 uint64_t this_guid; 1564 boolean_t active; 1565 1566 verify(iarg->poolname == NULL || iarg->guid == 0); 1567 1568 if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) { 1569 zutil_error_aux(hdl, "%s", strerror(errno)); 1570 (void) zutil_error(hdl, EZFS_BADCACHE, 1571 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1572 return (NULL); 1573 } 1574 1575 if (fstat64(fd, &statbuf) != 0) { 1576 zutil_error_aux(hdl, "%s", strerror(errno)); 1577 (void) close(fd); 1578 (void) zutil_error(hdl, EZFS_BADCACHE, 1579 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1580 return (NULL); 1581 } 1582 1583 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1584 (void) close(fd); 1585 return (NULL); 1586 } 1587 1588 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1589 (void) close(fd); 1590 free(buf); 1591 (void) zutil_error(hdl, EZFS_BADCACHE, 1592 dgettext(TEXT_DOMAIN, 1593 "failed to read cache file contents")); 1594 return (NULL); 1595 } 1596 1597 (void) close(fd); 1598 1599 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1600 free(buf); 1601 (void) zutil_error(hdl, EZFS_BADCACHE, 1602 dgettext(TEXT_DOMAIN, 1603 "invalid or corrupt cache file contents")); 1604 return (NULL); 1605 } 1606 1607 free(buf); 1608 1609 /* 1610 * Go through and get the current state of the pools and refresh their 1611 * state. 1612 */ 1613 if (nvlist_alloc(&pools, 0, 0) != 0) { 1614 (void) zutil_no_memory(hdl); 1615 nvlist_free(raw); 1616 return (NULL); 1617 } 1618 1619 elem = NULL; 1620 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1621 src = fnvpair_value_nvlist(elem); 1622 1623 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1624 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0) 1625 continue; 1626 1627 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1628 if (iarg->guid != 0 && iarg->guid != this_guid) 1629 continue; 1630 1631 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1632 nvlist_free(raw); 1633 nvlist_free(pools); 1634 return (NULL); 1635 } 1636 1637 if (active) 1638 continue; 1639 1640 if (iarg->scan) { 1641 uint64_t saved_guid = iarg->guid; 1642 const char *saved_poolname = iarg->poolname; 1643 pthread_mutex_t lock; 1644 1645 /* 1646 * Create the device cache that will hold the 1647 * devices we will scan based on the cachefile. 1648 * This will get destroyed and freed by 1649 * zpool_find_import_impl. 1650 */ 1651 avl_tree_t *cache = zutil_alloc(hdl, 1652 sizeof (avl_tree_t)); 1653 avl_create(cache, slice_cache_compare, 1654 sizeof (rdsk_node_t), 1655 offsetof(rdsk_node_t, rn_node)); 1656 nvlist_t *nvroot = fnvlist_lookup_nvlist(src, 1657 ZPOOL_CONFIG_VDEV_TREE); 1658 1659 /* 1660 * We only want to find the pool with this_guid. 1661 * We will reset these values back later. 1662 */ 1663 iarg->guid = this_guid; 1664 iarg->poolname = NULL; 1665 1666 /* 1667 * We need to build up a cache of devices that exists 1668 * in the paths pointed to by the cachefile. This allows 1669 * us to preserve the device namespace that was 1670 * originally specified by the user but also lets us 1671 * scan devices in those directories in case they had 1672 * been renamed. 1673 */ 1674 pthread_mutex_init(&lock, NULL); 1675 discover_cached_paths(hdl, nvroot, cache, &lock); 1676 nvlist_t *nv = zpool_find_import_impl(hdl, iarg, 1677 &lock, cache); 1678 pthread_mutex_destroy(&lock); 1679 1680 /* 1681 * zpool_find_import_impl will return back 1682 * a list of pools that it found based on the 1683 * device cache. There should only be one pool 1684 * since we're looking for a specific guid. 1685 * We will use that pool to build up the final 1686 * pool nvlist which is returned back to the 1687 * caller. 