1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <libgen.h> 30 #include <poll.h> 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <string.h> 34 #include <libzutil.h> 35 #include <sys/crypto/icp.h> 36 #include <sys/processor.h> 37 #include <sys/rrwlock.h> 38 #include <sys/spa.h> 39 #include <sys/stat.h> 40 #include <sys/systeminfo.h> 41 #include <sys/time.h> 42 #include <sys/utsname.h> 43 #include <sys/zfs_context.h> 44 #include <sys/zfs_onexit.h> 45 #include <sys/zfs_vfsops.h> 46 #include <sys/zstd/zstd.h> 47 #include <sys/zvol.h> 48 #include <zfs_fletcher.h> 49 #include <zlib.h> 50 51 /* 52 * Emulation of kernel services in userland. 53 */ 54 55 uint64_t physmem; 56 char hw_serial[HW_HOSTID_LEN]; 57 struct utsname hw_utsname; 58 59 /* If set, all blocks read will be copied to the specified directory. */ 60 char *vn_dumpdir = NULL; 61 62 /* this only exists to have its address taken */ 63 struct proc p0; 64 65 /* 66 * ========================================================================= 67 * threads 68 * ========================================================================= 69 * 70 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While 71 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for 72 * the expected stack depth while small enough to avoid exhausting address 73 * space with high thread counts. 74 */ 75 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768) 76 #define TS_STACK_MAX (256 * 1024) 77 78 /*ARGSUSED*/ 79 kthread_t * 80 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state) 81 { 82 pthread_attr_t attr; 83 pthread_t tid; 84 char *stkstr; 85 int detachstate = PTHREAD_CREATE_DETACHED; 86 87 VERIFY0(pthread_attr_init(&attr)); 88 89 if (state & TS_JOINABLE) 90 detachstate = PTHREAD_CREATE_JOINABLE; 91 92 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); 93 94 /* 95 * We allow the default stack size in user space to be specified by 96 * setting the ZFS_STACK_SIZE environment variable. This allows us 97 * the convenience of observing and debugging stack overruns in 98 * user space. Explicitly specified stack sizes will be honored. 99 * The usage of ZFS_STACK_SIZE is discussed further in the 100 * ENVIRONMENT VARIABLES sections of the ztest(1) man page. 101 */ 102 if (stksize == 0) { 103 stkstr = getenv("ZFS_STACK_SIZE"); 104 105 if (stkstr == NULL) 106 stksize = TS_STACK_MAX; 107 else 108 stksize = MAX(atoi(stkstr), TS_STACK_MIN); 109 } 110 111 VERIFY3S(stksize, >, 0); 112 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); 113 114 /* 115 * If this ever fails, it may be because the stack size is not a 116 * multiple of system page size. 117 */ 118 VERIFY0(pthread_attr_setstacksize(&attr, stksize)); 119 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); 120 121 VERIFY0(pthread_create(&tid, &attr, (void *(*)(void *))func, arg)); 122 VERIFY0(pthread_attr_destroy(&attr)); 123 124 return ((void *)(uintptr_t)tid); 125 } 126 127 /* 128 * ========================================================================= 129 * kstats 130 * ========================================================================= 131 */ 132 /*ARGSUSED*/ 133 kstat_t * 134 kstat_create(const char *module, int instance, const char *name, 135 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 136 { 137 return (NULL); 138 } 139 140 /*ARGSUSED*/ 141 void 142 kstat_install(kstat_t *ksp) 143 {} 144 145 /*ARGSUSED*/ 146 void 147 kstat_delete(kstat_t *ksp) 148 {} 149 150 void 151 kstat_set_raw_ops(kstat_t *ksp, 152 int (*headers)(char *buf, size_t size), 153 int (*data)(char *buf, size_t size, void *data), 154 void *(*addr)(kstat_t *ksp, loff_t index)) 155 {} 156 157 /* 158 * ========================================================================= 159 * mutexes 160 * ========================================================================= 161 */ 162 163 