1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <fcntl.h> 30 #include <libgen.h> 31 #include <poll.h> 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <limits.h> 36 #include <libzutil.h> 37 #include <sys/crypto/icp.h> 38 #include <sys/processor.h> 39 #include <sys/rrwlock.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/stat.h> 43 #include <sys/systeminfo.h> 44 #include <sys/time.h> 45 #include <sys/utsname.h> 46 #include <sys/zfs_context.h> 47 #include <sys/zfs_onexit.h> 48 #include <sys/zfs_vfsops.h> 49 #include <sys/zstd/zstd.h> 50 #include <sys/zvol.h> 51 #include <zfs_fletcher.h> 52 #include <zlib.h> 53 54 /* 55 * Emulation of kernel services in userland. 56 */ 57 58 uint64_t physmem; 59 uint32_t hostid; 60 struct utsname hw_utsname; 61 62 /* If set, all blocks read will be copied to the specified directory. */ 63 char *vn_dumpdir = NULL; 64 65 /* this only exists to have its address taken */ 66 struct proc p0; 67 68 /* 69 * ========================================================================= 70 * threads 71 * ========================================================================= 72 * 73 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While 74 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for 75 * the expected stack depth while small enough to avoid exhausting address 76 * space with high thread counts. 77 */ 78 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768) 79 #define TS_STACK_MAX (256 * 1024) 80 81 struct zk_thread_wrapper { 82 void (*func)(void *); 83 void *arg; 84 }; 85 86 static void * 87 zk_thread_wrapper(void *arg) 88 { 89 struct zk_thread_wrapper ztw; 90 memcpy(&ztw, arg, sizeof (ztw)); 91 free(arg); 92 ztw.func(ztw.arg); 93 return (NULL); 94 } 95 96 kthread_t * 97 zk_thread_create(const char *name, void (*func)(void *), void *arg, 98 size_t stksize, int state) 99 { 100 pthread_attr_t attr; 101 pthread_t tid; 102 char *stkstr; 103 struct zk_thread_wrapper *ztw; 104 int detachstate = PTHREAD_CREATE_DETACHED; 105 106 VERIFY0(pthread_attr_init(&attr)); 107 108 if (state & TS_JOINABLE) 109 detachstate = PTHREAD_CREATE_JOINABLE; 110 111 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); 112 113 /* 114 * We allow the default stack size in user space to be specified by 115 * setting the ZFS_STACK_SIZE environment variable. This allows us 116 * the convenience of observing and debugging stack overruns in 117 * user space. Explicitly specified stack sizes will be honored. 118 * The usage of ZFS_STACK_SIZE is discussed further in the 119 * ENVIRONMENT VARIABLES sections of the ztest(1) man page. 120 */ 121 if (stksize == 0) { 122 stkstr = getenv("ZFS_STACK_SIZE"); 123 124 if (stkstr == NULL) 125 stksize = TS_STACK_MAX; 126 else 127 stksize = MAX(atoi(stkstr), TS_STACK_MIN); 128 } 129 130 VERIFY3S(stksize, >, 0); 131 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); 132 133 /* 134 * If this ever fails, it may be because the stack size is not a 135 * multiple of system page size. 136 */ 137 VERIFY0(pthread_attr_setstacksize(&attr, stksize)); 138 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); 139 140 VERIFY(ztw = malloc(sizeof (*ztw))); 141 ztw->func = func; 142 ztw->arg = arg; 143 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw)); 144 VERIFY0(pthread_attr_destroy(&attr)); 145 146 pthread_setname_np(tid, name); 147 148 return ((void *)(uintptr_t)tid); 149 } 150 151 /* 152 * ========================================================================= 153 * kstats 154 * ========================================================================= 155 */ 156 kstat_t * 157 kstat_create(const char *module, int instance, const char *name, 158 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 159 { 160 (void) module, (void) instance, (void) name, (void) class, (void) type, 161 (void) ndata, (void) ks_flag; 162 return (NULL); 163 } 164 165 void 166 kstat_install(kstat_t *ksp) 167 { 168 (void) ksp; 169 } 170 171 void 172 kstat_delete(kstat_t *ksp) 173 { 174 (void) ksp; 175 } 176 177 void 178 kstat_set_raw_ops(kstat_t *ksp, 179 int (*headers)(char *buf, size_t size), 180 int (*data)(char *buf, size_t size, void *data), 181 void *(*addr)(kstat_t *ksp, loff_t index)) 182 { 183 (void) ksp, (void) headers, (void) data, (void) addr; 184 } 185 186 /* 187 * ========================================================================= 188 * mutexes 