xref: /freebsd/sys/contrib/openzfs/lib/libzpool/kernel.c (revision 690b7ea081790eef2c890f63a4fe7e195cf51df0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <libgen.h>
30 #include <poll.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <libzutil.h>
35 #include <sys/crypto/icp.h>
36 #include <sys/processor.h>
37 #include <sys/rrwlock.h>
38 #include <sys/spa.h>
39 #include <sys/stat.h>
40 #include <sys/systeminfo.h>
41 #include <sys/time.h>
42 #include <sys/utsname.h>
43 #include <sys/zfs_context.h>
44 #include <sys/zfs_onexit.h>
45 #include <sys/zfs_vfsops.h>
46 #include <sys/zstd/zstd.h>
47 #include <sys/zvol.h>
48 #include <zfs_fletcher.h>
49 #include <zlib.h>
50 
51 /*
52  * Emulation of kernel services in userland.
53  */
54 
55 uint64_t physmem;
56 char hw_serial[HW_HOSTID_LEN];
57 struct utsname hw_utsname;
58 
59 /* If set, all blocks read will be copied to the specified directory. */
60 char *vn_dumpdir = NULL;
61 
62 /* this only exists to have its address taken */
63 struct proc p0;
64 
65 /*
66  * =========================================================================
67  * threads
68  * =========================================================================
69  *
70  * TS_STACK_MIN is dictated by the minimum allowed pthread stack size.  While
71  * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
72  * the expected stack depth while small enough to avoid exhausting address
73  * space with high thread counts.
74  */
75 #define	TS_STACK_MIN	MAX(PTHREAD_STACK_MIN, 32768)
76 #define	TS_STACK_MAX	(256 * 1024)
77 
78 struct zk_thread_wrapper {
79 	void (*func)(void *);
80 	void *arg;
81 };
82 
83 static void *
84 zk_thread_wrapper(void *arg)
85 {
86 	struct zk_thread_wrapper ztw;
87 	memcpy(&ztw, arg, sizeof (ztw));
88 	free(arg);
89 	ztw.func(ztw.arg);
90 	return (NULL);
91 }
92 
93 kthread_t *
94 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state)
95 {
96 	pthread_attr_t attr;
97 	pthread_t tid;
98 	char *stkstr;
99 	struct zk_thread_wrapper *ztw;
100 	int detachstate = PTHREAD_CREATE_DETACHED;
101 
102 	VERIFY0(pthread_attr_init(&attr));
103 
104 	if (state & TS_JOINABLE)
105 		detachstate = PTHREAD_CREATE_JOINABLE;
106 
107 	VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
108 
109 	/*
110 	 * We allow the default stack size in user space to be specified by
111 	 * setting the ZFS_STACK_SIZE environment variable.  This allows us
112 	 * the convenience of observing and debugging stack overruns in
113 	 * user space.  Explicitly specified stack sizes will be honored.
114 	 * The usage of ZFS_STACK_SIZE is discussed further in the
115 	 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
116 	 */
117 	if (stksize == 0) {
118 		stkstr = getenv("ZFS_STACK_SIZE");
119 
120 		if (stkstr == NULL)
121 			stksize = TS_STACK_MAX;
122 		else
123 			stksize = MAX(atoi(stkstr), TS_STACK_MIN);
124 	}
125 
126 	VERIFY3S(stksize, >, 0);
127 	stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
128 
129 	/*
130 	 * If this ever fails, it may be because the stack size is not a
131 	 * multiple of system page size.
