xref: /freebsd/sys/contrib/openzfs/lib/libzpool/kernel.c (revision 7d8e1e8dd9042f802a67adefabd28fcd9b1e4051)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <libgen.h>
30 #include <poll.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <limits.h>
35 #include <libzutil.h>
36 #include <sys/crypto/icp.h>
37 #include <sys/processor.h>
38 #include <sys/rrwlock.h>
39 #include <sys/spa.h>
40 #include <sys/stat.h>
41 #include <sys/systeminfo.h>
42 #include <sys/time.h>
43 #include <sys/utsname.h>
44 #include <sys/zfs_context.h>
45 #include <sys/zfs_onexit.h>
46 #include <sys/zfs_vfsops.h>
47 #include <sys/zstd/zstd.h>
48 #include <sys/zvol.h>
49 #include <zfs_fletcher.h>
50 #include <zlib.h>
51 
52 /*
53  * Emulation of kernel services in userland.
54  */
55 
56 uint64_t physmem;
57 uint32_t hostid;
58 struct utsname hw_utsname;
59 
60 /* If set, all blocks read will be copied to the specified directory. */
61 char *vn_dumpdir = NULL;
62 
63 /* this only exists to have its address taken */
64 struct proc p0;
65 
66 /*
67  * =========================================================================
68  * threads
69  * =========================================================================
70  *
71  * TS_STACK_MIN is dictated by the minimum allowed pthread stack size.  While
72  * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
73  * the expected stack depth while small enough to avoid exhausting address
74  * space with high thread counts.
75  */
76 #define	TS_STACK_MIN	MAX(PTHREAD_STACK_MIN, 32768)
77 #define	TS_STACK_MAX	(256 * 1024)
78 
79 struct zk_thread_wrapper {
80 	void (*func)(void *);
81 	void *arg;
82 };
83 
84 static void *
85 zk_thread_wrapper(void *arg)
86 {
87 	struct zk_thread_wrapper ztw;
88 	memcpy(&ztw, arg, sizeof (ztw));
89 	free(arg);
90 	ztw.func(ztw.arg);
91 	return (NULL);
92 }
93 
94 kthread_t *
95 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state)
96 {
97 	pthread_attr_t attr;
98 	pthread_t tid;
99 	char *stkstr;
100 	struct zk_thread_wrapper *ztw;
101 	int detachstate = PTHREAD_CREATE_DETACHED;
102 
103 	VERIFY0(pthread_attr_init(&attr));
104 
105 	if (state & TS_JOINABLE)
106 		detachstate = PTHREAD_CREATE_JOINABLE;
107 
108 	VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
109 
110 	/*
111 	 * We allow the default stack size in user space to be specified by
112 	 * setting the ZFS_STACK_SIZE environment variable.  This allows us
113 	 * the convenience of observing and debugging stack overruns in
114 	 * user space.  Explicitly specified stack sizes will be honored.
115 	 * The usage of ZFS_STACK_SIZE is discussed further in the
116 	 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
117 	 */
118 	if (stksize == 0) {
119 		stkstr = getenv("ZFS_STACK_SIZE");
120 
121 		if (stkstr == NULL)
122 			stksize = TS_STACK_MAX;
123 		else
124 			stksize = MAX(atoi(stkstr), TS_STACK_MIN);
125 	}
126 
127 	VERIFY3S(stksize, >, 0);
128 	stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
129 
130 	/*
131 	 * If this ever fails, it may be because the stack size is not a
132 	 * multiple of system page size.