189 * ========================================================================= 190 */ 191 192 void 193 mutex_init(kmutex_t *mp, char *name, int type, void *cookie) 194 { 195 (void) name, (void) type, (void) cookie; 196 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL)); 197 memset(&mp->m_owner, 0, sizeof (pthread_t)); 198 } 199 200 void 201 mutex_destroy(kmutex_t *mp) 202 { 203 VERIFY0(pthread_mutex_destroy(&mp->m_lock)); 204 } 205 206 void 207 mutex_enter(kmutex_t *mp) 208 { 209 VERIFY0(pthread_mutex_lock(&mp->m_lock)); 210 mp->m_owner = pthread_self(); 211 } 212 213 int 214 mutex_enter_check_return(kmutex_t *mp) 215 { 216 int error = pthread_mutex_lock(&mp->m_lock); 217 if (error == 0) 218 mp->m_owner = pthread_self(); 219 return (error); 220 } 221 222 int 223 mutex_tryenter(kmutex_t *mp) 224 { 225 int error = pthread_mutex_trylock(&mp->m_lock); 226 if (error == 0) { 227 mp->m_owner = pthread_self(); 228 return (1); 229 } else { 230 VERIFY3S(error, ==, EBUSY); 231 return (0); 232 } 233 } 234 235 void 236 mutex_exit(kmutex_t *mp) 237 { 238 memset(&mp->m_owner, 0, sizeof (pthread_t)); 239 VERIFY0(pthread_mutex_unlock(&mp->m_lock)); 240 } 241 242 /* 243 * ========================================================================= 244 * rwlocks 245 * ========================================================================= 246 */ 247 248 void 249 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 250 { 251 (void) name, (void) type, (void) arg; 252 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL)); 253 rwlp->rw_readers = 0; 254 rwlp->rw_owner = 0; 255 } 256 257 void 258 rw_destroy(krwlock_t *rwlp) 259 { 260 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock)); 261 } 262 263 void 264 rw_enter(krwlock_t *rwlp, krw_t rw) 265 { 266 if (rw == RW_READER) { 267 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock)); 268 atomic_inc_uint(&rwlp->rw_readers); 269 } else { 270 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock)); 271 rwlp->rw_owner = pthread_self(); 272 } 273 } 274 275 void 276 rw_exit(krwlock_t *rwlp) 277 { 278 if (RW_READ_HELD(rwlp)) 279 atomic_dec_uint(&rwlp->rw_readers); 280 else 281 rwlp->rw_owner = 0; 282 283 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock)); 284 } 285 286 int 287 rw_tryenter(krwlock_t *rwlp, krw_t rw) 288 { 289 int error; 290 291 if (rw == RW_READER) 292 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock); 293 else 294 error = pthread_rwlock_trywrlock(&rwlp->rw_lock); 295 296 if (error == 0) { 297 if (rw == RW_READER) 298 atomic_inc_uint(&rwlp->rw_readers); 299 else 300 rwlp->rw_owner = pthread_self(); 301 302 return (1); 303 } 304 305 VERIFY3S(error, ==, EBUSY); 306 307 return (0); 308 } 309 310 uint32_t 311 zone_get_hostid(void *zonep) 312 { 313 /* 314 * We're emulating the system's hostid in userland. 315 */ 316 (void) zonep; 317 return (hostid); 318 } 319 320 int 321 rw_tryupgrade(krwlock_t *rwlp) 322 { 323 (void) rwlp; 324 return (0); 325 } 326 327 /* 328 * ========================================================================= 329 * condition variables 330 * ========================================================================= 331 */ 332 333 void 334 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 335 { 336 (void) name, (void) type, (void) arg; 337 VERIFY0(pthread_cond_init(cv, NULL)); 338 } 339 340 void 341 cv_destroy(kcondvar_t *cv) 342 { 343 VERIFY0(pthread_cond_destroy(cv)); 344 } 345 346 void 347 cv_wait(kcondvar_t *cv, kmutex_t *mp) 348 { 349 memset(&mp->m_owner, 0, sizeof (pthread_t)); 350 VERIFY0(pthread_cond_wait(cv, &mp->m_lock)); 351 mp->m_owner = pthread_self(); 352 } 353 354 int 355 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp) 356 { 357 cv_wait(cv, mp); 358 return (1); 359 } 360 361 int 362 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 363 { 364 int error; 365 struct timeval tv; 366 struct timespec ts; 367 clock_t delta; 368 369 delta = abstime - ddi_get_lbolt(); 370 if (delta <= 0) 371 return (-1); 372 373 VERIFY0(gettimeofday(&tv, NULL)); 374 375 ts.tv_sec = tv.tv_sec + delta / hz; 376 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); 377 if (ts.tv_nsec >= NANOSEC) { 378 ts.tv_sec++; 379 ts.tv_nsec -= NANOSEC; 380 } 381 382 memset(&mp->m_owner, 0, sizeof (pthread_t)); 383 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 384 mp->m_owner = pthread_self(); 385 386 