1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <libgen.h> 30 #include <poll.h> 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <string.h> 34 #include <libzutil.h> 35 #include <sys/crypto/icp.h> 36 #include <sys/processor.h> 37 #include <sys/rrwlock.h> 38 #include <sys/spa.h> 39 #include <sys/stat.h> 40 #include <sys/systeminfo.h> 41 #include <sys/time.h> 42 #include <sys/utsname.h> 43 #include <sys/zfs_context.h> 44 #include <sys/zfs_onexit.h> 45 #include <sys/zfs_vfsops.h> 46 #include <sys/zstd/zstd.h> 47 #include <sys/zvol.h> 48 #include <zfs_fletcher.h> 49 #include <zlib.h> 50 51 /* 52 * Emulation of kernel services in userland. 53 */ 54 55 uint64_t physmem; 56 char hw_serial[HW_HOSTID_LEN]; 57 struct utsname hw_utsname; 58 59 /* If set, all blocks read will be copied to the specified directory. */ 60 char *vn_dumpdir = NULL; 61 62 /* this only exists to have its address taken */ 63 struct proc p0; 64 65 /* 66 * ========================================================================= 67 * threads 68 * ========================================================================= 69 * 70 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While 71 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for 72 * the expected stack depth while small enough to avoid exhausting address 73 * space with high thread counts. 74 */ 75 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768) 76 #define TS_STACK_MAX (256 * 1024) 77 78 struct zk_thread_wrapper { 79 void (*func)(void *); 80 void *arg; 81 }; 82 83 static void * 84 zk_thread_wrapper(void *arg) 85 { 86 struct zk_thread_wrapper ztw; 87 memcpy(&ztw, arg, sizeof (ztw)); 88 free(arg); 89 ztw.func(ztw.arg); 90 return (NULL); 91 } 92 93 kthread_t * 94 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state) 95 { 96 pthread_attr_t attr; 97 pthread_t tid; 98 char *stkstr; 99 struct zk_thread_wrapper *ztw; 100 int detachstate = PTHREAD_CREATE_DETACHED; 101 102 VERIFY0(pthread_attr_init(&attr)); 103 104 if (state & TS_JOINABLE) 105 detachstate = PTHREAD_CREATE_JOINABLE; 106 107 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); 108 109 /* 110 * We allow the default stack size in user space to be specified by 111 * setting the ZFS_STACK_SIZE environment variable. This allows us 112 * the convenience of observing and debugging stack overruns in 113 * user space. Explicitly specified stack sizes will be honored. 114 * The usage of ZFS_STACK_SIZE is discussed further in the 115 * ENVIRONMENT VARIABLES sections of the ztest(1) man page. 116 */ 117 if (stksize == 0) { 118 stkstr = getenv("ZFS_STACK_SIZE"); 119 120 if (stkstr == NULL) 121 stksize = TS_STACK_MAX; 122 else 123 stksize = MAX(atoi(stkstr), TS_STACK_MIN); 124 } 125 126 VERIFY3S(stksize, >, 0); 127 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); 128 129 /* 130 * If this ever fails, it may be because the stack size is not a 131 * multiple of system page size. 132 */ 133 VERIFY0(pthread_attr_setstacksize(&attr, stksize)); 134 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); 135 136 VERIFY(ztw = malloc(sizeof (*ztw))); 137 ztw->func = func; 138 ztw->arg = arg; 139 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw)); 140 VERIFY0(pthread_attr_destroy(&attr)); 141 142 return ((void *)(uintptr_t)tid); 143 } 144 145 /* 146 * ========================================================================= 147 * kstats 148 * ========================================================================= 149 */ 150 kstat_t * 151 kstat_create(const char *module, int instance, const char *name, 152 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 153 { 154 (void) module, (void) instance, (void) name, (void) class, (void) type, 155 (void) ndata, (void) ks_flag; 156 return (NULL); 157 } 158 159 void 160 kstat_install(kstat_t *ksp) 161 { 162 (void) ksp; 163 } 164 165 void 166 kstat_delete(kstat_t *ksp) 167 { 168 (void) ksp; 169 } 170 171 void 172 kstat_set_raw_ops(kstat_t *ksp, 173 int (*headers)(char *buf, size_t size), 174 int (*data)(char *buf, size_t size, void *data), 175 