1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2020 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 * Copyright (c) 2018 Datto Inc. 29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 30 */ 31 32 /* 33 * Routines to manage ZFS mounts. We separate all the nasty routines that have 34 * to deal with the OS. The following functions are the main entry points -- 35 * they are used by mount and unmount and when changing a filesystem's 36 * mountpoint. 37 * 38 * zfs_is_mounted() 39 * zfs_mount() 40 * zfs_mount_at() 41 * zfs_unmount() 42 * zfs_unmountall() 43 * 44 * This file also contains the functions used to manage sharing filesystems via 45 * NFS and iSCSI: 46 * 47 * zfs_is_shared() 48 * zfs_share() 49 * zfs_unshare() 50 * 51 * zfs_is_shared_nfs() 52 * zfs_is_shared_smb() 53 * zfs_share_proto() 54 * zfs_shareall(); 55 * zfs_unshare_nfs() 56 * zfs_unshare_smb() 57 * zfs_unshareall_nfs() 58 * zfs_unshareall_smb() 59 * zfs_unshareall() 60 * zfs_unshareall_bypath() 61 * 62 * The following functions are available for pool consumers, and will 63 * mount/unmount and share/unshare all datasets within pool: 64 * 65 * zpool_enable_datasets() 66 * zpool_disable_datasets() 67 */ 68 69 #include <dirent.h> 70 #include <dlfcn.h> 71 #include <errno.h> 72 #include <fcntl.h> 73 #include <libgen.h> 74 #include <libintl.h> 75 #include <stdio.h> 76 #include <stdlib.h> 77 #include <strings.h> 78 #include <unistd.h> 79 #include <zone.h> 80 #include <sys/mntent.h> 81 #include <sys/mount.h> 82 #include <sys/stat.h> 83 #include <sys/vfs.h> 84 #include <sys/dsl_crypt.h> 85 86 #include <libzfs.h> 87 88 #include "libzfs_impl.h" 89 #include <thread_pool.h> 90 91 #include <libshare.h> 92 #include <sys/systeminfo.h> 93 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 94 95 static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */ 96 97 static void zfs_mount_task(void *); 98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 99 zfs_share_proto_t); 100 101 /* 102 * The share protocols table must be in the same order as the zfs_share_proto_t 103 * enum in libzfs_impl.h 104 */ 105 proto_table_t proto_table[PROTO_END] = { 106 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 107 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 108 }; 109 110 zfs_share_proto_t nfs_only[] = { 111 PROTO_NFS, 112 PROTO_END 113 }; 114 115 zfs_share_proto_t smb_only[] = { 116 PROTO_SMB, 117 PROTO_END 118 }; 119 zfs_share_proto_t share_all_proto[] = { 120 PROTO_NFS, 121 PROTO_SMB, 122 PROTO_END 123 }; 124 125 126 127 static boolean_t 128 dir_is_empty_stat(const char *dirname) 129 { 130 struct stat st; 131 132 /* 133 * We only want to return false if the given path is a non empty 134 * directory, all other errors are handled elsewhere. 135 */ 136 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 137 return (B_TRUE); 138 } 139 140 /* 141 * An empty directory will still have two entries in it, one 142 * entry for each of "." and "..". 143 */ 144 if (st.st_size > 2) { 145 return (B_FALSE); 146 } 147 148 return (B_TRUE); 149 } 150 151 static boolean_t 152 dir_is_empty_readdir(const char *dirname) 153 { 154 DIR *dirp; 155 struct dirent64 *dp; 156 int dirfd; 157 158 if ((dirfd = openat(AT_FDCWD, dirname, 159 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 160 return (B_TRUE); 161 } 162 163 if ((dirp = fdopendir(dirfd)) == NULL) { 164 (void) close(dirfd); 165 return (B_TRUE); 166 } 167 168 while ((dp = readdir64(dirp)) != NULL) { 169 170 if (strcmp(dp->d_name, ".") == 0 || 171 strcmp(dp->d_name, "..") == 0) 172 continue; 173 174 (void) closedir(dirp); 175 return (B_FALSE); 176 } 177 178 (void) closedir(dirp); 179 return (B_TRUE); 180 } 181 182 /* 183 * Returns true if the specified directory is empty. If we can't open the 184 * directory at all, return true so that the mount can fail with a more 185 * informative error message. 186 */ 187 static boolean_t 188 dir_is_empty(const char *dirname) 189 { 190 struct statfs64 st; 191 192 /* 193 * If the statvfs call fails or the filesystem is not a ZFS 194 * filesystem, fall back to the slow path which uses readdir. 195 */ 196 if ((statfs64(dirname, &st) != 0) || 197 (st.f_type != ZFS_SUPER_MAGIC)) { 198 return (dir_is_empty_readdir(dirname)); 199 } 200 201 /* 202 * At this point, we know the provided path is on a ZFS 203 * filesystem, so we can use stat instead of readdir to 204 * determine if the directory is empty or not. We try to avoid 205 * using readdir because that requires opening "dirname"; this 206 * open file descriptor can potentially end up in a child 207 * process if there's a concurrent fork, thus preventing the 208 * zfs_mount() from otherwise succeeding (the open file 209 * descriptor inherited by the child process will cause the 210 * parent's mount to fail with EBUSY). The performance 211 * implications of replacing the open, read, and close with a 212 * single stat is nice; but is not the main motivation for the 213 * added complexity. 214 */ 215 return (dir_is_empty_stat(dirname)); 216 } 217 218 /* 219 * Checks to see if the mount is active. If the filesystem is mounted, we fill 220 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 221 * 0. 222 */ 223 boolean_t 224 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 225 { 226 struct mnttab entry; 227 228 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 229 return (B_FALSE); 230 231 if (where != NULL) 232 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 233 234 return (B_TRUE); 235 } 236 237 boolean_t 238 zfs_is_mounted(zfs_handle_t *zhp, char **where) 239 { 240 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 241 } 242 243 /* 244 * Checks any higher order concerns about whether the given dataset is 245 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes 246 * that the caller has verified the sanity of mounting the dataset at 247 * mountpoint to the extent the caller wants. 