1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 28 */ 29 30 /* 31 * Pool import support functions. 32 * 33 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 34 * these commands are expected to run in the global zone, we can assume 35 * that the devices are all readable when called. 36 * 37 * To import a pool, we rely on reading the configuration information from the 38 * ZFS label of each device. If we successfully read the label, then we 39 * organize the configuration information in the following hierarchy: 40 * 41 * pool guid -> toplevel vdev guid -> label txg 42 * 43 * Duplicate entries matching this same tuple will be discarded. Once we have 44 * examined every device, we pick the best label txg config for each toplevel 45 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 46 * update any paths that have changed. Finally, we attempt to import the pool 47 * using our derived config, and record the results. 48 */ 49 50 #ifdef HAVE_AIO_H 51 #include <aio.h> 52 #endif 53 #include <ctype.h> 54 #include <dirent.h> 55 #include <errno.h> 56 #include <libintl.h> 57 #include <libgen.h> 58 #include <stddef.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <sys/stat.h> 62 #include <unistd.h> 63 #include <fcntl.h> 64 #include <sys/dktp/fdisk.h> 65 #include <sys/vdev_impl.h> 66 #include <sys/fs/zfs.h> 67 68 #include <thread_pool.h> 69 #include <libzutil.h> 70 #include <libnvpair.h> 71 72 #include "zutil_import.h" 73 74 const char * 75 libpc_error_description(libpc_handle_t *hdl) 76 { 77 if (hdl->lpc_desc[0] != '\0') 78 return (hdl->lpc_desc); 79 80 switch (hdl->lpc_error) { 81 case LPC_BADCACHE: 82 return (dgettext(TEXT_DOMAIN, "invalid or missing cache file")); 83 case LPC_BADPATH: 84 return (dgettext(TEXT_DOMAIN, "must be an absolute path")); 85 case LPC_NOMEM: 86 return (dgettext(TEXT_DOMAIN, "out of memory")); 87 case LPC_EACCESS: 88 return (dgettext(TEXT_DOMAIN, "some devices require root " 89 "privileges")); 90 case LPC_UNKNOWN: 91 return (dgettext(TEXT_DOMAIN, "unknown error")); 92 default: 93 assert(hdl->lpc_error == 0); 94 return (dgettext(TEXT_DOMAIN, "no error")); 95 } 96 } 97 98 static __attribute__((format(printf, 2, 3))) void 99 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 100 { 101 va_list ap; 102 103 va_start(ap, fmt); 104 105 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 106 hdl->lpc_desc_active = B_TRUE; 107 108 va_end(ap); 109 } 110 111 static void 112 zutil_verror(libpc_handle_t *hdl, lpc_error_t error, const char *fmt, 113 va_list ap) 114 { 115 char action[1024]; 116 117 (void) vsnprintf(action, sizeof (action), fmt, ap); 118 hdl->lpc_error = error; 119 120 if (hdl->lpc_desc_active) 121 hdl->lpc_desc_active = B_FALSE; 122 else 123 hdl->lpc_desc[0] = '\0'; 124 125 if (hdl->lpc_printerr) 126 (void) fprintf(stderr, "%s: %s\n", action, 127 libpc_error_description(hdl)); 128 } 129 130 static __attribute__((format(printf, 3, 4))) int 131 zutil_error_fmt(libpc_handle_t *hdl, lpc_error_t error, 132 const char *fmt, ...) 133 { 134 va_list ap; 135 136 va_start(ap, fmt); 137 138 zutil_verror(hdl, error, fmt, ap); 139 140 va_end(ap); 141 142 return (-1); 143 } 144 145 static int 146 zutil_error(libpc_handle_t *hdl, lpc_error_t error, const char *msg) 147 { 148 return (zutil_error_fmt(hdl, error, "%s", msg)); 149 } 150 151 static int 152 zutil_no_memory(libpc_handle_t *hdl) 153 { 154 zutil_error(hdl, LPC_NOMEM, "internal error"); 155 exit(1); 156 } 157 158 void * 159 zutil_alloc(libpc_handle_t *hdl, size_t size) 160 { 161 void *data; 162 163 if ((data = calloc(1, size)) == NULL) 164 (void) zutil_no_memory(hdl); 165 166 return (data); 167 } 168 169 char * 170 zutil_strdup(libpc_handle_t *hdl, const char *str) 171 { 172 char *ret; 173 174 if ((ret = strdup(str)) == NULL) 175 (void) zutil_no_memory(hdl); 176 177 return (ret); 178 } 179 180 static char * 181 zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n) 182 { 183 char *ret; 184 185 if ((ret = strndup(str, n)) == NULL) 186 (void) zutil_no_memory(hdl); 187 188 return (ret); 189 } 190 191 /* 192 * Intermediate structures used to gather configuration information. 193 */ 194 typedef struct config_entry { 195 uint64_t ce_txg; 196 nvlist_t *ce_config; 197 struct config_entry *ce_next; 198 } config_entry_t; 199 200 typedef struct vdev_entry { 201 uint64_t ve_guid; 202 config_entry_t *ve_configs; 203 struct vdev_entry *ve_next; 204 } vdev_entry_t; 205 206 typedef struct pool_entry { 207 uint64_t pe_guid; 208 vdev_entry_t *pe_vdevs; 209 struct pool_entry *pe_next; 210 } pool_entry_t; 211 212 typedef struct name_entry { 213 char *ne_name; 214 uint64_t ne_guid; 215 uint64_t ne_order; 216 uint64_t ne_num_labels; 217 struct name_entry *ne_next; 218 } name_entry_t; 219 220 typedef struct pool_list { 221 pool_entry_t *pools; 222 name_entry_t *names; 223 } pool_list_t; 224 225 /* 226 * Go through and fix up any path and/or devid information for the given vdev 227 * configuration. 228 */ 229 static int 230 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 231 { 232 nvlist_t **child; 233 uint_t c, children; 234 uint64_t guid; 235 name_entry_t *ne, *best; 236 char *path; 237 238 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 239 &child, &children) == 0) { 240 for (c = 0; c < children; c++) 241 if (fix_paths(hdl, child[c], names) != 0) 242 return (-1); 243 return (0); 244 } 245 246 /* 247 * This is a leaf (file or disk) vdev. In either case, go through 248 * the name list and see if we find a matching guid. If so, replace 249 * the path and see if we can calculate a new devid. 250 * 251 * There may be multiple names associated with a particular guid, in 252 * which case we have overlapping partitions or multiple paths to the 253 * same disk. In this case we prefer to use the path name which 254 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 255 * use the lowest order device which corresponds to the first match 256 * while traversing the ZPOOL_IMPORT_PATH search path. 257 */ 258 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 259 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 260 path = NULL; 261 262 best = NULL; 263 for (ne = names; ne != NULL; ne = ne->ne_next) { 264 if (ne->ne_guid == guid) { 265 if (path == NULL) { 266 best = ne; 267 break; 268 } 269 270 if ((strlen(path) == strlen(ne->ne_name)) && 271 strncmp(path, ne->ne_name, strlen(path)) == 0) { 272 best = ne; 273 break; 274 } 275 276 if (best == NULL) { 277 best = ne; 278 continue; 279 } 280 281 /* Prefer paths with move vdev labels. */ 282 if (ne->ne_num_labels > best->ne_num_labels) { 283 best = ne; 284 continue; 285 } 286 287 /* Prefer paths earlier in the search order. */ 288 if (ne->ne_num_labels == best->ne_num_labels && 289 ne->ne_order < best->ne_order) { 290 best = ne; 291 continue; 292 } 293 } 294 } 295 296 if (best == NULL) 297 return (0); 298 299 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 300 return (-1); 301 302 update_vdev_config_dev_strs(nv); 303 304 return (0); 305 } 306 307 /* 308 * Add the given configuration to the list of known devices. 