void *(*addr)(kstat_t *ksp, loff_t index)) 176 { 177 (void) ksp, (void) headers, (void) data, (void) addr; 178 } 179 180 /* 181 * ========================================================================= 182 * mutexes 183 * ========================================================================= 184 */ 185 186 void 187 mutex_init(kmutex_t *mp, char *name, int type, void *cookie) 188 { 189 (void) name, (void) type, (void) cookie; 190 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL)); 191 memset(&mp->m_owner, 0, sizeof (pthread_t)); 192 } 193 194 void 195 mutex_destroy(kmutex_t *mp) 196 { 197 VERIFY0(pthread_mutex_destroy(&mp->m_lock)); 198 } 199 200 void 201 mutex_enter(kmutex_t *mp) 202 { 203 VERIFY0(pthread_mutex_lock(&mp->m_lock)); 204 mp->m_owner = pthread_self(); 205 } 206 207 int 208 mutex_tryenter(kmutex_t *mp) 209 { 210 int error = pthread_mutex_trylock(&mp->m_lock); 211 if (error == 0) { 212 mp->m_owner = pthread_self(); 213 return (1); 214 } else { 215 VERIFY3S(error, ==, EBUSY); 216 return (0); 217 } 218 } 219 220 void 221 mutex_exit(kmutex_t *mp) 222 { 223 memset(&mp->m_owner, 0, sizeof (pthread_t)); 224 VERIFY0(pthread_mutex_unlock(&mp->m_lock)); 225 } 226 227 /* 228 * ========================================================================= 229 * rwlocks 230 * ========================================================================= 231 */ 232 233 void 234 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 235 { 236 (void) name, (void) type, (void) arg; 237 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL)); 238 rwlp->rw_readers = 0; 239 rwlp->rw_owner = 0; 240 } 241 242 void 243 rw_destroy(krwlock_t *rwlp) 244 { 245 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock)); 246 } 247 248 void 249 rw_enter(krwlock_t *rwlp, krw_t rw) 250 { 251 if (rw == RW_READER) { 252 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock)); 253 atomic_inc_uint(&rwlp->rw_readers); 254 } else { 255 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock)); 256 rwlp->rw_owner = pthread_self(); 257 } 258 } 259 260 void 261 rw_exit(krwlock_t *rwlp) 262 { 263 if (RW_READ_HELD(rwlp)) 264 atomic_dec_uint(&rwlp->rw_readers); 265 else 266 rwlp->rw_owner = 0; 267 268 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock)); 269 } 270 271 int 272 rw_tryenter(krwlock_t *rwlp, krw_t rw) 273 { 274 int error; 275 276 if (rw == RW_READER) 277 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock); 278 else 279 error = pthread_rwlock_trywrlock(&rwlp->rw_lock); 280 281 if (error == 0) { 282 if (rw == RW_READER) 283 atomic_inc_uint(&rwlp->rw_readers); 284 else 285 rwlp->rw_owner = pthread_self(); 286 287 return (1); 288 } 289 290 VERIFY3S(error, ==, EBUSY); 291 292 return (0); 293 } 294 295 uint32_t 296 zone_get_hostid(void *zonep) 297 { 298 /* 299 * We're emulating the system's hostid in userland. 300 */ 301 (void) zonep; 302 return (strtoul(hw_serial, NULL, 10)); 303 } 304 305 int 306 rw_tryupgrade(krwlock_t *rwlp) 307 { 308 (void) rwlp; 309 return (0); 310 } 311 312 /* 313 * ========================================================================= 314 * condition variables 315 * ========================================================================= 316 */ 317 318 void 319 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 320 { 321 (void) name, (void) type, (void) arg; 322 VERIFY0(pthread_cond_init(cv, NULL)); 323 } 324 325 void 326 cv_destroy(kcondvar_t *cv) 327 { 328 VERIFY0(pthread_cond_destroy(cv)); 329 } 330 331 void 332 cv_wait(kcondvar_t *cv, kmutex_t *mp) 333 { 334 memset(&mp->m_owner, 0, sizeof (pthread_t)); 335 VERIFY0(pthread_cond_wait(cv, &mp->m_lock)); 336 mp->m_owner = pthread_self(); 337 } 338 339 int 340 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp) 341 { 342 cv_wait(cv, mp); 343 return (1); 344 } 345 346 int 347 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 348 { 349 int error; 350 struct timeval tv; 351 struct timespec ts; 352 clock_t delta; 353 354 delta = abstime - ddi_get_lbolt(); 355 if (delta <= 0) 356 return (-1); 357 358 