xref: /freebsd/sys/contrib/openzfs/lib/libzfs/libzfs_mount.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2014, 2021 by Delphix. All rights reserved.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27  * Copyright 2017 RackTop Systems.
28  * Copyright (c) 2018 Datto Inc.
29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 /*
33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
34  * to deal with the OS.  The following functions are the main entry points --
35  * they are used by mount and unmount and when changing a filesystem's
36  * mountpoint.
37  *
38  *	zfs_is_mounted()
39  *	zfs_mount()
40  *	zfs_mount_at()
41  *	zfs_unmount()
42  *	zfs_unmountall()
43  *
44  * This file also contains the functions used to manage sharing filesystems:
45  *
46  *	zfs_is_shared()
47  *	zfs_share()
48  *	zfs_unshare()
49  *	zfs_unshareall()
50  *	zfs_commit_shares()
51  *
52  * The following functions are available for pool consumers, and will
53  * mount/unmount and share/unshare all datasets within pool:
54  *
55  *	zpool_enable_datasets()
56  *	zpool_disable_datasets()
57  */
58 
59 #include <dirent.h>
60 #include <dlfcn.h>
61 #include <errno.h>
62 #include <fcntl.h>
63 #include <libgen.h>
64 #include <libintl.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <zone.h>
70 #include <sys/mntent.h>
71 #include <sys/mount.h>
72 #include <sys/stat.h>
73 #include <sys/vfs.h>
74 #include <sys/dsl_crypt.h>
75 
76 #include <libzfs.h>
77 
78 #include "libzfs_impl.h"
79 #include <thread_pool.h>
80 
81 #include <libshare.h>
82 #include <sys/systeminfo.h>
83 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
84 
85 static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
86 
87 static void zfs_mount_task(void *);
88 
89 static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
90 	[SA_PROTOCOL_NFS] =
91 	    {ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
92 	[SA_PROTOCOL_SMB] =
93 	    {ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
94 };
95 
96 static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
97 	SA_PROTOCOL_NFS,
98 	SA_PROTOCOL_SMB,
99 	SA_NO_PROTOCOL
100 };
101 
102 
103 
104 static boolean_t
105 dir_is_empty_stat(const char *dirname)
106 {
107 	struct stat st;
108 
109 	/*
110 	 * We only want to return false if the given path is a non empty
111 	 * directory, all other errors are handled elsewhere.
112 	 */
113 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
114 		return (B_TRUE);
115 	}
116 
117 	/*
118 	 * An empty directory will still have two entries in it, one
119 	 * entry for each of "." and "..".
120 	 */
121 	if (st.st_size > 2) {
122 		return (B_FALSE);
123 	}
124 
125 	return (B_TRUE);
126 }
127 
128 static boolean_t
129 dir_is_empty_readdir(const char *dirname)
130 {
131 	DIR *dirp;
132 	struct dirent64 *dp;
133 	int dirfd;
134 
135 	if ((dirfd = openat(AT_FDCWD, dirname,
136 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
137 		return (B_TRUE);
138 	}
139 
140 	if ((dirp = fdopendir(dirfd)) == NULL) {
141 		(void) close(dirfd);
142 		return (B_TRUE);
143 	}
144 
145 	while ((dp = readdir64(dirp)) != NULL) {
146 
147 		if (strcmp(dp->d_name, ".") == 0 ||
148 		    strcmp(dp->d_name, "..") == 0)
149 			continue;
150 
151 		(void) closedir(dirp);
152 		return (B_FALSE);
153 	}
154 
155 	(void) closedir(dirp);
156 	return (B_TRUE);
157 }
158 
159 /*
160  * Returns true if the specified directory is empty.  If we can't open the
161  * directory at all, return true so that the mount can fail with a more
162  * informative error message.
163  */
164 static boolean_t
165 dir_is_empty(const char *dirname)
166 {
167 	struct statfs64 st;
168 
169 	/*
170 	 * If the statvfs call fails or the filesystem is not a ZFS
171 	 * filesystem, fall back to the slow path which uses readdir.