309 */ 310 static int 311 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 312 int order, int num_labels, nvlist_t *config) 313 { 314 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 315 pool_entry_t *pe; 316 vdev_entry_t *ve; 317 config_entry_t *ce; 318 name_entry_t *ne; 319 320 /* 321 * If this is a hot spare not currently in use or level 2 cache 322 * device, add it to the list of names to translate, but don't do 323 * anything else. 324 */ 325 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 326 &state) == 0 && 327 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 328 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 329 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 330 return (-1); 331 332 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 333 free(ne); 334 return (-1); 335 } 336 ne->ne_guid = vdev_guid; 337 ne->ne_order = order; 338 ne->ne_num_labels = num_labels; 339 ne->ne_next = pl->names; 340 pl->names = ne; 341 342 return (0); 343 } 344 345 /* 346 * If we have a valid config but cannot read any of these fields, then 347 * it means we have a half-initialized label. In vdev_label_init() 348 * we write a label with txg == 0 so that we can identify the device 349 * in case the user refers to the same disk later on. If we fail to 350 * create the pool, we'll be left with a label in this state 351 * which should not be considered part of a valid pool. 352 */ 353 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 354 &pool_guid) != 0 || 355 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 356 &vdev_guid) != 0 || 357 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 358 &top_guid) != 0 || 359 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 360 &txg) != 0 || txg == 0) { 361 return (0); 362 } 363 364 /* 365 * First, see if we know about this pool. If not, then add it to the 366 * list of known pools. 367 */ 368 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 369 if (pe->pe_guid == pool_guid) 370 break; 371 } 372 373 if (pe == NULL) { 374 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 375 return (-1); 376 } 377 pe->pe_guid = pool_guid; 378 pe->pe_next = pl->pools; 379 pl->pools = pe; 380 } 381 382 /* 383 * Second, see if we know about this toplevel vdev. Add it if its 384 * missing. 385 */ 386 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 387 if (ve->ve_guid == top_guid) 388 break; 389 } 390 391 if (ve == NULL) { 392 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 393 return (-1); 394 } 395 ve->ve_guid = top_guid; 396 ve->ve_next = pe->pe_vdevs; 397 pe->pe_vdevs = ve; 398 } 399 400 /* 401 * Third, see if we have a config with a matching transaction group. If 402 * so, then we do nothing. Otherwise, add it to the list of known 403 * configs. 404 */ 405 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 406 if (ce->ce_txg == txg) 407 break; 408 } 409 410 if (ce == NULL) { 411 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 412 return (-1); 413 } 414 ce->ce_txg = txg; 415 ce->ce_config = fnvlist_dup(config); 416 ce->ce_next = ve->ve_configs; 417 ve->ve_configs = ce; 418 } 419 420 /* 421 * At this point we've successfully added our config to the list of 422 * known configs. The last thing to do is add the vdev guid -> path 423 * mappings so that we can fix up the configuration as necessary before 424 * doing the import. 425 */ 426 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 427 return (-1); 428 429 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 430 free(ne); 431 return (-1); 432 } 433 434 ne->ne_guid = vdev_guid; 435 ne->ne_order = order; 436 ne->ne_num_labels = num_labels; 437 ne->ne_next = pl->names; 438 pl->names = ne; 439 440 return (0); 441 } 442 443 static int 444 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 445 boolean_t *isactive) 446 { 447 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 448 449 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 450 guid, isactive); 451 452 return (error); 453 } 454 455 static nvlist_t * 456 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 457 { 458 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 459 460 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 461 tryconfig)); 462 } 463 464 /* 465 * Determine if the vdev id is a hole in the namespace. 466 */ 467 static boolean_t 468 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 469 { 470 int c; 471 472 for (c = 0; c < holes; c++) { 473 474 /* Top-level is a hole */ 475 if (hole_array[c] == id) 476 return (B_TRUE); 477 } 478 return (B_FALSE); 479 } 480 481 /* 482 * Convert our list of pools into the definitive set of configurations. We 483 * start by picking the best config for each toplevel vdev. Once that's done, 484 * we assemble the toplevel vdevs into a full config for the pool. We make a 485 * pass to fix up any incorrect paths, and then add it to the main list to 486 * return to the user. 487 */ 488 static nvlist_t * 489 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 490 nvlist_t *policy) 491 { 492 pool_entry_t *pe; 493 vdev_entry_t *ve; 494 config_entry_t *ce; 495 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 496 nvlist_t **spares, **l2cache; 497 uint_t i, nspares, nl2cache; 498 boolean_t config_seen; 499 uint64_t best_txg; 500 char *name, *hostname = NULL; 501 uint64_t guid; 502 uint_t children = 0; 503 nvlist_t **child = NULL; 504 uint64_t *hole_array, max_id; 505 uint_t c; 506 boolean_t isactive; 507 nvlist_t *nvl; 508 boolean_t valid_top_config = B_FALSE; 509 510 if (nvlist_alloc(&ret, 0, 0) != 0) 511 goto nomem; 512 513 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 514 uint64_t id, max_txg = 0, hostid = 0; 515 uint_t holes = 0; 516 517 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 518 goto nomem; 519 config_seen = B_FALSE; 520 521 /* 522 * Iterate over all toplevel vdevs. Grab the pool configuration 523 * from the first one we find, and then go through the rest and 524 * add them as necessary to the 'vdevs' member of the config. 