VERIFY(gettimeofday(&tv, NULL) == 0); 359 360 ts.tv_sec = tv.tv_sec + delta / hz; 361 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); 362 if (ts.tv_nsec >= NANOSEC) { 363 ts.tv_sec++; 364 ts.tv_nsec -= NANOSEC; 365 } 366 367 memset(&mp->m_owner, 0, sizeof (pthread_t)); 368 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 369 mp->m_owner = pthread_self(); 370 371 if (error == ETIMEDOUT) 372 return (-1); 373 374 VERIFY0(error); 375 376 return (1); 377 } 378 379 int 380 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 381 int flag) 382 { 383 (void) res; 384 int error; 385 struct timeval tv; 386 struct timespec ts; 387 hrtime_t delta; 388 389 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 390 391 delta = tim; 392 if (flag & CALLOUT_FLAG_ABSOLUTE) 393 delta -= gethrtime(); 394 395 if (delta <= 0) 396 return (-1); 397 398 VERIFY0(gettimeofday(&tv, NULL)); 399 400 ts.tv_sec = tv.tv_sec + delta / NANOSEC; 401 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); 402 if (ts.tv_nsec >= NANOSEC) { 403 ts.tv_sec++; 404 ts.tv_nsec -= NANOSEC; 405 } 406 407 memset(&mp->m_owner, 0, sizeof (pthread_t)); 408 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 409 mp->m_owner = pthread_self(); 410 411 if (error == ETIMEDOUT) 412 return (-1); 413 414 VERIFY0(error); 415 416 return (1); 417 } 418 419 void 420 cv_signal(kcondvar_t *cv) 421 { 422 VERIFY0(pthread_cond_signal(cv)); 423 } 424 425 void 426 cv_broadcast(kcondvar_t *cv) 427 { 428 VERIFY0(pthread_cond_broadcast(cv)); 429 } 430 431 /* 432 * ========================================================================= 433 * procfs list 434 * ========================================================================= 435 */ 436 437 void 438 seq_printf(struct seq_file *m, const char *fmt, ...) 439 { 440 (void) m, (void) fmt; 441 } 442 443 void 444 procfs_list_install(const char *module, 445 const char *submodule, 446 const char *name, 447 mode_t mode, 448 procfs_list_t *procfs_list, 449 int (*show)(struct seq_file *f, void *p), 450 int (*show_header)(struct seq_file *f), 451 int (*clear)(procfs_list_t *procfs_list), 452 size_t procfs_list_node_off) 453 { 454 (void) module, (void) submodule, (void) name, (void) mode, (void) show, 455 (void) show_header, (void) clear; 456 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL); 457 list_create(&procfs_list->pl_list, 458 procfs_list_node_off + sizeof (procfs_list_node_t), 459 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link)); 460 procfs_list->pl_next_id = 1; 461 procfs_list->pl_node_offset = procfs_list_node_off; 462 } 463 464 void 465 procfs_list_uninstall(procfs_list_t *procfs_list) 466 { 467 (void) procfs_list; 468 } 469 470 void 471 procfs_list_destroy(procfs_list_t *procfs_list) 472 { 473 ASSERT(list_is_empty(&procfs_list->pl_list)); 474 list_destroy(&procfs_list->pl_list); 475 mutex_destroy(&procfs_list->pl_lock); 476 } 477 478 #define NODE_ID(procfs_list, obj) \ 479 (((procfs_list_node_t *)(((char *)obj) + \ 480 (procfs_list)->pl_node_offset))->pln_id) 481 482 void 483 procfs_list_add(procfs_list_t *procfs_list, void *p) 484 { 485 ASSERT(MUTEX_HELD(&procfs_list->pl_lock)); 486 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++; 487 list_insert_tail(&procfs_list->pl_list, p); 488 } 489 490 /* 491 * ========================================================================= 492 * vnode operations 493 * ========================================================================= 494 */ 495 496 /* 497 * ========================================================================= 498 * Figure out which debugging statements to print 499 * ========================================================================= 500 */ 501 502 static char *dprintf_string; 503 static int dprintf_print_all; 504 505 int 506 dprintf_find_string(const char *string) 507 { 508 char *tmp_str = dprintf_string; 509 int len = strlen(string); 510 511 /* 512 * Find out if this is a string we want to print. 