1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <libgen.h> 30 #include <poll.h> 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <string.h> 34 #include <sys/crypto/icp.h> 35 #include <sys/processor.h> 36 #include <sys/rrwlock.h> 37 #include <sys/spa.h> 38 #include <sys/stat.h> 39 #include <sys/systeminfo.h> 40 #include <sys/time.h> 41 #include <sys/utsname.h> 42 #include <sys/zfs_context.h> 43 #include <sys/zfs_onexit.h> 44 #include <sys/zstd/zstd.h> 45 #include <sys/zvol.h> 46 #include <zfs_fletcher.h> 47 #include <zlib.h> 48 49 /* 50 * Emulation of kernel services in userland. 51 */ 52 53 uint64_t physmem; 54 char hw_serial[HW_HOSTID_LEN]; 55 struct utsname hw_utsname; 56 57 /* If set, all blocks read will be copied to the specified directory. */ 58 char *vn_dumpdir = NULL; 59 60 /* this only exists to have its address taken */ 61 struct proc p0; 62 63 /* 64 * ========================================================================= 65 * threads 66 * ========================================================================= 67 * 68 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While 69 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for 70 * the expected stack depth while small enough to avoid exhausting address 71 * space with high thread counts. 72 */ 73 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768) 74 #define TS_STACK_MAX (256 * 1024) 75 76 /*ARGSUSED*/ 77 kthread_t * 78 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state) 79 { 80 pthread_attr_t attr; 81 pthread_t tid; 82 char *stkstr; 83 int detachstate = PTHREAD_CREATE_DETACHED; 84 85 VERIFY0(pthread_attr_init(&attr)); 86 87 if (state & TS_JOINABLE) 88 detachstate = PTHREAD_CREATE_JOINABLE; 89 90 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); 91 92 /* 93 * We allow the default stack size in user space to be specified by 94 * setting the ZFS_STACK_SIZE environment variable. This allows us 95 * the convenience of observing and debugging stack overruns in 96 * user space. Explicitly specified stack sizes will be honored. 97 * The usage of ZFS_STACK_SIZE is discussed further in the 98 * ENVIRONMENT VARIABLES sections of the ztest(1) man page. 99 */ 100 if (stksize == 0) { 101 stkstr = getenv("ZFS_STACK_SIZE"); 102 103 if (stkstr == NULL) 104 stksize = TS_STACK_MAX; 105 else 106 stksize = MAX(atoi(stkstr), TS_STACK_MIN); 107 } 108 109 VERIFY3S(stksize, >, 0); 110 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); 111 112 /* 113 * If this ever fails, it may be because the stack size is not a 114 * multiple of system page size. 115 */ 116 VERIFY0(pthread_attr_setstacksize(&attr, stksize)); 117 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); 118 119 VERIFY0(pthread_create(&tid, &attr, (void *(*)(void *))func, arg)); 120 VERIFY0(pthread_attr_destroy(&attr)); 121 122 return ((void *)(uintptr_t)tid); 123 } 124 125 /* 126 * ========================================================================= 127 * kstats 128 * ========================================================================= 129 */ 130 /*ARGSUSED*/ 131 kstat_t * 132 kstat_create(const char *module, int instance, const char *name, 133 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 134 { 135 return (NULL); 136 } 137 138 /*ARGSUSED*/ 139 void 140 kstat_install(kstat_t *ksp) 141 {} 142 143 /*ARGSUSED*/ 144 void 145 kstat_delete(kstat_t *ksp) 146 {} 147 148 /*ARGSUSED*/ 149 void 150 kstat_waitq_enter(kstat_io_t *kiop) 151 {} 152 153 /*ARGSUSED*/ 154 void 155 kstat_waitq_exit(kstat_io_t *kiop) 156 {} 157 158 /*ARGSUSED*/ 159 void 160 kstat_runq_enter(kstat_io_t *kiop) 161 {} 162 163 /*ARGSUSED*/ 164 void 165 kstat_runq_exit(kstat_io_t *kiop) 166 {} 167 168 /*ARGSUSED*/ 169 void 170 kstat_waitq_to_runq(kstat_io_t *kiop) 171 {} 172 173 /*ARGSUSED*/ 174 void 175 kstat_runq_back_to_waitq(kstat_io_t *kiop) 176 {} 177 178 void 179 kstat_set_raw_ops(kstat_t *ksp, 180 