void 164 mutex_init(kmutex_t *mp, char *name, int type, void *cookie) 165 { 166 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL)); 167 memset(&mp->m_owner, 0, sizeof (pthread_t)); 168 } 169 170 void 171 mutex_destroy(kmutex_t *mp) 172 { 173 VERIFY0(pthread_mutex_destroy(&mp->m_lock)); 174 } 175 176 void 177 mutex_enter(kmutex_t *mp) 178 { 179 VERIFY0(pthread_mutex_lock(&mp->m_lock)); 180 mp->m_owner = pthread_self(); 181 } 182 183 int 184 mutex_tryenter(kmutex_t *mp) 185 { 186 int error; 187 188 error = pthread_mutex_trylock(&mp->m_lock); 189 if (error == 0) { 190 mp->m_owner = pthread_self(); 191 return (1); 192 } else { 193 VERIFY3S(error, ==, EBUSY); 194 return (0); 195 } 196 } 197 198 void 199 mutex_exit(kmutex_t *mp) 200 { 201 memset(&mp->m_owner, 0, sizeof (pthread_t)); 202 VERIFY0(pthread_mutex_unlock(&mp->m_lock)); 203 } 204 205 /* 206 * ========================================================================= 207 * rwlocks 208 * ========================================================================= 209 */ 210 211 void 212 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 213 { 214 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL)); 215 rwlp->rw_readers = 0; 216 rwlp->rw_owner = 0; 217 } 218 219 void 220 rw_destroy(krwlock_t *rwlp) 221 { 222 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock)); 223 } 224 225 void 226 rw_enter(krwlock_t *rwlp, krw_t rw) 227 { 228 if (rw == RW_READER) { 229 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock)); 230 atomic_inc_uint(&rwlp->rw_readers); 231 } else { 232 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock)); 233 rwlp->rw_owner = pthread_self(); 234 } 235 } 236 237 void 238 rw_exit(krwlock_t *rwlp) 239 { 240 if (RW_READ_HELD(rwlp)) 241 atomic_dec_uint(&rwlp->rw_readers); 242 else 243 rwlp->rw_owner = 0; 244 245 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock)); 246 } 247 248 int 249 rw_tryenter(krwlock_t *rwlp, krw_t rw) 250 { 251 int error; 252 253 if (rw == RW_READER) 254 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock); 255 else 256 error = pthread_rwlock_trywrlock(&rwlp->rw_lock); 257 258 if (error == 0) { 259 if (rw == RW_READER) 260 atomic_inc_uint(&rwlp->rw_readers); 261 else 262 rwlp->rw_owner = pthread_self(); 263 264 return (1); 265 } 266 267 VERIFY3S(error, ==, EBUSY); 268 269 return (0); 270 } 271 272 /* ARGSUSED */ 273 uint32_t 274 zone_get_hostid(void *zonep) 275 { 276 /* 277 * We're emulating the system's hostid in userland. 278 */ 279 return (strtoul(hw_serial, NULL, 10)); 280 } 281 282 int 283 rw_tryupgrade(krwlock_t *rwlp) 284 { 285 return (0); 286 } 287 288 /* 289 * ========================================================================= 290 * condition variables 291 * ========================================================================= 292 */ 293 294 void 295 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 296 { 297 VERIFY0(pthread_cond_init(cv, NULL)); 298 } 299 300 void 301 cv_destroy(kcondvar_t *cv) 302 { 303 VERIFY0(pthread_cond_destroy(cv)); 304 } 305 306 void 307 cv_wait(kcondvar_t *cv, kmutex_t *mp) 308 { 309 memset(&mp->m_owner, 0, sizeof (pthread_t)); 310 VERIFY0(pthread_cond_wait(cv, &mp->m_lock)); 311 mp->m_owner = pthread_self(); 312 } 313 314 int 315 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp) 316 { 317 cv_wait(cv, mp); 318 return (1); 319 } 320 321 int 322 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 323 { 324 int error; 325 struct timeval tv; 326 struct timespec ts; 327 clock_t delta; 328 329 delta = abstime - ddi_get_lbolt(); 330 if (delta <= 0) 331 return (-1); 332 333 VERIFY(gettimeofday(&tv, NULL) == 0); 334 335 ts.tv_sec = tv.tv_sec + delta / hz; 336 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); 337 if (ts.tv_nsec >= NANOSEC) { 338 ts.tv_sec++; 339 ts.tv_nsec -= NANOSEC; 340 } 341 