132 	 */
133 	VERIFY0(pthread_attr_setstacksize(&attr, stksize));
134 	VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
135 
136 	VERIFY(ztw = malloc(sizeof (*ztw)));
137 	ztw->func = func;
138 	ztw->arg = arg;
139 	VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
140 	VERIFY0(pthread_attr_destroy(&attr));
141 
142 	return ((void *)(uintptr_t)tid);
143 }
144 
145 /*
146  * =========================================================================
147  * kstats
148  * =========================================================================
149  */
150 kstat_t *
151 kstat_create(const char *module, int instance, const char *name,
152     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
153 {
154 	(void) module, (void) instance, (void) name, (void) class, (void) type,
155 	    (void) ndata, (void) ks_flag;
156 	return (NULL);
157 }
158 
159 void
160 kstat_install(kstat_t *ksp)
161 {
162 	(void) ksp;
163 }
164 
165 void
166 kstat_delete(kstat_t *ksp)
167 {
168 	(void) ksp;
169 }
170 
171 void
172 kstat_set_raw_ops(kstat_t *ksp,
173     int (*headers)(char *buf, size_t size),
174     int (*data)(char *buf, size_t size, void *data),
175     void *(*addr)(kstat_t *ksp, loff_t index))
176 {
177 	(void) ksp, (void) headers, (void) data, (void) addr;
178 }
179 
180 /*
181  * =========================================================================
182  * mutexes
183  * =========================================================================
184  */
185 
186 void
187 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
188 {
189 	(void) name, (void) type, (void) cookie;
190 	VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
191 	memset(&mp->m_owner, 0, sizeof (pthread_t));
192 }
193 
194 void
195 mutex_destroy(kmutex_t *mp)
196 {
197 	VERIFY0(pthread_mutex_destroy(&mp->m_lock));
198 }
199 
200 void
201 mutex_enter(kmutex_t *mp)
202 {
203 	VERIFY0(pthread_mutex_lock(&mp->m_lock));
204 	mp->m_owner = pthread_self();
205 }
206 
207 int
208 mutex_tryenter(kmutex_t *mp)
209 {
210 	int error = pthread_mutex_trylock(&mp->m_lock);
211 	if (error == 0) {
212 		mp->m_owner = pthread_self();
213 		return (1);
214 	} else {
215 		VERIFY3S(error, ==, EBUSY);
216 		return (0);
217 	}
218 }
219 
220 void
221 mutex_exit(kmutex_t *mp)
222 {
223 	memset(&mp->m_owner, 0, sizeof (pthread_t));
224 	VERIFY0(pthread_mutex_unlock(&mp->m_lock));
225 }
226 
227 /*
228  * =========================================================================
229  * rwlocks
230  * =========================================================================
231  */
232 
233 void
234 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
235 {
236 	(void) name, (void) type, (void) arg;
237 	VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
238 	rwlp->rw_readers = 0;
239 	rwlp->rw_owner = 0;
240 }
241 
242 void
243 rw_destroy(krwlock_t *rwlp)
244 {
245 	VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
246 }
247 
248 void
249 rw_enter(krwlock_t *rwlp, krw_t rw)
250 {
251 	if (rw == RW_READER) {
252 		VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
253 		atomic_inc_uint(&rwlp->rw_readers);
254 	} else {
255 		VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
256 		rwlp->rw_owner = pthread_self();
257 	}
258 }
259 
260 void
261 rw_exit(krwlock_t *rwlp)
262 {
263 	if (RW_READ_HELD(rwlp))
264 		atomic_dec_uint(&rwlp->rw_readers);
265 	else
266 		rwlp->rw_owner = 0;
267 
268 	VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
269 }
270 
271 int
272 rw_tryenter(krwlock_t *rwlp, krw_t rw)
273 {
274 	int error;
275 
276 	if (rw == RW_READER)
277 		error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
278 	else
279 		error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
280 
281 	if (error == 0) {
282 		if (rw == RW_READER)
283 			atomic_inc_uint(&rwlp->rw_readers);
284 		else
285 			rwlp->rw_owner = pthread_self();
286 
287 		return (1);
288 	}
289 
290 	VERIFY3S(error, ==, EBUSY);
291 
292 	return (0);
293 }
294 
295 uint32_t
296 zone_get_hostid(void *zonep)
297 {
298 	/*
299 	 * We're emulating the system's hostid in userland.
300 	 */
301 	(void) zonep;
302 	return (strtoul(hw_serial, NULL, 10));
303 }
304 
305 int
306 rw_tryupgrade(krwlock_t *rwlp)
307 {
308 	(void) rwlp;
309 	return (0);
310 }
311 
312 /*
313  * =========================================================================
314  * condition variables
315  * =========================================================================
316  */
317 
318 void
319 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
320 {
321 	(void) name, (void) type, (void) arg;
322 	VERIFY0(pthread_cond_init(cv, NULL));
323 }
324 
325 void
326 cv_destroy(kcondvar_t *cv)
327 {
328 	VERIFY0(pthread_cond_destroy(cv));
329 }
330 
331 void
332 cv_wait(kcondvar_t *cv, kmutex_t *mp)
333 {
334 	memset(&mp->m_owner, 0, sizeof (pthread_t));
335 	VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
336 	mp->m_owner = pthread_self();
337 }
338 
339 int
340 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
341 {
342 	cv_wait(cv, mp);
343 	return (1);