513 * String format: file1.c,function_name1,file2.c,file3.c 514 */ 515 516 while (tmp_str != NULL) { 517 if (strncmp(tmp_str, string, len) == 0 && 518 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 519 return (1); 520 tmp_str = strchr(tmp_str, ','); 521 if (tmp_str != NULL) 522 tmp_str++; /* Get rid of , */ 523 } 524 return (0); 525 } 526 527 void 528 dprintf_setup(int *argc, char **argv) 529 { 530 int i, j; 531 532 /* 533 * Debugging can be specified two ways: by setting the 534 * environment variable ZFS_DEBUG, or by including a 535 * "debug=..." argument on the command line. The command 536 * line setting overrides the environment variable. 537 */ 538 539 for (i = 1; i < *argc; i++) { 540 int len = strlen("debug="); 541 /* First look for a command line argument */ 542 if (strncmp("debug=", argv[i], len) == 0) { 543 dprintf_string = argv[i] + len; 544 /* Remove from args */ 545 for (j = i; j < *argc; j++) 546 argv[j] = argv[j+1]; 547 argv[j] = NULL; 548 (*argc)--; 549 } 550 } 551 552 if (dprintf_string == NULL) { 553 /* Look for ZFS_DEBUG environment variable */ 554 dprintf_string = getenv("ZFS_DEBUG"); 555 } 556 557 /* 558 * Are we just turning on all debugging? 559 */ 560 if (dprintf_find_string("on")) 561 dprintf_print_all = 1; 562 563 if (dprintf_string != NULL) 564 zfs_flags |= ZFS_DEBUG_DPRINTF; 565 } 566 567 /* 568 * ========================================================================= 569 * debug printfs 570 * ========================================================================= 571 */ 572 void 573 __dprintf(boolean_t dprint, const char *file, const char *func, 574 int line, const char *fmt, ...) 575 { 576 /* Get rid of annoying "../common/" prefix to filename. */ 577 const char *newfile = zfs_basename(file); 578 579 va_list adx; 580 if (dprint) { 581 /* dprintf messages are printed immediately */ 582 583 if (!dprintf_print_all && 584 !dprintf_find_string(newfile) && 585 !dprintf_find_string(func)) 586 return; 587 588 /* Print out just the function name if requested */ 589 flockfile(stdout); 590 if (dprintf_find_string("pid")) 591 (void) printf("%d ", getpid()); 592 if (dprintf_find_string("tid")) 593 (void) printf("%ju ", 594 (uintmax_t)(uintptr_t)pthread_self()); 595 if (dprintf_find_string("cpu")) 596 (void) printf("%u ", getcpuid()); 597 if (dprintf_find_string("time")) 598 (void) printf("%llu ", gethrtime()); 599 if (dprintf_find_string("long")) 600 (void) printf("%s, line %d: ", newfile, line); 601 (void) printf("dprintf: %s: ", func); 602 va_start(adx, fmt); 603 (void) vprintf(fmt, adx); 604 va_end(adx); 605 funlockfile(stdout); 606 } else { 607 /* zfs_dbgmsg is logged for dumping later */ 608 size_t size; 609 char *buf; 610 int i; 611 612 size = 1024; 613 buf = umem_alloc(size, UMEM_NOFAIL); 614 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func); 615 616 if (i < size) { 617 va_start(adx, fmt); 618 (void) vsnprintf(buf + i, size - i, fmt, adx); 619 va_end(adx); 620 } 621 622 __zfs_dbgmsg(buf); 623 624 umem_free(buf, size); 625 } 626 } 627 628 /* 629 * ========================================================================= 630 * cmn_err() and panic() 631 * ========================================================================= 632 */ 633 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 634 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 635 636 __attribute__((noreturn)) void 637 vpanic(const char *fmt, va_list adx) 638 { 639 (void) fprintf(stderr, "error: "); 640 (void) vfprintf(stderr, fmt, adx); 641 (void) fprintf(stderr, "\n"); 642 643 abort(); /* think of it as a "user-level crash dump" */ 644 } 645 646 __attribute__((noreturn)) void 647 panic(const char *fmt, ...) 648 { 649 va_list adx; 650 651 va_start(adx, fmt); 652 vpanic(fmt, adx); 653 va_end(adx); 654 } 655 656 void 657 vcmn_err(int ce, const char *fmt, va_list adx) 658 { 659 if (ce == CE_PANIC) 660 vpanic(fmt, adx); 661 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 662 (void) fprintf(stderr, "%s", ce_prefix[ce]); 663 (void) vfprintf(stderr, fmt, adx); 664 (void) fprintf(stderr, "%s", ce_suffix[ce]); 665 } 666 } 667 668 void 669 cmn_err(int ce, const char *fmt, ...) 