int (*headers)(char *buf, size_t size), 181 int (*data)(char *buf, size_t size, void *data), 182 void *(*addr)(kstat_t *ksp, loff_t index)) 183 {} 184 185 /* 186 * ========================================================================= 187 * mutexes 188 * ========================================================================= 189 */ 190 191 void 192 mutex_init(kmutex_t *mp, char *name, int type, void *cookie) 193 { 194 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL)); 195 memset(&mp->m_owner, 0, sizeof (pthread_t)); 196 } 197 198 void 199 mutex_destroy(kmutex_t *mp) 200 { 201 VERIFY0(pthread_mutex_destroy(&mp->m_lock)); 202 } 203 204 void 205 mutex_enter(kmutex_t *mp) 206 { 207 VERIFY0(pthread_mutex_lock(&mp->m_lock)); 208 mp->m_owner = pthread_self(); 209 } 210 211 int 212 mutex_tryenter(kmutex_t *mp) 213 { 214 int error; 215 216 error = pthread_mutex_trylock(&mp->m_lock); 217 if (error == 0) { 218 mp->m_owner = pthread_self(); 219 return (1); 220 } else { 221 VERIFY3S(error, ==, EBUSY); 222 return (0); 223 } 224 } 225 226 void 227 mutex_exit(kmutex_t *mp) 228 { 229 memset(&mp->m_owner, 0, sizeof (pthread_t)); 230 VERIFY0(pthread_mutex_unlock(&mp->m_lock)); 231 } 232 233 /* 234 * ========================================================================= 235 * rwlocks 236 * ========================================================================= 237 */ 238 239 void 240 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 241 { 242 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL)); 243 rwlp->rw_readers = 0; 244 rwlp->rw_owner = 0; 245 } 246 247 void 248 rw_destroy(krwlock_t *rwlp) 249 { 250 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock)); 251 } 252 253 void 254 rw_enter(krwlock_t *rwlp, krw_t rw) 255 { 256 if (rw == RW_READER) { 257 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock)); 258 atomic_inc_uint(&rwlp->rw_readers); 259 } else { 260 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock)); 261 rwlp->rw_owner = pthread_self(); 262 } 263 } 264 265 void 266 rw_exit(krwlock_t *rwlp) 267 { 268 if (RW_READ_HELD(rwlp)) 269 atomic_dec_uint(&rwlp->rw_readers); 270 else 271 rwlp->rw_owner = 0; 272 273 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock)); 274 } 275 276 int 277 rw_tryenter(krwlock_t *rwlp, krw_t rw) 278 { 279 int error; 280 281 if (rw == RW_READER) 282 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock); 283 else 284 error = pthread_rwlock_trywrlock(&rwlp->rw_lock); 285 286 if (error == 0) { 287 if (rw == RW_READER) 288 atomic_inc_uint(&rwlp->rw_readers); 289 else 290 rwlp->rw_owner = pthread_self(); 291 292 return (1); 293 } 294 295 VERIFY3S(error, ==, EBUSY); 296 297 return (0); 298 } 299 300 /* ARGSUSED */ 301 uint32_t 302 zone_get_hostid(void *zonep) 303 { 304 /* 305 * We're emulating the system's hostid in userland. 306 */ 307 return (strtoul(hw_serial, NULL, 10)); 308 } 309 310 int 311 rw_tryupgrade(krwlock_t *rwlp) 312 { 313 return (0); 314 } 315 316 /* 317 * ========================================================================= 318 * condition variables 319 * ========================================================================= 320 */ 321 322 void 323 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 324 { 325 VERIFY0(pthread_cond_init(cv, NULL)); 326 } 327 328 void 329 cv_destroy(kcondvar_t *cv) 330 { 331 VERIFY0(pthread_cond_destroy(cv)); 332 } 333 334 void 335 cv_wait(kcondvar_t *cv, kmutex_t *mp) 336 { 337 memset(&mp->m_owner, 0, sizeof (pthread_t)); 338 VERIFY0(pthread_cond_wait(cv, &mp->m_lock)); 339 mp->m_owner = pthread_self(); 340 } 341 342 int 343 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp) 344 { 345 cv_wait(cv, mp); 346 return (1); 347 } 348 349 int 350 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 351 { 352 int error; 353 struct timeval tv; 354 struct timespec ts; 355 clock_t delta; 356 357 delta = abstime - ddi_get_lbolt(); 358 if (delta <= 0) 359 return (-1); 360 361 VERIFY(gettimeofday(&tv, NULL) == 0); 362 363 ts.tv_sec = tv.tv_sec + delta / hz; 364 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); 365 if (ts.tv_nsec >= NANOSEC) { 366 ts.tv_sec++; 367 ts.tv_nsec -= NANOSEC; 368 } 369 370 memset(&mp->m_owner, 0, sizeof (pthread_t)); 371 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 372 mp->m_owner = pthread_self(); 373 374 if (error == ETIMEDOUT) 375 return (-1); 376 377 VERIFY0(error); 378 379 return (1); 380 } 381 382 /*ARGSUSED*/ 383 int 384 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 385 int flag) 386 { 387 int error; 388 struct timeval tv; 389 struct timespec ts; 390 hrtime_t delta; 391 392 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 393 394 delta = tim; 395 if (flag & CALLOUT_FLAG_ABSOLUTE) 396 delta -= gethrtime(); 397 398 if (delta <= 0) 399 return (-1); 400 401 VERIFY0(gettimeofday(&tv, NULL)); 402 403 ts.tv_sec = tv.tv_sec + delta / NANOSEC; 404 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); 405 if (ts.tv_nsec >= NANOSEC) { 406 ts.tv_sec++; 407 ts.tv_nsec -= NANOSEC; 408 } 409 410 memset(&mp->m_owner, 0, sizeof (pthread_t)); 411 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 412 mp->m_owner = pthread_self(); 413 414 if (error == ETIMEDOUT) 415 return (-1); 416 417 VERIFY0(error); 418 419 return (1); 420 } 421 422 void 423 cv_signal(kcondvar_t *cv) 424 { 425 VERIFY0(pthread_cond_signal(cv)); 426 } 427 428 void 429 cv_broadcast(kcondvar_t *cv) 430 { 431 VERIFY0(pthread_cond_broadcast(cv)); 432 } 433 434 /* 435 * ========================================================================= 436 * procfs list 437 * ========================================================================= 438 */ 439 440 void 441 seq_printf(struct seq_file *m, const char *fmt, ...) 442 {} 443 444 void 445 procfs_list_install(const char *module, 446 const char *name, 447 mode_t mode, 448 procfs_list_t *procfs_list, 449 int (*show)(struct seq_file *f, void *p), 450 int (*show_header)(struct seq_file *f), 451 int (*clear)(procfs_list_t *procfs_list), 452 size_t procfs_list_node_off) 453 { 454 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL); 455 list_create(&procfs_list->pl_list, 456 procfs_list_node_off + sizeof (procfs_list_node_t), 457 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link)); 458 procfs_list->pl_next_id = 1; 459 procfs_list->pl_node_offset = procfs_list_node_off; 460 } 461 462 void 463 procfs_list_uninstall(procfs_list_t *procfs_list) 464 {} 465 466 void 467 procfs_list_destroy(procfs_list_t *procfs_list) 468 { 469 ASSERT(list_is_empty(&procfs_list->pl_list)); 470 list_destroy(&procfs_list->pl_list); 471 mutex_destroy(&procfs_list->pl_lock); 472 } 473 474 #define NODE_ID(procfs_list, obj) \ 475 (((procfs_list_node_t *)(((char *)obj) + \ 476 (procfs_list)->pl_node_offset))->pln_id) 477 478 void 479 procfs_list_add(procfs_list_t *procfs_list, void *p) 480 { 481 ASSERT(MUTEX_HELD(&procfs_list->pl_lock)); 482 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++; 483 list_insert_tail(&procfs_list->pl_list, p); 484 } 485 486 /* 487 * ========================================================================= 488 * vnode operations 489 * ========================================================================= 490 */ 491 492 /* 493 * ========================================================================= 494 * Figure out which debugging statements to print 495 * ========================================================================= 496 */ 497 498 static char *dprintf_string; 499 static int dprintf_print_all; 500 501 int 502 dprintf_find_string(const char *string) 503 { 504 char *tmp_str = dprintf_string; 505 int len = strlen(string); 506 507 /* 508 * Find out if this is a string we want to print. 