344 }
345 
346 int
347 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
348 {
349 	int error;
350 	struct timeval tv;
351 	struct timespec ts;
352 	clock_t delta;
353 
354 	delta = abstime - ddi_get_lbolt();
355 	if (delta <= 0)
356 		return (-1);
357 
358 	VERIFY(gettimeofday(&tv, NULL) == 0);
359 
360 	ts.tv_sec = tv.tv_sec + delta / hz;
361 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
362 	if (ts.tv_nsec >= NANOSEC) {
363 		ts.tv_sec++;
364 		ts.tv_nsec -= NANOSEC;
365 	}
366 
367 	memset(&mp->m_owner, 0, sizeof (pthread_t));
368 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
369 	mp->m_owner = pthread_self();
370 
371 	if (error == ETIMEDOUT)
372 		return (-1);
373 
374 	VERIFY0(error);
375 
376 	return (1);
377 }
378 
379 int
380 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
381     int flag)
382 {
383 	(void) res;
384 	int error;
385 	struct timeval tv;
386 	struct timespec ts;
387 	hrtime_t delta;
388 
389 	ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
390 
391 	delta = tim;
392 	if (flag & CALLOUT_FLAG_ABSOLUTE)
393 		delta -= gethrtime();
394 
395 	if (delta <= 0)
396 		return (-1);
397 
398 	VERIFY0(gettimeofday(&tv, NULL));
399 
400 	ts.tv_sec = tv.tv_sec + delta / NANOSEC;
401 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
402 	if (ts.tv_nsec >= NANOSEC) {
403 		ts.tv_sec++;
404 		ts.tv_nsec -= NANOSEC;
405 	}
406 
407 	memset(&mp->m_owner, 0, sizeof (pthread_t));
408 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
409 	mp->m_owner = pthread_self();
410 
411 	if (error == ETIMEDOUT)
412 		return (-1);
413 
414 	VERIFY0(error);
415 
416 	return (1);
417 }
418 
419 void
420 cv_signal(kcondvar_t *cv)
421 {
422 	VERIFY0(pthread_cond_signal(cv));
423 }
424 
425 void
426 cv_broadcast(kcondvar_t *cv)
427 {
428 	VERIFY0(pthread_cond_broadcast(cv));
429 }
430 
431 /*
432  * =========================================================================
433  * procfs list
434  * =========================================================================
435  */
436 
437 void
438 seq_printf(struct seq_file *m, const char *fmt, ...)
439 {
440 	(void) m, (void) fmt;
441 }
442 
443 void
444 procfs_list_install(const char *module,
445     const char *submodule,
446     const char *name,
447     mode_t mode,
448     procfs_list_t *procfs_list,
449     int (*show)(struct seq_file *f, void *p),
450     int (*show_header)(struct seq_file *f),
451     int (*clear)(procfs_list_t *procfs_list),
452     size_t procfs_list_node_off)
453 {
454 	(void) module, (void) submodule, (void) name, (void) mode, (void) show,
455 	    (void) show_header, (void) clear;
456 	mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
457 	list_create(&procfs_list->pl_list,
458 	    procfs_list_node_off + sizeof (procfs_list_node_t),
459 	    procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
460 	procfs_list->pl_next_id = 1;
461 	procfs_list->pl_node_offset = procfs_list_node_off;
462 }
463 
464 void
465 procfs_list_uninstall(procfs_list_t *procfs_list)
466 {
467 	(void) procfs_list;
468 }
469 
470 void
471 procfs_list_destroy(procfs_list_t *procfs_list)
472 {
473 	ASSERT(list_is_empty(&procfs_list->pl_list));
474 	list_destroy(&procfs_list->pl_list);
475 	mutex_destroy(&procfs_list->pl_lock);
476 }
477 
478 #define	NODE_ID(procfs_list, obj) \
479 		(((procfs_list_node_t *)(((char *)obj) + \
480 		(procfs_list)->pl_node_offset))->pln_id)
481 
482 void
483 procfs_list_add(procfs_list_t *procfs_list, void *p)
484 {
485 	ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
486 	NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
487 	list_insert_tail(&procfs_list->pl_list, p);
488 }
489 
490 /*
491  * =========================================================================
492  * vnode operations
493  * =========================================================================
494  */
495 
496 /*
497  * =========================================================================
498  * Figure out which debugging statements to print
499  * =========================================================================
500  */
501 
502 static char *dprintf_string;
503 static int dprintf_print_all;
504 
505 int
506 dprintf_find_string(const char *string)
507 {
508 	char *tmp_str = dprintf_string;
509 	int len = strlen(string);
510 
511 	/*
512 	 * Find out if this is a string we want to print.
513 	 * String format: file1.c,function_name1,file2.c,file3.c
514 	 */
515 
516 	while (tmp_str != NULL) {
517 		if (strncmp(tmp_str, string, len) == 0 &&
518 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
519 			return (1);
520 		tmp_str = strchr(tmp_str, ',');
521 		if (tmp_str != NULL)
522 			tmp_str++; /* Get rid of , */
523 	}
524 	return (0);
525 }
526 
527 void
528 dprintf_setup(int *argc, char **argv)
529 {
530 	int i, j;
531 
532 	/*
533 	 * Debugging can be specified two ways: by setting the
534 	 * environment variable ZFS_DEBUG, or by including a
535 	 * "debug=..."  argument on the command line.  The command
536 	 * line setting overrides the environment variable.