248 */ 249 static boolean_t 250 zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint) 251 { 252 253 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 254 getzoneid() == GLOBAL_ZONEID) 255 return (B_FALSE); 256 257 return (B_TRUE); 258 } 259 260 /* 261 * Returns true if the given dataset is mountable, false otherwise. Returns the 262 * mountpoint in 'buf'. 263 */ 264 boolean_t 265 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 266 zprop_source_t *source, int flags) 267 { 268 char sourceloc[MAXNAMELEN]; 269 zprop_source_t sourcetype; 270 271 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type, 272 B_FALSE)) 273 return (B_FALSE); 274 275 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 276 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 277 278 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 279 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 280 return (B_FALSE); 281 282 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 283 return (B_FALSE); 284 285 if (!zfs_is_mountable_internal(zhp, buf)) 286 return (B_FALSE); 287 288 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE)) 289 return (B_FALSE); 290 291 if (source) 292 *source = sourcetype; 293 294 return (B_TRUE); 295 } 296 297 /* 298 * The filesystem is mounted by invoking the system mount utility rather 299 * than by the system call mount(2). This ensures that the /etc/mtab 300 * file is correctly locked for the update. Performing our own locking 301 * and /etc/mtab update requires making an unsafe assumption about how 302 * the mount utility performs its locking. Unfortunately, this also means 303 * in the case of a mount failure we do not have the exact errno. We must 304 * make due with return value from the mount process. 305 * 306 * In the long term a shared library called libmount is under development 307 * which provides a common API to address the locking and errno issues. 308 * Once the standard mount utility has been updated to use this library 309 * we can add an autoconf check to conditionally use it. 310 * 311 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html 312 */ 313 314 static int 315 zfs_add_option(zfs_handle_t *zhp, char *options, int len, 316 zfs_prop_t prop, char *on, char *off) 317 { 318 char *source; 319 uint64_t value; 320 321 /* Skip adding duplicate default options */ 322 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL)) 323 return (0); 324 325 /* 326 * zfs_prop_get_int() is not used to ensure our mount options 327 * are not influenced by the current /proc/self/mounts contents. 328 */ 329 value = getprop_uint64(zhp, prop, &source); 330 331 (void) strlcat(options, ",", len); 332 (void) strlcat(options, value ? on : off, len); 333 334 return (0); 335 } 336 337 static int 338 zfs_add_options(zfs_handle_t *zhp, char *options, int len) 339 { 340 int error = 0; 341 342 error = zfs_add_option(zhp, options, len, 343 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME); 344 /* 345 * don't add relatime/strictatime when atime=off, otherwise strictatime 346 * will force atime=on 347 */ 348 if (strstr(options, MNTOPT_NOATIME) == NULL) { 349 error = zfs_add_option(zhp, options, len, 350 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME); 351 } 352 error = error ? error : zfs_add_option(zhp, options, len, 353 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES); 354 error = error ? error : zfs_add_option(zhp, options, len, 355 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC); 356 error = error ? error : zfs_add_option(zhp, options, len, 357 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW); 358 error = error ? error : zfs_add_option(zhp, options, len, 359 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID); 360 error = error ? error : zfs_add_option(zhp, options, len, 361 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND); 362 363 return (error); 364 } 365 366 int 367 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 368 { 369 char mountpoint[ZFS_MAXPROPLEN]; 370 371 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 372 flags)) 373 return (0); 374 375 return (zfs_mount_at(zhp, options, flags, mountpoint)); 376 } 377 378 /* 379 * Mount the given filesystem. 380 */ 381 int 382 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags, 383 const char *mountpoint) 384 { 385 struct stat buf; 386 char mntopts[MNT_LINE_MAX]; 387 char overlay[ZFS_MAXPROPLEN]; 388 libzfs_handle_t *hdl = zhp->zfs_hdl; 389 uint64_t keystatus; 390 int remount = 0, rc; 391 392 if (options == NULL) { 393 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts)); 394 } else { 395 (void) strlcpy(mntopts, options, sizeof (mntopts)); 396 } 397 398 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL) 399 remount = 1; 400 401 /* Potentially duplicates some checks if invoked by zfs_mount(). */ 402 if (!zfs_is_mountable_internal(zhp, mountpoint)) 403 return (0); 404 405 /* 406 * If the pool is imported read-only then all mounts must be read-only 407 */ 408 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 409 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts)); 410 411 /* 412 * Append default mount options which apply to the mount point. 413 * This is done because under Linux (unlike Solaris) multiple mount 414 * points may reference a single super block. This means that just 415 * given a super block there is no back reference to update the per 416 * mount point options. 