1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2022 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 * Copyright (c) 2018 Datto Inc. 29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 30 */ 31 32 /* 33 * Routines to manage ZFS mounts. We separate all the nasty routines that have 34 * to deal with the OS. The following functions are the main entry points -- 35 * they are used by mount and unmount and when changing a filesystem's 36 * mountpoint. 37 * 38 * zfs_is_mounted() 39 * zfs_mount() 40 * zfs_mount_at() 41 * zfs_unmount() 42 * zfs_unmountall() 43 * 44 * This file also contains the functions used to manage sharing filesystems: 45 * 46 * zfs_is_shared() 47 * zfs_share() 48 * zfs_unshare() 49 * zfs_unshareall() 50 * zfs_commit_shares() 51 * 52 * The following functions are available for pool consumers, and will 53 * mount/unmount and share/unshare all datasets within pool: 54 * 55 * zpool_enable_datasets() 56 * zpool_disable_datasets() 57 */ 58 59 #include <dirent.h> 60 #include <dlfcn.h> 61 #include <errno.h> 62 #include <fcntl.h> 63 #include <libgen.h> 64 #include <libintl.h> 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <string.h> 68 #include <unistd.h> 69 #include <zone.h> 70 #include <sys/mntent.h> 71 #include <sys/mount.h> 72 #include <sys/stat.h> 73 #include <sys/vfs.h> 74 #include <sys/dsl_crypt.h> 75 76 #include <libzfs.h> 77 #include <libzutil.h> 78 79 #include "libzfs_impl.h" 80 #include <thread_pool.h> 81 82 #include <libshare.h> 83 #include <sys/systeminfo.h> 84 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 85 86 static void zfs_mount_task(void *); 87 88 static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = { 89 [SA_PROTOCOL_NFS] = 90 {ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 91 [SA_PROTOCOL_SMB] = 92 {ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 93 }; 94 95 static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = { 96 SA_PROTOCOL_NFS, 97 SA_PROTOCOL_SMB, 98 SA_NO_PROTOCOL 99 }; 100 101 102 103 static boolean_t 104 dir_is_empty_stat(const char *dirname) 105 { 106 struct stat st; 107 108 /* 109 * We only want to return false if the given path is a non empty 110 * directory, all other errors are handled elsewhere. 111 */ 112 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 113 return (B_TRUE); 114 } 115 116 /* 117 * An empty directory will still have two entries in it, one 118 * entry for each of "." and "..". 119 */ 120 if (st.st_size > 2) { 121 return (B_FALSE); 122 } 123 124 return (B_TRUE); 125 } 126 127 static boolean_t 128 dir_is_empty_readdir(const char *dirname) 129 { 130 DIR *dirp; 131 struct dirent64 *dp; 132 int dirfd; 133 134 if ((dirfd = openat(AT_FDCWD, dirname, 135 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 136 return (B_TRUE); 137 } 138 139 if ((dirp = fdopendir(dirfd)) == NULL) { 140 (void) close(dirfd); 141 return (B_TRUE); 142 } 143 144 while ((dp = readdir64(dirp)) != NULL) { 145 146 if (strcmp(dp->d_name, ".") == 0 || 147 strcmp(dp->d_name, "..") == 0) 148 continue; 149 150 (void) closedir(dirp); 151 return (B_FALSE); 152 } 153 154 (void) closedir(dirp); 155 return (B_TRUE); 156 } 157 158 /* 159 * Returns true if the specified directory is empty. If we can't open the 160 * directory at all, return true so that the mount can fail with a more 161 * informative error message. 162 */ 163 static boolean_t 164 dir_is_empty(const char *dirname) 165 { 166 struct statfs64 st; 167 168 /* 169 * If the statvfs call fails or the filesystem is not a ZFS 170 * filesystem, fall back to the slow path which uses readdir. 171 */ 172 if ((statfs64(dirname, &st) != 0) || 173 (st.f_type != ZFS_SUPER_MAGIC)) { 174 return (dir_is_empty_readdir(dirname)); 175 } 176 177 /* 178 * At this point, we know the provided path is on a ZFS 179 * filesystem, so we can use stat instead of readdir to 180 * determine if the directory is empty or not. We try to avoid 181 * using readdir because that requires opening "dirname"; this 182 * open file descriptor can potentially end up in a child 183 * process if there's a concurrent fork, thus preventing the 184 * zfs_mount() from otherwise succeeding (the open file 185 * descriptor inherited by the child process will cause the 186 * parent's mount to fail with EBUSY). The performance 187 * implications of replacing the open, read, and close with a 188 * single stat is nice; but is not the main motivation for the 189 * added complexity. 190 */ 191 return (dir_is_empty_stat(dirname)); 192 } 193 194 /* 195 * Checks to see if the mount is active. If the filesystem is mounted, we fill 196 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 197 * 0. 198 */ 199 boolean_t 200 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 201 { 202 struct mnttab entry; 203 204 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 205 return (B_FALSE); 206 207 if (where != NULL) 208 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 209 210 return (B_TRUE); 211 } 212 213 boolean_t 214 zfs_is_mounted(zfs_handle_t *zhp, char **where) 215 { 216 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 217 } 218 219 /* 220 * Checks any higher order concerns about whether the given dataset is 221 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes 222 * that the caller has verified the sanity of mounting the dataset at 223 * its mountpoint to the extent the caller wants. 