133 	 */
134 	VERIFY0(pthread_attr_setstacksize(&attr, stksize));
135 	VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
136 
137 	VERIFY(ztw = malloc(sizeof (*ztw)));
138 	ztw->func = func;
139 	ztw->arg = arg;
140 	VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
141 	VERIFY0(pthread_attr_destroy(&attr));
142 
143 	return ((void *)(uintptr_t)tid);
144 }
145 
146 /*
147  * =========================================================================
148  * kstats
149  * =========================================================================
150  */
151 kstat_t *
152 kstat_create(const char *module, int instance, const char *name,
153     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
154 {
155 	(void) module, (void) instance, (void) name, (void) class, (void) type,
156 	    (void) ndata, (void) ks_flag;
157 	return (NULL);
158 }
159 
160 void
161 kstat_install(kstat_t *ksp)
162 {
163 	(void) ksp;
164 }
165 
166 void
167 kstat_delete(kstat_t *ksp)
168 {
169 	(void) ksp;
170 }
171 
172 void
173 kstat_set_raw_ops(kstat_t *ksp,
174     int (*headers)(char *buf, size_t size),
175     int (*data)(char *buf, size_t size, void *data),
176     void *(*addr)(kstat_t *ksp, loff_t index))
177 {
178 	(void) ksp, (void) headers, (void) data, (void) addr;
179 }
180 
181 /*
182  * =========================================================================
183  * mutexes
184  * =========================================================================
185  */
186 
187 void
188 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
189 {
190 	(void) name, (void) type, (void) cookie;
191 	VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
192 	memset(&mp->m_owner, 0, sizeof (pthread_t));
193 }
194 
195 void
196 mutex_destroy(kmutex_t *mp)
197 {
198 	VERIFY0(pthread_mutex_destroy(&mp->m_lock));
199 }
200 
201 void
202 mutex_enter(kmutex_t *mp)
203 {
204 	VERIFY0(pthread_mutex_lock(&mp->m_lock));
205 	mp->m_owner = pthread_self();
206 }
207 
208 int
209 mutex_tryenter(kmutex_t *mp)
210 {
211 	int error = pthread_mutex_trylock(&mp->m_lock);
212 	if (error == 0) {
213 		mp->m_owner = pthread_self();
214 		return (1);
215 	} else {
216 		VERIFY3S(error, ==, EBUSY);
217 		return (0);
218 	}
219 }
220 
221 void
222 mutex_exit(kmutex_t *mp)
223 {
224 	memset(&mp->m_owner, 0, sizeof (pthread_t));
225 	VERIFY0(pthread_mutex_unlock(&mp->m_lock));
226 }
227 
228 /*
229  * =========================================================================
230  * rwlocks
231  * =========================================================================
232  */
233 
234 void
235 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
236 {
237 	(void) name, (void) type, (void) arg;
238 	VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
239 	rwlp->rw_readers = 0;
240 	rwlp->rw_owner = 0;
241 }
242 
243 void
244 rw_destroy(krwlock_t *rwlp)
245 {
246 	VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
247 }
248 
249 void
250 rw_enter(krwlock_t *rwlp, krw_t rw)
251 {
252 	if (rw == RW_READER) {
253 		VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
254 		atomic_inc_uint(&rwlp->rw_readers);
255 	} else {
256 		VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
257 		rwlp->rw_owner = pthread_self();
258 	}
259 }
260 
261 void
262 rw_exit(krwlock_t *rwlp)
263 {
264 	if (RW_READ_HELD(rwlp))
265 		atomic_dec_uint(&rwlp->rw_readers);
266 	else
267 		rwlp->rw_owner = 0;
268 
269 	VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
270 }
271 
272 int
273 rw_tryenter(krwlock_t *rwlp, krw_t rw)
274 {
275 	int error;
276 
277 	if (rw == RW_READER)
278 		error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
279 	else
280 		error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
281 
282 	if (error == 0) {
283 		if (rw == RW_READER)
284 			atomic_inc_uint(&rwlp->rw_readers);
285 		else
286 			rwlp->rw_owner = pthread_self();
287 
288 		return (1);
289 	}
290 
291 	VERIFY3S(error, ==, EBUSY);
292 
293 	return (0);
294 }
295 
296 uint32_t
297 zone_get_hostid(void *zonep)
298 {
299 	/*
300 	 * We're emulating the system's hostid in userland.
301 	 */
302 	(void) zonep;
303 	return (hostid);
304 }
305 
306 int
307 rw_tryupgrade(krwlock_t *rwlp)
308 {
309 	(void) rwlp;
310 	return (0);
311 }
312 
313 /*
314  * =========================================================================
315  * condition variables
316  * =========================================================================
317  */
318 
319 void
320 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
321 {
322 	(void) name, (void) type, (void) arg;
323 	VERIFY0(pthread_cond_init(cv, NULL));
324 }
325 
326 void
327 cv_destroy(kcondvar_t *cv)
328 {
329 	VERIFY0(pthread_cond_destroy(cv));
330 }
331 
332 void
333 cv_wait(kcondvar_t *cv, kmutex_t *mp)
334 {
335 	memset(&mp->m_owner, 0, sizeof (pthread_t));
336 	VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
337 	mp->m_owner = pthread_self();
338 }
339 
340 int
341 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
342 {
343 	cv_wait(cv, mp);
344 	return (1);
345 }
346 