if (error == ETIMEDOUT) 387 return (-1); 388 389 VERIFY0(error); 390 391 return (1); 392 } 393 394 int 395 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 396 int flag) 397 { 398 (void) res; 399 int error; 400 struct timeval tv; 401 struct timespec ts; 402 hrtime_t delta; 403 404 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 405 406 delta = tim; 407 if (flag & CALLOUT_FLAG_ABSOLUTE) 408 delta -= gethrtime(); 409 410 if (delta <= 0) 411 return (-1); 412 413 VERIFY0(gettimeofday(&tv, NULL)); 414 415 ts.tv_sec = tv.tv_sec + delta / NANOSEC; 416 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); 417 if (ts.tv_nsec >= NANOSEC) { 418 ts.tv_sec++; 419 ts.tv_nsec -= NANOSEC; 420 } 421 422 memset(&mp->m_owner, 0, sizeof (pthread_t)); 423 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 424 mp->m_owner = pthread_self(); 425 426 if (error == ETIMEDOUT) 427 return (-1); 428 429 VERIFY0(error); 430 431 return (1); 432 } 433 434 void 435 cv_signal(kcondvar_t *cv) 436 { 437 VERIFY0(pthread_cond_signal(cv)); 438 } 439 440 void 441 cv_broadcast(kcondvar_t *cv) 442 { 443 VERIFY0(pthread_cond_broadcast(cv)); 444 } 445 446 /* 447 * ========================================================================= 448 * procfs list 449 * ========================================================================= 450 */ 451 452 void 453 seq_printf(struct seq_file *m, const char *fmt, ...) 454 { 455 (void) m, (void) fmt; 456 } 457 458 void 459 procfs_list_install(const char *module, 460 const char *submodule, 461 const char *name, 462 mode_t mode, 463 procfs_list_t *procfs_list, 464 int (*show)(struct seq_file *f, void *p), 465 int (*show_header)(struct seq_file *f), 466 int (*clear)(procfs_list_t *procfs_list), 467 size_t procfs_list_node_off) 468 { 469 (void) module, (void) submodule, (void) name, (void) mode, (void) show, 470 (void) show_header, (void) clear; 471 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL); 472 list_create(&procfs_list->pl_list, 473 procfs_list_node_off + sizeof (procfs_list_node_t), 474 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link)); 475 procfs_list->pl_next_id = 1; 476 procfs_list->pl_node_offset = procfs_list_node_off; 477 } 478 479 void 480 procfs_list_uninstall(procfs_list_t *procfs_list) 481 { 482 (void) procfs_list; 483 } 484 485 void 486 procfs_list_destroy(procfs_list_t *procfs_list) 487 { 488 ASSERT(list_is_empty(&procfs_list->pl_list)); 489 list_destroy(&procfs_list->pl_list); 490 mutex_destroy(&procfs_list->pl_lock); 491 } 492 493 #define NODE_ID(procfs_list, obj) \ 494 (((procfs_list_node_t *)(((char *)obj) + \ 495 (procfs_list)->pl_node_offset))->pln_id) 496 497 void 498 procfs_list_add(procfs_list_t *procfs_list, void *p) 499 { 500 ASSERT(MUTEX_HELD(&procfs_list->pl_lock)); 501 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++; 502 list_insert_tail(&procfs_list->pl_list, p); 503 } 504 505 /* 506 * ========================================================================= 507 * vnode operations 508 * ========================================================================= 509 */ 510 511 /* 512 * ========================================================================= 513 * Figure out which debugging statements to print 514 * ========================================================================= 515 */ 516 517 static char *dprintf_string; 518 static int dprintf_print_all; 519 520 int 521 dprintf_find_string(const char *string) 522 { 523 char *tmp_str = dprintf_string; 524 int len = strlen(string); 525 526 /* 527 * Find out if this is a string we want to print. 528 * String format: file1.c,function_name1,file2.c,file3.c 529 */ 530 531 while (tmp_str != NULL) { 532 if (strncmp(tmp_str, string, len) == 0 && 533 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 534 return (1); 535 tmp_str = strchr(tmp_str, ','); 536 if (tmp_str != NULL) 537 tmp_str++; /* Get rid of , */ 538 } 539 return (0); 540 } 541 542 void 543 dprintf_setup(int *argc, char **argv) 544 { 545 int i, j; 546 547 /* 548 * Debugging can be specified two ways: by setting the 549 * environment variable ZFS_DEBUG, or by including a 550 * "debug=..." argument on the command line. The command 551 * line setting overrides the environment variable. 