224 */ 225 static boolean_t 226 zfs_is_mountable_internal(zfs_handle_t *zhp) 227 { 228 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 229 getzoneid() == GLOBAL_ZONEID) 230 return (B_FALSE); 231 232 return (B_TRUE); 233 } 234 235 /* 236 * Returns true if the given dataset is mountable, false otherwise. Returns the 237 * mountpoint in 'buf'. 238 */ 239 static boolean_t 240 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 241 zprop_source_t *source, int flags) 242 { 243 char sourceloc[MAXNAMELEN]; 244 zprop_source_t sourcetype; 245 246 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type, 247 B_FALSE)) 248 return (B_FALSE); 249 250 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 251 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 252 253 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 254 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 255 return (B_FALSE); 256 257 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 258 return (B_FALSE); 259 260 if (!zfs_is_mountable_internal(zhp)) 261 return (B_FALSE); 262 263 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE)) 264 return (B_FALSE); 265 266 if (source) 267 *source = sourcetype; 268 269 return (B_TRUE); 270 } 271 272 /* 273 * The filesystem is mounted by invoking the system mount utility rather 274 * than by the system call mount(2). This ensures that the /etc/mtab 275 * file is correctly locked for the update. Performing our own locking 276 * and /etc/mtab update requires making an unsafe assumption about how 277 * the mount utility performs its locking. Unfortunately, this also means 278 * in the case of a mount failure we do not have the exact errno. We must 279 * make due with return value from the mount process. 280 * 281 * In the long term a shared library called libmount is under development 282 * which provides a common API to address the locking and errno issues. 283 * Once the standard mount utility has been updated to use this library 284 * we can add an autoconf check to conditionally use it. 285 * 286 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html 287 */ 288 289 static int 290 zfs_add_option(zfs_handle_t *zhp, char *options, int len, 291 zfs_prop_t prop, const char *on, const char *off) 292 { 293 const char *source; 294 uint64_t value; 295 296 /* Skip adding duplicate default options */ 297 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL)) 298 return (0); 299 300 /* 301 * zfs_prop_get_int() is not used to ensure our mount options 302 * are not influenced by the current /proc/self/mounts contents. 303 */ 304 value = getprop_uint64(zhp, prop, &source); 305 306 (void) strlcat(options, ",", len); 307 (void) strlcat(options, value ? on : off, len); 308 309 return (0); 310 } 311 312 static int 313 zfs_add_options(zfs_handle_t *zhp, char *options, int len) 314 { 315 int error = 0; 316 317 error = zfs_add_option(zhp, options, len, 318 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME); 319 /* 320 * don't add relatime/strictatime when atime=off, otherwise strictatime 321 * will force atime=on 322 */ 323 if (strstr(options, MNTOPT_NOATIME) == NULL) { 324 error = zfs_add_option(zhp, options, len, 325 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME); 326 } 327 error = error ? error : zfs_add_option(zhp, options, len, 328 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES); 329 error = error ? error : zfs_add_option(zhp, options, len, 330 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC); 331 error = error ? error : zfs_add_option(zhp, options, len, 332 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW); 333 error = error ? error : zfs_add_option(zhp, options, len, 334 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID); 335 error = error ? error : zfs_add_option(zhp, options, len, 336 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND); 337 338 return (error); 339 } 340 341 int 342 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 343 { 344 char mountpoint[ZFS_MAXPROPLEN]; 345 346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 347 flags)) 348 return (0); 349 350 return (zfs_mount_at(zhp, options, flags, mountpoint)); 351 } 352 353 /* 354 * Mount the given filesystem. 355 */ 356 int 357 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags, 358 const char *mountpoint) 359 { 360 struct stat buf; 361 char mntopts[MNT_LINE_MAX]; 362 char overlay[ZFS_MAXPROPLEN]; 363 char prop_encroot[MAXNAMELEN]; 364 boolean_t is_encroot; 365 zfs_handle_t *encroot_hp = zhp; 366 libzfs_handle_t *hdl = zhp->zfs_hdl; 367 uint64_t keystatus; 368 int remount = 0, rc; 369 370 if (options == NULL) { 371 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts)); 372 } else { 373 (void) strlcpy(mntopts, options, sizeof (mntopts)); 374 } 375 376 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL) 377 remount = 1; 378 379 /* Potentially duplicates some checks if invoked by zfs_mount(). */ 380 if (!zfs_is_mountable_internal(zhp)) 381 return (0); 382 383 /* 384 * If the pool is imported read-only then all mounts must be read-only 385 */ 386 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 387 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts)); 388 389 /* 390 * Append default mount options which apply to the mount point. 