347 int
348 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
349 {
350 	int error;
351 	struct timeval tv;
352 	struct timespec ts;
353 	clock_t delta;
354 
355 	delta = abstime - ddi_get_lbolt();
356 	if (delta <= 0)
357 		return (-1);
358 
359 	VERIFY(gettimeofday(&tv, NULL) == 0);
360 
361 	ts.tv_sec = tv.tv_sec + delta / hz;
362 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
363 	if (ts.tv_nsec >= NANOSEC) {
364 		ts.tv_sec++;
365 		ts.tv_nsec -= NANOSEC;
366 	}
367 
368 	memset(&mp->m_owner, 0, sizeof (pthread_t));
369 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
370 	mp->m_owner = pthread_self();
371 
372 	if (error == ETIMEDOUT)
373 		return (-1);
374 
375 	VERIFY0(error);
376 
377 	return (1);
378 }
379 
380 int
381 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
382     int flag)
383 {
384 	(void) res;
385 	int error;
386 	struct timeval tv;
387 	struct timespec ts;
388 	hrtime_t delta;
389 
390 	ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
391 
392 	delta = tim;
393 	if (flag & CALLOUT_FLAG_ABSOLUTE)
394 		delta -= gethrtime();
395 
396 	if (delta <= 0)
397 		return (-1);
398 
399 	VERIFY0(gettimeofday(&tv, NULL));
400 
401 	ts.tv_sec = tv.tv_sec + delta / NANOSEC;
402 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
403 	if (ts.tv_nsec >= NANOSEC) {
404 		ts.tv_sec++;
405 		ts.tv_nsec -= NANOSEC;
406 	}
407 
408 	memset(&mp->m_owner, 0, sizeof (pthread_t));
409 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
410 	mp->m_owner = pthread_self();
411 
412 	if (error == ETIMEDOUT)
413 		return (-1);
414 
415 	VERIFY0(error);
416 
417 	return (1);
418 }
419 
420 void
421 cv_signal(kcondvar_t *cv)
422 {
423 	VERIFY0(pthread_cond_signal(cv));
424 }
425 
426 void
427 cv_broadcast(kcondvar_t *cv)
428 {
429 	VERIFY0(pthread_cond_broadcast(cv));
430 }
431 
432 /*
433  * =========================================================================
434  * procfs list
435  * =========================================================================
436  */
437 
438 void
439 seq_printf(struct seq_file *m, const char *fmt, ...)
440 {
441 	(void) m, (void) fmt;
442 }
443 
444 void
445 procfs_list_install(const char *module,
446     const char *submodule,
447     const char *name,
448     mode_t mode,
449     procfs_list_t *procfs_list,
450     int (*show)(struct seq_file *f, void *p),
451     int (*show_header)(struct seq_file *f),
452     int (*clear)(procfs_list_t *procfs_list),
453     size_t procfs_list_node_off)
454 {
455 	(void) module, (void) submodule, (void) name, (void) mode, (void) show,
456 	    (void) show_header, (void) clear;
457 	mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
458 	list_create(&procfs_list->pl_list,
459 	    procfs_list_node_off + sizeof (procfs_list_node_t),
460 	    procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
461 	procfs_list->pl_next_id = 1;
462 	procfs_list->pl_node_offset = procfs_list_node_off;
463 }
464 
465 void
466 procfs_list_uninstall(procfs_list_t *procfs_list)
467 {
468 	(void) procfs_list;
469 }
470 
471 void
472 procfs_list_destroy(procfs_list_t *procfs_list)
473 {
474 	ASSERT(list_is_empty(&procfs_list->pl_list));
475 	list_destroy(&procfs_list->pl_list);
476 	mutex_destroy(&procfs_list->pl_lock);
477 }
478 
479 #define	NODE_ID(procfs_list, obj) \
480 		(((procfs_list_node_t *)(((char *)obj) + \
481 		(procfs_list)->pl_node_offset))->pln_id)
482 
483 void
484 procfs_list_add(procfs_list_t *procfs_list, void *p)
485 {
486 	ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
487 	NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
488 	list_insert_tail(&procfs_list->pl_list, p);
489 }
490 
491 /*
492  * =========================================================================
493  * vnode operations
494  * =========================================================================
495  */
496 
497 /*
498  * =========================================================================
499  * Figure out which debugging statements to print
500  * =========================================================================
501  */
502 
503 static char *dprintf_string;
504 static int dprintf_print_all;
505 
506 int
507 dprintf_find_string(const char *string)
508 {
509 	char *tmp_str = dprintf_string;
510 	int len = strlen(string);
511 
512 	/*
513 	 * Find out if this is a string we want to print.
514 	 * String format: file1.c,function_name1,file2.c,file3.c
515 	 */
516 
517 	while (tmp_str != NULL) {
518 		if (strncmp(tmp_str, string, len) == 0 &&
519 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
520 			return (1);
521 		tmp_str = strchr(tmp_str, ',');
522 		if (tmp_str != NULL)
523 			tmp_str++; /* Get rid of , */
524 	}
525 	return (0);
526 }
527 
528 void
529 dprintf_setup(int *argc, char **argv)
530 {
531 	int i, j;
532 
533 	/*
534 	 * Debugging can be specified two ways: by setting the
535 	 * environment variable ZFS_DEBUG, or by including a
536 	 * "debug=..."  argument on the command line.  The command
537 	 * line setting overrides the environment variable.