417 */ 418 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts)); 419 if (rc) { 420 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 421 "default options unavailable")); 422 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 423 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 424 mountpoint)); 425 } 426 427 /* 428 * If the filesystem is encrypted the key must be loaded in order to 429 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether 430 * or not we attempt to load the keys. Note: we must call 431 * zfs_refresh_properties() here since some callers of this function 432 * (most notably zpool_enable_datasets()) may implicitly load our key 433 * by loading the parent's key first. 434 */ 435 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 436 zfs_refresh_properties(zhp); 437 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS); 438 439 /* 440 * If the key is unavailable and MS_CRYPT is set give the 441 * user a chance to enter the key. Otherwise just fail 442 * immediately. 443 */ 444 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) { 445 if (flags & MS_CRYPT) { 446 rc = zfs_crypto_load_key(zhp, B_FALSE, NULL); 447 if (rc) 448 return (rc); 449 } else { 450 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 451 "encryption key not loaded")); 452 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 453 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 454 mountpoint)); 455 } 456 } 457 458 } 459 460 /* 461 * Append zfsutil option so the mount helper allow the mount 462 */ 463 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts)); 464 465 /* Create the directory if it doesn't already exist */ 466 if (lstat(mountpoint, &buf) != 0) { 467 if (mkdirp(mountpoint, 0755) != 0) { 468 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 469 "failed to create mountpoint: %s"), 470 strerror(errno)); 471 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 472 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 473 mountpoint)); 474 } 475 } 476 477 /* 478 * Overlay mounts are enabled by default but may be disabled 479 * via the 'overlay' property. The -O flag remains for compatibility. 480 */ 481 if (!(flags & MS_OVERLAY)) { 482 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay, 483 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) { 484 if (strcmp(overlay, "on") == 0) { 485 flags |= MS_OVERLAY; 486 } 487 } 488 } 489 490 /* 491 * Determine if the mountpoint is empty. If so, refuse to perform the 492 * mount. We don't perform this check if 'remount' is 493 * specified or if overlay option (-O) is given 494 */ 495 if ((flags & MS_OVERLAY) == 0 && !remount && 496 !dir_is_empty(mountpoint)) { 497 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 498 "directory is not empty")); 499 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 500 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 501 } 502 503 /* perform the mount */ 504 rc = do_mount(zhp, mountpoint, mntopts, flags); 505 if (rc) { 506 /* 507 * Generic errors are nasty, but there are just way too many 508 * from mount(), and they're well-understood. We pick a few 509 * common ones to improve upon. 510 */ 511 if (rc == EBUSY) { 512 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 513 "mountpoint or dataset is busy")); 514 } else if (rc == EPERM) { 515 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 516 "Insufficient privileges")); 517 } else if (rc == ENOTSUP) { 518 char buf[256]; 519 int spa_version; 520 521 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 522 (void) snprintf(buf, sizeof (buf), 523 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 524 "file system on a version %d pool. Pool must be" 525 " upgraded to mount this file system."), 526 (u_longlong_t)zfs_prop_get_int(zhp, 527 ZFS_PROP_VERSION), spa_version); 528 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 529 } else { 530 zfs_error_aux(hdl, strerror(rc)); 531 } 532 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 533 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 534 zhp->zfs_name)); 535 } 536 537 /* remove the mounted entry before re-adding on remount */ 538 if (remount) 539 libzfs_mnttab_remove(hdl, zhp->zfs_name); 540 541 /* add the mounted entry into our cache */ 542 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts); 543 return (0); 544 } 545 546 /* 547 * Unmount a single filesystem. 548 */ 549 static int 550 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 551 { 552 int error; 553 554 error = do_unmount(mountpoint, flags); 555 if (error != 0) { 556 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 557 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 558 mountpoint)); 559 } 560 561 return (0); 562 } 563 564 /* 565 * Unmount the given filesystem. 566 */ 567 int 568 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 569 { 570 libzfs_handle_t *hdl = zhp->zfs_hdl; 571 struct mnttab entry; 572 char *mntpt = NULL; 573 boolean_t encroot, unmounted = B_FALSE; 574 575 /* check to see if we need to unmount the filesystem */ 576 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 577 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 578 /* 579 * mountpoint may have come from a call to 580 * getmnt/getmntany if it isn't NULL. If it is NULL, 581 * we know it comes from libzfs_mnttab_find which can 582 * then get freed later. We strdup it to play it safe. 583 */ 584 if (mountpoint == NULL) 585 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 586 else 587 mntpt = zfs_strdup(hdl, mountpoint); 588 589 /* 590 * Unshare and unmount the filesystem 591 */ 592 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) { 593 free(mntpt); 594 return (-1); 595 } 596 zfs_commit_all_shares(); 597 598 if (unmount_one(hdl, mntpt, flags) != 0) { 599 free(mntpt); 600 (void) zfs_shareall(zhp); 601 zfs_commit_all_shares(); 602 return (-1); 603 } 604 605 libzfs_mnttab_remove(hdl, zhp->zfs_name); 606 free(mntpt); 607 unmounted = B_TRUE; 608 } 609 610 /* 611 * If the MS_CRYPT flag is provided we must ensure we attempt to 612 * unload the dataset's key regardless of whether we did any work 613 * to unmount it. We only do this for encryption roots. 