509 * String format: file1.c,function_name1,file2.c,file3.c 510 */ 511 512 while (tmp_str != NULL) { 513 if (strncmp(tmp_str, string, len) == 0 && 514 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 515 return (1); 516 tmp_str = strchr(tmp_str, ','); 517 if (tmp_str != NULL) 518 tmp_str++; /* Get rid of , */ 519 } 520 return (0); 521 } 522 523 void 524 dprintf_setup(int *argc, char **argv) 525 { 526 int i, j; 527 528 /* 529 * Debugging can be specified two ways: by setting the 530 * environment variable ZFS_DEBUG, or by including a 531 * "debug=..." argument on the command line. The command 532 * line setting overrides the environment variable. 533 */ 534 535 for (i = 1; i < *argc; i++) { 536 int len = strlen("debug="); 537 /* First look for a command line argument */ 538 if (strncmp("debug=", argv[i], len) == 0) { 539 dprintf_string = argv[i] + len; 540 /* Remove from args */ 541 for (j = i; j < *argc; j++) 542 argv[j] = argv[j+1]; 543 argv[j] = NULL; 544 (*argc)--; 545 } 546 } 547 548 if (dprintf_string == NULL) { 549 /* Look for ZFS_DEBUG environment variable */ 550 dprintf_string = getenv("ZFS_DEBUG"); 551 } 552 553 /* 554 * Are we just turning on all debugging? 555 */ 556 if (dprintf_find_string("on")) 557 dprintf_print_all = 1; 558 559 if (dprintf_string != NULL) 560 zfs_flags |= ZFS_DEBUG_DPRINTF; 561 } 562 563 /* 564 * ========================================================================= 565 * debug printfs 566 * ========================================================================= 567 */ 568 void 569 __dprintf(boolean_t dprint, const char *file, const char *func, 570 int line, const char *fmt, ...) 571 { 572 const char *newfile; 573 va_list adx; 574 575 /* 576 * Get rid of annoying "../common/" prefix to filename. 577 */ 578 newfile = strrchr(file, '/'); 579 if (newfile != NULL) { 580 newfile = newfile + 1; /* Get rid of leading / */ 581 } else { 582 newfile = file; 583 } 584 585 if (dprint) { 586 /* dprintf messages are printed immediately */ 587 588 if (!dprintf_print_all && 589 !dprintf_find_string(newfile) && 590 !dprintf_find_string(func)) 591 return; 592 593 /* Print out just the function name if requested */ 594 flockfile(stdout); 595 if (dprintf_find_string("pid")) 596 (void) printf("%d ", getpid()); 597 if (dprintf_find_string("tid")) 598 (void) printf("%ju ", 599 (uintmax_t)(uintptr_t)pthread_self()); 600 if (dprintf_find_string("cpu")) 601 (void) printf("%u ", getcpuid()); 602 if (dprintf_find_string("time")) 603 (void) printf("%llu ", gethrtime()); 604 if (dprintf_find_string("long")) 605 (void) printf("%s, line %d: ", newfile, line); 606 (void) printf("dprintf: %s: ", func); 607 va_start(adx, fmt); 608 (void) vprintf(fmt, adx); 609 va_end(adx); 610 funlockfile(stdout); 611 } else { 612 /* zfs_dbgmsg is logged for dumping later */ 613 size_t size; 614 char *buf; 615 int i; 616 617 size = 1024; 618 buf = umem_alloc(size, UMEM_NOFAIL); 619 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func); 620 621 if (i < size) { 622 va_start(adx, fmt); 623 (void) vsnprintf(buf + i, size - i, fmt, adx); 624 va_end(adx); 625 } 626 627 __zfs_dbgmsg(buf); 628 629 umem_free(buf, size); 630 } 631 } 632 633 /* 634 * ========================================================================= 635 * cmn_err() and panic() 636 * ========================================================================= 637 */ 638 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 639 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 640 641 void 642 vpanic(const char *fmt, va_list adx) 643 { 644 (void) fprintf(stderr, "error: "); 645 (void) vfprintf(stderr, fmt, adx); 646 (void) fprintf(stderr, "\n"); 647 648 abort(); /* think of it as a "user-level crash dump" */ 649 } 650 651 void 652 panic(const char *fmt, ...) 