525 */ 526 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 527 528 /* 529 * Determine the best configuration for this vdev by 530 * selecting the config with the latest transaction 531 * group. 532 */ 533 best_txg = 0; 534 for (ce = ve->ve_configs; ce != NULL; 535 ce = ce->ce_next) { 536 537 if (ce->ce_txg > best_txg) { 538 tmp = ce->ce_config; 539 best_txg = ce->ce_txg; 540 } 541 } 542 543 /* 544 * We rely on the fact that the max txg for the 545 * pool will contain the most up-to-date information 546 * about the valid top-levels in the vdev namespace. 547 */ 548 if (best_txg > max_txg) { 549 (void) nvlist_remove(config, 550 ZPOOL_CONFIG_VDEV_CHILDREN, 551 DATA_TYPE_UINT64); 552 (void) nvlist_remove(config, 553 ZPOOL_CONFIG_HOLE_ARRAY, 554 DATA_TYPE_UINT64_ARRAY); 555 556 max_txg = best_txg; 557 hole_array = NULL; 558 holes = 0; 559 max_id = 0; 560 valid_top_config = B_FALSE; 561 562 if (nvlist_lookup_uint64(tmp, 563 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 564 verify(nvlist_add_uint64(config, 565 ZPOOL_CONFIG_VDEV_CHILDREN, 566 max_id) == 0); 567 valid_top_config = B_TRUE; 568 } 569 570 if (nvlist_lookup_uint64_array(tmp, 571 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 572 &holes) == 0) { 573 verify(nvlist_add_uint64_array(config, 574 ZPOOL_CONFIG_HOLE_ARRAY, 575 hole_array, holes) == 0); 576 } 577 } 578 579 if (!config_seen) { 580 /* 581 * Copy the relevant pieces of data to the pool 582 * configuration: 583 * 584 * version 585 * pool guid 586 * name 587 * comment (if available) 588 * compatibility features (if available) 589 * pool state 590 * hostid (if available) 591 * hostname (if available) 592 */ 593 uint64_t state, version; 594 char *comment = NULL; 595 char *compatibility = NULL; 596 597 version = fnvlist_lookup_uint64(tmp, 598 ZPOOL_CONFIG_VERSION); 599 fnvlist_add_uint64(config, 600 ZPOOL_CONFIG_VERSION, version); 601 guid = fnvlist_lookup_uint64(tmp, 602 ZPOOL_CONFIG_POOL_GUID); 603 fnvlist_add_uint64(config, 604 ZPOOL_CONFIG_POOL_GUID, guid); 605 name = fnvlist_lookup_string(tmp, 606 ZPOOL_CONFIG_POOL_NAME); 607 fnvlist_add_string(config, 608 ZPOOL_CONFIG_POOL_NAME, name); 609 610 if (nvlist_lookup_string(tmp, 611 ZPOOL_CONFIG_COMMENT, &comment) == 0) 612 fnvlist_add_string(config, 613 ZPOOL_CONFIG_COMMENT, comment); 614 615 if (nvlist_lookup_string(tmp, 616 ZPOOL_CONFIG_COMPATIBILITY, 617 &compatibility) == 0) 618 fnvlist_add_string(config, 619 ZPOOL_CONFIG_COMPATIBILITY, 620 compatibility); 621 622 state = fnvlist_lookup_uint64(tmp, 623 ZPOOL_CONFIG_POOL_STATE); 624 fnvlist_add_uint64(config, 625 ZPOOL_CONFIG_POOL_STATE, state); 626 627 hostid = 0; 628 if (nvlist_lookup_uint64(tmp, 629 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 630 fnvlist_add_uint64(config, 631 ZPOOL_CONFIG_HOSTID, hostid); 632 hostname = fnvlist_lookup_string(tmp, 633 ZPOOL_CONFIG_HOSTNAME); 634 fnvlist_add_string(config, 635 ZPOOL_CONFIG_HOSTNAME, hostname); 636 } 637 638 config_seen = B_TRUE; 639 } 640 641 /* 642 * Add this top-level vdev to the child array. 643 */ 644 verify(nvlist_lookup_nvlist(tmp, 645 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 646 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 647 &id) == 0); 648 649 if (id >= children) { 650 nvlist_t **newchild; 651 652 newchild = zutil_alloc(hdl, (id + 1) * 653 sizeof (nvlist_t *)); 654 if (newchild == NULL) 655 goto nomem; 656 657 for (c = 0; c < children; c++) 658 newchild[c] = child[c]; 659 660 free(child); 661 child = newchild; 662 children = id + 1; 663 } 664 if (nvlist_dup(nvtop, &child[id], 0) != 0) 665 goto nomem; 666 667 } 668 669 /* 670 * If we have information about all the top-levels then 671 * clean up the nvlist which we've constructed. This 672 * means removing any extraneous devices that are 673 * beyond the valid range or adding devices to the end 674 * of our array which appear to be missing. 675 */ 676 if (valid_top_config) { 677 if (max_id < children) { 678 for (c = max_id; c < children; c++) 679 nvlist_free(child[c]); 680 children = max_id; 681 } else if (max_id > children) { 682 nvlist_t **newchild; 683 684 newchild = zutil_alloc(hdl, (max_id) * 685 sizeof (nvlist_t *)); 686 if (newchild == NULL) 687 goto nomem; 688 689 for (c = 0; c < children; c++) 690 newchild[c] = child[c]; 691 692 free(child); 693 child = newchild; 694 children = max_id; 695 } 696 } 697 698 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 699 &guid) == 0); 700 701 /* 702 * The vdev namespace may contain holes as a result of 703 * device removal. We must add them back into the vdev 704 * tree before we process any missing devices. 705 */ 706 if (holes > 0) { 707 ASSERT(valid_top_config); 708 709 for (c = 0; c < children; c++) { 710 nvlist_t *holey; 711 712 if (child[c] != NULL || 713 !vdev_is_hole(hole_array, holes, c)) 714 continue; 715 716 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 717 0) != 0) 718 goto nomem; 719 720 /* 721 * Holes in the namespace are treated as 722 * "hole" top-level vdevs and have a 723 * special flag set on them. 724 */ 725 if (nvlist_add_string(holey, 726 ZPOOL_CONFIG_TYPE, 727 VDEV_TYPE_HOLE) != 0 || 728 nvlist_add_uint64(holey, 729 ZPOOL_CONFIG_ID, c) != 0 || 730 nvlist_add_uint64(holey, 731 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 732 nvlist_free(holey); 733 goto nomem; 734 } 735 child[c] = holey; 736 } 737 } 738 739 /* 740 * Look for any missing top-level vdevs. If this is the case, 741 * create a faked up 'missing' vdev as a placeholder. We cannot 742 * simply compress the child array, because the kernel performs 743 * certain checks to make sure the vdev IDs match their location 744 * in the configuration. 