670 { 671 va_list adx; 672 673 va_start(adx, fmt); 674 vcmn_err(ce, fmt, adx); 675 va_end(adx); 676 } 677 678 /* 679 * ========================================================================= 680 * misc routines 681 * ========================================================================= 682 */ 683 684 void 685 delay(clock_t ticks) 686 { 687 (void) poll(0, 0, ticks * (1000 / hz)); 688 } 689 690 /* 691 * Find highest one bit set. 692 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 693 * The __builtin_clzll() function is supported by both GCC and Clang. 694 */ 695 int 696 highbit64(uint64_t i) 697 { 698 if (i == 0) 699 return (0); 700 701 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i)); 702 } 703 704 /* 705 * Find lowest one bit set. 706 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. 707 * The __builtin_ffsll() function is supported by both GCC and Clang. 708 */ 709 int 710 lowbit64(uint64_t i) 711 { 712 if (i == 0) 713 return (0); 714 715 return (__builtin_ffsll(i)); 716 } 717 718 const char *random_path = "/dev/random"; 719 const char *urandom_path = "/dev/urandom"; 720 static int random_fd = -1, urandom_fd = -1; 721 722 void 723 random_init(void) 724 { 725 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1); 726 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1); 727 } 728 729 void 730 random_fini(void) 731 { 732 close(random_fd); 733 close(urandom_fd); 734 735 random_fd = -1; 736 urandom_fd = -1; 737 } 738 739 static int 740 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 741 { 742 size_t resid = len; 743 ssize_t bytes; 744 745 ASSERT(fd != -1); 746 747 while (resid != 0) { 748 bytes = read(fd, ptr, resid); 749 ASSERT3S(bytes, >=, 0); 750 ptr += bytes; 751 resid -= bytes; 752 } 753 754 return (0); 755 } 756 757 int 758 random_get_bytes(uint8_t *ptr, size_t len) 759 { 760 return (random_get_bytes_common(ptr, len, random_fd)); 761 } 762 763 int 764 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 765 { 766 return (random_get_bytes_common(ptr, len, urandom_fd)); 767 } 768 769 int 770 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 771 { 772 (void) nptr; 773 char *end; 774 775 *result = strtoul(hw_serial, &end, base); 776 if (*result == 0) 777 return (errno); 778 return (0); 779 } 780 781 int 782 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 783 { 784 (void) nptr; 785 char *end; 786 787 *result = strtoull(str, &end, base); 788 if (*result == 0) 789 return (errno); 790 return (0); 791 } 792 793 utsname_t * 794 utsname(void) 795 { 796 return (&hw_utsname); 797 } 798 799 /* 800 * ========================================================================= 801 * kernel emulation setup & teardown 802 * ========================================================================= 803 */ 804 static int 805 umem_out_of_memory(void) 806 { 807 char errmsg[] = "out of memory -- generating core dump\n"; 808 809 (void) fprintf(stderr, "%s", errmsg); 810 abort(); 811 return (0); 812 } 813 814 void 815 kernel_init(int mode) 816 { 817 extern uint_t rrw_tsd_key; 818 819 umem_nofail_callback(umem_out_of_memory); 820 821 physmem = sysconf(_SC_PHYS_PAGES); 822 823 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem, 824 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 825 826 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 827 (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0); 828 829 random_init(); 830 831 VERIFY0(uname(&hw_utsname)); 832 833 system_taskq_init(); 834 icp_init(); 835 836 zstd_init(); 837 838 spa_init((spa_mode_t)mode); 839 840 fletcher_4_init(); 841 842 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 843 } 844 845 void 846 kernel_fini(void) 847 { 848 fletcher_4_fini(); 849 spa_fini(); 850 851 zstd_fini(); 852 853 icp_fini(); 854 system_taskq_fini(); 855 856 random_fini(); 857 } 858 859 uid_t 860 crgetuid(cred_t *cr) 861 { 862 (void) cr; 863 return (0); 864 } 865 866 uid_t 867 crgetruid(cred_t *cr) 868 { 869 (void) cr; 870 return (0); 871 } 872 873 gid_t 874 crgetgid(cred_t *cr) 875 { 876 (void) cr; 877 return (0); 878 } 879 