653 { 654 va_list adx; 655 656 va_start(adx, fmt); 657 vpanic(fmt, adx); 658 va_end(adx); 659 } 660 661 void 662 vcmn_err(int ce, const char *fmt, va_list adx) 663 { 664 if (ce == CE_PANIC) 665 vpanic(fmt, adx); 666 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 667 (void) fprintf(stderr, "%s", ce_prefix[ce]); 668 (void) vfprintf(stderr, fmt, adx); 669 (void) fprintf(stderr, "%s", ce_suffix[ce]); 670 } 671 } 672 673 /*PRINTFLIKE2*/ 674 void 675 cmn_err(int ce, const char *fmt, ...) 676 { 677 va_list adx; 678 679 va_start(adx, fmt); 680 vcmn_err(ce, fmt, adx); 681 va_end(adx); 682 } 683 684 /* 685 * ========================================================================= 686 * misc routines 687 * ========================================================================= 688 */ 689 690 void 691 delay(clock_t ticks) 692 { 693 (void) poll(0, 0, ticks * (1000 / hz)); 694 } 695 696 /* 697 * Find highest one bit set. 698 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 699 * The __builtin_clzll() function is supported by both GCC and Clang. 700 */ 701 int 702 highbit64(uint64_t i) 703 { 704 if (i == 0) 705 return (0); 706 707 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i)); 708 } 709 710 /* 711 * Find lowest one bit set. 712 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. 713 * The __builtin_ffsll() function is supported by both GCC and Clang. 714 */ 715 int 716 lowbit64(uint64_t i) 717 { 718 if (i == 0) 719 return (0); 720 721 return (__builtin_ffsll(i)); 722 } 723 724 char *random_path = "/dev/random"; 725 char *urandom_path = "/dev/urandom"; 726 static int random_fd = -1, urandom_fd = -1; 727 728 void 729 random_init(void) 730 { 731 VERIFY((random_fd = open(random_path, O_RDONLY)) != -1); 732 VERIFY((urandom_fd = open(urandom_path, O_RDONLY)) != -1); 733 } 734 735 void 736 random_fini(void) 737 { 738 close(random_fd); 739 close(urandom_fd); 740 741 random_fd = -1; 742 urandom_fd = -1; 743 } 744 745 static int 746 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 747 { 748 size_t resid = len; 749 ssize_t bytes; 750 751 ASSERT(fd != -1); 752 753 while (resid != 0) { 754 bytes = read(fd, ptr, resid); 755 ASSERT3S(bytes, >=, 0); 756 ptr += bytes; 757 resid -= bytes; 758 } 759 760 return (0); 761 } 762 763 int 764 random_get_bytes(uint8_t *ptr, size_t len) 765 { 766 return (random_get_bytes_common(ptr, len, random_fd)); 767 } 768 769 int 770 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 771 { 772 return (random_get_bytes_common(ptr, len, urandom_fd)); 773 } 774 775 int 776 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 777 { 778 char *end; 779 780 *result = strtoul(hw_serial, &end, base); 781 if (*result == 0) 782 return (errno); 783 return (0); 784 } 785 786 int 787 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 788 { 789 char *end; 790 791 *result = strtoull(str, &end, base); 792 if (*result == 0) 793 return (errno); 794 return (0); 795 } 796 797 utsname_t * 798 utsname(void) 799 { 800 return (&hw_utsname); 801 } 802 803 /* 804 * ========================================================================= 805 * kernel emulation setup & teardown 806 * ========================================================================= 807 */ 808 static int 809 umem_out_of_memory(void) 810 { 811 char errmsg[] = "out of memory -- generating core dump\n"; 812 813 (void) fprintf(stderr, "%s", errmsg); 814 abort(); 815 return (0); 816 } 817 818 void 819 kernel_init(int mode) 820 { 821 extern uint_t rrw_tsd_key; 822 823 umem_nofail_callback(umem_out_of_memory); 824 825 physmem = sysconf(_SC_PHYS_PAGES); 826 827 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 828 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 829 830 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 831 (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0); 832 833 random_init(); 834 835 VERIFY0(uname(&hw_utsname)); 836 837 system_taskq_init(); 838 icp_init(); 839 840 zstd_init(); 841 842 spa_init((spa_mode_t)mode); 843 844 fletcher_4_init(); 845 846 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 847 } 848 