537 	 */
538 
539 	for (i = 1; i < *argc; i++) {
540 		int len = strlen("debug=");
541 		/* First look for a command line argument */
542 		if (strncmp("debug=", argv[i], len) == 0) {
543 			dprintf_string = argv[i] + len;
544 			/* Remove from args */
545 			for (j = i; j < *argc; j++)
546 				argv[j] = argv[j+1];
547 			argv[j] = NULL;
548 			(*argc)--;
549 		}
550 	}
551 
552 	if (dprintf_string == NULL) {
553 		/* Look for ZFS_DEBUG environment variable */
554 		dprintf_string = getenv("ZFS_DEBUG");
555 	}
556 
557 	/*
558 	 * Are we just turning on all debugging?
559 	 */
560 	if (dprintf_find_string("on"))
561 		dprintf_print_all = 1;
562 
563 	if (dprintf_string != NULL)
564 		zfs_flags |= ZFS_DEBUG_DPRINTF;
565 }
566 
567 /*
568  * =========================================================================
569  * debug printfs
570  * =========================================================================
571  */
572 void
573 __dprintf(boolean_t dprint, const char *file, const char *func,
574     int line, const char *fmt, ...)
575 {
576 	/* Get rid of annoying "../common/" prefix to filename. */
577 	const char *newfile = zfs_basename(file);
578 
579 	va_list adx;
580 	if (dprint) {
581 		/* dprintf messages are printed immediately */
582 
583 		if (!dprintf_print_all &&
584 		    !dprintf_find_string(newfile) &&
585 		    !dprintf_find_string(func))
586 			return;
587 
588 		/* Print out just the function name if requested */
589 		flockfile(stdout);
590 		if (dprintf_find_string("pid"))
591 			(void) printf("%d ", getpid());
592 		if (dprintf_find_string("tid"))
593 			(void) printf("%ju ",
594 			    (uintmax_t)(uintptr_t)pthread_self());
595 		if (dprintf_find_string("cpu"))
596 			(void) printf("%u ", getcpuid());
597 		if (dprintf_find_string("time"))
598 			(void) printf("%llu ", gethrtime());
599 		if (dprintf_find_string("long"))
600 			(void) printf("%s, line %d: ", newfile, line);
601 		(void) printf("dprintf: %s: ", func);
602 		va_start(adx, fmt);
603 		(void) vprintf(fmt, adx);
604 		va_end(adx);
605 		funlockfile(stdout);
606 	} else {
607 		/* zfs_dbgmsg is logged for dumping later */
608 		size_t size;
609 		char *buf;
610 		int i;
611 
612 		size = 1024;
613 		buf = umem_alloc(size, UMEM_NOFAIL);
614 		i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
615 
616 		if (i < size) {
617 			va_start(adx, fmt);
618 			(void) vsnprintf(buf + i, size - i, fmt, adx);
619 			va_end(adx);
620 		}
621 
622 		__zfs_dbgmsg(buf);
623 
624 		umem_free(buf, size);
625 	}
626 }
627 
628 /*
629  * =========================================================================
630  * cmn_err() and panic()
631  * =========================================================================
632  */
633 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
634 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
635 
636 __attribute__((noreturn)) void
637 vpanic(const char *fmt, va_list adx)
638 {
639 	(void) fprintf(stderr, "error: ");
640 	(void) vfprintf(stderr, fmt, adx);
641 	(void) fprintf(stderr, "\n");
642 
643 	abort();	/* think of it as a "user-level crash dump" */
644 }
645 
646 __attribute__((noreturn)) void
647 panic(const char *fmt, ...)
648 {
649 	va_list adx;
650 
651 	va_start(adx, fmt);
652 	vpanic(fmt, adx);
653 	va_end(adx);
654 }
655 
656 void
657 vcmn_err(int ce, const char *fmt, va_list adx)
658 {
659 	if (ce == CE_PANIC)
660 		vpanic(fmt, adx);
661 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
662 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
663 		(void) vfprintf(stderr, fmt, adx);
664 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
665 	}
666 }
667 
668 void
669 cmn_err(int ce, const char *fmt, ...)
670 {
671 	va_list adx;
672 
673 	va_start(adx, fmt);
674 	vcmn_err(ce, fmt, adx);
675 	va_end(adx);
676 }
677 
678 /*
679  * =========================================================================
680  * misc routines
681  * =========================================================================
682  */
683 
684 void
685 delay(clock_t ticks)
686 {
687 	(void) poll(0, 0, ticks * (1000 / hz));
688 }
689 
690 /*
691  * Find highest one bit set.