614 */ 615 if ((flags & MS_CRYPT) != 0 && 616 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 617 zfs_refresh_properties(zhp); 618 619 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 && 620 unmounted) { 621 (void) zfs_mount(zhp, NULL, 0); 622 return (-1); 623 } 624 625 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 626 ZFS_KEYSTATUS_AVAILABLE && 627 zfs_crypto_unload_key(zhp) != 0) { 628 (void) zfs_mount(zhp, NULL, 0); 629 return (-1); 630 } 631 } 632 633 return (0); 634 } 635 636 /* 637 * Unmount this filesystem and any children inheriting the mountpoint property. 638 * To do this, just act like we're changing the mountpoint property, but don't 639 * remount the filesystems afterwards. 640 */ 641 int 642 zfs_unmountall(zfs_handle_t *zhp, int flags) 643 { 644 prop_changelist_t *clp; 645 int ret; 646 647 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 648 CL_GATHER_ITER_MOUNTED, flags); 649 if (clp == NULL) 650 return (-1); 651 652 ret = changelist_prefix(clp); 653 changelist_free(clp); 654 655 return (ret); 656 } 657 658 boolean_t 659 zfs_is_shared(zfs_handle_t *zhp) 660 { 661 zfs_share_type_t rc = 0; 662 zfs_share_proto_t *curr_proto; 663 664 if (ZFS_IS_VOLUME(zhp)) 665 return (B_FALSE); 666 667 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 668 curr_proto++) 669 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 670 671 return (rc ? B_TRUE : B_FALSE); 672 } 673 674 /* 675 * Unshare a filesystem by mountpoint. 676 */ 677 int 678 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 679 zfs_share_proto_t proto) 680 { 681 int err; 682 683 err = sa_disable_share(mountpoint, proto_table[proto].p_name); 684 if (err != SA_OK) { 685 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 686 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 687 name, sa_errorstr(err))); 688 } 689 return (0); 690 } 691 692 /* 693 * Query libshare for the given mountpoint and protocol, returning 694 * a zfs_share_type_t value. 695 */ 696 zfs_share_type_t 697 is_shared(const char *mountpoint, zfs_share_proto_t proto) 698 { 699 if (sa_is_shared(mountpoint, proto_table[proto].p_name)) { 700 switch (proto) { 701 case PROTO_NFS: 702 return (SHARED_NFS); 703 case PROTO_SMB: 704 return (SHARED_SMB); 705 default: 706 return (SHARED_NOT_SHARED); 707 } 708 } 709 return (SHARED_NOT_SHARED); 710 } 711 712 /* 713 * Share the given filesystem according to the options in the specified 714 * protocol specific properties (sharenfs, sharesmb). We rely 715 * on "libshare" to do the dirty work for us. 716 */ 717 int 718 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 719 { 720 char mountpoint[ZFS_MAXPROPLEN]; 721 char shareopts[ZFS_MAXPROPLEN]; 722 char sourcestr[ZFS_MAXPROPLEN]; 723 zfs_share_proto_t *curr_proto; 724 zprop_source_t sourcetype; 725 int err = 0; 726 727 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0)) 728 return (0); 729 730 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 731 /* 732 * Return success if there are no share options. 733 */ 734 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 735 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 736 ZFS_MAXPROPLEN, B_FALSE) != 0 || 737 strcmp(shareopts, "off") == 0) 738 continue; 739 740 /* 741 * If the 'zoned' property is set, then zfs_is_mountable() 742 * will have already bailed out if we are in the global zone. 743 * But local zones cannot be NFS servers, so we ignore it for 744 * local zones as well. 745 */ 746 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 747 continue; 748 749 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts, 750 proto_table[*curr_proto].p_name); 751 if (err != SA_OK) { 752 return (zfs_error_fmt(zhp->zfs_hdl, 753 proto_table[*curr_proto].p_share_err, 754 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"), 755 zfs_get_name(zhp), sa_errorstr(err))); 756 } 757 758 } 759 return (0); 760 } 761 762 int 763 zfs_share(zfs_handle_t *zhp) 764 { 765 assert(!ZFS_IS_VOLUME(zhp)); 766 return (zfs_share_proto(zhp, share_all_proto)); 767 } 768 769 int 770 zfs_unshare(zfs_handle_t *zhp) 771 { 772 assert(!ZFS_IS_VOLUME(zhp)); 773 return (zfs_unshareall(zhp)); 774 } 775 776 /* 777 * Check to see if the filesystem is currently shared. 778 */ 779 zfs_share_type_t 780 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 781 { 782 char *mountpoint; 783 zfs_share_type_t rc; 784 785 if (!zfs_is_mounted(zhp, &mountpoint)) 786 return (SHARED_NOT_SHARED); 787 788 if ((rc = is_shared(mountpoint, proto)) 789 != SHARED_NOT_SHARED) { 790 if (where != NULL) 791 *where = mountpoint; 792 else 793 free(mountpoint); 794 return (rc); 795 } else { 796 free(mountpoint); 797 return (SHARED_NOT_SHARED); 798 } 799 } 800 801 boolean_t 802 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 803 { 804 return (zfs_is_shared_proto(zhp, where, 805 PROTO_NFS) != SHARED_NOT_SHARED); 806 } 807 808 boolean_t 809 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 810 { 811 return (zfs_is_shared_proto(zhp, where, 812 PROTO_SMB) != SHARED_NOT_SHARED); 813 } 814 815 /* 816 * zfs_parse_options(options, proto) 817 * 818 * Call the legacy parse interface to get the protocol