391 * This is done because under Linux (unlike Solaris) multiple mount 392 * points may reference a single super block. This means that just 393 * given a super block there is no back reference to update the per 394 * mount point options. 395 */ 396 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts)); 397 if (rc) { 398 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 399 "default options unavailable")); 400 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 401 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 402 mountpoint)); 403 } 404 405 /* 406 * If the filesystem is encrypted the key must be loaded in order to 407 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether 408 * or not we attempt to load the keys. Note: we must call 409 * zfs_refresh_properties() here since some callers of this function 410 * (most notably zpool_enable_datasets()) may implicitly load our key 411 * by loading the parent's key first. 412 */ 413 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 414 zfs_refresh_properties(zhp); 415 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS); 416 417 /* 418 * If the key is unavailable and MS_CRYPT is set give the 419 * user a chance to enter the key. Otherwise just fail 420 * immediately. 421 */ 422 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) { 423 if (flags & MS_CRYPT) { 424 rc = zfs_crypto_get_encryption_root(zhp, 425 &is_encroot, prop_encroot); 426 if (rc) { 427 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 428 "Failed to get encryption root for " 429 "'%s'."), zfs_get_name(zhp)); 430 return (rc); 431 } 432 433 if (!is_encroot) { 434 encroot_hp = zfs_open(hdl, prop_encroot, 435 ZFS_TYPE_DATASET); 436 if (encroot_hp == NULL) 437 return (hdl->libzfs_error); 438 } 439 440 rc = zfs_crypto_load_key(encroot_hp, 441 B_FALSE, NULL); 442 443 if (!is_encroot) 444 zfs_close(encroot_hp); 445 if (rc) 446 return (rc); 447 } else { 448 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 449 "encryption key not loaded")); 450 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 451 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 452 mountpoint)); 453 } 454 } 455 456 } 457 458 /* 459 * Append zfsutil option so the mount helper allow the mount 460 */ 461 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts)); 462 463 /* Create the directory if it doesn't already exist */ 464 if (lstat(mountpoint, &buf) != 0) { 465 if (mkdirp(mountpoint, 0755) != 0) { 466 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 467 "failed to create mountpoint: %s"), 468 zfs_strerror(errno)); 469 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 470 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 471 mountpoint)); 472 } 473 } 474 475 /* 476 * Overlay mounts are enabled by default but may be disabled 477 * via the 'overlay' property. The -O flag remains for compatibility. 478 */ 479 if (!(flags & MS_OVERLAY)) { 480 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay, 481 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) { 482 if (strcmp(overlay, "on") == 0) { 483 flags |= MS_OVERLAY; 484 } 485 } 486 } 487 488 /* 489 * Determine if the mountpoint is empty. If so, refuse to perform the 490 * mount. We don't perform this check if 'remount' is 491 * specified or if overlay option (-O) is given 492 */ 493 if ((flags & MS_OVERLAY) == 0 && !remount && 494 !dir_is_empty(mountpoint)) { 495 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 496 "directory is not empty")); 497 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 498 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 499 } 500 501 /* perform the mount */ 502 rc = do_mount(zhp, mountpoint, mntopts, flags); 503 if (rc) { 504 /* 505 * Generic errors are nasty, but there are just way too many 506 * from mount(), and they're well-understood. We pick a few 507 * common ones to improve upon. 508 */ 509 if (rc == EBUSY) { 510 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 511 "mountpoint or dataset is busy")); 512 } else if (rc == EPERM) { 513 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 514 "Insufficient privileges")); 515 } else if (rc == ENOTSUP) { 516 int spa_version; 517 518 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 519 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 520 "Can't mount a version %llu " 521 "file system on a version %d pool. Pool must be" 522 " upgraded to mount this file system."), 523 (u_longlong_t)zfs_prop_get_int(zhp, 524 ZFS_PROP_VERSION), spa_version); 525 } else { 526 zfs_error_aux(hdl, "%s", zfs_strerror(rc)); 527 } 528 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 529 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 530 zhp->zfs_name)); 531 } 532 533 /* remove the mounted entry before re-adding on remount */ 534 if (remount) 535 libzfs_mnttab_remove(hdl, zhp->zfs_name); 536 537 /* add the mounted entry into our cache */ 538 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts); 539 return (0); 540 } 541 542 /* 543 * Unmount a single filesystem. 