745 */ 746 for (c = 0; c < children; c++) { 747 if (child[c] == NULL) { 748 nvlist_t *missing; 749 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 750 0) != 0) 751 goto nomem; 752 if (nvlist_add_string(missing, 753 ZPOOL_CONFIG_TYPE, 754 VDEV_TYPE_MISSING) != 0 || 755 nvlist_add_uint64(missing, 756 ZPOOL_CONFIG_ID, c) != 0 || 757 nvlist_add_uint64(missing, 758 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 759 nvlist_free(missing); 760 goto nomem; 761 } 762 child[c] = missing; 763 } 764 } 765 766 /* 767 * Put all of this pool's top-level vdevs into a root vdev. 768 */ 769 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 770 goto nomem; 771 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 772 VDEV_TYPE_ROOT) != 0 || 773 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 774 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 775 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 776 (const nvlist_t **)child, children) != 0) { 777 nvlist_free(nvroot); 778 goto nomem; 779 } 780 781 for (c = 0; c < children; c++) 782 nvlist_free(child[c]); 783 free(child); 784 children = 0; 785 child = NULL; 786 787 /* 788 * Go through and fix up any paths and/or devids based on our 789 * known list of vdev GUID -> path mappings. 790 */ 791 if (fix_paths(hdl, nvroot, pl->names) != 0) { 792 nvlist_free(nvroot); 793 goto nomem; 794 } 795 796 /* 797 * Add the root vdev to this pool's configuration. 798 */ 799 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 800 nvroot) != 0) { 801 nvlist_free(nvroot); 802 goto nomem; 803 } 804 nvlist_free(nvroot); 805 806 /* 807 * zdb uses this path to report on active pools that were 808 * imported or created using -R. 809 */ 810 if (active_ok) 811 goto add_pool; 812 813 /* 814 * Determine if this pool is currently active, in which case we 815 * can't actually import it. 816 */ 817 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 818 &name) == 0); 819 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 820 &guid) == 0); 821 822 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 823 goto error; 824 825 if (isactive) { 826 nvlist_free(config); 827 config = NULL; 828 continue; 829 } 830 831 if (policy != NULL) { 832 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 833 policy) != 0) 834 goto nomem; 835 } 836 837 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 838 nvlist_free(config); 839 config = NULL; 840 continue; 841 } 842 843 nvlist_free(config); 844 config = nvl; 845 846 /* 847 * Go through and update the paths for spares, now that we have 848 * them. 849 */ 850 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 851 &nvroot) == 0); 852 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 853 &spares, &nspares) == 0) { 854 for (i = 0; i < nspares; i++) { 855 if (fix_paths(hdl, spares[i], pl->names) != 0) 856 goto nomem; 857 } 858 } 859 860 /* 861 * Update the paths for l2cache devices. 862 */ 863 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 864 &l2cache, &nl2cache) == 0) { 865 for (i = 0; i < nl2cache; i++) { 866 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 867 goto nomem; 868 } 869 } 870 871 /* 872 * Restore the original information read from the actual label. 873 */ 874 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 875 DATA_TYPE_UINT64); 876 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 877 DATA_TYPE_STRING); 878 if (hostid != 0) { 879 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 880 hostid) == 0); 881 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 882 hostname) == 0); 883 } 884 885 add_pool: 886 /* 887 * Add this pool to the list of configs. 888 */ 889 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 890 &name) == 0); 891 892 if (nvlist_add_nvlist(ret, name, config) != 0) 893 goto nomem; 894 895 nvlist_free(config); 896 config = NULL; 897 } 898 899 return (ret); 900 901 nomem: 902 (void) zutil_no_memory(hdl); 903 error: 904 nvlist_free(config); 905 nvlist_free(ret); 906 for (c = 0; c < children; c++) 907 nvlist_free(child[c]); 908 free(child); 909 910 return (NULL); 911 } 912 913 /* 914 * Return the offset of the given label. 915 */ 916 static uint64_t 917 label_offset(uint64_t size, int l) 918 { 919 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 920 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 921 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 922 } 923 924 /* 925 * The same description applies as to zpool_read_label below, 926 * except here we do it without aio, presumably because an aio call 927 * errored out in a way we think not using it could circumvent. 928 */ 929 static int 930 zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels) 931 { 932 struct stat64 statbuf; 933 int l, count = 0; 934 vdev_phys_t *label; 935 nvlist_t *expected_config = NULL; 936 uint64_t expected_guid = 0, size; 937 938 *config = NULL; 939 940 if (fstat64_blk(fd, &statbuf) == -1) 941 return (0); 942 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 943 944 label = (vdev_phys_t *)umem_alloc_aligned(sizeof (*label), PAGESIZE, 945 UMEM_DEFAULT); 946 if (label == NULL) 947 return (-1); 948 949 for (l = 0; l < VDEV_LABELS; l++) { 950 uint64_t state, guid, txg; 951 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 952 953 if (pread64(fd, label, sizeof (vdev_phys_t), 954 offset) != sizeof (vdev_phys_t)) 955 continue; 956 957 if (nvlist_unpack(label->vp_nvlist, 958 sizeof (label->vp_nvlist), config, 0) != 0) 959 continue; 960 961 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 962 &guid) != 0 || guid == 0) { 963 nvlist_free(*config); 964 continue; 965 } 966 967 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 968 &state) != 0 || state > POOL_STATE_L2CACHE) { 969 nvlist_free(*config); 970 continue; 971 } 972 973 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 974 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 975 &txg) != 0 || txg == 0)) { 976 nvlist_free(*config); 977 continue; 978 } 979 980 if (expected_guid) { 981 if (expected_guid == guid) 982 count++; 983 984 nvlist_free(*config); 985 } else { 986 expected_config = *config; 987 expected_guid = guid; 988 count++; 989 } 990 } 991 992 if (num_labels != NULL) 993 *num_labels = count; 994 995 umem_free_aligned(label, sizeof (*label)); 996 *config = expected_config; 997 998 return (0); 999 } 1000 1001 /* 1002 * Given a file descriptor, read the label information and return an nvlist 1003 * describing the configuration, if there is one. The number of valid 1004 * labels found will be returned in num_labels when non-NULL. 1005 */ 1006 int 1007 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 1008 { 1009 #ifndef HAVE_AIO_H 1010 return (zpool_read_label_slow(fd, config, num_labels)); 1011 #else 1012 struct stat64 statbuf; 1013 struct aiocb aiocbs[VDEV_LABELS]; 1014 struct