552 */ 553 554 for (i = 1; i < *argc; i++) { 555 int len = strlen("debug="); 556 /* First look for a command line argument */ 557 if (strncmp("debug=", argv[i], len) == 0) { 558 dprintf_string = argv[i] + len; 559 /* Remove from args */ 560 for (j = i; j < *argc; j++) 561 argv[j] = argv[j+1]; 562 argv[j] = NULL; 563 (*argc)--; 564 } 565 } 566 567 if (dprintf_string == NULL) { 568 /* Look for ZFS_DEBUG environment variable */ 569 dprintf_string = getenv("ZFS_DEBUG"); 570 } 571 572 /* 573 * Are we just turning on all debugging? 574 */ 575 if (dprintf_find_string("on")) 576 dprintf_print_all = 1; 577 578 if (dprintf_string != NULL) 579 zfs_flags |= ZFS_DEBUG_DPRINTF; 580 } 581 582 /* 583 * ========================================================================= 584 * debug printfs 585 * ========================================================================= 586 */ 587 void 588 __dprintf(boolean_t dprint, const char *file, const char *func, 589 int line, const char *fmt, ...) 590 { 591 /* Get rid of annoying "../common/" prefix to filename. */ 592 const char *newfile = zfs_basename(file); 593 594 va_list adx; 595 if (dprint) { 596 /* dprintf messages are printed immediately */ 597 598 if (!dprintf_print_all && 599 !dprintf_find_string(newfile) && 600 !dprintf_find_string(func)) 601 return; 602 603 /* Print out just the function name if requested */ 604 flockfile(stdout); 605 if (dprintf_find_string("pid")) 606 (void) printf("%d ", getpid()); 607 if (dprintf_find_string("tid")) 608 (void) printf("%ju ", 609 (uintmax_t)(uintptr_t)pthread_self()); 610 if (dprintf_find_string("cpu")) 611 (void) printf("%u ", getcpuid()); 612 if (dprintf_find_string("time")) 613 (void) printf("%llu ", gethrtime()); 614 if (dprintf_find_string("long")) 615 (void) printf("%s, line %d: ", newfile, line); 616 (void) printf("dprintf: %s: ", func); 617 va_start(adx, fmt); 618 (void) vprintf(fmt, adx); 619 va_end(adx); 620 funlockfile(stdout); 621 } else { 622 /* zfs_dbgmsg is logged for dumping later */ 623 size_t size; 624 char *buf; 625 int i; 626 627 size = 1024; 628 buf = umem_alloc(size, UMEM_NOFAIL); 629 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func); 630 631 if (i < size) { 632 va_start(adx, fmt); 633 (void) vsnprintf(buf + i, size - i, fmt, adx); 634 va_end(adx); 635 } 636 637 __zfs_dbgmsg(buf); 638 639 umem_free(buf, size); 640 } 641 } 642 643 /* 644 * ========================================================================= 645 * cmn_err() and panic() 646 * ========================================================================= 647 */ 648 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 649 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 650 651 __attribute__((noreturn)) void 652 vpanic(const char *fmt, va_list adx) 653 { 654 (void) fprintf(stderr, "error: "); 655 (void) vfprintf(stderr, fmt, adx); 656 (void) fprintf(stderr, "\n"); 657 658 abort(); /* think of it as a "user-level crash dump" */ 659 } 660 661 __attribute__((noreturn)) void 662 panic(const char *fmt, ...) 663 { 664 va_list adx; 665 666 va_start(adx, fmt); 667 vpanic(fmt, adx); 668 va_end(adx); 669 } 670 671 void 672 vcmn_err(int ce, const char *fmt, va_list adx) 673 { 674 if (ce == CE_PANIC) 675 vpanic(fmt, adx); 676 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 677 (void) fprintf(stderr, "%s", ce_prefix[ce]); 678 (void) vfprintf(stderr, fmt, adx); 679 (void) fprintf(stderr, "%s", ce_suffix[ce]); 680 } 681 } 682 683 void 684 cmn_err(int ce, const char *fmt, ...) 685 { 686 va_list adx; 687 688 va_start(adx, fmt); 689 vcmn_err(ce, fmt, adx); 690 va_end(adx); 691 } 692 693 /* 694 * ========================================================================= 695 * misc routines 696 * ========================================================================= 697 */ 698 699 void 700 delay(clock_t ticks) 701 { 702 (void) poll(0, 0, ticks * (1000 / hz)); 703 } 704 705 /* 706 * Find highest one bit set. 707 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 708 * The __builtin_clzll() function is supported by both GCC and Clang. 709 */ 710 int 711 highbit64(uint64_t i) 712 { 713 if (i == 0) 714 return (0); 715 716 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i)); 717 } 718 719 /* 720 * Find lowest one bit set. 721 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. 722 * The __builtin_ffsll() function is supported by both GCC and Clang. 