538 	 */
539 
540 	for (i = 1; i < *argc; i++) {
541 		int len = strlen("debug=");
542 		/* First look for a command line argument */
543 		if (strncmp("debug=", argv[i], len) == 0) {
544 			dprintf_string = argv[i] + len;
545 			/* Remove from args */
546 			for (j = i; j < *argc; j++)
547 				argv[j] = argv[j+1];
548 			argv[j] = NULL;
549 			(*argc)--;
550 		}
551 	}
552 
553 	if (dprintf_string == NULL) {
554 		/* Look for ZFS_DEBUG environment variable */
555 		dprintf_string = getenv("ZFS_DEBUG");
556 	}
557 
558 	/*
559 	 * Are we just turning on all debugging?
560 	 */
561 	if (dprintf_find_string("on"))
562 		dprintf_print_all = 1;
563 
564 	if (dprintf_string != NULL)
565 		zfs_flags |= ZFS_DEBUG_DPRINTF;
566 }
567 
568 /*
569  * =========================================================================
570  * debug printfs
571  * =========================================================================
572  */
573 void
574 __dprintf(boolean_t dprint, const char *file, const char *func,
575     int line, const char *fmt, ...)
576 {
577 	/* Get rid of annoying "../common/" prefix to filename. */
578 	const char *newfile = zfs_basename(file);
579 
580 	va_list adx;
581 	if (dprint) {
582 		/* dprintf messages are printed immediately */
583 
584 		if (!dprintf_print_all &&
585 		    !dprintf_find_string(newfile) &&
586 		    !dprintf_find_string(func))
587 			return;
588 
589 		/* Print out just the function name if requested */
590 		flockfile(stdout);
591 		if (dprintf_find_string("pid"))
592 			(void) printf("%d ", getpid());
593 		if (dprintf_find_string("tid"))
594 			(void) printf("%ju ",
595 			    (uintmax_t)(uintptr_t)pthread_self());
596 		if (dprintf_find_string("cpu"))
597 			(void) printf("%u ", getcpuid());
598 		if (dprintf_find_string("time"))
599 			(void) printf("%llu ", gethrtime());
600 		if (dprintf_find_string("long"))
601 			(void) printf("%s, line %d: ", newfile, line);
602 		(void) printf("dprintf: %s: ", func);
603 		va_start(adx, fmt);
604 		(void) vprintf(fmt, adx);
605 		va_end(adx);
606 		funlockfile(stdout);
607 	} else {
608 		/* zfs_dbgmsg is logged for dumping later */
609 		size_t size;
610 		char *buf;
611 		int i;
612 
613 		size = 1024;
614 		buf = umem_alloc(size, UMEM_NOFAIL);
615 		i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
616 
617 		if (i < size) {
618 			va_start(adx, fmt);
619 			(void) vsnprintf(buf + i, size - i, fmt, adx);
620 			va_end(adx);
621 		}
622 
623 		__zfs_dbgmsg(buf);
624 
625 		umem_free(buf, size);
626 	}
627 }
628 
629 /*
630  * =========================================================================
631  * cmn_err() and panic()
632  * =========================================================================
633  */
634 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
635 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
636 
637 __attribute__((noreturn)) void
638 vpanic(const char *fmt, va_list adx)
639 {
640 	(void) fprintf(stderr, "error: ");
641 	(void) vfprintf(stderr, fmt, adx);
642 	(void) fprintf(stderr, "\n");
643 
644 	abort();	/* think of it as a "user-level crash dump" */
645 }
646 
647 __attribute__((noreturn)) void
648 panic(const char *fmt, ...)
649 {
650 	va_list adx;
651 
652 	va_start(adx, fmt);
653 	vpanic(fmt, adx);
654 	va_end(adx);
655 }
656 
657 void
658 vcmn_err(int ce, const char *fmt, va_list adx)
659 {
660 	if (ce == CE_PANIC)
661 		vpanic(fmt, adx);
662 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
663 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
664 		(void) vfprintf(stderr, fmt, adx);
665 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
666 	}
667 }
668 
669 void
670 cmn_err(int ce, const char *fmt, ...)
671 {
672 	va_list adx;
673 
674 	va_start(adx, fmt);
675 	vcmn_err(ce, fmt, adx);
676 	va_end(adx);
677 }
678 
679 /*
680  * =========================================================================
681  * misc routines
682  * =========================================================================
683  */
684 
685 void
686 delay(clock_t ticks)
687 {
688 	(void) poll(0, 0, ticks * (1000 / hz));
689 }
690 
691 /*
692  * Find highest one bit set.
693  * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
694  * The __builtin_clzll() function is supported by both GCC and Clang.
695  */
696 int
697 highbit64(uint64_t i)
698 {
699 	if (i == 0)
700 	return (0);
701 
702 	return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
703 }
704 
705 /*
706  * Find lowest one bit set.