544 */ 545 static int 546 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags) 547 { 548 int error; 549 550 error = do_unmount(zhp, mountpoint, flags); 551 if (error != 0) { 552 int libzfs_err; 553 554 switch (error) { 555 case EBUSY: 556 libzfs_err = EZFS_BUSY; 557 break; 558 case EIO: 559 libzfs_err = EZFS_IO; 560 break; 561 case ENOENT: 562 libzfs_err = EZFS_NOENT; 563 break; 564 case ENOMEM: 565 libzfs_err = EZFS_NOMEM; 566 break; 567 case EPERM: 568 libzfs_err = EZFS_PERM; 569 break; 570 default: 571 libzfs_err = EZFS_UMOUNTFAILED; 572 } 573 if (zhp) { 574 return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err, 575 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 576 mountpoint)); 577 } else { 578 return (-1); 579 } 580 } 581 582 return (0); 583 } 584 585 /* 586 * Unmount the given filesystem. 587 */ 588 int 589 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 590 { 591 libzfs_handle_t *hdl = zhp->zfs_hdl; 592 struct mnttab entry; 593 char *mntpt = NULL; 594 boolean_t encroot, unmounted = B_FALSE; 595 596 /* check to see if we need to unmount the filesystem */ 597 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 598 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 599 /* 600 * mountpoint may have come from a call to 601 * getmnt/getmntany if it isn't NULL. If it is NULL, 602 * we know it comes from libzfs_mnttab_find which can 603 * then get freed later. We strdup it to play it safe. 604 */ 605 if (mountpoint == NULL) 606 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 607 else 608 mntpt = zfs_strdup(hdl, mountpoint); 609 610 /* 611 * Unshare and unmount the filesystem 612 */ 613 if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) { 614 free(mntpt); 615 return (-1); 616 } 617 zfs_commit_shares(NULL); 618 619 if (unmount_one(zhp, mntpt, flags) != 0) { 620 free(mntpt); 621 (void) zfs_share(zhp, NULL); 622 zfs_commit_shares(NULL); 623 return (-1); 624 } 625 626 libzfs_mnttab_remove(hdl, zhp->zfs_name); 627 free(mntpt); 628 unmounted = B_TRUE; 629 } 630 631 /* 632 * If the MS_CRYPT flag is provided we must ensure we attempt to 633 * unload the dataset's key regardless of whether we did any work 634 * to unmount it. We only do this for encryption roots. 635 */ 636 if ((flags & MS_CRYPT) != 0 && 637 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 638 zfs_refresh_properties(zhp); 639 640 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 && 641 unmounted) { 642 (void) zfs_mount(zhp, NULL, 0); 643 return (-1); 644 } 645 646 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 647 ZFS_KEYSTATUS_AVAILABLE && 648 zfs_crypto_unload_key(zhp) != 0) { 649 (void) zfs_mount(zhp, NULL, 0); 650 return (-1); 651 } 652 } 653 654 zpool_disable_volume_os(zhp->zfs_name); 655 656 return (0); 657 } 658 659 /* 660 * Unmount this filesystem and any children inheriting the mountpoint property. 661 * To do this, just act like we're changing the mountpoint property, but don't 662 * remount the filesystems afterwards. 663 */ 664 int 665 zfs_unmountall(zfs_handle_t *zhp, int flags) 666 { 667 prop_changelist_t *clp; 668 int ret; 669 670 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 671 CL_GATHER_ITER_MOUNTED, flags); 672 if (clp == NULL) 673 return (-1); 674 675 ret = changelist_prefix(clp); 676 changelist_free(clp); 677 678 return (ret); 679 } 680 681 /* 682 * Unshare a filesystem by mountpoint. 683 */ 684 static int 685 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 686 enum sa_protocol proto) 687 { 688 int err = sa_disable_share(mountpoint, proto); 689 if (err != SA_OK) 690 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 691 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 692 name, sa_errorstr(err))); 693 694 return (0); 695 } 696 697 /* 698 * Share the given filesystem according to the options in the specified 699 * protocol specific properties (sharenfs, sharesmb). We rely 700 * on "libshare" to do the dirty work for us. 701 */ 702 int 703 zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto) 704 { 705 char mountpoint[ZFS_MAXPROPLEN]; 706 char shareopts[ZFS_MAXPROPLEN]; 707 char sourcestr[ZFS_MAXPROPLEN]; 708 const enum sa_protocol *curr_proto; 709 zprop_source_t sourcetype; 710 int err = 0; 711 712 if (proto == NULL) 713 proto = share_all_proto; 714 715 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0)) 716 return (0); 717 718 for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) { 719 /* 720 * Return success if there are no share options. 721 */ 722 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 723 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 724 ZFS_MAXPROPLEN, B_FALSE) != 0 || 725 strcmp(shareopts, "off") == 0) 726 continue; 727 728 /* 729 * If the 'zoned' property is set, then zfs_is_mountable() 730 * will have already bailed out if we are in the global zone. 731 * But local zones cannot be NFS servers, so we ignore it for 732 * local zones as well. 733 */ 734 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 735 continue; 736 737 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts, 738 *curr_proto); 739 if (err != SA_OK) { 740 return (zfs_error_fmt(zhp->zfs_hdl, 741 proto_table[*curr_proto].p_share_err, 742 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"), 743 zfs_get_name(zhp), sa_errorstr(err))); 744 } 745 746 } 747 return (0); 748 } 749 750 /* 751 * Check to see if the filesystem is currently shared. 