723 */ 724 int 725 lowbit64(uint64_t i) 726 { 727 if (i == 0) 728 return (0); 729 730 return (__builtin_ffsll(i)); 731 } 732 733 const char *random_path = "/dev/random"; 734 const char *urandom_path = "/dev/urandom"; 735 static int random_fd = -1, urandom_fd = -1; 736 737 void 738 random_init(void) 739 { 740 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1); 741 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1); 742 } 743 744 void 745 random_fini(void) 746 { 747 close(random_fd); 748 close(urandom_fd); 749 750 random_fd = -1; 751 urandom_fd = -1; 752 } 753 754 static int 755 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 756 { 757 size_t resid = len; 758 ssize_t bytes; 759 760 ASSERT(fd != -1); 761 762 while (resid != 0) { 763 bytes = read(fd, ptr, resid); 764 ASSERT3S(bytes, >=, 0); 765 ptr += bytes; 766 resid -= bytes; 767 } 768 769 return (0); 770 } 771 772 int 773 random_get_bytes(uint8_t *ptr, size_t len) 774 { 775 return (random_get_bytes_common(ptr, len, random_fd)); 776 } 777 778 int 779 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 780 { 781 return (random_get_bytes_common(ptr, len, urandom_fd)); 782 } 783 784 int 785 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 786 { 787 errno = 0; 788 *result = strtoull(str, nptr, base); 789 if (*result == 0) 790 return (errno); 791 return (0); 792 } 793 794 utsname_t * 795 utsname(void) 796 { 797 return (&hw_utsname); 798 } 799 800 /* 801 * ========================================================================= 802 * kernel emulation setup & teardown 803 * ========================================================================= 804 */ 805 static int 806 umem_out_of_memory(void) 807 { 808 char errmsg[] = "out of memory -- generating core dump\n"; 809 810 (void) fprintf(stderr, "%s", errmsg); 811 abort(); 812 return (0); 813 } 814 815 static void 816 spa_config_load(void) 817 { 818 void *buf = NULL; 819 nvlist_t *nvlist, *child; 820 nvpair_t *nvpair; 821 char *pathname; 822 zfs_file_t *fp; 823 zfs_file_attr_t zfa; 824 uint64_t fsize; 825 int err; 826 827 /* 828 * Open the configuration file. 829 */ 830 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 831 832 (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path); 833 834 err = zfs_file_open(pathname, O_RDONLY, 0, &fp); 835 if (err) 836 err = zfs_file_open(ZPOOL_CACHE_BOOT, O_RDONLY, 0, &fp); 837 838 kmem_free(pathname, MAXPATHLEN); 839 840 if (err) 841 return; 842 843 if (zfs_file_getattr(fp, &zfa)) 844 goto out; 845 846 fsize = zfa.zfa_size; 847 buf = kmem_alloc(fsize, KM_SLEEP); 848 849 /* 850 * Read the nvlist from the file. 851 */ 852 if (zfs_file_read(fp, buf, fsize, NULL) < 0) 853 goto out; 854 855 /* 856 * Unpack the nvlist. 857 */ 858 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) 859 goto out; 860 861 /* 862 * Iterate over all elements in the nvlist, creating a new spa_t for 863 * each one with the specified configuration. 864 */ 865 mutex_enter(&spa_namespace_lock); 866 nvpair = NULL; 867 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { 868 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) 869 continue; 870 871 child = fnvpair_value_nvlist(nvpair); 872 873 if (spa_lookup(nvpair_name(nvpair)) != NULL) 874 continue; 875 (void) spa_add(nvpair_name(nvpair), child, NULL); 876 } 877 mutex_exit(&spa_namespace_lock); 878 879 nvlist_free(nvlist); 880 881 out: 882 if (buf != NULL) 883 kmem_free(buf, fsize); 884 885 zfs_file_close(fp); 886 } 887 888 void 889 kernel_init(int mode) 890 { 891 extern uint_t rrw_tsd_key; 892 893 umem_nofail_callback(umem_out_of_memory); 894 895 physmem = sysconf(_SC_PHYS_PAGES); 896 897 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem, 898 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 899 900 hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0; 901 902 random_init(); 903 904 VERIFY0(uname(&hw_utsname)); 905 906 system_taskq_init(); 907 icp_init(); 908 909 zstd_init(); 910 911 spa_init((spa_mode_t)mode); 912 spa_config_load(); 913 914 fletcher_4_init(); 915 916 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 917 } 918 919 void 920 kernel_fini(void) 921 { 922 fletcher_4_fini(); 923 spa_fini(); 924 925 zstd_fini(); 926 927 icp_fini(); 928 system_taskq_fini(); 929 930 random_fini(); 931 } 932 933 uid_t 934 crgetuid(cred_t *cr) 935 { 936 (void) cr; 937 return (0); 938 } 939 940 uid_t 941 crgetruid(cred_t *cr) 942 { 943 (void) cr; 944 return (0); 945 } 946 947 gid_t 948 crgetgid(cred_t *cr) 949 { 950 (void) cr; 951 return (0); 952 } 953 954 int 955 crgetngroups(cred_t *cr) 956 { 957 (void) cr; 958 return (0); 959 } 960 961 gid_t * 962 crgetgroups(cred_t *cr) 963 { 964 (void) cr; 965 return (NULL); 966 } 967 968 int 969 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 970 { 971 (void) name, (void) cr; 972 return (0); 973 } 974 975 int 976 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 977 { 978 (void) from, (void) to, (void) cr; 979 return (0); 980 } 981 982 int 983 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 984 { 985 (void) name, (void) cr; 986 return (0); 987 } 988 989 int 990 secpolicy_zfs(const cred_t *cr) 991 { 992 (void) cr; 993 return (0); 994 } 995 996 ksiddomain_t * 997 ksid_lookupdomain(const char *dom) 998 { 999 ksiddomain_t *kd; 1000 1001 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 1002 kd->kd_name = spa_strdup(dom); 1003 return (kd); 1004 } 1005 1006 void 1007 ksiddomain_rele(ksiddomain_t *ksid) 1008 { 1009 spa_strfree(ksid->kd_name); 1010 umem_free(ksid, sizeof (ksiddomain_t)); 1011 } 1012 1013 char * 1014 kmem_vasprintf(const char *fmt, va_list adx) 1015 { 1016 char *buf = NULL; 1017 va_list adx_copy; 1018 1019 va_copy(adx_copy, adx); 1020 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); 1021 va_end(adx_copy); 1022 1023 return (buf); 1024 } 1025 1026 char * 1027 kmem_asprintf(const char *fmt, ...) 1028 { 1029 char *buf = NULL; 1030 va_list adx; 1031 1032 va_start(adx, fmt); 1033 VERIFY(vasprintf(&buf, fmt, adx) != -1); 1034 va_end(adx); 1035 1036 return (buf); 1037 } 1038 1039 /* 1040 * kmem_scnprintf() will return the number of characters that it would have 1041 * printed whenever it is limited by value of the size variable, rather than 1042 * the number of characters that it did print. This can cause misbehavior on 1043 * subsequent uses of the return value, so we define a safe version that will 1044 * return the number of characters actually printed, minus the NULL format 1045 * character. Subsequent use of this by the safe string functions is safe 1046 * whether it is snprintf(), strlcat() or strlcpy(). 1047 */ 1048 int 1049 kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...) 1050 { 1051 int n; 1052 va_list ap; 1053 1054 /* Make the 0 case a no-op so that we do not return -1 */ 1055 if (size == 0) 1056 return (0); 1057 1058 va_start(ap, fmt); 1059 n = vsnprintf(str, size, fmt, ap); 1060 va_end(ap); 1061 1062 if (n >= size) 1063 n = size - 1; 1064 1065 return (n); 1066 } 1067 1068 zfs_file_t * 1069 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1070 { 1071 (void) fd; 1072 *minorp = 0; 1073 return (NULL); 1074 } 1075 1076 void 1077 zfs_onexit_fd_rele(zfs_file_t *fp) 1078 { 1079 (void) fp; 1080 } 1081 1082 int 1083 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1084 uintptr_t *action_handle) 1085 { 1086 (void) minor, (void) func, (void) data, (void) action_handle; 1087 return (0); 1088 } 1089 1090 fstrans_cookie_t 1091 spl_fstrans_mark(void) 1092 { 1093 return ((fstrans_cookie_t)0); 1094 } 1095 1096 void 1097 spl_fstrans_unmark(fstrans_cookie_t cookie) 1098 { 1099 (void) cookie; 1100 } 1101 1102 int 1103 kmem_cache_reap_active(void) 1104 { 1105 return (0); 1106 } 1107 1108 void 1109 zvol_create_minors(const char *name) 1110 { 1111 (void) name; 1112 } 1113 1114 void 1115 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1116 { 1117 (void) spa, (void) name, (void) async; 1118 } 1119 1120 void 1121 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, 1122 boolean_t async) 1123 { 1124 (void) spa, (void) oldname, (void) newname, (void) async; 1125 } 1126 1127 /* 1128 * Open file 1129 * 1130 * path - fully qualified path to file 1131 * flags - file attributes O_READ / O_WRITE / O_EXCL 1132 * fpp - pointer to return file pointer 1133 * 1134 * Returns 0 on success underlying error on failure. 1135 */ 1136 int 1137 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp) 1138 { 1139 int fd; 1140 int dump_fd; 1141 int err; 1142 int old_umask = 0; 1143 zfs_file_t *fp; 1144 struct stat64 st; 1145 1146 if (!