707  * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
708  * The __builtin_ffsll() function is supported by both GCC and Clang.
709  */
710 int
711 lowbit64(uint64_t i)
712 {
713 	if (i == 0)
714 		return (0);
715 
716 	return (__builtin_ffsll(i));
717 }
718 
719 const char *random_path = "/dev/random";
720 const char *urandom_path = "/dev/urandom";
721 static int random_fd = -1, urandom_fd = -1;
722 
723 void
724 random_init(void)
725 {
726 	VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
727 	VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
728 }
729 
730 void
731 random_fini(void)
732 {
733 	close(random_fd);
734 	close(urandom_fd);
735 
736 	random_fd = -1;
737 	urandom_fd = -1;
738 }
739 
740 static int
741 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
742 {
743 	size_t resid = len;
744 	ssize_t bytes;
745 
746 	ASSERT(fd != -1);
747 
748 	while (resid != 0) {
749 		bytes = read(fd, ptr, resid);
750 		ASSERT3S(bytes, >=, 0);
751 		ptr += bytes;
752 		resid -= bytes;
753 	}
754 
755 	return (0);
756 }
757 
758 int
759 random_get_bytes(uint8_t *ptr, size_t len)
760 {
761 	return (random_get_bytes_common(ptr, len, random_fd));
762 }
763 
764 int
765 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
766 {
767 	return (random_get_bytes_common(ptr, len, urandom_fd));
768 }
769 
770 int
771 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
772 {
773 	errno = 0;
774 	*result = strtoull(str, nptr, base);
775 	if (*result == 0)
776 		return (errno);
777 	return (0);
778 }
779 
780 utsname_t *
781 utsname(void)
782 {
783 	return (&hw_utsname);
784 }
785 
786 /*
787  * =========================================================================
788  * kernel emulation setup & teardown
789  * =========================================================================
790  */
791 static int
792 umem_out_of_memory(void)
793 {
794 	char errmsg[] = "out of memory -- generating core dump\n";
795 
796 	(void) fprintf(stderr, "%s", errmsg);
797 	abort();
798 	return (0);
799 }
800 
801 void
802 kernel_init(int mode)
803 {
804 	extern uint_t rrw_tsd_key;
805 
806 	umem_nofail_callback(umem_out_of_memory);
807 
808 	physmem = sysconf(_SC_PHYS_PAGES);
809 
810 	dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
811 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
812 
813 	hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0;
814 
815 	random_init();
816 
817 	VERIFY0(uname(&hw_utsname));
818 
819 	system_taskq_init();
820 	icp_init();
821 
822 	zstd_init();
823 
824 	spa_init((spa_mode_t)mode);
825 
826 	fletcher_4_init();
827 
828 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
829 }
830 
831 void
832 kernel_fini(void)
833 {
834 	fletcher_4_fini();
835 	spa_fini();
836 
837 	zstd_fini();
838 
839 	icp_fini();
840 	system_taskq_fini();
841 
842 	random_fini();
843 }
844 
845 uid_t
846 crgetuid(cred_t *cr)
847 {
848 	(void) cr;
849 	return (0);
850 }
851 
852 uid_t
853 crgetruid(cred_t *cr)
854 {
855 	(void) cr;
856 	return (0);
857 }
858 
859 gid_t
860 crgetgid(cred_t *cr)
861 {
862 	(void) cr;
863 	return (0);
864 }
865 
866 int
867 crgetngroups(cred_t *cr)
868 {
869 	(void) cr;
870 	return (0);
871 }
872 
873 gid_t *
874 crgetgroups(cred_t *cr)
875 {
876 	(void) cr;
877 	return (NULL);
878 }
879 
880 int
881 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
882 {
883 	(void) name, (void) cr;
884 	return (0);
885 }
886 
887 int
888 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
889 {
890 	(void) from, (void) to, (void) cr;
891 	return (0);
892 }
893 
894 int
895 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
896 {
897 	(void) name, (void) cr;
898 	return (0);
899 }
900 
901 int
902 secpolicy_zfs(const cred_t *cr)
903 {
904 	(void) cr;
905 	return (0);
906 }
907 
908 int
909 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc)
910 {
911 	(void) cr, (void) proc;
912 	return (0);
913 }
914 
915 ksiddomain_t *
916 ksid_lookupdomain(const char *dom)
917 {
918 	ksiddomain_t *kd;
919 
920 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
921 	kd->kd_name = spa_strdup(dom);
922 	return (kd);
923 }
924 
925 void
926 ksiddomain_rele(ksiddomain_t *ksid)
927 {
928 	spa_strfree(ksid->kd_name);
929 	umem_free(ksid, sizeof (ksiddomain_t));
930 }
931 
932 char *
933 kmem_vasprintf(const char *fmt, va_list adx)
934 {
935 	char *buf = NULL;
936 	va_list adx_copy;
937 
938 	va_copy(adx_copy, adx);
939 	VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
940 	va_end(adx_copy);
941 
942 	return (buf);
943 }
944 
945 char *
946 kmem_asprintf(const char *fmt, ...)