880 int 881 crgetngroups(cred_t *cr) 882 { 883 (void) cr; 884 return (0); 885 } 886 887 gid_t * 888 crgetgroups(cred_t *cr) 889 { 890 (void) cr; 891 return (NULL); 892 } 893 894 int 895 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 896 { 897 (void) name, (void) cr; 898 return (0); 899 } 900 901 int 902 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 903 { 904 (void) from, (void) to, (void) cr; 905 return (0); 906 } 907 908 int 909 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 910 { 911 (void) name, (void) cr; 912 return (0); 913 } 914 915 int 916 secpolicy_zfs(const cred_t *cr) 917 { 918 (void) cr; 919 return (0); 920 } 921 922 int 923 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc) 924 { 925 (void) cr, (void) proc; 926 return (0); 927 } 928 929 ksiddomain_t * 930 ksid_lookupdomain(const char *dom) 931 { 932 ksiddomain_t *kd; 933 934 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 935 kd->kd_name = spa_strdup(dom); 936 return (kd); 937 } 938 939 void 940 ksiddomain_rele(ksiddomain_t *ksid) 941 { 942 spa_strfree(ksid->kd_name); 943 umem_free(ksid, sizeof (ksiddomain_t)); 944 } 945 946 char * 947 kmem_vasprintf(const char *fmt, va_list adx) 948 { 949 char *buf = NULL; 950 va_list adx_copy; 951 952 va_copy(adx_copy, adx); 953 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); 954 va_end(adx_copy); 955 956 return (buf); 957 } 958 959 char * 960 kmem_asprintf(const char *fmt, ...) 961 { 962 char *buf = NULL; 963 va_list adx; 964 965 va_start(adx, fmt); 966 VERIFY(vasprintf(&buf, fmt, adx) != -1); 967 va_end(adx); 968 969 return (buf); 970 } 971 972 zfs_file_t * 973 zfs_onexit_fd_hold(int fd, minor_t *minorp) 974 { 975 (void) fd; 976 *minorp = 0; 977 return (NULL); 978 } 979 980 void 981 zfs_onexit_fd_rele(zfs_file_t *fp) 982 { 983 (void) fp; 984 } 985 986 int 987 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 988 uint64_t *action_handle) 989 { 990 (void) minor, (void) func, (void) data, (void) action_handle; 991 return (0); 992 } 993 994 fstrans_cookie_t 995 spl_fstrans_mark(void) 996 { 997 return ((fstrans_cookie_t)0); 998 } 999 1000 void 1001 spl_fstrans_unmark(fstrans_cookie_t cookie) 1002 { 1003 (void) cookie; 1004 } 1005 1006 int 1007 __spl_pf_fstrans_check(void) 1008 { 1009 return (0); 1010 } 1011 1012 int 1013 kmem_cache_reap_active(void) 1014 { 1015 return (0); 1016 } 1017 1018 void *zvol_tag = "zvol_tag"; 1019 1020 void 1021 zvol_create_minor(const char *name) 1022 { 1023 (void) name; 1024 } 1025 1026 void 1027 zvol_create_minors_recursive(const char *name) 1028 { 1029 (void) name; 1030 } 1031 1032 void 1033 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1034 { 1035 (void) spa, (void) name, (void) async; 1036 } 1037 1038 void 1039 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, 1040 boolean_t async) 1041 { 1042 (void) spa, (void) oldname, (void) newname, (void) async; 1043 } 1044 1045 /* 1046 * Open file 1047 * 1048 * path - fully qualified path to file 1049 * flags - file attributes O_READ / O_WRITE / O_EXCL 1050 * fpp - pointer to return file pointer 1051 * 1052 * Returns 0 on success underlying error on failure. 1053 */ 1054 int 1055 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp) 1056 { 1057 int fd = -1; 1058 int dump_fd = -1; 1059 int err; 1060 int old_umask = 0; 1061 zfs_file_t *fp; 1062 struct stat64 st; 1063 1064 if (!(flags & O_CREAT) && stat64(path, &st) == -1) 1065 return (errno); 1066 1067 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode)) 1068 flags |= O_DIRECT; 1069 1070 if (flags & O_CREAT) 1071 old_umask = umask(0); 1072 1073 fd = open64(path, flags, mode); 1074 if (fd == -1) 1075 return (errno); 1076 1077 if (flags & O_CREAT) 1078 (void) umask(old_umask); 1079 1080 if (vn_dumpdir != NULL) { 1081 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); 1082 const char *inpath = zfs_basename(path); 1083 1084 (void) snprintf(dumppath, MAXPATHLEN, 1085 "%s/%s", vn_dumpdir, inpath); 1086 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 1087 umem_free(dumppath, MAXPATHLEN); 1088 if (dump_fd == -1) { 1089 err = errno; 1090 close(fd); 1091 return (err); 1092 } 1093 } else { 1094 dump_fd = -1; 1095 } 1096 1097 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 1098 1099 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL); 1100 fp->f_fd = fd; 1101 fp->f_dump_fd = dump_fd; 1102 *fpp = fp; 1103 1104 return (0); 1105 } 1106 1107 void 1108 zfs_file_close(zfs_file_t *fp) 1109 { 1110 close(fp->f_fd); 1111 if (fp->f_dump_fd != -1) 1112 close(fp->f_dump_fd); 1113 1114 umem_free(fp, sizeof (zfs_file_t)); 1115 } 1116 1117 /* 1118 * Stateful write - use os internal file pointer to determine where to 1119 * write and update on successful completion. 1120 * 1121 * fp - pointer to file (pipe, socket, etc) to write to 1122 * buf - buffer to write 1123 * count - # of bytes to write 1124 * resid - pointer to count of unwritten bytes (if short write) 1125 * 1126 * Returns 0 on success errno on failure. 1127 */ 1128 int 1129 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid) 1130 { 1131 ssize_t rc; 1132 1133 rc = write(fp->f_fd, buf, count); 1134 if (rc < 0) 1135 return (errno); 1136 1137 if (resid) { 1138 *resid = count - rc; 1139 } else if (rc != count) { 1140 return (EIO); 1141 } 1142 1143 return (0); 1144 } 1145 1146 /* 1147 * Stateless write - os internal file pointer is not updated. 1148 * 1149 * fp - pointer to file (pipe, socket, etc) to write to 1150 * buf - buffer to write 1151 * count - # of bytes to write 1152 * off - file offset to write to (only valid for seekable types) 1153 * resid - pointer to count of unwritten bytes 1154 * 1155 * Returns 0 on success errno on failure. 1156 */ 1157 int 1158 zfs_file_pwrite(zfs_file_t *fp, const void *buf, 1159 size_t count, loff_t pos, ssize_t *resid) 1160 { 1161 ssize_t rc, split, done; 1162 int sectors; 1163 1164 /* 1165 * To simulate partial disk writes, we split writes into two 1166 * system calls so that the process can be killed in between. 1167 * This is used by ztest to simulate realistic failure modes. 1168 */ 1169 sectors = count >> SPA_MINBLOCKSHIFT; 1170 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; 1171 rc = pwrite64(fp->f_fd, buf, split, pos); 1172 if (rc != -1) { 1173 done = rc; 1174 rc = pwrite64(fp->f_fd, (char *)buf + split, 1175 count - split, pos + split); 1176 } 1177 #ifdef __linux__ 1178 if (rc == -1 && errno == EINVAL) { 1179 /* 1180 * Under Linux, this most likely means an alignment issue 1181 * (memory or disk) due to O_DIRECT, so we abort() in order 1182 * to catch the offender. 1183 */ 1184 abort(); 1185 } 1186 #endif 1187 1188 if (rc < 0) 1189 return (errno); 1190 1191 done += rc; 1192 1193 if (resid) { 1194 *resid = count - done; 1195 } else if (done != count) { 1196 return (EIO); 1197 } 1198 1199 return (0); 1200 } 1201 1202 /* 1203 * Stateful read - use os internal file pointer to determine where to 1204 * read and update on successful completion. 1205 * 1206 * fp - pointer to file (pipe, socket, etc) to read from 1207 * buf - buffer to write 1208 * count - # of bytes to read 1209 * resid - pointer to count of unread bytes (if short read) 1210 * 1211 * Returns 0 on success errno on failure. 1212 */ 1213 int 1214 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid) 1215 { 1216 int rc; 1217 1218 rc = read(fp->f_fd, buf, count); 1219 if (rc < 0) 1220 return (errno); 1221 1222 if (resid) { 1223 *resid = count - rc; 1224 } else if (rc != count) { 1225 return (EIO); 1226 } 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * Stateless read - os internal file pointer is not updated. 1233 * 1234 * fp - pointer to file (pipe, socket, etc) to read from 1235 * buf - buffer to write 1236 * count - # of bytes to write 1237 * off - file offset to read from (only valid for seekable types) 1238 * resid - pointer to count of unwritten bytes (if short write) 1239 * 1240 * Returns 0 on success errno on failure. 1241 */ 1242 int 1243 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off, 1244 ssize_t *resid) 1245 { 1246 ssize_t rc; 1247 1248 rc = pread64(fp->f_fd, buf, count, off); 1249 if (rc < 0) { 1250 #ifdef __linux__ 1251 /* 1252 * Under Linux, this most likely means an alignment issue 1253 * (memory or disk) due to O_DIRECT, so we abort() in order to 1254 * catch the offender. 