(flags & O_CREAT) && stat64(path, &st) == -1) 1147 return (errno); 1148 1149 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode)) 1150 flags |= O_DIRECT; 1151 1152 if (flags & O_CREAT) 1153 old_umask = umask(0); 1154 1155 fd = open64(path, flags, mode); 1156 if (fd == -1) 1157 return (errno); 1158 1159 if (flags & O_CREAT) 1160 (void) umask(old_umask); 1161 1162 if (vn_dumpdir != NULL) { 1163 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); 1164 const char *inpath = zfs_basename(path); 1165 1166 (void) snprintf(dumppath, MAXPATHLEN, 1167 "%s/%s", vn_dumpdir, inpath); 1168 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 1169 umem_free(dumppath, MAXPATHLEN); 1170 if (dump_fd == -1) { 1171 err = errno; 1172 close(fd); 1173 return (err); 1174 } 1175 } else { 1176 dump_fd = -1; 1177 } 1178 1179 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 1180 1181 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL); 1182 fp->f_fd = fd; 1183 fp->f_dump_fd = dump_fd; 1184 *fpp = fp; 1185 1186 return (0); 1187 } 1188 1189 void 1190 zfs_file_close(zfs_file_t *fp) 1191 { 1192 close(fp->f_fd); 1193 if (fp->f_dump_fd != -1) 1194 close(fp->f_dump_fd); 1195 1196 umem_free(fp, sizeof (zfs_file_t)); 1197 } 1198 1199 /* 1200 * Stateful write - use os internal file pointer to determine where to 1201 * write and update on successful completion. 1202 * 1203 * fp - pointer to file (pipe, socket, etc) to write to 1204 * buf - buffer to write 1205 * count - # of bytes to write 1206 * resid - pointer to count of unwritten bytes (if short write) 1207 * 1208 * Returns 0 on success errno on failure. 1209 */ 1210 int 1211 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid) 1212 { 1213 ssize_t rc; 1214 1215 rc = write(fp->f_fd, buf, count); 1216 if (rc < 0) 1217 return (errno); 1218 1219 if (resid) { 1220 *resid = count - rc; 1221 } else if (rc != count) { 1222 return (EIO); 1223 } 1224 1225 return (0); 1226 } 1227 1228 /* 1229 * Stateless write - os internal file pointer is not updated. 1230 * 1231 * fp - pointer to file (pipe, socket, etc) to write to 1232 * buf - buffer to write 1233 * count - # of bytes to write 1234 * off - file offset to write to (only valid for seekable types) 1235 * resid - pointer to count of unwritten bytes 1236 * 1237 * Returns 0 on success errno on failure. 1238 */ 1239 int 1240 zfs_file_pwrite(zfs_file_t *fp, const void *buf, 1241 size_t count, loff_t pos, ssize_t *resid) 1242 { 1243 ssize_t rc, split, done; 1244 int sectors; 1245 1246 /* 1247 * To simulate partial disk writes, we split writes into two 1248 * system calls so that the process can be killed in between. 1249 * This is used by ztest to simulate realistic failure modes. 1250 */ 1251 sectors = count >> SPA_MINBLOCKSHIFT; 1252 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; 1253 rc = pwrite64(fp->f_fd, buf, split, pos); 1254 if (rc != -1) { 1255 done = rc; 1256 rc = pwrite64(fp->f_fd, (char *)buf + split, 1257 count - split, pos + split); 1258 } 1259 #ifdef __linux__ 1260 if (rc == -1 && errno == EINVAL) { 1261 /* 1262 * Under Linux, this most likely means an alignment issue 1263 * (memory or disk) due to O_DIRECT, so we abort() in order 1264 * to catch the offender. 1265 */ 1266 abort(); 1267 } 1268 #endif 1269 1270 if (rc < 0) 1271 return (errno); 1272 1273 done += rc; 1274 1275 if (resid) { 1276 *resid = count - done; 1277 } else if (done != count) { 1278 return (EIO); 1279 } 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Stateful read - use os internal file pointer to determine where to 1286 * read and update on successful completion. 1287 * 1288 * fp - pointer to file (pipe, socket, etc) to read from 1289 * buf - buffer to write 1290 * count - # of bytes to read 1291 * resid - pointer to count of unread bytes (if short read) 1292 * 1293 * Returns 0 on success errno on failure. 1294 */ 1295 int 1296 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid) 1297 { 1298 int rc; 1299 1300 rc = read(fp->f_fd, buf, count); 1301 if (rc < 0) 1302 return (errno); 1303 1304 if (resid) { 1305 *resid = count - rc; 1306 } else if (rc != count) { 1307 return (EIO); 1308 } 1309 1310 return (0); 1311 } 1312 1313 /* 1314 * Stateless read - os internal file pointer is not updated. 1315 * 1316 * fp - pointer to file (pipe, socket, etc) to read from 1317 * buf - buffer to write 1318 * count - # of bytes to write 1319 * off - file offset to read from (only valid for seekable types) 1320 * resid - pointer to count of unwritten bytes (if short write) 1321 * 1322 * Returns 0 on success errno on failure. 