947 {
948 	char *buf = NULL;
949 	va_list adx;
950 
951 	va_start(adx, fmt);
952 	VERIFY(vasprintf(&buf, fmt, adx) != -1);
953 	va_end(adx);
954 
955 	return (buf);
956 }
957 
958 /*
959  * kmem_scnprintf() will return the number of characters that it would have
960  * printed whenever it is limited by value of the size variable, rather than
961  * the number of characters that it did print. This can cause misbehavior on
962  * subsequent uses of the return value, so we define a safe version that will
963  * return the number of characters actually printed, minus the NULL format
964  * character.  Subsequent use of this by the safe string functions is safe
965  * whether it is snprintf(), strlcat() or strlcpy().
966  */
967 int
968 kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...)
969 {
970 	int n;
971 	va_list ap;
972 
973 	/* Make the 0 case a no-op so that we do not return -1 */
974 	if (size == 0)
975 		return (0);
976 
977 	va_start(ap, fmt);
978 	n = vsnprintf(str, size, fmt, ap);
979 	va_end(ap);
980 
981 	if (n >= size)
982 		n = size - 1;
983 
984 	return (n);
985 }
986 
987 zfs_file_t *
988 zfs_onexit_fd_hold(int fd, minor_t *minorp)
989 {
990 	(void) fd;
991 	*minorp = 0;
992 	return (NULL);
993 }
994 
995 void
996 zfs_onexit_fd_rele(zfs_file_t *fp)
997 {
998 	(void) fp;
999 }
1000 
1001 int
1002 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1003     uintptr_t *action_handle)
1004 {
1005 	(void) minor, (void) func, (void) data, (void) action_handle;
1006 	return (0);
1007 }
1008 
1009 fstrans_cookie_t
1010 spl_fstrans_mark(void)
1011 {
1012 	return ((fstrans_cookie_t)0);
1013 }
1014 
1015 void
1016 spl_fstrans_unmark(fstrans_cookie_t cookie)
1017 {
1018 	(void) cookie;
1019 }
1020 
1021 int
1022 __spl_pf_fstrans_check(void)
1023 {
1024 	return (0);
1025 }
1026 
1027 int
1028 kmem_cache_reap_active(void)
1029 {
1030 	return (0);
1031 }
1032 
1033 void
1034 zvol_create_minor(const char *name)
1035 {
1036 	(void) name;
1037 }
1038 
1039 void
1040 zvol_create_minors_recursive(const char *name)
1041 {
1042 	(void) name;
1043 }
1044 
1045 void
1046 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1047 {
1048 	(void) spa, (void) name, (void) async;
1049 }
1050 
1051 void
1052 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1053     boolean_t async)
1054 {
1055 	(void) spa, (void) oldname, (void) newname, (void) async;
1056 }
1057 
1058 /*
1059  * Open file
1060  *
1061  * path - fully qualified path to file
1062  * flags - file attributes O_READ / O_WRITE / O_EXCL
1063  * fpp - pointer to return file pointer
1064  *
1065  * Returns 0 on success underlying error on failure.
1066  */
1067 int
1068 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1069 {
1070 	int fd = -1;
1071 	int dump_fd = -1;
1072 	int err;
1073 	int old_umask = 0;
1074 	zfs_file_t *fp;
1075 	struct stat64 st;
1076 
1077 	if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1078 		return (errno);
1079 
1080 	if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1081 		flags |= O_DIRECT;
1082 
1083 	if (flags & O_CREAT)
1084 		old_umask = umask(0);
1085 
1086 	fd = open64(path, flags, mode);
1087 	if (fd == -1)
1088 		return (errno);
1089 
1090 	if (flags & O_CREAT)
1091 		(void) umask(old_umask);
1092 
1093 	if (vn_dumpdir != NULL) {
1094 		char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1095 		const char *inpath = zfs_basename(path);
1096 
1097 		(void) snprintf(dumppath, MAXPATHLEN,
1098 		    "%s/%s", vn_dumpdir, inpath);
1099 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1100 		umem_free(dumppath, MAXPATHLEN);
1101 		if (dump_fd == -1) {
1102 			err = errno;
1103 			close(fd);
1104 			return (err);
1105 		}
1106 	} else {
1107 		dump_fd = -1;
1108 	}
1109 
1110 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1111 
1112 	fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1113 	fp->f_fd = fd;
1114 	fp->f_dump_fd = dump_fd;
1115 	*fpp = fp;
1116 
1117 	return (0);
1118 }
1119 
1120 void
1121 zfs_file_close(zfs_file_t *fp)
1122 {
1123 	close(fp->f_fd);
1124 	if (fp->f_dump_fd != -1)
1125 		close(fp->f_dump_fd);
1126 
1127 	umem_free(fp, sizeof (zfs_file_t));
1128 }
1129 
1130 /*
1131  * Stateful write - use os internal file pointer to determine where to
1132  * write and update on successful completion.