692  * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
693  * The __builtin_clzll() function is supported by both GCC and Clang.
694  */
695 int
696 highbit64(uint64_t i)
697 {
698 	if (i == 0)
699 	return (0);
700 
701 	return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
702 }
703 
704 /*
705  * Find lowest one bit set.
706  * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
707  * The __builtin_ffsll() function is supported by both GCC and Clang.
708  */
709 int
710 lowbit64(uint64_t i)
711 {
712 	if (i == 0)
713 		return (0);
714 
715 	return (__builtin_ffsll(i));
716 }
717 
718 const char *random_path = "/dev/random";
719 const char *urandom_path = "/dev/urandom";
720 static int random_fd = -1, urandom_fd = -1;
721 
722 void
723 random_init(void)
724 {
725 	VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
726 	VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
727 }
728 
729 void
730 random_fini(void)
731 {
732 	close(random_fd);
733 	close(urandom_fd);
734 
735 	random_fd = -1;
736 	urandom_fd = -1;
737 }
738 
739 static int
740 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
741 {
742 	size_t resid = len;
743 	ssize_t bytes;
744 
745 	ASSERT(fd != -1);
746 
747 	while (resid != 0) {
748 		bytes = read(fd, ptr, resid);
749 		ASSERT3S(bytes, >=, 0);
750 		ptr += bytes;
751 		resid -= bytes;
752 	}
753 
754 	return (0);
755 }
756 
757 int
758 random_get_bytes(uint8_t *ptr, size_t len)
759 {
760 	return (random_get_bytes_common(ptr, len, random_fd));
761 }
762 
763 int
764 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
765 {
766 	return (random_get_bytes_common(ptr, len, urandom_fd));
767 }
768 
769 int
770 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
771 {
772 	(void) nptr;
773 	char *end;
774 
775 	*result = strtoul(hw_serial, &end, base);
776 	if (*result == 0)
777 		return (errno);
778 	return (0);
779 }
780 
781 int
782 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
783 {
784 	(void) nptr;
785 	char *end;
786 
787 	*result = strtoull(str, &end, base);
788 	if (*result == 0)
789 		return (errno);
790 	return (0);
791 }
792 
793 utsname_t *
794 utsname(void)
795 {
796 	return (&hw_utsname);
797 }
798 
799 /*
800  * =========================================================================
801  * kernel emulation setup & teardown
802  * =========================================================================
803  */
804 static int
805 umem_out_of_memory(void)
806 {
807 	char errmsg[] = "out of memory -- generating core dump\n";
808 
809 	(void) fprintf(stderr, "%s", errmsg);
810 	abort();
811 	return (0);
812 }
813 
814 void
815 kernel_init(int mode)
816 {
817 	extern uint_t rrw_tsd_key;
818 
819 	umem_nofail_callback(umem_out_of_memory);
820 
821 	physmem = sysconf(_SC_PHYS_PAGES);
822 
823 	dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
824 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
825 
826 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
827 	    (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0);
828 
829 	random_init();
830 
831 	VERIFY0(uname(&hw_utsname));
832 
833 	system_taskq_init();
834 	icp_init();
835 
836 	zstd_init();
837 
838 	spa_init((spa_mode_t)mode);
839 
840 	fletcher_4_init();
841 
842 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
843 }
844 
845 void
846 kernel_fini(void)
847 {
848 	fletcher_4_fini();
849 	spa_fini();
850 
851 	zstd_fini();
852 
853 	icp_fini();
854 	system_taskq_fini();
855 
856 	random_fini();
857 }
858 
859 uid_t
860 crgetuid(cred_t *cr)
861 {
862 	(void) cr;
863 	return (0);
864 }
865 
866 uid_t
867 crgetruid(cred_t *cr)
868 {
869 	(void) cr;
870 	return (0);
871 }
872 
873 gid_t
874 crgetgid(cred_t *cr)
875 {
876 	(void) cr;
877 	return (0);
878 }
879 
880 int
881 crgetngroups(cred_t *cr)
882 {
883 	(void) cr;
884 	return (0);
885 }
886 
887 gid_t *
888 crgetgroups(cred_t *cr)
889 {
890 	(void) cr;
891 	return (NULL);
892 }
893 
894 int
895 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
896 {
897 	(void) name, (void) cr;
898 	return (0);
899 }
900 
901 int
902 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
903 {
904 	(void) from, (void) to, (void) cr;
905 	return (0);
906 }
907 
908 int
909 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
910 {
911 	(void) name, (void) cr;
912 	return (0);
913 }
914 
915 int
916 secpolicy_zfs(const cred_t *cr)
917 {
918 	(void) cr;
919 	return (0);
920 }
921 
922 int
923 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc)
924 {
925 	(void) cr, (void) proc;
926 	return (0);
927 }
928 
929 ksiddomain_t *
930 ksid_lookupdomain(const char *dom)
931 {
932 	ksiddomain_t *kd;
933 
934 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
935 	kd->kd_name = spa_strdup(dom);
936 	return (kd);
937 }
938 
939 void
940 ksiddomain_rele(ksiddomain_t *ksid)
941 {
942 	spa_strfree(ksid->kd_name);
943 	umem_free(ksid, sizeof (ksiddomain_t));
944 }
945 
946 char *
947 kmem_vasprintf(const char *fmt, va_list adx)
948 {
949 	char *buf = NULL;
950 	va_list adx_copy;
951 
952 	va_copy(adx_copy, adx);
953 	VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
954 	va_end(adx_copy);
955 
956 	return (buf);
957 }
958 
959 char *
960 kmem_asprintf(const char *fmt, ...)