1688 */ 1689 nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 1690 fnvlist_add_nvlist(pools, nvpair_name(pair), 1691 fnvpair_value_nvlist(pair)); 1692 1693 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL); 1694 1695 iarg->guid = saved_guid; 1696 iarg->poolname = saved_poolname; 1697 continue; 1698 } 1699 1700 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1701 iarg->cachefile) != 0) { 1702 (void) zutil_no_memory(hdl); 1703 nvlist_free(raw); 1704 nvlist_free(pools); 1705 return (NULL); 1706 } 1707 1708 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1709 nvlist_free(raw); 1710 nvlist_free(pools); 1711 return (NULL); 1712 } 1713 1714 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1715 (void) zutil_no_memory(hdl); 1716 nvlist_free(dst); 1717 nvlist_free(raw); 1718 nvlist_free(pools); 1719 return (NULL); 1720 } 1721 nvlist_free(dst); 1722 } 1723 nvlist_free(raw); 1724 return (pools); 1725 } 1726 1727 static nvlist_t * 1728 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg) 1729 { 1730 pthread_mutex_t lock; 1731 avl_tree_t *cache; 1732 nvlist_t *pools = NULL; 1733 1734 verify(iarg->poolname == NULL || iarg->guid == 0); 1735 pthread_mutex_init(&lock, NULL); 1736 1737 /* 1738 * Locate pool member vdevs by blkid or by directory scanning. 1739 * On success a newly allocated AVL tree which is populated with an 1740 * entry for each discovered vdev will be returned in the cache. 1741 * It's the caller's responsibility to consume and destroy this tree. 1742 */ 1743 if (iarg->scan || iarg->paths != 0) { 1744 size_t dirs = iarg->paths; 1745 const char * const *dir = (const char * const *)iarg->path; 1746 1747 if (dirs == 0) 1748 dir = zpool_default_search_paths(&dirs); 1749 1750 if (zpool_find_import_scan(hdl, &lock, &cache, 1751 dir, dirs) != 0) { 1752 pthread_mutex_destroy(&lock); 1753 return (NULL); 1754 } 1755 } else { 1756 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) { 1757 pthread_mutex_destroy(&lock); 1758 return (NULL); 1759 } 1760 } 1761 1762 pools = zpool_find_import_impl(hdl, iarg, &lock, cache); 1763 pthread_mutex_destroy(&lock); 1764 return (pools); 1765 } 1766 1767 1768 nvlist_t * 1769 zpool_search_import(void *hdl, importargs_t *import, 1770 const pool_config_ops_t *pco) 1771 { 1772 libpc_handle_t handle = { 0 }; 1773 nvlist_t *pools = NULL; 1774 1775 handle.lpc_lib_handle = hdl; 1776 handle.lpc_ops = pco; 1777 handle.lpc_printerr = B_TRUE; 1778 1779 verify(import->poolname == NULL || import->guid == 0); 1780 1781 if (import->cachefile != NULL) 1782 pools = zpool_find_import_cached(&handle, import); 1783 else 1784 pools = zpool_find_import(&handle, import); 1785 1786 if ((pools == NULL || nvlist_empty(pools)) && 1787 handle.lpc_open_access_error && geteuid() != 0) { 1788 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1789 "no pools found")); 1790 } 1791 1792 return (pools); 1793 } 1794 1795 static boolean_t 1796 pool_match(nvlist_t *cfg, char *tgt) 1797 { 1798 uint64_t v, guid = strtoull(tgt, NULL, 0); 1799 char *s; 1800 1801 if (guid != 0) { 1802 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1803 return (v == guid); 1804 } else { 1805 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1806 return (strcmp(s, tgt) == 0); 1807 } 1808 return (B_FALSE); 1809 } 1810 1811 int 1812 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1813 importargs_t *args, const pool_config_ops_t *pco) 1814 { 1815 nvlist_t *pools; 1816 nvlist_t *match = NULL; 1817 nvlist_t *config = NULL; 1818 char *sepp = NULL; 1819 int count = 0; 1820 char *targetdup = strdup(target); 1821 1822 *configp = NULL; 1823 1824 if ((sepp = strpbrk(targetdup, "/@")) != NULL) 1825 *sepp = '\0'; 1826 1827 pools = zpool_search_import(hdl, args, pco); 1828 1829 if (pools != NULL) { 1830 nvpair_t *elem = NULL; 1831 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1832 VERIFY0(nvpair_value_nvlist(elem, &config)); 1833 if (pool_match(config, targetdup)) { 1834 count++; 1835 if (match != NULL) { 1836 /* multiple matches found */ 1837 continue; 1838 } else { 1839 match = fnvlist_dup(config); 1840 } 1841 } 1842 } 1843 fnvlist_free(pools); 1844 } 1845 1846 if (count == 0) { 1847 free(targetdup); 1848 return (ENOENT); 1849 } 1850 1851 if (count > 1) { 1852 free(targetdup); 1853 fnvlist_free(match); 1854 return (EINVAL); 1855 } 1856 1857 *configp = match; 1858 free(targetdup); 1859 1860 return (0); 1861 } 1862