1133  *
1134  * fp -  pointer to file (pipe, socket, etc) to write to
1135  * buf - buffer to write
1136  * count - # of bytes to write
1137  * resid -  pointer to count of unwritten bytes  (if short write)
1138  *
1139  * Returns 0 on success errno on failure.
1140  */
1141 int
1142 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1143 {
1144 	ssize_t rc;
1145 
1146 	rc = write(fp->f_fd, buf, count);
1147 	if (rc < 0)
1148 		return (errno);
1149 
1150 	if (resid) {
1151 		*resid = count - rc;
1152 	} else if (rc != count) {
1153 		return (EIO);
1154 	}
1155 
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Stateless write - os internal file pointer is not updated.
1161  *
1162  * fp -  pointer to file (pipe, socket, etc) to write to
1163  * buf - buffer to write
1164  * count - # of bytes to write
1165  * off - file offset to write to (only valid for seekable types)
1166  * resid -  pointer to count of unwritten bytes
1167  *
1168  * Returns 0 on success errno on failure.
1169  */
1170 int
1171 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1172     size_t count, loff_t pos, ssize_t *resid)
1173 {
1174 	ssize_t rc, split, done;
1175 	int sectors;
1176 
1177 	/*
1178 	 * To simulate partial disk writes, we split writes into two
1179 	 * system calls so that the process can be killed in between.
1180 	 * This is used by ztest to simulate realistic failure modes.
1181 	 */
1182 	sectors = count >> SPA_MINBLOCKSHIFT;
1183 	split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1184 	rc = pwrite64(fp->f_fd, buf, split, pos);
1185 	if (rc != -1) {
1186 		done = rc;
1187 		rc = pwrite64(fp->f_fd, (char *)buf + split,
1188 		    count - split, pos + split);
1189 	}
1190 #ifdef __linux__
1191 	if (rc == -1 && errno == EINVAL) {
1192 		/*
1193 		 * Under Linux, this most likely means an alignment issue
1194 		 * (memory or disk) due to O_DIRECT, so we abort() in order
1195 		 * to catch the offender.
1196 		 */
1197 		abort();
1198 	}
1199 #endif
1200 
1201 	if (rc < 0)
1202 		return (errno);
1203 
1204 	done += rc;
1205 
1206 	if (resid) {
1207 		*resid = count - done;
1208 	} else if (done != count) {
1209 		return (EIO);
1210 	}
1211 
1212 	return (0);
1213 }
1214 
1215 /*
1216  * Stateful read - use os internal file pointer to determine where to
1217  * read and update on successful completion.
1218  *
1219  * fp -  pointer to file (pipe, socket, etc) to read from
1220  * buf - buffer to write
1221  * count - # of bytes to read
1222  * resid -  pointer to count of unread bytes (if short read)
1223  *
1224  * Returns 0 on success errno on failure.
1225  */
1226 int
1227 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1228 {
1229 	int rc;
1230 
1231 	rc = read(fp->f_fd, buf, count);
1232 	if (rc < 0)
1233 		return (errno);
1234 
1235 	if (resid) {
1236 		*resid = count - rc;
1237 	} else if (rc != count) {
1238 		return (EIO);
1239 	}
1240 
1241 	return (0);
1242 }
1243 
1244 /*
1245  * Stateless read - os internal file pointer is not updated.
1246  *
1247  * fp -  pointer to file (pipe, socket, etc) to read from
1248  * buf - buffer to write
1249  * count - # of bytes to write
1250  * off - file offset to read from (only valid for seekable types)
1251  * resid -  pointer to count of unwritten bytes (if short write)
1252  *
1253  * Returns 0 on success errno on failure.
1254  */
1255 int
1256 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1257     ssize_t *resid)
1258 {
1259 	ssize_t rc;
1260 
1261 	rc = pread64(fp->f_fd, buf, count, off);
1262 	if (rc < 0) {
1263 #ifdef __linux__
1264 		/*
1265 		 * Under Linux, this most likely means an alignment issue
1266 		 * (memory or disk) due to O_DIRECT, so we abort() in order to
1267 		 * catch the offender.