specific 819 * options using the NULL arg to indicate that this is a "parse" only. 820 */ 821 int 822 zfs_parse_options(char *options, zfs_share_proto_t proto) 823 { 824 return (sa_validate_shareopts(options, proto_table[proto].p_name)); 825 } 826 827 void 828 zfs_commit_proto(zfs_share_proto_t *proto) 829 { 830 zfs_share_proto_t *curr_proto; 831 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 832 sa_commit_shares(proto_table[*curr_proto].p_name); 833 } 834 } 835 836 void 837 zfs_commit_nfs_shares(void) 838 { 839 zfs_commit_proto(nfs_only); 840 } 841 842 void 843 zfs_commit_smb_shares(void) 844 { 845 zfs_commit_proto(smb_only); 846 } 847 848 void 849 zfs_commit_all_shares(void) 850 { 851 zfs_commit_proto(share_all_proto); 852 } 853 854 void 855 zfs_commit_shares(const char *proto) 856 { 857 if (proto == NULL) 858 zfs_commit_proto(share_all_proto); 859 else if (strcmp(proto, "nfs") == 0) 860 zfs_commit_proto(nfs_only); 861 else if (strcmp(proto, "smb") == 0) 862 zfs_commit_proto(smb_only); 863 } 864 865 int 866 zfs_share_nfs(zfs_handle_t *zhp) 867 { 868 return (zfs_share_proto(zhp, nfs_only)); 869 } 870 871 int 872 zfs_share_smb(zfs_handle_t *zhp) 873 { 874 return (zfs_share_proto(zhp, smb_only)); 875 } 876 877 int 878 zfs_shareall(zfs_handle_t *zhp) 879 { 880 return (zfs_share_proto(zhp, share_all_proto)); 881 } 882 883 /* 884 * Unshare the given filesystem. 885 */ 886 int 887 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 888 zfs_share_proto_t *proto) 889 { 890 libzfs_handle_t *hdl = zhp->zfs_hdl; 891 struct mnttab entry; 892 char *mntpt = NULL; 893 894 /* check to see if need to unmount the filesystem */ 895 if (mountpoint != NULL) 896 mntpt = zfs_strdup(hdl, mountpoint); 897 898 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 899 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 900 zfs_share_proto_t *curr_proto; 901 902 if (mountpoint == NULL) 903 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 904 905 for (curr_proto = proto; *curr_proto != PROTO_END; 906 curr_proto++) { 907 908 if (is_shared(mntpt, *curr_proto)) { 909 if (unshare_one(hdl, zhp->zfs_name, 910 mntpt, *curr_proto) != 0) { 911 if (mntpt != NULL) 912 free(mntpt); 913 return (-1); 914 } 915 } 916 } 917 } 918 if (mntpt != NULL) 919 free(mntpt); 920 921 return (0); 922 } 923 924 int 925 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 926 { 927 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 928 } 929 930 int 931 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 932 { 933 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 934 } 935 936 /* 937 * Same as zfs_unmountall(), but for NFS and SMB unshares. 938 */ 939 static int 940 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 941 { 942 prop_changelist_t *clp; 943 int ret; 944 945 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 946 if (clp == NULL) 947 return (-1); 948 949 ret = changelist_unshare(clp, proto); 950 changelist_free(clp); 951 952 return (ret); 953 } 954 955 int 956 zfs_unshareall_nfs(zfs_handle_t *zhp) 957 { 958 return (zfs_unshareall_proto(zhp, nfs_only)); 959 } 960 961 int 962 zfs_unshareall_smb(zfs_handle_t *zhp) 963 { 964 return (zfs_unshareall_proto(zhp, smb_only)); 965 } 966 967 int 968 zfs_unshareall(zfs_handle_t *zhp) 969 { 970 return (zfs_unshareall_proto(zhp, share_all_proto)); 971 } 972 973 int 974 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 975 { 976 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 977 } 978 979 int 980 zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint, 981 const char *proto) 982 { 983 if (proto == NULL) 984 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 985 if (strcmp(proto, "nfs") == 0) 986 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 987 else if (strcmp(proto, "smb") == 0) 988 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 989 else 990 return (1); 991 } 992 993 /* 994 * Remove the mountpoint associated with the current dataset, if necessary. 995 * We only remove the underlying directory if: 996 * 997 * - The mountpoint is not 'none' or 'legacy' 998 * - The mountpoint is non-empty 999 * - The mountpoint is the default or inherited 1000 * - The 'zoned' property is set, or we're in a local zone 1001 * 1002 * Any other directories we leave alone. 1003 */ 1004 void 1005 remove_mountpoint(zfs_handle_t *zhp) 1006 { 1007 char mountpoint[ZFS_MAXPROPLEN]; 1008 zprop_source_t source; 1009 1010 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1011 &source, 0)) 1012 return; 1013 1014 if (source == ZPROP_SRC_DEFAULT || 1015 source == ZPROP_SRC_INHERITED) { 1016 /* 1017 * Try to remove the directory, silently ignoring any errors. 1018 * The filesystem may have since been removed or moved around, 1019 * and this error isn't really useful to the administrator in 1020 * any way. 1021 */ 1022 (void) rmdir(mountpoint); 1023 } 1024 } 1025 1026 /* 1027 * Add the given zfs handle to the cb_handles array, dynamically reallocating 1028 * the array if it is out of space. 