1323 */ 1324 int 1325 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off, 1326 ssize_t *resid) 1327 { 1328 ssize_t rc; 1329 1330 rc = pread64(fp->f_fd, buf, count, off); 1331 if (rc < 0) { 1332 #ifdef __linux__ 1333 /* 1334 * Under Linux, this most likely means an alignment issue 1335 * (memory or disk) due to O_DIRECT, so we abort() in order to 1336 * catch the offender. 1337 */ 1338 if (errno == EINVAL) 1339 abort(); 1340 #endif 1341 return (errno); 1342 } 1343 1344 if (fp->f_dump_fd != -1) { 1345 int status; 1346 1347 status = pwrite64(fp->f_dump_fd, buf, rc, off); 1348 ASSERT(status != -1); 1349 } 1350 1351 if (resid) { 1352 *resid = count - rc; 1353 } else if (rc != count) { 1354 return (EIO); 1355 } 1356 1357 return (0); 1358 } 1359 1360 /* 1361 * lseek - set / get file pointer 1362 * 1363 * fp - pointer to file (pipe, socket, etc) to read from 1364 * offp - value to seek to, returns current value plus passed offset 1365 * whence - see man pages for standard lseek whence values 1366 * 1367 * Returns 0 on success errno on failure (ESPIPE for non seekable types) 1368 */ 1369 int 1370 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence) 1371 { 1372 loff_t rc; 1373 1374 rc = lseek(fp->f_fd, *offp, whence); 1375 if (rc < 0) 1376 return (errno); 1377 1378 *offp = rc; 1379 1380 return (0); 1381 } 1382 1383 /* 1384 * Get file attributes 1385 * 1386 * filp - file pointer 1387 * zfattr - pointer to file attr structure 1388 * 1389 * Currently only used for fetching size and file mode 1390 * 1391 * Returns 0 on success or error code of underlying getattr call on failure. 1392 */ 1393 int 1394 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr) 1395 { 1396 struct stat64 st; 1397 1398 if (fstat64_blk(fp->f_fd, &st) == -1) 1399 return (errno); 1400 1401 zfattr->zfa_size = st.st_size; 1402 zfattr->zfa_mode = st.st_mode; 1403 1404 return (0); 1405 } 1406 1407 /* 1408 * Sync file to disk 1409 * 1410 * filp - file pointer 1411 * flags - O_SYNC and or O_DSYNC 1412 * 1413 * Returns 0 on success or error code of underlying sync call on failure. 1414 */ 1415 int 1416 zfs_file_fsync(zfs_file_t *fp, int flags) 1417 { 1418 (void) flags; 1419 1420 if (fsync(fp->f_fd) < 0) 1421 return (errno); 1422 1423 return (0); 1424 } 1425 1426 /* 1427 * deallocate - zero and/or deallocate file storage 1428 * 1429 * fp - file pointer 1430 * offset - offset to start zeroing or deallocating 1431 * len - length to zero or deallocate 1432 */ 1433 int 1434 zfs_file_deallocate(zfs_file_t *fp, loff_t offset, loff_t len) 1435 { 1436 int rc; 1437 #if defined(__linux__) 1438 rc = fallocate(fp->f_fd, 1439 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, len); 1440 #elif defined(__FreeBSD__) && (__FreeBSD_version >= 1400029) 1441 struct spacectl_range rqsr = { 1442 .r_offset = offset, 1443 .r_len = len, 1444 }; 1445 rc = fspacectl(fp->f_fd, SPACECTL_DEALLOC, &rqsr, 0, &rqsr); 1446 #else 1447 (void) fp, (void) offset, (void) len; 1448 rc = EOPNOTSUPP; 1449 #endif 1450 if (rc) 1451 return (SET_ERROR(rc)); 1452 return (0); 1453 } 1454 1455 /* 1456 * Request current file pointer offset 1457 * 1458 * fp - pointer to file 1459 * 1460 * Returns current file offset. 1461 */ 1462 loff_t 1463 zfs_file_off(zfs_file_t *fp) 1464 { 1465 return (lseek(fp->f_fd, SEEK_CUR, 0)); 1466 } 1467 1468 /* 1469 * unlink file 1470 * 1471 * path - fully qualified file path 1472 * 1473 * Returns 0 on success. 1474 * 1475 * OPTIONAL 1476 */ 1477 int 1478 zfs_file_unlink(const char *path) 1479 { 1480 return (remove(path)); 1481 } 1482 1483 /* 1484 * Get reference to file pointer 1485 * 1486 * fd - input file descriptor 1487 * 1488 * Returns pointer to file struct or NULL. 1489 * Unsupported in user space. 1490 */ 1491 zfs_file_t * 1492 zfs_file_get(int fd) 1493 { 1494 (void) fd; 1495 abort(); 1496 return (NULL); 1497 } 1498 /* 1499 * Drop reference to file pointer 1500 * 1501 * fp - pointer to file struct 1502 * 1503 * Unsupported in user space. 1504 */ 1505 void 1506 zfs_file_put(zfs_file_t *fp) 1507 { 1508 abort(); 1509 (void) fp; 1510 } 1511 1512 void 1513 zfsvfs_update_fromname(const char *oldname, const char *newname) 1514 { 1515 (void) oldname, (void) newname; 1516 } 1517 1518 void 1519 spa_import_os(spa_t *spa) 1520 { 1521 (void) spa; 1522 } 1523 1524 void 1525 spa_export_os(spa_t *spa) 1526 { 1527 (void) spa; 1528 } 1529 1530 void 1531 spa_activate_os(spa_t *spa) 1532 { 1533 (void) spa; 1534 } 1535 1536 void 1537 spa_deactivate_os(spa_t *spa) 1538 { 1539 (void) spa; 1540 } 1541