342 memset(&mp->m_owner, 0, sizeof (pthread_t)); 343 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 344 mp->m_owner = pthread_self(); 345 346 if (error == ETIMEDOUT) 347 return (-1); 348 349 VERIFY0(error); 350 351 return (1); 352 } 353 354 /*ARGSUSED*/ 355 int 356 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 357 int flag) 358 { 359 int error; 360 struct timeval tv; 361 struct timespec ts; 362 hrtime_t delta; 363 364 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 365 366 delta = tim; 367 if (flag & CALLOUT_FLAG_ABSOLUTE) 368 delta -= gethrtime(); 369 370 if (delta <= 0) 371 return (-1); 372 373 VERIFY0(gettimeofday(&tv, NULL)); 374 375 ts.tv_sec = tv.tv_sec + delta / NANOSEC; 376 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); 377 if (ts.tv_nsec >= NANOSEC) { 378 ts.tv_sec++; 379 ts.tv_nsec -= NANOSEC; 380 } 381 382 memset(&mp->m_owner, 0, sizeof (pthread_t)); 383 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 384 mp->m_owner = pthread_self(); 385 386 if (error == ETIMEDOUT) 387 return (-1); 388 389 VERIFY0(error); 390 391 return (1); 392 } 393 394 void 395 cv_signal(kcondvar_t *cv) 396 { 397 VERIFY0(pthread_cond_signal(cv)); 398 } 399 400 void 401 cv_broadcast(kcondvar_t *cv) 402 { 403 VERIFY0(pthread_cond_broadcast(cv)); 404 } 405 406 /* 407 * ========================================================================= 408 * procfs list 409 * ========================================================================= 410 */ 411 412 void 413 seq_printf(struct seq_file *m, const char *fmt, ...) 414 {} 415 416 void 417 procfs_list_install(const char *module, 418 const char *submodule, 419 const char *name, 420 mode_t mode, 421 procfs_list_t *procfs_list, 422 int (*show)(struct seq_file *f, void *p), 423 int (*show_header)(struct seq_file *f), 424 int (*clear)(procfs_list_t *procfs_list), 425 size_t procfs_list_node_off) 426 { 427 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL); 428 list_create(&procfs_list->pl_list, 429 procfs_list_node_off + sizeof (procfs_list_node_t), 430 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link)); 431 procfs_list->pl_next_id = 1; 432 procfs_list->pl_node_offset = procfs_list_node_off; 433 } 434 435 void 436 procfs_list_uninstall(procfs_list_t *procfs_list) 437 {} 438 439 void 440 procfs_list_destroy(procfs_list_t *procfs_list) 441 { 442 ASSERT(list_is_empty(&procfs_list->pl_list)); 443 list_destroy(&procfs_list->pl_list); 444 mutex_destroy(&procfs_list->pl_lock); 445 } 446 447 #define NODE_ID(procfs_list, obj) \ 448 (((procfs_list_node_t *)(((char *)obj) + \ 449 (procfs_list)->pl_node_offset))->pln_id) 450 451 void 452 procfs_list_add(procfs_list_t *procfs_list, void *p) 453 { 454 ASSERT(MUTEX_HELD(&procfs_list->pl_lock)); 455 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++; 456 list_insert_tail(&procfs_list->pl_list, p); 457 } 458 459 /* 460 * ========================================================================= 461 * vnode operations 462 * ========================================================================= 463 */ 464 465 /* 466 * ========================================================================= 467 * Figure out which debugging statements to print 468 * ========================================================================= 469 */ 470 471 static char *dprintf_string; 472 static int dprintf_print_all; 473 474 int 475 dprintf_find_string(const char *string) 476 { 477 char *tmp_str = dprintf_string; 478 int len = strlen(string); 479 480 /* 481 * Find out if this is a string we want to print. 