752 */ 753 boolean_t 754 zfs_is_shared(zfs_handle_t *zhp, char **where, 755 const enum sa_protocol *proto) 756 { 757 char *mountpoint; 758 if (proto == NULL) 759 proto = share_all_proto; 760 761 if (ZFS_IS_VOLUME(zhp)) 762 return (B_FALSE); 763 764 if (!zfs_is_mounted(zhp, &mountpoint)) 765 return (B_FALSE); 766 767 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p) 768 if (sa_is_shared(mountpoint, *p)) { 769 if (where != NULL) 770 *where = mountpoint; 771 else 772 free(mountpoint); 773 return (B_TRUE); 774 } 775 776 free(mountpoint); 777 return (B_FALSE); 778 } 779 780 void 781 zfs_commit_shares(const enum sa_protocol *proto) 782 { 783 if (proto == NULL) 784 proto = share_all_proto; 785 786 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p) 787 sa_commit_shares(*p); 788 } 789 790 void 791 zfs_truncate_shares(const enum sa_protocol *proto) 792 { 793 if (proto == NULL) 794 proto = share_all_proto; 795 796 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p) 797 sa_truncate_shares(*p); 798 } 799 800 /* 801 * Unshare the given filesystem. 802 */ 803 int 804 zfs_unshare(zfs_handle_t *zhp, const char *mountpoint, 805 const enum sa_protocol *proto) 806 { 807 libzfs_handle_t *hdl = zhp->zfs_hdl; 808 struct mnttab entry; 809 810 if (proto == NULL) 811 proto = share_all_proto; 812 813 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 814 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 815 816 /* check to see if need to unmount the filesystem */ 817 const char *mntpt = mountpoint ?: entry.mnt_mountp; 818 819 for (const enum sa_protocol *curr_proto = proto; 820 *curr_proto != SA_NO_PROTOCOL; curr_proto++) 821 if (sa_is_shared(mntpt, *curr_proto) && 822 unshare_one(hdl, zhp->zfs_name, 823 mntpt, *curr_proto) != 0) 824 return (-1); 825 } 826 827 return (0); 828 } 829 830 /* 831 * Same as zfs_unmountall(), but for NFS and SMB unshares. 832 */ 833 int 834 zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto) 835 { 836 prop_changelist_t *clp; 837 int ret; 838 839 if (proto == NULL) 840 proto = share_all_proto; 841 842 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 843 if (clp == NULL) 844 return (-1); 845 846 ret = changelist_unshare(clp, proto); 847 changelist_free(clp); 848 849 return (ret); 850 } 851 852 /* 853 * Remove the mountpoint associated with the current dataset, if necessary. 854 * We only remove the underlying directory if: 855 * 856 * - The mountpoint is not 'none' or 'legacy' 857 * - The mountpoint is non-empty 858 * - The mountpoint is the default or inherited 859 * - The 'zoned' property is set, or we're in a local zone 860 * 861 * Any other directories we leave alone. 862 */ 863 void 864 remove_mountpoint(zfs_handle_t *zhp) 865 { 866 char mountpoint[ZFS_MAXPROPLEN]; 867 zprop_source_t source; 868 869 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 870 &source, 0)) 871 return; 872 873 if (source == ZPROP_SRC_DEFAULT || 874 source == ZPROP_SRC_INHERITED) { 875 /* 876 * Try to remove the directory, silently ignoring any errors. 877 * The filesystem may have since been removed or moved around, 878 * and this error isn't really useful to the administrator in 879 * any way. 880 */ 881 (void) rmdir(mountpoint); 882 } 883 } 884 885 /* 886 * Add the given zfs handle to the cb_handles array, dynamically reallocating 887 * the array if it is out of space. 888 */ 889 void 890 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 891 { 892 if (cbp->cb_alloc == cbp->cb_used) { 893 size_t newsz; 894 zfs_handle_t **newhandles; 895 896 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 897 newhandles = zfs_realloc(zhp->zfs_hdl, 898 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 899 newsz * sizeof (zfs_handle_t *)); 900 cbp->cb_handles = newhandles; 901 cbp->cb_alloc = newsz; 902 } 903 cbp->cb_handles[cbp->cb_used++] = zhp; 904 } 905 906 /* 907 * Recursive helper function used during file system enumeration 908 */ 909 static int 910 zfs_iter_cb(zfs_handle_t *zhp, void *data) 911 { 912 get_all_cb_t *cbp = data; 913 914 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 915 zfs_close(zhp); 916 return (0); 917 } 918 919 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 920 zfs_close(zhp); 921 return (0); 922 } 923 924 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 925 ZFS_KEYSTATUS_UNAVAILABLE) { 926 zfs_close(zhp); 927 return (0); 928 } 929 930 /* 931 * If this filesystem is inconsistent and has a receive resume 932 * token, we can not mount it. 933 */ 934 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 935 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 936 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 937 zfs_close(zhp); 938 return (0); 939 } 940 941 libzfs_add_handle(cbp, zhp); 942 if (zfs_iter_filesystems_v2(zhp, 0, zfs_iter_cb, cbp) != 0) { 943 zfs_close(zhp); 944 return (-1); 945 } 946 return (0); 947 } 948 949 /* 950 * Sort comparator that compares two mountpoint paths. We sort these paths so 951 * that subdirectories immediately follow their parents. This means that we 952 * effectively treat the '/' character as the lowest value non-nul char. 953 * Since filesystems from non-global zones can have the same mountpoint 954 * as other filesystems, the comparator sorts global zone filesystems to 955 * the top of the list. This means that the global zone will traverse the 956 * filesystem list in the correct order and can stop when it sees the 957 * first zoned filesystem. In a non-global zone, only the delegated 958 * filesystems are seen. 959 * 960 * An example sorted list using this comparator would look like: 961 * 962 * /foo 963 * /foo/bar 964 * /foo/bar/baz 965 * /foo/baz 966 * /foo.bar 967 * /foo (NGZ1) 968 * /foo (NGZ2) 969 * 970 * The mounting code depends on this ordering to deterministically iterate 971 * over filesystems in order to spawn parallel mount tasks. 