aiocb *aiocbps[VDEV_LABELS]; 1015 vdev_phys_t *labels; 1016 nvlist_t *expected_config = NULL; 1017 uint64_t expected_guid = 0, size; 1018 int error, l, count = 0; 1019 1020 *config = NULL; 1021 1022 if (fstat64_blk(fd, &statbuf) == -1) 1023 return (0); 1024 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1025 1026 labels = (vdev_phys_t *)umem_alloc_aligned( 1027 VDEV_LABELS * sizeof (*labels), PAGESIZE, UMEM_DEFAULT); 1028 if (labels == NULL) 1029 return (-1); 1030 1031 memset(aiocbs, 0, sizeof (aiocbs)); 1032 for (l = 0; l < VDEV_LABELS; l++) { 1033 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 1034 1035 aiocbs[l].aio_fildes = fd; 1036 aiocbs[l].aio_offset = offset; 1037 aiocbs[l].aio_buf = &labels[l]; 1038 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 1039 aiocbs[l].aio_lio_opcode = LIO_READ; 1040 aiocbps[l] = &aiocbs[l]; 1041 } 1042 1043 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 1044 int saved_errno = errno; 1045 boolean_t do_slow = B_FALSE; 1046 error = -1; 1047 1048 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 1049 /* 1050 * A portion of the requests may have been submitted. 1051 * Clean them up. 1052 */ 1053 for (l = 0; l < VDEV_LABELS; l++) { 1054 errno = 0; 1055 switch (aio_error(&aiocbs[l])) { 1056 case EINVAL: 1057 break; 1058 case EINPROGRESS: 1059 // This shouldn't be possible to 1060 // encounter, die if we do. 1061 ASSERT(B_FALSE); 1062 zfs_fallthrough; 1063 case EOPNOTSUPP: 1064 case ENOSYS: 1065 do_slow = B_TRUE; 1066 zfs_fallthrough; 1067 case 0: 1068 default: 1069 (void) aio_return(&aiocbs[l]); 1070 } 1071 } 1072 } 1073 if (do_slow) { 1074 /* 1075 * At least some IO involved access unsafe-for-AIO 1076 * files. Let's try again, without AIO this time. 1077 */ 1078 error = zpool_read_label_slow(fd, config, num_labels); 1079 saved_errno = errno; 1080 } 1081 umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels)); 1082 errno = saved_errno; 1083 return (error); 1084 } 1085 1086 for (l = 0; l < VDEV_LABELS; l++) { 1087 uint64_t state, guid, txg; 1088 1089 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 1090 continue; 1091 1092 if (nvlist_unpack(labels[l].vp_nvlist, 1093 sizeof (labels[l].vp_nvlist), config, 0) != 0) 1094 continue; 1095 1096 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 1097 &guid) != 0 || guid == 0) { 1098 nvlist_free(*config); 1099 continue; 1100 } 1101 1102 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 1103 &state) != 0 || state > POOL_STATE_L2CACHE) { 1104 nvlist_free(*config); 1105 continue; 1106 } 1107 1108 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1109 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 1110 &txg) != 0 || txg == 0)) { 1111 nvlist_free(*config); 1112 continue; 1113 } 1114 1115 if (expected_guid) { 1116 if (expected_guid == guid) 1117 count++; 1118 1119 nvlist_free(*config); 1120 } else { 1121 expected_config = *config; 1122 expected_guid = guid; 1123 count++; 1124 } 1125 } 1126 1127 if (num_labels != NULL) 1128 *num_labels = count; 1129 1130 umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels)); 1131 *config = expected_config; 1132 1133 return (0); 1134 #endif 1135 } 1136 1137 /* 1138 * Sorted by full path and then vdev guid to allow for multiple entries with 1139 * the same full path name. This is required because it's possible to 1140 * have multiple block devices with labels that refer to the same 1141 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 1142 * entries need to be added to the cache. Scenarios where this can occur 1143 * include overwritten pool labels, devices which are visible from multiple 1144 * hosts and multipath devices. 1145 */ 1146 int 1147 slice_cache_compare(const void *arg1, const void *arg2) 1148 { 1149 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1150 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1151 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1152 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1153 int rv; 1154 1155 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1156 if (rv) 1157 return (rv); 1158 1159 return (TREE_CMP(guid1, guid2)); 1160 } 1161 1162 static int 1163 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1164 uint64_t vdev_guid, char **path, char **devid) 1165 { 1166 nvlist_t **child; 1167 uint_t c, children; 1168 uint64_t guid; 1169 char *val; 1170 int error; 1171 1172 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1173 &child, &children) == 0) { 1174 for (c = 0; c < children; c++) { 1175 error = label_paths_impl(hdl, child[c], 1176 pool_guid, vdev_guid, path, devid); 1177 if (error) 1178 return (error); 1179 } 1180 return (0); 1181 } 1182 1183 if (nvroot == NULL) 1184 return (0); 1185 1186 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1187 if ((error != 0) || (guid != vdev_guid)) 1188 return (0); 1189 1190 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1191 if (error == 0) 1192 *path = val; 1193 1194 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1195 if (error == 0) 1196 *devid = val; 1197 1198 return (0); 1199 } 1200 1201 /* 1202 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1203 * and store these strings as config_path and devid_path respectively. 1204 * The returned pointers are only valid as long as label remains valid. 1205 */ 1206 int 1207 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1208 { 1209 nvlist_t *nvroot; 1210 uint64_t pool_guid; 1211 uint64_t vdev_guid; 1212 1213 *path = NULL; 1214 *devid = NULL; 1215 1216 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1217 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1218 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1219 return (ENOENT); 1220 1221 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1222 devid)); 1223 } 1224 1225 static void 1226 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1227 avl_tree_t *cache, const char *path, const char *name, int order) 1228 { 1229 avl_index_t where; 1230 rdsk_node_t *slice; 1231 1232 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1233 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1234 free(slice); 1235 return; 1236 } 1237 slice->rn_vdev_guid = 0; 1238 slice->rn_lock = lock; 1239 slice->rn_avl = cache; 1240 slice->rn_hdl = hdl; 1241 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1242 slice->rn_labelpaths = B_FALSE; 1243 1244 pthread_mutex_lock(lock); 1245 if (avl_find(cache, slice, &where)) { 1246 free(slice->rn_name); 1247 free(slice); 1248 } else { 1249 avl_insert(cache, slice, where); 1250 } 1251 pthread_mutex_unlock(lock); 1252 } 1253 1254 static int 1255 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1256 avl_tree_t *cache, const char *dir, int order) 1257 { 1258 int error; 1259 char path[MAXPATHLEN]; 1260 struct dirent64 *dp; 1261 DIR *dirp; 1262 1263 if (realpath(dir, path) == NULL) { 1264 error = errno; 1265 if (error == ENOENT) 1266 return (0); 1267 1268 zutil_error_aux(hdl, "%s", strerror(error)); 1269 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN, 1270 "cannot resolve path '%s'"), dir); 1271 return (error); 1272 } 1273 1274 dirp = opendir(path); 1275 if (dirp == NULL) { 1276 error = errno; 1277 zutil_error_aux(hdl, "%s", strerror(error)); 1278 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN, 1279 "cannot open '%s'"), path); 1280 return (error); 1281 } 1282 1283 while ((dp = readdir64(dirp)) != NULL) { 1284 const char *name = dp->d_name; 1285 if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) 1286 continue; 1287 1288 switch (dp->d_type) { 1289 case DT_UNKNOWN: 1290 case DT_BLK: 1291 case DT_LNK: 1292 #ifdef __FreeBSD__ 1293 case DT_CHR: 1294 #endif 1295 case DT_REG: 1296 break; 1297 default: 1298 continue; 1299 } 1300 1301 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1302 order); 1303 } 1304 1305 (void) closedir(dirp); 1306 return (0); 1307 } 1308 1309 static int 1310 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1311 avl_tree_t *cache, const char *dir, int order) 1312 { 1313 int error = 0; 1314 char path[MAXPATHLEN]; 1315 char *d = NULL; 1316 ssize_t dl; 1317 const char *dpath, *name; 1318 1319 /* 1320 * Separate the directory and the basename. 1321 * We do this so that we can get the realpath of 1322 * the directory. We don't get the realpath on the 1323 * whole path because if it's a symlink, we want the 1324 * path of the symlink not where it points to. 1325 */ 1326 name = zfs_basename(dir); 1327 if ((dl = zfs_dirnamelen(dir)) == -1) 1328 dpath = "."; 1329 else 1330 dpath = d = zutil_strndup(hdl, dir, dl); 1331 1332 if (realpath(dpath, path) == NULL) { 1333 error = errno; 1334 if (error == ENOENT) { 1335 error = 0; 1336 goto out; 1337 } 1338 1339 zutil_error_aux(hdl, "%s", strerror(error)); 1340 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN, 1341 "cannot resolve path '%s'"), dir); 1342 goto out; 1343 } 1344 1345 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1346 1347 out: 1348 free(d); 1349 return (error); 1350 } 1351 1352 /* 1353 * Scan a list of directories for zfs devices. 1354 */ 1355 static int 1356 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1357 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1358 { 1359 avl_tree_t *cache; 1360 rdsk_node_t *slice; 1361 void *cookie; 1362 int i, error; 1363 1364 *slice_cache = NULL; 1365 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1366 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1367 offsetof(rdsk_node_t, rn_node)); 1368 1369 for (i = 0; i < dirs; i++) { 1370 struct stat sbuf; 1371 1372 if (stat(dir[i], &sbuf) != 0) { 1373 error = errno; 1374 if (error == ENOENT) 1375 continue; 1376 1377 zutil_error_aux(hdl, "%s", strerror(error)); 1378 (void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext( 1379 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1380 goto error; 1381 } 1382 1383 /* 1384 * If dir[i] is a directory, we walk through it and add all 1385 * the entries to the cache. If it's not a directory, we just 1386 * add it to the cache. 1387 */ 1388 if (S_ISDIR(sbuf.st_mode)) { 1389 if ((error = zpool_find_import_scan_dir(hdl, lock, 1390 cache, dir[i], i)) != 0) 1391 goto error; 1392 } else { 1393 if ((error = zpool_find_import_scan_path(hdl, lock, 1394 cache, dir[i], i)) != 0) 1395 goto error; 1396 } 1397 } 1398 1399 *slice_cache = cache; 1400 return (0); 1401 1402 error: 1403 cookie = NULL; 1404 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1405 free(slice->rn_name); 1406 free(slice); 1407 } 1408 free(cache); 1409 1410 return (error); 1411 } 1412 1413 /* 1414 * Given a list of directories to search, find all pools stored on disk. This 1415 * includes partial pools which are not available to import. If no args are 1416 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1417 * poolname or guid (but not both) are provided by the caller when trying 1418 * to import a specific pool. 1419 */ 1420 static nvlist_t * 1421 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg, 1422 pthread_mutex_t *lock, avl_tree_t *cache) 1423 { 1424 (void) lock; 1425 nvlist_t *ret = NULL; 1426 pool_list_t pools = { 0 }; 1427 pool_entry_t *pe, *penext; 1428 vdev_entry_t *ve, *venext; 1429 config_entry_t *ce, *cenext; 1430 name_entry_t *ne, *nenext; 1431 rdsk_node_t *slice; 1432 void *cookie; 1433 tpool_t *t; 1434 1435 verify(iarg->poolname == NULL || iarg->guid == 0); 1436 1437 /* 1438 * Create a thread pool to parallelize the process of reading and 1439 * validating labels, a large number of threads can be used due to 1440 * minimal contention. 1441 */ 1442 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1443 for (slice = avl_first(cache); slice; 1444 (slice = avl_walk(cache, slice, AVL_AFTER))) 1445 (void) tpool_dispatch(t, zpool_open_func, slice); 1446 1447 tpool_wait(t); 1448 tpool_destroy(t); 1449 1450 /* 1451 * Process the cache, filtering out any entries which are not 1452 * for the specified pool then adding matching label configs. 1453 */ 1454 cookie = NULL; 1455 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1456 if (slice->rn_config != NULL) { 1457 nvlist_t *config = slice->rn_config; 1458 boolean_t matched = B_TRUE; 1459 boolean_t aux = B_FALSE; 1460 int fd; 1461 1462 /* 1463 * Check if it's a spare or l2cache device. If it is, 1464 * we need to skip the name and guid check since they 1465 * don't exist on aux device label. 