1029 */ 1030 void 1031 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1032 { 1033 if (cbp->cb_alloc == cbp->cb_used) { 1034 size_t newsz; 1035 zfs_handle_t **newhandles; 1036 1037 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 1038 newhandles = zfs_realloc(zhp->zfs_hdl, 1039 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 1040 newsz * sizeof (zfs_handle_t *)); 1041 cbp->cb_handles = newhandles; 1042 cbp->cb_alloc = newsz; 1043 } 1044 cbp->cb_handles[cbp->cb_used++] = zhp; 1045 } 1046 1047 /* 1048 * Recursive helper function used during file system enumeration 1049 */ 1050 static int 1051 zfs_iter_cb(zfs_handle_t *zhp, void *data) 1052 { 1053 get_all_cb_t *cbp = data; 1054 1055 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1056 zfs_close(zhp); 1057 return (0); 1058 } 1059 1060 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1061 zfs_close(zhp); 1062 return (0); 1063 } 1064 1065 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1066 ZFS_KEYSTATUS_UNAVAILABLE) { 1067 zfs_close(zhp); 1068 return (0); 1069 } 1070 1071 /* 1072 * If this filesystem is inconsistent and has a receive resume 1073 * token, we can not mount it. 1074 */ 1075 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1076 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1077 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1078 zfs_close(zhp); 1079 return (0); 1080 } 1081 1082 libzfs_add_handle(cbp, zhp); 1083 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) { 1084 zfs_close(zhp); 1085 return (-1); 1086 } 1087 return (0); 1088 } 1089 1090 /* 1091 * Sort comparator that compares two mountpoint paths. We sort these paths so 1092 * that subdirectories immediately follow their parents. This means that we 1093 * effectively treat the '/' character as the lowest value non-nul char. 1094 * Since filesystems from non-global zones can have the same mountpoint 1095 * as other filesystems, the comparator sorts global zone filesystems to 1096 * the top of the list. This means that the global zone will traverse the 1097 * filesystem list in the correct order and can stop when it sees the 1098 * first zoned filesystem. In a non-global zone, only the delegated 1099 * filesystems are seen. 1100 * 1101 * An example sorted list using this comparator would look like: 1102 * 1103 * /foo 1104 * /foo/bar 1105 * /foo/bar/baz 1106 * /foo/baz 1107 * /foo.bar 1108 * /foo (NGZ1) 1109 * /foo (NGZ2) 1110 * 1111 * The mounting code depends on this ordering to deterministically iterate 1112 * over filesystems in order to spawn parallel mount tasks. 1113 */ 1114 static int 1115 mountpoint_cmp(const void *arga, const void *argb) 1116 { 1117 zfs_handle_t *const *zap = arga; 1118 zfs_handle_t *za = *zap; 1119 zfs_handle_t *const *zbp = argb; 1120 zfs_handle_t *zb = *zbp; 1121 char mounta[MAXPATHLEN]; 1122 char mountb[MAXPATHLEN]; 1123 const char *a = mounta; 1124 const char *b = mountb; 1125 boolean_t gota, gotb; 1126 uint64_t zoneda, zonedb; 1127 1128 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED); 1129 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED); 1130 if (zoneda && !zonedb) 1131 return (1); 1132 if (!zoneda && zonedb) 1133 return (-1); 1134 1135 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 1136 if (gota) { 1137 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 1138 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1139 } 1140 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1141 if (gotb) { 1142 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1143 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1144 } 1145 1146 if (gota && gotb) { 1147 while (*a != '\0' && (*a == *b)) { 1148 a++; 1149 b++; 1150 } 1151 if (*a == *b) 1152 return (0); 1153 if (*a == '\0') 1154 return (-1); 1155 if (*b == '\0') 1156 return (1); 1157 if (*a == '/') 1158 return (-1); 1159 if (*b == '/') 1160 return (1); 1161 return (*a < *b ? -1 : *a > *b); 1162 } 1163 1164 if (gota) 1165 return (-1); 1166 if (gotb) 1167 return (1); 1168 1169 /* 1170 * If neither filesystem has a mountpoint, revert to sorting by 1171 * dataset name. 1172 */ 1173 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1174 } 1175 1176 /* 1177 * Return true if path2 is a child of path1 or path2 equals path1 or 1178 * path1 is "/" (path2 is always a child of "/"). 1179 */ 1180 static boolean_t 1181 libzfs_path_contains(const char *path1, const char *path2) 1182 { 1183 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 || 1184 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/')); 1185 } 1186 1187 /* 1188 * Given a mountpoint specified by idx in the handles array, find the first 1189 * non-descendent of that mountpoint and return its index. Descendant paths 1190 * start with the parent's path. This function relies on the ordering 1191 * enforced by mountpoint_cmp(). 1192 */ 1193 static int 1194 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1195 { 1196 char parent[ZFS_MAXPROPLEN]; 1197 char child[ZFS_MAXPROPLEN]; 1198 int i; 1199 1200 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1201 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1202 1203 for (i = idx + 1; i < num_handles; i++) { 1204 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1205 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1206 if (!libzfs_path_contains(parent, child)) 1207 break; 1208 } 1209 return (i); 1210 } 1211 1212 typedef struct mnt_param { 1213 libzfs_handle_t *mnt_hdl; 1214 tpool_t *mnt_tp; 1215 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1216 size_t mnt_num_handles; 1217 int mnt_idx; /* Index of selected entry to mount */ 1218 zfs_iter_f mnt_func; 1219 void *mnt_data; 1220 } mnt_param_t; 1221 1222 /* 1223 * Allocate and populate the parameter struct for mount function, and 1224 * schedule mounting of the entry selected by idx. 1225 */ 1226 static void 1227 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1228 size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp) 1229 { 1230 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1231 1232 mnt_param->mnt_hdl = hdl; 1233 mnt_param->mnt_tp = tp; 1234 mnt_param->mnt_zhps = handles; 1235 mnt_param->mnt_num_handles = num_handles; 1236 mnt_param->mnt_idx = idx; 1237 mnt_param->mnt_func = func; 1238 mnt_param->mnt_data = data; 1239 1240 (void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param); 1241 } 1242 1243 /* 1244 * This is the structure used to keep state of mounting or sharing operations 1245 * during a call to zpool_enable_datasets(). 