972 */ 973 static int 974 mountpoint_cmp(const void *arga, const void *argb) 975 { 976 zfs_handle_t *const *zap = arga; 977 zfs_handle_t *za = *zap; 978 zfs_handle_t *const *zbp = argb; 979 zfs_handle_t *zb = *zbp; 980 char mounta[MAXPATHLEN]; 981 char mountb[MAXPATHLEN]; 982 const char *a = mounta; 983 const char *b = mountb; 984 boolean_t gota, gotb; 985 uint64_t zoneda, zonedb; 986 987 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED); 988 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED); 989 if (zoneda && !zonedb) 990 return (1); 991 if (!zoneda && zonedb) 992 return (-1); 993 994 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 995 if (gota) { 996 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 997 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 998 } 999 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1000 if (gotb) { 1001 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1002 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1003 } 1004 1005 if (gota && gotb) { 1006 while (*a != '\0' && (*a == *b)) { 1007 a++; 1008 b++; 1009 } 1010 if (*a == *b) 1011 return (0); 1012 if (*a == '\0') 1013 return (-1); 1014 if (*b == '\0') 1015 return (1); 1016 if (*a == '/') 1017 return (-1); 1018 if (*b == '/') 1019 return (1); 1020 return (*a < *b ? -1 : *a > *b); 1021 } 1022 1023 if (gota) 1024 return (-1); 1025 if (gotb) 1026 return (1); 1027 1028 /* 1029 * If neither filesystem has a mountpoint, revert to sorting by 1030 * dataset name. 1031 */ 1032 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1033 } 1034 1035 /* 1036 * Return true if path2 is a child of path1 or path2 equals path1 or 1037 * path1 is "/" (path2 is always a child of "/"). 1038 */ 1039 static boolean_t 1040 libzfs_path_contains(const char *path1, const char *path2) 1041 { 1042 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 || 1043 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/')); 1044 } 1045 1046 /* 1047 * Given a mountpoint specified by idx in the handles array, find the first 1048 * non-descendent of that mountpoint and return its index. Descendant paths 1049 * start with the parent's path. This function relies on the ordering 1050 * enforced by mountpoint_cmp(). 1051 */ 1052 static int 1053 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1054 { 1055 char parent[ZFS_MAXPROPLEN]; 1056 char child[ZFS_MAXPROPLEN]; 1057 int i; 1058 1059 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1060 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1061 1062 for (i = idx + 1; i < num_handles; i++) { 1063 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1064 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1065 if (!libzfs_path_contains(parent, child)) 1066 break; 1067 } 1068 return (i); 1069 } 1070 1071 typedef struct mnt_param { 1072 libzfs_handle_t *mnt_hdl; 1073 tpool_t *mnt_tp; 1074 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1075 size_t mnt_num_handles; 1076 int mnt_idx; /* Index of selected entry to mount */ 1077 zfs_iter_f mnt_func; 1078 void *mnt_data; 1079 } mnt_param_t; 1080 1081 /* 1082 * Allocate and populate the parameter struct for mount function, and 1083 * schedule mounting of the entry selected by idx. 1084 */ 1085 static void 1086 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1087 size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp) 1088 { 1089 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1090 1091 mnt_param->mnt_hdl = hdl; 1092 mnt_param->mnt_tp = tp; 1093 mnt_param->mnt_zhps = handles; 1094 mnt_param->mnt_num_handles = num_handles; 1095 mnt_param->mnt_idx = idx; 1096 mnt_param->mnt_func = func; 1097 mnt_param->mnt_data = data; 1098 1099 if (tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param)) { 1100 /* Could not dispatch to thread pool; execute directly */ 1101 zfs_mount_task((void*)mnt_param); 1102 } 1103 } 1104 1105 /* 1106 * This is the structure used to keep state of mounting or sharing operations 1107 * during a call to zpool_enable_datasets(). 1108 */ 1109 typedef struct mount_state { 1110 /* 1111 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1112 * could update this variable concurrently, no synchronization is 1113 * needed as it's only ever set to -1. 