1268 		 */
1269 		if (errno == EINVAL)
1270 			abort();
1271 #endif
1272 		return (errno);
1273 	}
1274 
1275 	if (fp->f_dump_fd != -1) {
1276 		int status;
1277 
1278 		status = pwrite64(fp->f_dump_fd, buf, rc, off);
1279 		ASSERT(status != -1);
1280 	}
1281 
1282 	if (resid) {
1283 		*resid = count - rc;
1284 	} else if (rc != count) {
1285 		return (EIO);
1286 	}
1287 
1288 	return (0);
1289 }
1290 
1291 /*
1292  * lseek - set / get file pointer
1293  *
1294  * fp -  pointer to file (pipe, socket, etc) to read from
1295  * offp - value to seek to, returns current value plus passed offset
1296  * whence - see man pages for standard lseek whence values
1297  *
1298  * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1299  */
1300 int
1301 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1302 {
1303 	loff_t rc;
1304 
1305 	rc = lseek(fp->f_fd, *offp, whence);
1306 	if (rc < 0)
1307 		return (errno);
1308 
1309 	*offp = rc;
1310 
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Get file attributes
1316  *
1317  * filp - file pointer
1318  * zfattr - pointer to file attr structure
1319  *
1320  * Currently only used for fetching size and file mode
1321  *
1322  * Returns 0 on success or error code of underlying getattr call on failure.
1323  */
1324 int
1325 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1326 {
1327 	struct stat64 st;
1328 
1329 	if (fstat64_blk(fp->f_fd, &st) == -1)
1330 		return (errno);
1331 
1332 	zfattr->zfa_size = st.st_size;
1333 	zfattr->zfa_mode = st.st_mode;
1334 
1335 	return (0);
1336 }
1337 
1338 /*
1339  * Sync file to disk
1340  *
1341  * filp - file pointer
1342  * flags - O_SYNC and or O_DSYNC
1343  *
1344  * Returns 0 on success or error code of underlying sync call on failure.
1345  */
1346 int
1347 zfs_file_fsync(zfs_file_t *fp, int flags)
1348 {
1349 	(void) flags;
1350 
1351 	if (fsync(fp->f_fd) < 0)
1352 		return (errno);
1353 
1354 	return (0);
1355 }
1356 
1357 /*
1358  * fallocate - allocate or free space on disk
1359  *
1360  * fp - file pointer
1361  * mode (non-standard options for hole punching etc)
1362  * offset - offset to start allocating or freeing from
1363  * len - length to free / allocate
1364  *
1365  * OPTIONAL
1366  */
1367 int
1368 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len)
1369 {
1370 #ifdef __linux__
1371 	return (fallocate(fp->f_fd, mode, offset, len));
1372 #else
1373 	(void) fp, (void) mode, (void) offset, (void) len;
1374 	return (EOPNOTSUPP);
1375 #endif
1376 }
1377 
1378 /*
1379  * Request current file pointer offset
1380  *
1381  * fp - pointer to file
1382  *
1383  * Returns current file offset.
1384  */
1385 loff_t
1386 zfs_file_off(zfs_file_t *fp)
1387 {
1388 	return (lseek(fp->f_fd, SEEK_CUR, 0));
1389 }
1390 
1391 /*
1392  * unlink file
1393  *
1394  * path - fully qualified file path
1395  *
1396  * Returns 0 on success.
1397  *
1398  * OPTIONAL
1399  */
1400 int
1401 zfs_file_unlink(const char *path)
1402 {
1403 	return (remove(path));
1404 }
1405 
1406 /*
1407  * Get reference to file pointer
1408  *
1409  * fd - input file descriptor
1410  *
1411  * Returns pointer to file struct or NULL.
1412  * Unsupported in user space.
1413  */
1414 zfs_file_t *
1415 zfs_file_get(int fd)
1416 {
1417 	(void) fd;
1418 	abort();
1419 	return (NULL);
1420 }
1421 /*
1422  * Drop reference to file pointer
1423  *
1424  * fp - pointer to file struct
1425  *
1426  * Unsupported in user space.
1427  */
1428 void
1429 zfs_file_put(zfs_file_t *fp)
1430 {
1431 	abort();
1432 	(void) fp;
1433 }
1434 
1435 void
1436 zfsvfs_update_fromname(const char *oldname, const char *newname)
1437 {
1438 	(void) oldname, (void) newname;
1439 }
1440 
1441 void
1442 spa_import_os(spa_t *spa)
1443 {
1444 	(void) spa;
1445 }
1446 
1447 void
1448 spa_export_os(spa_t *spa)
1449 {
1450 	(void) spa;
1451 }
1452 
1453 void
1454 spa_activate_os(spa_t *spa)
1455 {
1456 	(void) spa;
1457 }
1458 
1459 void
1460 spa_deactivate_os(spa_t *spa)
1461 {
1462 	(void) spa;
1463 }
1464