482 * String format: file1.c,function_name1,file2.c,file3.c 483 */ 484 485 while (tmp_str != NULL) { 486 if (strncmp(tmp_str, string, len) == 0 && 487 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 488 return (1); 489 tmp_str = strchr(tmp_str, ','); 490 if (tmp_str != NULL) 491 tmp_str++; /* Get rid of , */ 492 } 493 return (0); 494 } 495 496 void 497 dprintf_setup(int *argc, char **argv) 498 { 499 int i, j; 500 501 /* 502 * Debugging can be specified two ways: by setting the 503 * environment variable ZFS_DEBUG, or by including a 504 * "debug=..." argument on the command line. The command 505 * line setting overrides the environment variable. 506 */ 507 508 for (i = 1; i < *argc; i++) { 509 int len = strlen("debug="); 510 /* First look for a command line argument */ 511 if (strncmp("debug=", argv[i], len) == 0) { 512 dprintf_string = argv[i] + len; 513 /* Remove from args */ 514 for (j = i; j < *argc; j++) 515 argv[j] = argv[j+1]; 516 argv[j] = NULL; 517 (*argc)--; 518 } 519 } 520 521 if (dprintf_string == NULL) { 522 /* Look for ZFS_DEBUG environment variable */ 523 dprintf_string = getenv("ZFS_DEBUG"); 524 } 525 526 /* 527 * Are we just turning on all debugging? 528 */ 529 if (dprintf_find_string("on")) 530 dprintf_print_all = 1; 531 532 if (dprintf_string != NULL) 533 zfs_flags |= ZFS_DEBUG_DPRINTF; 534 } 535 536 /* 537 * ========================================================================= 538 * debug printfs 539 * ========================================================================= 540 */ 541 void 542 __dprintf(boolean_t dprint, const char *file, const char *func, 543 int line, const char *fmt, ...) 544 { 545 /* Get rid of annoying "../common/" prefix to filename. */ 546 const char *newfile = zfs_basename(file); 547 548 va_list adx; 549 if (dprint) { 550 /* dprintf messages are printed immediately */ 551 552 if (!dprintf_print_all && 553 !dprintf_find_string(newfile) && 554 !dprintf_find_string(func)) 555 return; 556 557 /* Print out just the function name if requested */ 558 flockfile(stdout); 559 if (dprintf_find_string("pid")) 560 (void) printf("%d ", getpid()); 561 if (dprintf_find_string("tid")) 562 (void) printf("%ju ", 563 (uintmax_t)(uintptr_t)pthread_self()); 564 if (dprintf_find_string("cpu")) 565 (void) printf("%u ", getcpuid()); 566 if (dprintf_find_string("time")) 567 (void) printf("%llu ", gethrtime()); 568 if (dprintf_find_string("long")) 569 (void) printf("%s, line %d: ", newfile, line); 570 (void) printf("dprintf: %s: ", func); 571 va_start(adx, fmt); 572 (void) vprintf(fmt, adx); 573 va_end(adx); 574 funlockfile(stdout); 575 } else { 576 /* zfs_dbgmsg is logged for dumping later */ 577 size_t size; 578 char *buf; 579 int i; 580 581 size = 1024; 582 buf = umem_alloc(size, UMEM_NOFAIL); 583 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func); 584 585 if (i < size) { 586 va_start(adx, fmt); 587 (void) vsnprintf(buf + i, size - i, fmt, adx); 588 va_end(adx); 589 } 590 591 __zfs_dbgmsg(buf); 592 593 umem_free(buf, size); 594 } 595 } 596 597 /* 598 * ========================================================================= 599 * cmn_err() and panic() 600 * ========================================================================= 601 */ 602 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 603 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 604 605 void 606 vpanic(const char *fmt, va_list adx) 607 { 608 (void) fprintf(stderr, "error: "); 609 (void) vfprintf(stderr, fmt, adx); 610 (void) fprintf(stderr, "\n"); 611 612 abort(); /* think of it as a "user-level crash dump" */ 613 } 614 615 void 616 panic(const char *fmt, ...) 617 { 618 va_list adx; 619 620 va_start(adx, fmt); 621 vpanic(fmt, adx); 622 va_end(adx); 623 } 624 625 void 626 vcmn_err(int ce, const char *fmt, va_list adx) 627 { 628 if (ce == CE_PANIC) 629 vpanic(fmt, adx); 630 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 631 (void) fprintf(stderr, "%s", ce_prefix[ce]); 632 (void) vfprintf(stderr, fmt, adx); 633 (void) fprintf(stderr, "%s", ce_suffix[ce]); 634 } 635 } 636 637 /*PRINTFLIKE2*/ 638 void 639 cmn_err(int ce, const char *fmt, ...) 