849 void 850 kernel_fini(void) 851 { 852 fletcher_4_fini(); 853 spa_fini(); 854 855 zstd_fini(); 856 857 icp_fini(); 858 system_taskq_fini(); 859 860 random_fini(); 861 } 862 863 uid_t 864 crgetuid(cred_t *cr) 865 { 866 return (0); 867 } 868 869 uid_t 870 crgetruid(cred_t *cr) 871 { 872 return (0); 873 } 874 875 gid_t 876 crgetgid(cred_t *cr) 877 { 878 return (0); 879 } 880 881 int 882 crgetngroups(cred_t *cr) 883 { 884 return (0); 885 } 886 887 gid_t * 888 crgetgroups(cred_t *cr) 889 { 890 return (NULL); 891 } 892 893 int 894 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 895 { 896 return (0); 897 } 898 899 int 900 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 901 { 902 return (0); 903 } 904 905 int 906 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 907 { 908 return (0); 909 } 910 911 int 912 secpolicy_zfs(const cred_t *cr) 913 { 914 return (0); 915 } 916 917 int 918 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc) 919 { 920 return (0); 921 } 922 923 ksiddomain_t * 924 ksid_lookupdomain(const char *dom) 925 { 926 ksiddomain_t *kd; 927 928 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 929 kd->kd_name = spa_strdup(dom); 930 return (kd); 931 } 932 933 void 934 ksiddomain_rele(ksiddomain_t *ksid) 935 { 936 spa_strfree(ksid->kd_name); 937 umem_free(ksid, sizeof (ksiddomain_t)); 938 } 939 940 char * 941 kmem_vasprintf(const char *fmt, va_list adx) 942 { 943 char *buf = NULL; 944 va_list adx_copy; 945 946 va_copy(adx_copy, adx); 947 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); 948 va_end(adx_copy); 949 950 return (buf); 951 } 952 953 char * 954 kmem_asprintf(const char *fmt, ...) 955 { 956 char *buf = NULL; 957 va_list adx; 958 959 va_start(adx, fmt); 960 VERIFY(vasprintf(&buf, fmt, adx) != -1); 961 va_end(adx); 962 963 return (buf); 964 } 965 966 /* ARGSUSED */ 967 int 968 zfs_onexit_fd_hold(int fd, minor_t *minorp) 969 { 970 *minorp = 0; 971 return (0); 972 } 973 974 /* ARGSUSED */ 975 void 976 zfs_onexit_fd_rele(int fd) 977 { 978 } 979 980 /* ARGSUSED */ 981 int 982 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 983 uint64_t *action_handle) 984 { 985 return (0); 986 } 987 988 fstrans_cookie_t 989 spl_fstrans_mark(void) 990 { 991 return ((fstrans_cookie_t)0); 992 } 993 994 void 995 spl_fstrans_unmark(fstrans_cookie_t cookie) 996 { 997 } 998 999 int 1000 __spl_pf_fstrans_check(void) 1001 { 1002 return (0); 1003 } 1004 1005 int 1006 kmem_cache_reap_active(void) 1007 { 1008 return (0); 1009 } 1010 1011 void *zvol_tag = "zvol_tag"; 1012 1013 void 1014 zvol_create_minor(const char *name) 1015 { 1016 } 1017 1018 void 1019 zvol_create_minors_recursive(const char *name) 1020 { 1021 } 1022 1023 void 1024 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1025 { 1026 } 1027 1028 void 1029 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, 1030 boolean_t async) 1031 { 1032 } 1033 1034 /* 1035 * Open file 1036 * 1037 * path - fully qualified path to file 1038 * flags - file attributes O_READ / O_WRITE / O_EXCL 1039 * fpp - pointer to return file pointer 1040 * 1041 * Returns 0 on success underlying error on failure. 1042 */ 1043 int 1044 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp) 1045 { 1046 int fd = -1; 1047 int dump_fd = -1; 1048 int err; 1049 int old_umask = 0; 1050 zfs_file_t *fp; 1051 struct stat64 st; 1052 1053 if (!