1246 */ 1247 typedef struct mount_state { 1248 /* 1249 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1250 * could update this variable concurrently, no synchronization is 1251 * needed as it's only ever set to -1. 1252 */ 1253 int ms_mntstatus; 1254 int ms_mntflags; 1255 const char *ms_mntopts; 1256 } mount_state_t; 1257 1258 static int 1259 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1260 { 1261 mount_state_t *ms = arg; 1262 int ret = 0; 1263 1264 /* 1265 * don't attempt to mount encrypted datasets with 1266 * unloaded keys 1267 */ 1268 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1269 ZFS_KEYSTATUS_UNAVAILABLE) 1270 return (0); 1271 1272 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1273 ret = ms->ms_mntstatus = -1; 1274 return (ret); 1275 } 1276 1277 static int 1278 zfs_share_one(zfs_handle_t *zhp, void *arg) 1279 { 1280 mount_state_t *ms = arg; 1281 int ret = 0; 1282 1283 if (zfs_share(zhp) != 0) 1284 ret = ms->ms_mntstatus = -1; 1285 return (ret); 1286 } 1287 1288 /* 1289 * Thread pool function to mount one file system. On completion, it finds and 1290 * schedules its children to be mounted. This depends on the sorting done in 1291 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1292 * each descending from the previous) will have no parallelism since we always 1293 * have to wait for the parent to finish mounting before we can schedule 1294 * its children. 1295 */ 1296 static void 1297 zfs_mount_task(void *arg) 1298 { 1299 mnt_param_t *mp = arg; 1300 int idx = mp->mnt_idx; 1301 zfs_handle_t **handles = mp->mnt_zhps; 1302 size_t num_handles = mp->mnt_num_handles; 1303 char mountpoint[ZFS_MAXPROPLEN]; 1304 1305 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1306 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1307 1308 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1309 return; 1310 1311 /* 1312 * We dispatch tasks to mount filesystems with mountpoints underneath 1313 * this one. We do this by dispatching the next filesystem with a 1314 * descendant mountpoint of the one we just mounted, then skip all of 1315 * its descendants, dispatch the next descendant mountpoint, and so on. 1316 * The non_descendant_idx() function skips over filesystems that are 1317 * descendants of the filesystem we just dispatched. 1318 */ 1319 for (int i = idx + 1; i < num_handles; 1320 i = non_descendant_idx(handles, num_handles, i)) { 1321 char child[ZFS_MAXPROPLEN]; 1322 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1323 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1324 1325 if (!libzfs_path_contains(mountpoint, child)) 1326 break; /* not a descendant, return */ 1327 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1328 mp->mnt_func, mp->mnt_data, mp->mnt_tp); 1329 } 1330 free(mp); 1331 } 1332 1333 /* 1334 * Issue the func callback for each ZFS handle contained in the handles 1335 * array. This function is used to mount all datasets, and so this function 1336 * guarantees that filesystems for parent mountpoints are called before their 1337 * children. As such, before issuing any callbacks, we first sort the array 1338 * of handles by mountpoint. 1339 * 1340 * Callbacks are issued in one of two ways: 1341 * 1342 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT 1343 * environment variable is set, then we issue callbacks sequentially. 1344 * 1345 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT 1346 * environment variable is not set, then we use a tpool to dispatch threads 1347 * to mount filesystems in parallel. This function dispatches tasks to mount 1348 * the filesystems at the top-level mountpoints, and these tasks in turn 1349 * are responsible for recursively mounting filesystems in their children 1350 * mountpoints. 1351 */ 1352 void 1353 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1354 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel) 1355 { 1356 zoneid_t zoneid = getzoneid(); 1357 1358 /* 1359 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1360 * variable that can be used as a convenience to do a/b comparison 1361 * of serial vs. parallel mounting. 1362 */ 1363 boolean_t serial_mount = !parallel || 1364 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1365 1366 /* 1367 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1368 * of how these are sorted. 1369 */ 1370 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1371 1372 if (serial_mount) { 1373 for (int i = 0; i < num_handles; i++) { 1374 func(handles[i], data); 1375 } 1376 return; 1377 } 1378 1379 /* 1380 * Issue the callback function for each dataset using a parallel 1381 * algorithm that uses a thread pool to manage threads. 1382 */ 1383 tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL); 1384 1385 /* 1386 * There may be multiple "top level" mountpoints outside of the pool's 1387 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1388 * these. 1389 */ 1390 for (int i = 0; i < num_handles; 1391 i = non_descendant_idx(handles, num_handles, i)) { 1392 /* 1393 * Since the mountpoints have been sorted so that the zoned 1394 * filesystems are at the end, a zoned filesystem seen from 1395 * the global zone means that we're done. 1396 */ 1397 if (zoneid == GLOBAL_ZONEID && 1398 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED)) 1399 break; 1400 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1401 tp); 1402 } 1403 1404 tpool_wait(tp); /* wait for all scheduled mounts to complete */ 1405 tpool_destroy(tp); 1406 } 1407 1408 /* 1409 * Mount and share all datasets within the given pool. This assumes that no 1410 * datasets within the pool are currently mounted. 