640 { 641 va_list adx; 642 643 va_start(adx, fmt); 644 vcmn_err(ce, fmt, adx); 645 va_end(adx); 646 } 647 648 /* 649 * ========================================================================= 650 * misc routines 651 * ========================================================================= 652 */ 653 654 void 655 delay(clock_t ticks) 656 { 657 (void) poll(0, 0, ticks * (1000 / hz)); 658 } 659 660 /* 661 * Find highest one bit set. 662 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 663 * The __builtin_clzll() function is supported by both GCC and Clang. 664 */ 665 int 666 highbit64(uint64_t i) 667 { 668 if (i == 0) 669 return (0); 670 671 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i)); 672 } 673 674 /* 675 * Find lowest one bit set. 676 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. 677 * The __builtin_ffsll() function is supported by both GCC and Clang. 678 */ 679 int 680 lowbit64(uint64_t i) 681 { 682 if (i == 0) 683 return (0); 684 685 return (__builtin_ffsll(i)); 686 } 687 688 const char *random_path = "/dev/random"; 689 const char *urandom_path = "/dev/urandom"; 690 static int random_fd = -1, urandom_fd = -1; 691 692 void 693 random_init(void) 694 { 695 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1); 696 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1); 697 } 698 699 void 700 random_fini(void) 701 { 702 close(random_fd); 703 close(urandom_fd); 704 705 random_fd = -1; 706 urandom_fd = -1; 707 } 708 709 static int 710 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 711 { 712 size_t resid = len; 713 ssize_t bytes; 714 715 ASSERT(fd != -1); 716 717 while (resid != 0) { 718 bytes = read(fd, ptr, resid); 719 ASSERT3S(bytes, >=, 0); 720 ptr += bytes; 721 resid -= bytes; 722 } 723 724 return (0); 725 } 726 727 int 728 random_get_bytes(uint8_t *ptr, size_t len) 729 { 730 return (random_get_bytes_common(ptr, len, random_fd)); 731 } 732 733 int 734 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 735 { 736 return (random_get_bytes_common(ptr, len, urandom_fd)); 737 } 738 739 int 740 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 741 { 742 char *end; 743 744 *result = strtoul(hw_serial, &end, base); 745 if (*result == 0) 746 return (errno); 747 return (0); 748 } 749 750 int 751 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 752 { 753 char *end; 754 755 *result = strtoull(str, &end, base); 756 if (*result == 0) 757 return (errno); 758 return (0); 759 } 760 761 utsname_t * 762 utsname(void) 763 { 764 return (&hw_utsname); 765 } 766 767 /* 768 * ========================================================================= 769 * kernel emulation setup & teardown 770 * ========================================================================= 771 */ 772 static int 773 umem_out_of_memory(void) 774 { 775 char errmsg[] = "out of memory -- generating core dump\n"; 776 777 (void) fprintf(stderr, "%s", errmsg); 778 abort(); 779 return (0); 780 } 781 782 void 783 kernel_init(int mode) 784 { 785 extern uint_t rrw_tsd_key; 786 787 umem_nofail_callback(umem_out_of_memory); 788 789 physmem = sysconf(_SC_PHYS_PAGES); 790 791 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem, 792 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 793 794 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 795 (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0); 796 797 random_init(); 798 799 VERIFY0(uname(&hw_utsname)); 800 801 system_taskq_init(); 802 icp_init(); 803 804 zstd_init(); 805 806 spa_init((spa_mode_t)mode); 807 808 fletcher_4_init(); 809 810 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 811 } 812 813 void 814 kernel_fini(void) 815 { 816 fletcher_4_fini(); 817 spa_fini(); 818 819 zstd_fini(); 820 821 icp_fini(); 822 system_taskq_fini(); 823 824 random_fini(); 825 } 826 827 uid_t 828 crgetuid(cred_t *cr) 