961 {
962 	char *buf = NULL;
963 	va_list adx;
964 
965 	va_start(adx, fmt);
966 	VERIFY(vasprintf(&buf, fmt, adx) != -1);
967 	va_end(adx);
968 
969 	return (buf);
970 }
971 
972 zfs_file_t *
973 zfs_onexit_fd_hold(int fd, minor_t *minorp)
974 {
975 	(void) fd;
976 	*minorp = 0;
977 	return (NULL);
978 }
979 
980 void
981 zfs_onexit_fd_rele(zfs_file_t *fp)
982 {
983 	(void) fp;
984 }
985 
986 int
987 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
988     uint64_t *action_handle)
989 {
990 	(void) minor, (void) func, (void) data, (void) action_handle;
991 	return (0);
992 }
993 
994 fstrans_cookie_t
995 spl_fstrans_mark(void)
996 {
997 	return ((fstrans_cookie_t)0);
998 }
999 
1000 void
1001 spl_fstrans_unmark(fstrans_cookie_t cookie)
1002 {
1003 	(void) cookie;
1004 }
1005 
1006 int
1007 __spl_pf_fstrans_check(void)
1008 {
1009 	return (0);
1010 }
1011 
1012 int
1013 kmem_cache_reap_active(void)
1014 {
1015 	return (0);
1016 }
1017 
1018 void *zvol_tag = "zvol_tag";
1019 
1020 void
1021 zvol_create_minor(const char *name)
1022 {
1023 	(void) name;
1024 }
1025 
1026 void
1027 zvol_create_minors_recursive(const char *name)
1028 {
1029 	(void) name;
1030 }
1031 
1032 void
1033 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1034 {
1035 	(void) spa, (void) name, (void) async;
1036 }
1037 
1038 void
1039 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1040     boolean_t async)
1041 {
1042 	(void) spa, (void) oldname, (void) newname, (void) async;
1043 }
1044 
1045 /*
1046  * Open file
1047  *
1048  * path - fully qualified path to file
1049  * flags - file attributes O_READ / O_WRITE / O_EXCL
1050  * fpp - pointer to return file pointer
1051  *
1052  * Returns 0 on success underlying error on failure.
1053  */
1054 int
1055 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1056 {
1057 	int fd = -1;
1058 	int dump_fd = -1;
1059 	int err;
1060 	int old_umask = 0;
1061 	zfs_file_t *fp;
1062 	struct stat64 st;
1063 
1064 	if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1065 		return (errno);
1066 
1067 	if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1068 		flags |= O_DIRECT;
1069 
1070 	if (flags & O_CREAT)
1071 		old_umask = umask(0);
1072 
1073 	fd = open64(path, flags, mode);
1074 	if (fd == -1)
1075 		return (errno);
1076 
1077 	if (flags & O_CREAT)
1078 		(void) umask(old_umask);
1079 
1080 	if (vn_dumpdir != NULL) {
1081 		char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1082 		const char *inpath = zfs_basename(path);
1083 
1084 		(void) snprintf(dumppath, MAXPATHLEN,
1085 		    "%s/%s", vn_dumpdir, inpath);
1086 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1087 		umem_free(dumppath, MAXPATHLEN);
1088 		if (dump_fd == -1) {
1089 			err = errno;
1090 			close(fd);
1091 			return (err);
1092 		}
1093 	} else {
1094 		dump_fd = -1;
1095 	}
1096 
1097 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1098 
1099 	fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1100 	fp->f_fd = fd;
1101 	fp->f_dump_fd = dump_fd;
1102 	*fpp = fp;
1103 
1104 	return (0);
1105 }
1106 
1107 void
1108 zfs_file_close(zfs_file_t *fp)
1109 {
1110 	close(fp->f_fd);
1111 	if (fp->f_dump_fd != -1)
1112 		close(fp->f_dump_fd);
1113 
1114 	umem_free(fp, sizeof (zfs_file_t));
1115 }
1116 
1117 /*
1118  * Stateful write - use os internal file pointer to determine where to
1119  * write and update on successful completion.