1466 */ 1467 if (iarg->poolname != NULL || iarg->guid != 0) { 1468 uint64_t state; 1469 aux = nvlist_lookup_uint64(config, 1470 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1471 (state == POOL_STATE_SPARE || 1472 state == POOL_STATE_L2CACHE); 1473 } 1474 1475 if (iarg->poolname != NULL && !aux) { 1476 char *pname; 1477 1478 matched = nvlist_lookup_string(config, 1479 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1480 strcmp(iarg->poolname, pname) == 0; 1481 } else if (iarg->guid != 0 && !aux) { 1482 uint64_t this_guid; 1483 1484 matched = nvlist_lookup_uint64(config, 1485 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1486 iarg->guid == this_guid; 1487 } 1488 if (matched) { 1489 /* 1490 * Verify all remaining entries can be opened 1491 * exclusively. This will prune all underlying 1492 * multipath devices which otherwise could 1493 * result in the vdev appearing as UNAVAIL. 1494 * 1495 * Under zdb, this step isn't required and 1496 * would prevent a zdb -e of active pools with 1497 * no cachefile. 1498 */ 1499 fd = open(slice->rn_name, 1500 O_RDONLY | O_EXCL | O_CLOEXEC); 1501 if (fd >= 0 || iarg->can_be_active) { 1502 if (fd >= 0) 1503 close(fd); 1504 add_config(hdl, &pools, 1505 slice->rn_name, slice->rn_order, 1506 slice->rn_num_labels, config); 1507 } 1508 } 1509 nvlist_free(config); 1510 } 1511 free(slice->rn_name); 1512 free(slice); 1513 } 1514 avl_destroy(cache); 1515 free(cache); 1516 1517 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1518 1519 for (pe = pools.pools; pe != NULL; pe = penext) { 1520 penext = pe->pe_next; 1521 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1522 venext = ve->ve_next; 1523 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1524 cenext = ce->ce_next; 1525 nvlist_free(ce->ce_config); 1526 free(ce); 1527 } 1528 free(ve); 1529 } 1530 free(pe); 1531 } 1532 1533 for (ne = pools.names; ne != NULL; ne = nenext) { 1534 nenext = ne->ne_next; 1535 free(ne->ne_name); 1536 free(ne); 1537 } 1538 1539 return (ret); 1540 } 1541 1542 /* 1543 * Given a config, discover the paths for the devices which 1544 * exist in the config. 1545 */ 1546 static int 1547 discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv, 1548 avl_tree_t *cache, pthread_mutex_t *lock) 1549 { 1550 char *path = NULL; 1551 ssize_t dl; 1552 uint_t children; 1553 nvlist_t **child; 1554 1555 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1556 &child, &children) == 0) { 1557 for (int c = 0; c < children; c++) { 1558 discover_cached_paths(hdl, child[c], cache, lock); 1559 } 1560 } 1561 1562 /* 1563 * Once we have the path, we need to add the directory to 1564 * our directory cache. 1565 */ 1566 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { 1567 if ((dl = zfs_dirnamelen(path)) == -1) 1568 path = (char *)"."; 1569 else 1570 path[dl] = '\0'; 1571 return (zpool_find_import_scan_dir(hdl, lock, cache, 1572 path, 0)); 1573 } 1574 return (0); 1575 } 1576 1577 /* 1578 * Given a cache file, return the contents as a list of importable pools. 1579 * poolname or guid (but not both) are provided by the caller when trying 1580 * to import a specific pool. 1581 */ 1582 static nvlist_t * 1583 zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg) 1584 { 1585 char *buf; 1586 int fd; 1587 struct stat64 statbuf; 1588 nvlist_t *raw, *src, *dst; 1589 nvlist_t *pools; 1590 nvpair_t *elem; 1591 char *name; 1592 uint64_t this_guid; 1593 boolean_t active; 1594 1595 verify(iarg->poolname == NULL || iarg->guid == 0); 1596 1597 if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) { 1598 zutil_error_aux(hdl, "%s", strerror(errno)); 1599 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN, 1600 "failed to open cache file")); 1601 return (NULL); 1602 } 1603 1604 if (fstat64(fd, &statbuf) != 0) { 1605 zutil_error_aux(hdl, "%s", strerror(errno)); 1606 (void) close(fd); 1607 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN, 1608 "failed to get size of cache file")); 1609 return (NULL); 1610 } 1611 1612 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1613 (void) close(fd); 1614 return (NULL); 1615 } 1616 1617 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1618 (void) close(fd); 1619 free(buf); 1620 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN, 1621 "failed to read cache file contents")); 1622 return (NULL); 1623 } 1624 1625 (void) close(fd); 1626 1627 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1628 free(buf); 1629 (void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN, 1630 "invalid or corrupt cache file contents")); 1631 return (NULL); 1632 } 1633 1634 free(buf); 1635 1636 /* 1637 * Go through and get the current state of the pools and refresh their 1638 * state. 1639 */ 1640 if (nvlist_alloc(&pools, 0, 0) != 0) { 1641 (void) zutil_no_memory(hdl); 1642 nvlist_free(raw); 1643 return (NULL); 1644 } 1645 1646 elem = NULL; 1647 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1648 src = fnvpair_value_nvlist(elem); 1649 1650 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1651 if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0) 1652 continue; 1653 1654 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1655 if (iarg->guid != 0 && iarg->guid != this_guid) 1656 continue; 1657 1658 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1659 nvlist_free(raw); 1660 nvlist_free(pools); 1661 return (NULL); 1662 } 1663 1664 if (active) 1665 continue; 1666 1667 if (iarg->scan) { 1668 uint64_t saved_guid = iarg->guid; 1669 const char *saved_poolname = iarg->poolname; 1670 pthread_mutex_t lock; 1671 1672 /* 1673 * Create the device cache that will hold the 1674 * devices we will scan based on the cachefile. 1675 * This will get destroyed and freed by 1676 * zpool_find_import_impl. 1677 */ 1678 avl_tree_t *cache = zutil_alloc(hdl, 1679 sizeof (avl_tree_t)); 1680 avl_create(cache, slice_cache_compare, 1681 sizeof (rdsk_node_t), 1682 offsetof(rdsk_node_t, rn_node)); 1683 nvlist_t *nvroot = fnvlist_lookup_nvlist(src, 1684 ZPOOL_CONFIG_VDEV_TREE); 1685 1686 /* 1687 * We only want to find the pool with this_guid. 1688 * We will reset these values back later. 1689 */ 1690 iarg->guid = this_guid; 1691 iarg->poolname = NULL; 1692 1693 /* 1694 * We need to build up a cache of devices that exists 1695 * in the paths pointed to by the cachefile. This allows 1696 * us to preserve the device namespace that was 1697 * originally specified by the user but also lets us 1698 * scan devices in those directories in case they had 1699 * been renamed. 1700 */ 1701 pthread_mutex_init(&lock, NULL); 1702 discover_cached_paths(hdl, nvroot, cache, &lock); 1703 nvlist_t *nv = zpool_find_import_impl(hdl, iarg, 1704 &lock, cache); 1705 pthread_mutex_destroy(&lock); 1706 1707 /* 1708 * zpool_find_import_impl will return back 1709 * a list of pools that it found based on the 1710 * device cache. There should only be one pool 1711 * since we're looking for a specific guid. 1712 * We will use that pool to build up the final 1713 * pool nvlist which is returned back to the 1714 * caller. 