829 { 830 return (0); 831 } 832 833 uid_t 834 crgetruid(cred_t *cr) 835 { 836 return (0); 837 } 838 839 gid_t 840 crgetgid(cred_t *cr) 841 { 842 return (0); 843 } 844 845 int 846 crgetngroups(cred_t *cr) 847 { 848 return (0); 849 } 850 851 gid_t * 852 crgetgroups(cred_t *cr) 853 { 854 return (NULL); 855 } 856 857 int 858 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 859 { 860 return (0); 861 } 862 863 int 864 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 865 { 866 return (0); 867 } 868 869 int 870 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 871 { 872 return (0); 873 } 874 875 int 876 secpolicy_zfs(const cred_t *cr) 877 { 878 return (0); 879 } 880 881 int 882 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc) 883 { 884 return (0); 885 } 886 887 ksiddomain_t * 888 ksid_lookupdomain(const char *dom) 889 { 890 ksiddomain_t *kd; 891 892 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 893 kd->kd_name = spa_strdup(dom); 894 return (kd); 895 } 896 897 void 898 ksiddomain_rele(ksiddomain_t *ksid) 899 { 900 spa_strfree(ksid->kd_name); 901 umem_free(ksid, sizeof (ksiddomain_t)); 902 } 903 904 char * 905 kmem_vasprintf(const char *fmt, va_list adx) 906 { 907 char *buf = NULL; 908 va_list adx_copy; 909 910 va_copy(adx_copy, adx); 911 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); 912 va_end(adx_copy); 913 914 return (buf); 915 } 916 917 char * 918 kmem_asprintf(const char *fmt, ...) 919 { 920 char *buf = NULL; 921 va_list adx; 922 923 va_start(adx, fmt); 924 VERIFY(vasprintf(&buf, fmt, adx) != -1); 925 va_end(adx); 926 927 return (buf); 928 } 929 930 /* ARGSUSED */ 931 zfs_file_t * 932 zfs_onexit_fd_hold(int fd, minor_t *minorp) 933 { 934 *minorp = 0; 935 return (NULL); 936 } 937 938 /* ARGSUSED */ 939 void 940 zfs_onexit_fd_rele(zfs_file_t *fp) 941 { 942 } 943 944 /* ARGSUSED */ 945 int 946 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 947 uint64_t *action_handle) 948 { 949 return (0); 950 } 951 952 fstrans_cookie_t 953 spl_fstrans_mark(void) 954 { 955 return ((fstrans_cookie_t)0); 956 } 957 958 void 959 spl_fstrans_unmark(fstrans_cookie_t cookie) 960 { 961 } 962 963 int 964 __spl_pf_fstrans_check(void) 965 { 966 return (0); 967 } 968 969 int 970 kmem_cache_reap_active(void) 971 { 972 return (0); 973 } 974 975 void *zvol_tag = "zvol_tag"; 976 977 void 978 zvol_create_minor(const char *name) 979 { 980 } 981 982 void 983 zvol_create_minors_recursive(const char *name) 984 { 985 } 986 987 void 988 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 989 { 990 } 991 992 void 993 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, 994 boolean_t async) 995 { 996 } 997 998 /* 999 * Open file 1000 * 1001 * path - fully qualified path to file 1002 * flags - file attributes O_READ / O_WRITE / O_EXCL 1003 * fpp - pointer to return file pointer 1004 * 1005 * Returns 0 on success underlying error on failure. 1006 */ 1007 int 1008 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp) 1009 { 1010 int fd = -1; 1011 int dump_fd = -1; 1012 int err; 1013 int old_umask = 0; 1014 zfs_file_t *fp; 1015 struct stat64 st; 1016 1017 if (!(flags & O_CREAT) && stat64(path, &st) == -1) 1018 return (errno); 1019 1020 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode)) 1021 flags |= O_DIRECT; 1022 1023 if (flags & O_CREAT) 1024 old_umask = umask(0); 1025 1026 fd = open64(path, flags, mode); 1027 if (fd == -1) 1028 return (errno); 1029 1030 if (flags & O_CREAT) 1031 (void) umask(old_umask); 1032 1033 if (vn_dumpdir != NULL) { 1034 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); 1035 const char *inpath = zfs_basename(path); 1036 1037 (void) snprintf(dumppath, MAXPATHLEN, 1038 "%s/%s", vn_dumpdir, inpath); 1039 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 1040 umem_free(dumppath, MAXPATHLEN); 1041 if (dump_fd == -1) { 1042 err = errno; 