1120  *
1121  * fp -  pointer to file (pipe, socket, etc) to write to
1122  * buf - buffer to write
1123  * count - # of bytes to write
1124  * resid -  pointer to count of unwritten bytes  (if short write)
1125  *
1126  * Returns 0 on success errno on failure.
1127  */
1128 int
1129 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1130 {
1131 	ssize_t rc;
1132 
1133 	rc = write(fp->f_fd, buf, count);
1134 	if (rc < 0)
1135 		return (errno);
1136 
1137 	if (resid) {
1138 		*resid = count - rc;
1139 	} else if (rc != count) {
1140 		return (EIO);
1141 	}
1142 
1143 	return (0);
1144 }
1145 
1146 /*
1147  * Stateless write - os internal file pointer is not updated.
1148  *
1149  * fp -  pointer to file (pipe, socket, etc) to write to
1150  * buf - buffer to write
1151  * count - # of bytes to write
1152  * off - file offset to write to (only valid for seekable types)
1153  * resid -  pointer to count of unwritten bytes
1154  *
1155  * Returns 0 on success errno on failure.
1156  */
1157 int
1158 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1159     size_t count, loff_t pos, ssize_t *resid)
1160 {
1161 	ssize_t rc, split, done;
1162 	int sectors;
1163 
1164 	/*
1165 	 * To simulate partial disk writes, we split writes into two
1166 	 * system calls so that the process can be killed in between.
1167 	 * This is used by ztest to simulate realistic failure modes.
1168 	 */
1169 	sectors = count >> SPA_MINBLOCKSHIFT;
1170 	split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1171 	rc = pwrite64(fp->f_fd, buf, split, pos);
1172 	if (rc != -1) {
1173 		done = rc;
1174 		rc = pwrite64(fp->f_fd, (char *)buf + split,
1175 		    count - split, pos + split);
1176 	}
1177 #ifdef __linux__
1178 	if (rc == -1 && errno == EINVAL) {
1179 		/*
1180 		 * Under Linux, this most likely means an alignment issue
1181 		 * (memory or disk) due to O_DIRECT, so we abort() in order
1182 		 * to catch the offender.
1183 		 */
1184 		abort();
1185 	}
1186 #endif
1187 
1188 	if (rc < 0)
1189 		return (errno);
1190 
1191 	done += rc;
1192 
1193 	if (resid) {
1194 		*resid = count - done;
1195 	} else if (done != count) {
1196 		return (EIO);
1197 	}
1198 
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Stateful read - use os internal file pointer to determine where to
1204  * read and update on successful completion.
1205  *
1206  * fp -  pointer to file (pipe, socket, etc) to read from
1207  * buf - buffer to write
1208  * count - # of bytes to read
1209  * resid -  pointer to count of unread bytes (if short read)
1210  *
1211  * Returns 0 on success errno on failure.
1212  */
1213 int
1214 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1215 {
1216 	int rc;
1217 
1218 	rc = read(fp->f_fd, buf, count);
1219 	if (rc < 0)
1220 		return (errno);
1221 
1222 	if (resid) {
1223 		*resid = count - rc;
1224 	} else if (rc != count) {
1225 		return (EIO);
1226 	}
1227 
1228 	return (0);
1229 }
1230 
1231 /*
1232  * Stateless read - os internal file pointer is not updated.
1233  *
1234  * fp -  pointer to file (pipe, socket, etc) to read from
1235  * buf - buffer to write
1236  * count - # of bytes to write
1237  * off - file offset to read from (only valid for seekable types)
1238  * resid -  pointer to count of unwritten bytes (if short write)
1239  *
1240  * Returns 0 on success errno on failure.
1241  */
1242 int
1243 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1244     ssize_t *resid)
1245 {
1246 	ssize_t rc;
1247 
1248 	rc = pread64(fp->f_fd, buf, count, off);
1249 	if (rc < 0) {
1250 #ifdef __linux__
1251 		/*
1252 		 * Under Linux, this most likely means an alignment issue
1253 		 * (memory or disk) due to O_DIRECT, so we abort() in order to
1254 		 * catch the offender.