1255 */ 1256 if (errno == EINVAL) 1257 abort(); 1258 #endif 1259 return (errno); 1260 } 1261 1262 if (fp->f_dump_fd != -1) { 1263 int status; 1264 1265 status = pwrite64(fp->f_dump_fd, buf, rc, off); 1266 ASSERT(status != -1); 1267 } 1268 1269 if (resid) { 1270 *resid = count - rc; 1271 } else if (rc != count) { 1272 return (EIO); 1273 } 1274 1275 return (0); 1276 } 1277 1278 /* 1279 * lseek - set / get file pointer 1280 * 1281 * fp - pointer to file (pipe, socket, etc) to read from 1282 * offp - value to seek to, returns current value plus passed offset 1283 * whence - see man pages for standard lseek whence values 1284 * 1285 * Returns 0 on success errno on failure (ESPIPE for non seekable types) 1286 */ 1287 int 1288 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence) 1289 { 1290 loff_t rc; 1291 1292 rc = lseek(fp->f_fd, *offp, whence); 1293 if (rc < 0) 1294 return (errno); 1295 1296 *offp = rc; 1297 1298 return (0); 1299 } 1300 1301 /* 1302 * Get file attributes 1303 * 1304 * filp - file pointer 1305 * zfattr - pointer to file attr structure 1306 * 1307 * Currently only used for fetching size and file mode 1308 * 1309 * Returns 0 on success or error code of underlying getattr call on failure. 1310 */ 1311 int 1312 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr) 1313 { 1314 struct stat64 st; 1315 1316 if (fstat64_blk(fp->f_fd, &st) == -1) 1317 return (errno); 1318 1319 zfattr->zfa_size = st.st_size; 1320 zfattr->zfa_mode = st.st_mode; 1321 1322 return (0); 1323 } 1324 1325 /* 1326 * Sync file to disk 1327 * 1328 * filp - file pointer 1329 * flags - O_SYNC and or O_DSYNC 1330 * 1331 * Returns 0 on success or error code of underlying sync call on failure. 1332 */ 1333 int 1334 zfs_file_fsync(zfs_file_t *fp, int flags) 1335 { 1336 (void) flags; 1337 1338 if (fsync(fp->f_fd) < 0) 1339 return (errno); 1340 1341 return (0); 1342 } 1343 1344 /* 1345 * fallocate - allocate or free space on disk 1346 * 1347 * fp - file pointer 1348 * mode (non-standard options for hole punching etc) 1349 * offset - offset to start allocating or freeing from 1350 * len - length to free / allocate 1351 * 1352 * OPTIONAL 1353 */ 1354 int 1355 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len) 1356 { 1357 #ifdef __linux__ 1358 return (fallocate(fp->f_fd, mode, offset, len)); 1359 #else 1360 (void) fp, (void) mode, (void) offset, (void) len; 1361 return (EOPNOTSUPP); 1362 #endif 1363 } 1364 1365 /* 1366 * Request current file pointer offset 1367 * 1368 * fp - pointer to file 1369 * 1370 * Returns current file offset. 1371 */ 1372 loff_t 1373 zfs_file_off(zfs_file_t *fp) 1374 { 1375 return (lseek(fp->f_fd, SEEK_CUR, 0)); 1376 } 1377 1378 /* 1379 * unlink file 1380 * 1381 * path - fully qualified file path 1382 * 1383 * Returns 0 on success. 1384 * 1385 * OPTIONAL 1386 */ 1387 int 1388 zfs_file_unlink(const char *path) 1389 { 1390 return (remove(path)); 1391 } 1392 1393 /* 1394 * Get reference to file pointer 1395 * 1396 * fd - input file descriptor 1397 * 1398 * Returns pointer to file struct or NULL. 1399 * Unsupported in user space. 1400 */ 1401 zfs_file_t * 1402 zfs_file_get(int fd) 1403 { 1404 (void) fd; 1405 abort(); 1406 return (NULL); 1407 } 1408 /* 1409 * Drop reference to file pointer 1410 * 1411 * fp - pointer to file struct 1412 * 1413 * Unsupported in user space. 1414 */ 1415 void 1416 zfs_file_put(zfs_file_t *fp) 1417 { 1418 abort(); 1419 (void) fp; 1420 } 1421 1422 void 1423 zfsvfs_update_fromname(const char *oldname, const char *newname) 1424 { 1425 (void) oldname, (void) newname; 1426 } 1427 1428 void 1429 spa_import_os(spa_t *spa) 1430 { 1431 (void) spa; 1432 } 1433 1434 void 1435 spa_export_os(spa_t *spa) 1436 { 1437 (void) spa; 1438 } 1439 1440 void 1441 spa_activate_os(spa_t *spa) 1442 { 1443 (void) spa; 1444 } 1445 1446 void 1447 spa_deactivate_os(spa_t *spa) 1448 { 1449 (void) spa; 1450 } 1451