1043 close(fd); 1044 return (err); 1045 } 1046 } else { 1047 dump_fd = -1; 1048 } 1049 1050 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 1051 1052 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL); 1053 fp->f_fd = fd; 1054 fp->f_dump_fd = dump_fd; 1055 *fpp = fp; 1056 1057 return (0); 1058 } 1059 1060 void 1061 zfs_file_close(zfs_file_t *fp) 1062 { 1063 close(fp->f_fd); 1064 if (fp->f_dump_fd != -1) 1065 close(fp->f_dump_fd); 1066 1067 umem_free(fp, sizeof (zfs_file_t)); 1068 } 1069 1070 /* 1071 * Stateful write - use os internal file pointer to determine where to 1072 * write and update on successful completion. 1073 * 1074 * fp - pointer to file (pipe, socket, etc) to write to 1075 * buf - buffer to write 1076 * count - # of bytes to write 1077 * resid - pointer to count of unwritten bytes (if short write) 1078 * 1079 * Returns 0 on success errno on failure. 1080 */ 1081 int 1082 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid) 1083 { 1084 ssize_t rc; 1085 1086 rc = write(fp->f_fd, buf, count); 1087 if (rc < 0) 1088 return (errno); 1089 1090 if (resid) { 1091 *resid = count - rc; 1092 } else if (rc != count) { 1093 return (EIO); 1094 } 1095 1096 return (0); 1097 } 1098 1099 /* 1100 * Stateless write - os internal file pointer is not updated. 1101 * 1102 * fp - pointer to file (pipe, socket, etc) to write to 1103 * buf - buffer to write 1104 * count - # of bytes to write 1105 * off - file offset to write to (only valid for seekable types) 1106 * resid - pointer to count of unwritten bytes 1107 * 1108 * Returns 0 on success errno on failure. 1109 */ 1110 int 1111 zfs_file_pwrite(zfs_file_t *fp, const void *buf, 1112 size_t count, loff_t pos, ssize_t *resid) 1113 { 1114 ssize_t rc, split, done; 1115 int sectors; 1116 1117 /* 1118 * To simulate partial disk writes, we split writes into two 1119 * system calls so that the process can be killed in between. 1120 * This is used by ztest to simulate realistic failure modes. 1121 */ 1122 sectors = count >> SPA_MINBLOCKSHIFT; 1123 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; 1124 rc = pwrite64(fp->f_fd, buf, split, pos); 1125 if (rc != -1) { 1126 done = rc; 1127 rc = pwrite64(fp->f_fd, (char *)buf + split, 1128 count - split, pos + split); 1129 } 1130 #ifdef __linux__ 1131 if (rc == -1 && errno == EINVAL) { 1132 /* 1133 * Under Linux, this most likely means an alignment issue 1134 * (memory or disk) due to O_DIRECT, so we abort() in order 1135 * to catch the offender. 1136 */ 1137 abort(); 1138 } 1139 #endif 1140 1141 if (rc < 0) 1142 return (errno); 1143 1144 done += rc; 1145 1146 if (resid) { 1147 *resid = count - done; 1148 } else if (done != count) { 1149 return (EIO); 1150 } 1151 1152 return (0); 1153 } 1154 1155 /* 1156 * Stateful read - use os internal file pointer to determine where to 1157 * read and update on successful completion. 1158 * 1159 * fp - pointer to file (pipe, socket, etc) to read from 1160 * buf - buffer to write 1161 * count - # of bytes to read 1162 * resid - pointer to count of unread bytes (if short read) 1163 * 1164 * Returns 0 on success errno on failure. 1165 */ 1166 int 1167 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid) 1168 { 1169 int rc; 1170 1171 rc = read(fp->f_fd, buf, count); 1172 if (rc < 0) 1173 return (errno); 1174 1175 if (resid) { 1176 *resid = count - rc; 1177 } else if (rc != count) { 1178 return (EIO); 1179 } 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Stateless read - os internal file pointer is not updated. 1186 * 1187 * fp - pointer to file (pipe, socket, etc) to read from 1188 * buf - buffer to write 1189 * count - # of bytes to write 1190 * off - file offset to read from (only valid for seekable types) 1191 * resid - pointer to count of unwritten bytes (if short write) 1192 * 1193 * Returns 0 on success errno on failure. 