1114 */ 1115 int ms_mntstatus; 1116 int ms_mntflags; 1117 const char *ms_mntopts; 1118 } mount_state_t; 1119 1120 static int 1121 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1122 { 1123 mount_state_t *ms = arg; 1124 int ret = 0; 1125 1126 /* 1127 * don't attempt to mount encrypted datasets with 1128 * unloaded keys 1129 */ 1130 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1131 ZFS_KEYSTATUS_UNAVAILABLE) 1132 return (0); 1133 1134 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1135 ret = ms->ms_mntstatus = -1; 1136 return (ret); 1137 } 1138 1139 static int 1140 zfs_share_one(zfs_handle_t *zhp, void *arg) 1141 { 1142 mount_state_t *ms = arg; 1143 int ret = 0; 1144 1145 if (zfs_share(zhp, NULL) != 0) 1146 ret = ms->ms_mntstatus = -1; 1147 return (ret); 1148 } 1149 1150 /* 1151 * Thread pool function to mount one file system. On completion, it finds and 1152 * schedules its children to be mounted. This depends on the sorting done in 1153 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1154 * each descending from the previous) will have no parallelism since we always 1155 * have to wait for the parent to finish mounting before we can schedule 1156 * its children. 1157 */ 1158 static void 1159 zfs_mount_task(void *arg) 1160 { 1161 mnt_param_t *mp = arg; 1162 int idx = mp->mnt_idx; 1163 zfs_handle_t **handles = mp->mnt_zhps; 1164 size_t num_handles = mp->mnt_num_handles; 1165 char mountpoint[ZFS_MAXPROPLEN]; 1166 1167 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1168 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1169 1170 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1171 goto out; 1172 1173 /* 1174 * We dispatch tasks to mount filesystems with mountpoints underneath 1175 * this one. We do this by dispatching the next filesystem with a 1176 * descendant mountpoint of the one we just mounted, then skip all of 1177 * its descendants, dispatch the next descendant mountpoint, and so on. 1178 * The non_descendant_idx() function skips over filesystems that are 1179 * descendants of the filesystem we just dispatched. 1180 */ 1181 for (int i = idx + 1; i < num_handles; 1182 i = non_descendant_idx(handles, num_handles, i)) { 1183 char child[ZFS_MAXPROPLEN]; 1184 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1185 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1186 1187 if (!libzfs_path_contains(mountpoint, child)) 1188 break; /* not a descendant, return */ 1189 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1190 mp->mnt_func, mp->mnt_data, mp->mnt_tp); 1191 } 1192 1193 out: 1194 free(mp); 1195 } 1196 1197 /* 1198 * Issue the func callback for each ZFS handle contained in the handles 1199 * array. This function is used to mount all datasets, and so this function 1200 * guarantees that filesystems for parent mountpoints are called before their 1201 * children. As such, before issuing any callbacks, we first sort the array 1202 * of handles by mountpoint. 1203 * 1204 * Callbacks are issued in one of two ways: 1205 * 1206 * 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT 1207 * environment variable is set, then we issue callbacks sequentially. 1208 * 1209 * 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT 1210 * environment variable is not set, then we use a tpool to dispatch threads 1211 * to mount filesystems in parallel. This function dispatches tasks to mount 1212 * the filesystems at the top-level mountpoints, and these tasks in turn 1213 * are responsible for recursively mounting filesystems in their children 1214 * mountpoints. The value of the nthr argument will be the number of worker 1215 * threads for the thread pool. 1216 */ 1217 void 1218 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1219 size_t num_handles, zfs_iter_f func, void *data, uint_t nthr) 1220 { 1221 zoneid_t zoneid = getzoneid(); 1222 1223 /* 1224 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1225 * variable that can be used as a convenience to do a/b comparison 1226 * of serial vs. parallel mounting. 1227 */ 1228 boolean_t serial_mount = nthr <= 1 || 1229 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1230 1231 /* 1232 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1233 * of how these are sorted. 1234 */ 1235 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1236 1237 if (serial_mount) { 1238 for (int i = 0; i < num_handles; i++) { 1239 func(handles[i], data); 1240 } 1241 return; 1242 } 1243 1244 /* 1245 * Issue the callback function for each dataset using a parallel 1246 * algorithm that uses a thread pool to manage threads. 1247 */ 1248 tpool_t *tp = tpool_create(1, nthr, 0, NULL); 1249 1250 /* 1251 * There may be multiple "top level" mountpoints outside of the pool's 1252 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1253 * these. 1254 */ 1255 for (int i = 0; i < num_handles; 1256 i = non_descendant_idx(handles, num_handles, i)) { 1257 /* 1258 * Since the mountpoints have been sorted so that the zoned 1259 * filesystems are at the end, a zoned filesystem seen from 1260 * the global zone means that we're done. 1261 */ 1262 if (zoneid == GLOBAL_ZONEID && 1263 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED)) 1264 break; 1265 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1266 tp); 1267 } 1268 1269 tpool_wait(tp); /* wait for all scheduled mounts to complete */ 1270 tpool_destroy(tp); 1271 } 1272 1273 /* 1274 * Mount and share all datasets within the given pool. This assumes that no 1275 * datasets within the pool are currently mounted. nthr will be number of 1276 * worker threads to use while mounting datasets. 