1411 */ 1412 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1413 int 1414 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1415 { 1416 get_all_cb_t cb = { 0 }; 1417 mount_state_t ms = { 0 }; 1418 zfs_handle_t *zfsp; 1419 int ret = 0; 1420 1421 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1422 ZFS_TYPE_DATASET)) == NULL) 1423 goto out; 1424 1425 /* 1426 * Gather all non-snapshot datasets within the pool. Start by adding 1427 * the root filesystem for this pool to the list, and then iterate 1428 * over all child filesystems. 1429 */ 1430 libzfs_add_handle(&cb, zfsp); 1431 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0) 1432 goto out; 1433 1434 /* 1435 * Mount all filesystems 1436 */ 1437 ms.ms_mntopts = mntopts; 1438 ms.ms_mntflags = flags; 1439 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1440 zfs_mount_one, &ms, B_TRUE); 1441 if (ms.ms_mntstatus != 0) 1442 ret = ms.ms_mntstatus; 1443 1444 /* 1445 * Share all filesystems that need to be shared. This needs to be 1446 * a separate pass because libshare is not mt-safe, and so we need 1447 * to share serially. 1448 */ 1449 ms.ms_mntstatus = 0; 1450 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1451 zfs_share_one, &ms, B_FALSE); 1452 if (ms.ms_mntstatus != 0) 1453 ret = ms.ms_mntstatus; 1454 else 1455 zfs_commit_all_shares(); 1456 1457 out: 1458 for (int i = 0; i < cb.cb_used; i++) 1459 zfs_close(cb.cb_handles[i]); 1460 free(cb.cb_handles); 1461 1462 return (ret); 1463 } 1464 1465 static int 1466 mountpoint_compare(const void *a, const void *b) 1467 { 1468 const char *mounta = *((char **)a); 1469 const char *mountb = *((char **)b); 1470 1471 return (strcmp(mountb, mounta)); 1472 } 1473 1474 /* alias for 2002/240 */ 1475 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1476 /* 1477 * Unshare and unmount all datasets within the given pool. We don't want to 1478 * rely on traversing the DSL to discover the filesystems within the pool, 1479 * because this may be expensive (if not all of them are mounted), and can fail 1480 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts 1481 * and gather all the filesystems that are currently mounted. 1482 */ 1483 int 1484 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1485 { 1486 int used, alloc; 1487 struct mnttab entry; 1488 size_t namelen; 1489 char **mountpoints = NULL; 1490 zfs_handle_t **datasets = NULL; 1491 libzfs_handle_t *hdl = zhp->zpool_hdl; 1492 int i; 1493 int ret = -1; 1494 int flags = (force ? MS_FORCE : 0); 1495 1496 namelen = strlen(zhp->zpool_name); 1497 1498 /* Reopen MNTTAB to prevent reading stale data from open file */ 1499 if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL) 1500 return (ENOENT); 1501 1502 used = alloc = 0; 1503 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1504 /* 1505 * Ignore non-ZFS entries. 1506 */ 1507 if (entry.mnt_fstype == NULL || 1508 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1509 continue; 1510 1511 /* 1512 * Ignore filesystems not within this pool. 1513 */ 1514 if (entry.mnt_mountp == NULL || 1515 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1516 (entry.mnt_special[namelen] != '/' && 1517 entry.mnt_special[namelen] != '\0')) 1518 continue; 1519 1520 /* 1521 * At this point we've found a filesystem within our pool. Add 1522 * it to our growing list. 1523 */ 1524 if (used == alloc) { 1525 if (alloc == 0) { 1526 if ((mountpoints = zfs_alloc(hdl, 1527 8 * sizeof (void *))) == NULL) 1528 goto out; 1529 1530 if ((datasets = zfs_alloc(hdl, 1531 8 * sizeof (void *))) == NULL) 1532 goto out; 1533 1534 alloc = 8; 1535 } else { 1536 void *ptr; 1537 1538 if ((ptr = zfs_realloc(hdl, mountpoints, 1539 alloc * sizeof (void *), 1540 alloc * 2 * sizeof (void *))) == NULL) 1541 goto out; 1542 mountpoints = ptr; 1543 1544 if ((ptr = zfs_realloc(hdl, datasets, 1545 alloc * sizeof (void *), 1546 alloc * 2 * sizeof (void *))) == NULL) 1547 goto out; 1548 datasets = ptr; 1549 1550 alloc *= 2; 1551 } 1552 } 1553 1554 if ((mountpoints[used] = zfs_strdup(hdl, 1555 entry.mnt_mountp)) == NULL) 1556 goto out; 1557 1558 /* 1559 * This is allowed to fail, in case there is some I/O error. It 1560 * is only used to determine if we need to remove the underlying 1561 * mountpoint, so failure is not fatal. 1562 */ 1563 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1564 1565 used++; 1566 } 1567 1568 /* 1569 * At this point, we have the entire list of filesystems, so sort it by 1570 * mountpoint. 1571 */ 1572 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1573 1574 /* 1575 * Walk through and first unshare everything. 1576 */ 1577 for (i = 0; i < used; i++) { 1578 zfs_share_proto_t *curr_proto; 1579 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1580 curr_proto++) { 1581 if (is_shared(mountpoints[i], *curr_proto) && 1582 unshare_one(hdl, mountpoints[i], 1583 mountpoints[i], *curr_proto) != 0) 1584 goto out; 1585 } 1586 } 1587 zfs_commit_all_shares(); 1588 1589 /* 1590 * Now unmount everything, removing the underlying directories as 1591 * appropriate. 1592 */ 1593 for (i = 0; i < used; i++) { 1594 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1595 goto out; 1596 } 1597 1598 for (i = 0; i < used; i++) { 1599 if (datasets[i]) 1600 remove_mountpoint(datasets[i]); 1601 } 1602 1603 ret = 0; 1604 out: 1605 for (i = 0; i < used; i++) { 1606 if (datasets[i]) 1607 zfs_close(datasets[i]); 1608 free(mountpoints[i]); 1609 } 1610 free(datasets); 1611 free(mountpoints); 1612 1613 return (ret); 1614 } 1615