1255 		 */
1256 		if (errno == EINVAL)
1257 			abort();
1258 #endif
1259 		return (errno);
1260 	}
1261 
1262 	if (fp->f_dump_fd != -1) {
1263 		int status;
1264 
1265 		status = pwrite64(fp->f_dump_fd, buf, rc, off);
1266 		ASSERT(status != -1);
1267 	}
1268 
1269 	if (resid) {
1270 		*resid = count - rc;
1271 	} else if (rc != count) {
1272 		return (EIO);
1273 	}
1274 
1275 	return (0);
1276 }
1277 
1278 /*
1279  * lseek - set / get file pointer
1280  *
1281  * fp -  pointer to file (pipe, socket, etc) to read from
1282  * offp - value to seek to, returns current value plus passed offset
1283  * whence - see man pages for standard lseek whence values
1284  *
1285  * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1286  */
1287 int
1288 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1289 {
1290 	loff_t rc;
1291 
1292 	rc = lseek(fp->f_fd, *offp, whence);
1293 	if (rc < 0)
1294 		return (errno);
1295 
1296 	*offp = rc;
1297 
1298 	return (0);
1299 }
1300 
1301 /*
1302  * Get file attributes
1303  *
1304  * filp - file pointer
1305  * zfattr - pointer to file attr structure
1306  *
1307  * Currently only used for fetching size and file mode
1308  *
1309  * Returns 0 on success or error code of underlying getattr call on failure.
1310  */
1311 int
1312 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1313 {
1314 	struct stat64 st;
1315 
1316 	if (fstat64_blk(fp->f_fd, &st) == -1)
1317 		return (errno);
1318 
1319 	zfattr->zfa_size = st.st_size;
1320 	zfattr->zfa_mode = st.st_mode;
1321 
1322 	return (0);
1323 }
1324 
1325 /*
1326  * Sync file to disk
1327  *
1328  * filp - file pointer
1329  * flags - O_SYNC and or O_DSYNC
1330  *
1331  * Returns 0 on success or error code of underlying sync call on failure.
1332  */
1333 int
1334 zfs_file_fsync(zfs_file_t *fp, int flags)
1335 {
1336 	(void) flags;
1337 
1338 	if (fsync(fp->f_fd) < 0)
1339 		return (errno);
1340 
1341 	return (0);
1342 }
1343 
1344 /*
1345  * fallocate - allocate or free space on disk
1346  *
1347  * fp - file pointer
1348  * mode (non-standard options for hole punching etc)
1349  * offset - offset to start allocating or freeing from
1350  * len - length to free / allocate
1351  *
1352  * OPTIONAL
1353  */
1354 int
1355 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len)
1356 {
1357 #ifdef __linux__
1358 	return (fallocate(fp->f_fd, mode, offset, len));
1359 #else
1360 	(void) fp, (void) mode, (void) offset, (void) len;
1361 	return (EOPNOTSUPP);
1362 #endif
1363 }
1364 
1365 /*
1366  * Request current file pointer offset
1367  *
1368  * fp - pointer to file
1369  *
1370  * Returns current file offset.
1371  */
1372 loff_t
1373 zfs_file_off(zfs_file_t *fp)
1374 {
1375 	return (lseek(fp->f_fd, SEEK_CUR, 0));
1376 }
1377 
1378 /*
1379  * unlink file
1380  *
1381  * path - fully qualified file path
1382  *
1383  * Returns 0 on success.
1384  *
1385  * OPTIONAL
1386  */
1387 int
1388 zfs_file_unlink(const char *path)
1389 {
1390 	return (remove(path));
1391 }
1392 
1393 /*
1394  * Get reference to file pointer
1395  *
1396  * fd - input file descriptor
1397  *
1398  * Returns pointer to file struct or NULL.
1399  * Unsupported in user space.
1400  */
1401 zfs_file_t *
1402 zfs_file_get(int fd)
1403 {
1404 	(void) fd;
1405 	abort();
1406 	return (NULL);
1407 }
1408 /*
1409  * Drop reference to file pointer
1410  *
1411  * fp - pointer to file struct
1412  *
1413  * Unsupported in user space.
1414  */
1415 void
1416 zfs_file_put(zfs_file_t *fp)
1417 {
1418 	abort();
1419 	(void) fp;
1420 }
1421 
1422 void
1423 zfsvfs_update_fromname(const char *oldname, const char *newname)
1424 {
1425 	(void) oldname, (void) newname;
1426 }
1427 
1428 void
1429 spa_import_os(spa_t *spa)
1430 {
1431 	(void) spa;
1432 }
1433 
1434 void
1435 spa_export_os(spa_t *spa)
1436 {
1437 	(void) spa;
1438 }
1439 
1440 void
1441 spa_activate_os(spa_t *spa)
1442 {
1443 	(void) spa;
1444 }
1445 
1446 void
1447 spa_deactivate_os(spa_t *spa)
1448 {
1449 	(void) spa;
1450 }
1451