1277 */ 1278 int 1279 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags, 1280 uint_t nthr) 1281 { 1282 get_all_cb_t cb = { 0 }; 1283 mount_state_t ms = { 0 }; 1284 zfs_handle_t *zfsp; 1285 int ret = 0; 1286 1287 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1288 ZFS_TYPE_DATASET)) == NULL) 1289 goto out; 1290 1291 /* 1292 * Gather all non-snapshot datasets within the pool. Start by adding 1293 * the root filesystem for this pool to the list, and then iterate 1294 * over all child filesystems. 1295 */ 1296 libzfs_add_handle(&cb, zfsp); 1297 if (zfs_iter_filesystems_v2(zfsp, 0, zfs_iter_cb, &cb) != 0) 1298 goto out; 1299 1300 /* 1301 * Mount all filesystems 1302 */ 1303 ms.ms_mntopts = mntopts; 1304 ms.ms_mntflags = flags; 1305 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1306 zfs_mount_one, &ms, nthr); 1307 if (ms.ms_mntstatus != 0) 1308 ret = EZFS_MOUNTFAILED; 1309 1310 /* 1311 * Share all filesystems that need to be shared. This needs to be 1312 * a separate pass because libshare is not mt-safe, and so we need 1313 * to share serially. 1314 */ 1315 ms.ms_mntstatus = 0; 1316 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1317 zfs_share_one, &ms, 1); 1318 if (ms.ms_mntstatus != 0) 1319 ret = EZFS_SHAREFAILED; 1320 else 1321 zfs_commit_shares(NULL); 1322 1323 out: 1324 for (int i = 0; i < cb.cb_used; i++) 1325 zfs_close(cb.cb_handles[i]); 1326 free(cb.cb_handles); 1327 1328 return (ret); 1329 } 1330 1331 struct sets_s { 1332 char *mountpoint; 1333 zfs_handle_t *dataset; 1334 }; 1335 1336 static int 1337 mountpoint_compare(const void *a, const void *b) 1338 { 1339 const struct sets_s *mounta = (struct sets_s *)a; 1340 const struct sets_s *mountb = (struct sets_s *)b; 1341 1342 return (strcmp(mountb->mountpoint, mounta->mountpoint)); 1343 } 1344 1345 /* 1346 * Unshare and unmount all datasets within the given pool. We don't want to 1347 * rely on traversing the DSL to discover the filesystems within the pool, 1348 * because this may be expensive (if not all of them are mounted), and can fail 1349 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts 1350 * and gather all the filesystems that are currently mounted. 1351 */ 1352 int 1353 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1354 { 1355 int used, alloc; 1356 FILE *mnttab; 1357 struct mnttab entry; 1358 size_t namelen; 1359 struct sets_s *sets = NULL; 1360 libzfs_handle_t *hdl = zhp->zpool_hdl; 1361 int i; 1362 int ret = -1; 1363 int flags = (force ? MS_FORCE : 0); 1364 1365 namelen = strlen(zhp->zpool_name); 1366 1367 if ((mnttab = fopen(MNTTAB, "re")) == NULL) 1368 return (ENOENT); 1369 1370 used = alloc = 0; 1371 while (getmntent(mnttab, &entry) == 0) { 1372 /* 1373 * Ignore non-ZFS entries. 1374 */ 1375 if (entry.mnt_fstype == NULL || 1376 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1377 continue; 1378 1379 /* 1380 * Ignore filesystems not within this pool. 1381 */ 1382 if (entry.mnt_mountp == NULL || 1383 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1384 (entry.mnt_special[namelen] != '/' && 1385 entry.mnt_special[namelen] != '\0')) 1386 continue; 1387 1388 /* 1389 * At this point we've found a filesystem within our pool. Add 1390 * it to our growing list. 1391 */ 1392 if (used == alloc) { 1393 if (alloc == 0) { 1394 sets = zfs_alloc(hdl, 1395 8 * sizeof (struct sets_s)); 1396 alloc = 8; 1397 } else { 1398 sets = zfs_realloc(hdl, sets, 1399 alloc * sizeof (struct sets_s), 1400 alloc * 2 * sizeof (struct sets_s)); 1401 1402 alloc *= 2; 1403 } 1404 } 1405 1406 sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp); 1407 1408 /* 1409 * This is allowed to fail, in case there is some I/O error. It 1410 * is only used to determine if we need to remove the underlying 1411 * mountpoint, so failure is not fatal. 1412 */ 1413 sets[used].dataset = make_dataset_handle(hdl, 1414 entry.mnt_special); 1415 1416 used++; 1417 } 1418 1419 /* 1420 * At this point, we have the entire list of filesystems, so sort it by 1421 * mountpoint. 1422 */ 1423 if (used != 0) 1424 qsort(sets, used, sizeof (struct sets_s), mountpoint_compare); 1425 1426 /* 1427 * Walk through and first unshare everything. 1428 */ 1429 for (i = 0; i < used; i++) { 1430 for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) { 1431 if (sa_is_shared(sets[i].mountpoint, p) && 1432 unshare_one(hdl, sets[i].mountpoint, 1433 sets[i].mountpoint, p) != 0) 1434 goto out; 1435 } 1436 } 1437 zfs_commit_shares(NULL); 1438 1439 /* 1440 * Now unmount everything, removing the underlying directories as 1441 * appropriate. 1442 */ 1443 for (i = 0; i < used; i++) { 1444 if (unmount_one(sets[i].dataset, sets[i].mountpoint, 1445 flags) != 0) 1446 goto out; 1447 } 1448 1449 for (i = 0; i < used; i++) { 1450 if (sets[i].dataset) 1451 remove_mountpoint(sets[i].dataset); 1452 } 1453 1454 zpool_disable_datasets_os(zhp, force); 1455 1456 ret = 0; 1457 out: 1458 (void) fclose(mnttab); 1459 for (i = 0; i < used; i++) { 1460 if (sets[i].dataset) 1461 zfs_close(sets[i].dataset); 1462 free(sets[i].mountpoint); 1463 } 1464 free(sets); 1465 1466 return (ret); 1467 } 1468