(flags & O_CREAT) && stat64(path, &st) == -1) 1054 return (errno); 1055 1056 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode)) 1057 flags |= O_DIRECT; 1058 1059 if (flags & O_CREAT) 1060 old_umask = umask(0); 1061 1062 fd = open64(path, flags, mode); 1063 if (fd == -1) 1064 return (errno); 1065 1066 if (flags & O_CREAT) 1067 (void) umask(old_umask); 1068 1069 if (vn_dumpdir != NULL) { 1070 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); 1071 char *inpath = basename((char *)(uintptr_t)path); 1072 1073 (void) snprintf(dumppath, MAXPATHLEN, 1074 "%s/%s", vn_dumpdir, inpath); 1075 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 1076 umem_free(dumppath, MAXPATHLEN); 1077 if (dump_fd == -1) { 1078 err = errno; 1079 close(fd); 1080 return (err); 1081 } 1082 } else { 1083 dump_fd = -1; 1084 } 1085 1086 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 1087 1088 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL); 1089 fp->f_fd = fd; 1090 fp->f_dump_fd = dump_fd; 1091 *fpp = fp; 1092 1093 return (0); 1094 } 1095 1096 void 1097 zfs_file_close(zfs_file_t *fp) 1098 { 1099 close(fp->f_fd); 1100 if (fp->f_dump_fd != -1) 1101 close(fp->f_dump_fd); 1102 1103 umem_free(fp, sizeof (zfs_file_t)); 1104 } 1105 1106 /* 1107 * Stateful write - use os internal file pointer to determine where to 1108 * write and update on successful completion. 1109 * 1110 * fp - pointer to file (pipe, socket, etc) to write to 1111 * buf - buffer to write 1112 * count - # of bytes to write 1113 * resid - pointer to count of unwritten bytes (if short write) 1114 * 1115 * Returns 0 on success errno on failure. 1116 */ 1117 int 1118 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid) 1119 { 1120 ssize_t rc; 1121 1122 rc = write(fp->f_fd, buf, count); 1123 if (rc < 0) 1124 return (errno); 1125 1126 if (resid) { 1127 *resid = count - rc; 1128 } else if (rc != count) { 1129 return (EIO); 1130 } 1131 1132 return (0); 1133 } 1134 1135 /* 1136 * Stateless write - os internal file pointer is not updated. 1137 * 1138 * fp - pointer to file (pipe, socket, etc) to write to 1139 * buf - buffer to write 1140 * count - # of bytes to write 1141 * off - file offset to write to (only valid for seekable types) 1142 * resid - pointer to count of unwritten bytes 1143 * 1144 * Returns 0 on success errno on failure. 1145 */ 1146 int 1147 zfs_file_pwrite(zfs_file_t *fp, const void *buf, 1148 size_t count, loff_t pos, ssize_t *resid) 1149 { 1150 ssize_t rc, split, done; 1151 int sectors; 1152 1153 /* 1154 * To simulate partial disk writes, we split writes into two 1155 * system calls so that the process can be killed in between. 1156 * This is used by ztest to simulate realistic failure modes. 1157 */ 1158 sectors = count >> SPA_MINBLOCKSHIFT; 1159 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; 1160 rc = pwrite64(fp->f_fd, buf, split, pos); 1161 if (rc != -1) { 1162 done = rc; 1163 rc = pwrite64(fp->f_fd, (char *)buf + split, 1164 count - split, pos + split); 1165 } 1166 #ifdef __linux__ 1167 if (rc == -1 && errno == EINVAL) { 1168 /* 1169 * Under Linux, this most likely means an alignment issue 1170 * (memory or disk) due to O_DIRECT, so we abort() in order 1171 * to catch the offender. 1172 */ 1173 abort(); 1174 } 1175 #endif 1176 1177 if (rc < 0) 1178 return (errno); 1179 1180 done += rc; 1181 1182 if (resid) { 1183 *resid = count - done; 1184 } else if (done != count) { 1185 return (EIO); 1186 } 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Stateful read - use os internal file pointer to determine where to 1193 * read and update on successful completion. 1194 * 1195 * fp - pointer to file (pipe, socket, etc) to read from 1196 * buf - buffer to write 1197 * count - # of bytes to read 1198 * resid - pointer to count of unread bytes (if short read) 1199 * 1200 * Returns 0 on success errno on failure. 1201 */ 1202 int 1203 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid) 1204 { 1205 int rc; 1206 1207 rc = read(fp->f_fd, buf, count); 1208 if (rc < 0) 1209 return (errno); 1210 1211 if (resid) { 1212 *resid = count - rc; 1213 } else if (rc != count) { 1214 return (EIO); 1215 } 1216 1217 return (0); 1218 } 1219 1220 /* 1221 * Stateless read - os internal file pointer is not updated. 1222 * 1223 * fp - pointer to file (pipe, socket, etc) to read from 1224 * buf - buffer to write 1225 * count - # of bytes to write 1226 * off - file offset to read from (only valid for seekable types) 1227 * resid - pointer to count of unwritten bytes (if short write) 1228 * 1229 * Returns 0 on success errno on failure. 