1715 */ 1716 nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 1717 if (pair == NULL) 1718 continue; 1719 fnvlist_add_nvlist(pools, nvpair_name(pair), 1720 fnvpair_value_nvlist(pair)); 1721 1722 VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL); 1723 1724 iarg->guid = saved_guid; 1725 iarg->poolname = saved_poolname; 1726 continue; 1727 } 1728 1729 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1730 iarg->cachefile) != 0) { 1731 (void) zutil_no_memory(hdl); 1732 nvlist_free(raw); 1733 nvlist_free(pools); 1734 return (NULL); 1735 } 1736 1737 update_vdevs_config_dev_sysfs_path(src); 1738 1739 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1740 nvlist_free(raw); 1741 nvlist_free(pools); 1742 return (NULL); 1743 } 1744 1745 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1746 (void) zutil_no_memory(hdl); 1747 nvlist_free(dst); 1748 nvlist_free(raw); 1749 nvlist_free(pools); 1750 return (NULL); 1751 } 1752 nvlist_free(dst); 1753 } 1754 nvlist_free(raw); 1755 return (pools); 1756 } 1757 1758 static nvlist_t * 1759 zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg) 1760 { 1761 pthread_mutex_t lock; 1762 avl_tree_t *cache; 1763 nvlist_t *pools = NULL; 1764 1765 verify(iarg->poolname == NULL || iarg->guid == 0); 1766 pthread_mutex_init(&lock, NULL); 1767 1768 /* 1769 * Locate pool member vdevs by blkid or by directory scanning. 1770 * On success a newly allocated AVL tree which is populated with an 1771 * entry for each discovered vdev will be returned in the cache. 1772 * It's the caller's responsibility to consume and destroy this tree. 1773 */ 1774 if (iarg->scan || iarg->paths != 0) { 1775 size_t dirs = iarg->paths; 1776 const char * const *dir = (const char * const *)iarg->path; 1777 1778 if (dirs == 0) 1779 dir = zpool_default_search_paths(&dirs); 1780 1781 if (zpool_find_import_scan(hdl, &lock, &cache, 1782 dir, dirs) != 0) { 1783 pthread_mutex_destroy(&lock); 1784 return (NULL); 1785 } 1786 } else { 1787 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) { 1788 pthread_mutex_destroy(&lock); 1789 return (NULL); 1790 } 1791 } 1792 1793 pools = zpool_find_import_impl(hdl, iarg, &lock, cache); 1794 pthread_mutex_destroy(&lock); 1795 return (pools); 1796 } 1797 1798 1799 nvlist_t * 1800 zpool_search_import(libpc_handle_t *hdl, importargs_t *import) 1801 { 1802 nvlist_t *pools = NULL; 1803 1804 verify(import->poolname == NULL || import->guid == 0); 1805 1806 if (import->cachefile != NULL) 1807 pools = zpool_find_import_cached(hdl, import); 1808 else 1809 pools = zpool_find_import(hdl, import); 1810 1811 if ((pools == NULL || nvlist_empty(pools)) && 1812 hdl->lpc_open_access_error && geteuid() != 0) { 1813 (void) zutil_error(hdl, LPC_EACCESS, dgettext(TEXT_DOMAIN, 1814 "no pools found")); 1815 } 1816 1817 return (pools); 1818 } 1819 1820 static boolean_t 1821 pool_match(nvlist_t *cfg, char *tgt) 1822 { 1823 uint64_t v, guid = strtoull(tgt, NULL, 0); 1824 char *s; 1825 1826 if (guid != 0) { 1827 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1828 return (v == guid); 1829 } else { 1830 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1831 return (strcmp(s, tgt) == 0); 1832 } 1833 return (B_FALSE); 1834 } 1835 1836 int 1837 zpool_find_config(libpc_handle_t *hdl, const char *target, nvlist_t **configp, 1838 importargs_t *args) 1839 { 1840 nvlist_t *pools; 1841 nvlist_t *match = NULL; 1842 nvlist_t *config = NULL; 1843 char *sepp = NULL; 1844 int count = 0; 1845 char *targetdup = strdup(target); 1846 1847 if (targetdup == NULL) 1848 return (ENOMEM); 1849 1850 *configp = NULL; 1851 1852 if ((sepp = strpbrk(targetdup, "/@")) != NULL) 1853 *sepp = '\0'; 1854 1855 pools = zpool_search_import(hdl, args); 1856 1857 if (pools != NULL) { 1858 nvpair_t *elem = NULL; 1859 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1860 VERIFY0(nvpair_value_nvlist(elem, &config)); 1861 if (pool_match(config, targetdup)) { 1862 count++; 1863 if (match != NULL) { 1864 /* multiple matches found */ 1865 continue; 1866 } else { 1867 match = fnvlist_dup(config); 1868 } 1869 } 1870 } 1871 fnvlist_free(pools); 1872 } 1873 1874 if (count == 0) { 1875 free(targetdup); 1876 return (ENOENT); 1877 } 1878 1879 if (count > 1) { 1880 free(targetdup); 1881 fnvlist_free(match); 1882 return (EINVAL); 1883 } 1884 1885 *configp = match; 1886 free(targetdup); 1887 1888 return (0); 1889 } 1890 1891 /* 1892 * Internal function for iterating over the vdevs. 1893 * 1894 * For each vdev, func() will be called and will be passed 'zhp' (which is 1895 * typically the zpool_handle_t cast as a void pointer), the vdev's nvlist, and 1896 * a user-defined data pointer). 1897 * 1898 * The return values from all the func() calls will be OR'd together and 1899 * returned. 1900 */ 1901 int 1902 for_each_vdev_cb(void *zhp, nvlist_t *nv, pool_vdev_iter_f func, 1903 void *data) 1904 { 1905 nvlist_t **child; 1906 uint_t c, children; 1907 int ret = 0; 1908 int i; 1909 char *type; 1910 1911 const char *list[] = { 1912 ZPOOL_CONFIG_SPARES, 1913 ZPOOL_CONFIG_L2CACHE, 1914 ZPOOL_CONFIG_CHILDREN 1915 }; 1916 1917 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 1918 return (ret); 1919 1920 /* Don't run our function on root or indirect vdevs */ 1921 if ((strcmp(type, VDEV_TYPE_ROOT) != 0) && 1922 (strcmp(type, VDEV_TYPE_INDIRECT) != 0)) { 1923 ret |= func(zhp, nv, data); 1924 } 1925 1926 for (i = 0; i < ARRAY_SIZE(list); i++) { 1927 if (nvlist_lookup_nvlist_array(nv, list[i], &child, 1928 &children) == 0) { 1929 for (c = 0; c < children; c++) { 1930 uint64_t ishole = 0; 1931 1932 (void) nvlist_lookup_uint64(child[c], 1933 ZPOOL_CONFIG_IS_HOLE, &ishole); 1934 1935 if (ishole) 1936 continue; 1937 1938 ret |= for_each_vdev_cb(zhp, child[c], 1939 func, data); 1940 } 1941 } 1942 } 1943 1944 return (ret); 1945 } 1946 1947 /* 1948 * Given an ZPOOL_CONFIG_VDEV_TREE nvpair, iterate over all the vdevs, calling 1949 * func() for each one. func() is passed the vdev's nvlist and an optional 1950 * user-defined 'data' pointer. 1951 */ 1952 int 1953 for_each_vdev_in_nvlist(nvlist_t *nvroot, pool_vdev_iter_f func, void *data) 1954 { 1955 return (for_each_vdev_cb(NULL, nvroot, func, data)); 1956 } 1957