1194 */ 1195 int 1196 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off, 1197 ssize_t *resid) 1198 { 1199 ssize_t rc; 1200 1201 rc = pread64(fp->f_fd, buf, count, off); 1202 if (rc < 0) { 1203 #ifdef __linux__ 1204 /* 1205 * Under Linux, this most likely means an alignment issue 1206 * (memory or disk) due to O_DIRECT, so we abort() in order to 1207 * catch the offender. 1208 */ 1209 if (errno == EINVAL) 1210 abort(); 1211 #endif 1212 return (errno); 1213 } 1214 1215 if (fp->f_dump_fd != -1) { 1216 int status; 1217 1218 status = pwrite64(fp->f_dump_fd, buf, rc, off); 1219 ASSERT(status != -1); 1220 } 1221 1222 if (resid) { 1223 *resid = count - rc; 1224 } else if (rc != count) { 1225 return (EIO); 1226 } 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * lseek - set / get file pointer 1233 * 1234 * fp - pointer to file (pipe, socket, etc) to read from 1235 * offp - value to seek to, returns current value plus passed offset 1236 * whence - see man pages for standard lseek whence values 1237 * 1238 * Returns 0 on success errno on failure (ESPIPE for non seekable types) 1239 */ 1240 int 1241 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence) 1242 { 1243 loff_t rc; 1244 1245 rc = lseek(fp->f_fd, *offp, whence); 1246 if (rc < 0) 1247 return (errno); 1248 1249 *offp = rc; 1250 1251 return (0); 1252 } 1253 1254 /* 1255 * Get file attributes 1256 * 1257 * filp - file pointer 1258 * zfattr - pointer to file attr structure 1259 * 1260 * Currently only used for fetching size and file mode 1261 * 1262 * Returns 0 on success or error code of underlying getattr call on failure. 1263 */ 1264 int 1265 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr) 1266 { 1267 struct stat64 st; 1268 1269 if (fstat64_blk(fp->f_fd, &st) == -1) 1270 return (errno); 1271 1272 zfattr->zfa_size = st.st_size; 1273 zfattr->zfa_mode = st.st_mode; 1274 1275 return (0); 1276 } 1277 1278 /* 1279 * Sync file to disk 1280 * 1281 * filp - file pointer 1282 * flags - O_SYNC and or O_DSYNC 1283 * 1284 * Returns 0 on success or error code of underlying sync call on failure. 1285 */ 1286 int 1287 zfs_file_fsync(zfs_file_t *fp, int flags) 1288 { 1289 int rc; 1290 1291 rc = fsync(fp->f_fd); 1292 if (rc < 0) 1293 return (errno); 1294 1295 return (0); 1296 } 1297 1298 /* 1299 * fallocate - allocate or free space on disk 1300 * 1301 * fp - file pointer 1302 * mode (non-standard options for hole punching etc) 1303 * offset - offset to start allocating or freeing from 1304 * len - length to free / allocate 1305 * 1306 * OPTIONAL 1307 */ 1308 int 1309 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len) 1310 { 1311 #ifdef __linux__ 1312 return (fallocate(fp->f_fd, mode, offset, len)); 1313 #else 1314 return (EOPNOTSUPP); 1315 #endif 1316 } 1317 1318 /* 1319 * Request current file pointer offset 1320 * 1321 * fp - pointer to file 1322 * 1323 * Returns current file offset. 1324 */ 1325 loff_t 1326 zfs_file_off(zfs_file_t *fp) 1327 { 1328 return (lseek(fp->f_fd, SEEK_CUR, 0)); 1329 } 1330 1331 /* 1332 * unlink file 1333 * 1334 * path - fully qualified file path 1335 * 1336 * Returns 0 on success. 1337 * 1338 * OPTIONAL 1339 */ 1340 int 1341 zfs_file_unlink(const char *path) 1342 { 1343 return (remove(path)); 1344 } 1345 1346 /* 1347 * Get reference to file pointer 1348 * 1349 * fd - input file descriptor 1350 * 1351 * Returns pointer to file struct or NULL. 1352 * Unsupported in user space. 1353 */ 1354 zfs_file_t * 1355 zfs_file_get(int fd) 1356 { 1357 abort(); 1358 1359 return (NULL); 1360 } 1361 /* 1362 * Drop reference to file pointer 1363 * 1364 * fp - pointer to file struct 1365 * 1366 * Unsupported in user space. 1367 */ 1368 void 1369 zfs_file_put(zfs_file_t *fp) 1370 { 1371 abort(); 1372 } 1373 1374 void 1375 zfsvfs_update_fromname(const char *oldname, const char *newname) 1376 { 1377 } 1378