1230 */ 1231 int 1232 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off, 1233 ssize_t *resid) 1234 { 1235 ssize_t rc; 1236 1237 rc = pread64(fp->f_fd, buf, count, off); 1238 if (rc < 0) { 1239 #ifdef __linux__ 1240 /* 1241 * Under Linux, this most likely means an alignment issue 1242 * (memory or disk) due to O_DIRECT, so we abort() in order to 1243 * catch the offender. 1244 */ 1245 if (errno == EINVAL) 1246 abort(); 1247 #endif 1248 return (errno); 1249 } 1250 1251 if (fp->f_dump_fd != -1) { 1252 int status; 1253 1254 status = pwrite64(fp->f_dump_fd, buf, rc, off); 1255 ASSERT(status != -1); 1256 } 1257 1258 if (resid) { 1259 *resid = count - rc; 1260 } else if (rc != count) { 1261 return (EIO); 1262 } 1263 1264 return (0); 1265 } 1266 1267 /* 1268 * lseek - set / get file pointer 1269 * 1270 * fp - pointer to file (pipe, socket, etc) to read from 1271 * offp - value to seek to, returns current value plus passed offset 1272 * whence - see man pages for standard lseek whence values 1273 * 1274 * Returns 0 on success errno on failure (ESPIPE for non seekable types) 1275 */ 1276 int 1277 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence) 1278 { 1279 loff_t rc; 1280 1281 rc = lseek(fp->f_fd, *offp, whence); 1282 if (rc < 0) 1283 return (errno); 1284 1285 *offp = rc; 1286 1287 return (0); 1288 } 1289 1290 /* 1291 * Get file attributes 1292 * 1293 * filp - file pointer 1294 * zfattr - pointer to file attr structure 1295 * 1296 * Currently only used for fetching size and file mode 1297 * 1298 * Returns 0 on success or error code of underlying getattr call on failure. 1299 */ 1300 int 1301 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr) 1302 { 1303 struct stat64 st; 1304 1305 if (fstat64_blk(fp->f_fd, &st) == -1) 1306 return (errno); 1307 1308 zfattr->zfa_size = st.st_size; 1309 zfattr->zfa_mode = st.st_mode; 1310 1311 return (0); 1312 } 1313 1314 /* 1315 * Sync file to disk 1316 * 1317 * filp - file pointer 1318 * flags - O_SYNC and or O_DSYNC 1319 * 1320 * Returns 0 on success or error code of underlying sync call on failure. 1321 */ 1322 int 1323 zfs_file_fsync(zfs_file_t *fp, int flags) 1324 { 1325 int rc; 1326 1327 rc = fsync(fp->f_fd); 1328 if (rc < 0) 1329 return (errno); 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * fallocate - allocate or free space on disk 1336 * 1337 * fp - file pointer 1338 * mode (non-standard options for hole punching etc) 1339 * offset - offset to start allocating or freeing from 1340 * len - length to free / allocate 1341 * 1342 * OPTIONAL 1343 */ 1344 int 1345 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len) 1346 { 1347 #ifdef __linux__ 1348 return (fallocate(fp->f_fd, mode, offset, len)); 1349 #else 1350 return (EOPNOTSUPP); 1351 #endif 1352 } 1353 1354 /* 1355 * Request current file pointer offset 1356 * 1357 * fp - pointer to file 1358 * 1359 * Returns current file offset. 1360 */ 1361 loff_t 1362 zfs_file_off(zfs_file_t *fp) 1363 { 1364 return (lseek(fp->f_fd, SEEK_CUR, 0)); 1365 } 1366 1367 /* 1368 * unlink file 1369 * 1370 * path - fully qualified file path 1371 * 1372 * Returns 0 on success. 1373 * 1374 * OPTIONAL 1375 */ 1376 int 1377 zfs_file_unlink(const char *path) 1378 { 1379 return (remove(path)); 1380 } 1381 1382 /* 1383 * Get reference to file pointer 1384 * 1385 * fd - input file descriptor 1386 * fpp - pointer to file pointer 1387 * 1388 * Returns 0 on success EBADF on failure. 1389 * Unsupported in user space. 1390 */ 1391 int 1392 zfs_file_get(int fd, zfs_file_t **fpp) 1393 { 1394 abort(); 1395 1396 return (EOPNOTSUPP); 1397 } 1398 1399 /* 1400 * Drop reference to file pointer 1401 * 1402 * fd - input file descriptor 1403 * 1404 * Unsupported in user space. 1405 */ 1406 void 1407 zfs_file_put(int fd) 1408 { 1409 abort(); 1410 } 1411