172 	 */
173 	if ((statfs64(dirname, &st) != 0) ||
174 	    (st.f_type != ZFS_SUPER_MAGIC)) {
175 		return (dir_is_empty_readdir(dirname));
176 	}
177 
178 	/*
179 	 * At this point, we know the provided path is on a ZFS
180 	 * filesystem, so we can use stat instead of readdir to
181 	 * determine if the directory is empty or not. We try to avoid
182 	 * using readdir because that requires opening "dirname"; this
183 	 * open file descriptor can potentially end up in a child
184 	 * process if there's a concurrent fork, thus preventing the
185 	 * zfs_mount() from otherwise succeeding (the open file
186 	 * descriptor inherited by the child process will cause the
187 	 * parent's mount to fail with EBUSY). The performance
188 	 * implications of replacing the open, read, and close with a
189 	 * single stat is nice; but is not the main motivation for the
190 	 * added complexity.
191 	 */
192 	return (dir_is_empty_stat(dirname));
193 }
194 
195 /*
196  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
197  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
198  * 0.
199  */
200 boolean_t
201 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
202 {
203 	struct mnttab entry;
204 
205 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
206 		return (B_FALSE);
207 
208 	if (where != NULL)
209 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
210 
211 	return (B_TRUE);
212 }
213 
214 boolean_t
215 zfs_is_mounted(zfs_handle_t *zhp, char **where)
216 {
217 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
218 }
219 
220 /*
221  * Checks any higher order concerns about whether the given dataset is
222  * mountable, false otherwise.  zfs_is_mountable_internal specifically assumes
223  * that the caller has verified the sanity of mounting the dataset at
224  * its mountpoint to the extent the caller wants.
225  */
226 static boolean_t
227 zfs_is_mountable_internal(zfs_handle_t *zhp)
228 {
229 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
230 	    getzoneid() == GLOBAL_ZONEID)
231 		return (B_FALSE);
232 
233 	return (B_TRUE);
234 }
235 
236 /*
237  * Returns true if the given dataset is mountable, false otherwise.  Returns the
238  * mountpoint in 'buf'.
239  */
240 static boolean_t
241 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
242     zprop_source_t *source, int flags)
243 {
244 	char sourceloc[MAXNAMELEN];
245 	zprop_source_t sourcetype;
246 
247 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
248 	    B_FALSE))
249 		return (B_FALSE);
250 
251 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
252 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
253 
254 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
255 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
256 		return (B_FALSE);
257 
258 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
259 		return (B_FALSE);
260 
261 	if (!zfs_is_mountable_internal(zhp))
262 		return (B_FALSE);
263 
264 	if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
265 		return (B_FALSE);
266 
267 	if (source)
268 		*source = sourcetype;
269 
270 	return (B_TRUE);
271 }
272 
273 /*
274  * The filesystem is mounted by invoking the system mount utility rather
275  * than by the system call mount(2).  This ensures that the /etc/mtab
276  * file is correctly locked for the update.  Performing our own locking
277  * and /etc/mtab update requires making an unsafe assumption about how
278  * the mount utility performs its locking.  Unfortunately, this also means
279  * in the case of a mount failure we do not have the exact errno.  We must
280  * make due with return value from the mount process.
281  *
282  * In the long term a shared library called libmount is under development
283  * which provides a common API to address the locking and errno issues.
284  * Once the standard mount utility has been updated to use this library
285  * we can add an autoconf check to conditionally use it.
286  *
287  * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
288  */
289 
290 static int
291 zfs_add_option(zfs_handle_t *zhp, char *options, int len,
292     zfs_prop_t prop, const char *on, const char *off)
293 {
294 	char *source;
295 	uint64_t value;
296 
297 	/* Skip adding duplicate default options */
298 	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
299 		return (0);
300 
301 	/*
302 	 * zfs_prop_get_int() is not used to ensure our mount options
303 	 * are not influenced by the current /proc/self/mounts contents.
304 	 */
305 	value = getprop_uint64(zhp, prop, &source);
306 
307 	(void) strlcat(options, ",", len);
308 	(void) strlcat(options, value ? on : off, len);
309 
310 	return (0);
311 }
312 
313 static int
314 zfs_add_options(zfs_handle_t *zhp, char *options, int len)
315 {
316 	int error = 0;
317 
318 	error = zfs_add_option(zhp, options, len,
319 	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
320 	/*
321 	 * don't add relatime/strictatime when atime=off, otherwise strictatime
322 	 * will force atime=on
323 	 */
324 	if (strstr(options, MNTOPT_NOATIME) == NULL) {
325 		error = zfs_add_option(zhp, options, len,
326 		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
327 	}
328 	error = error ? error : zfs_add_option(zhp, options, len,
329 	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
330 	error = error ? error : zfs_add_option(zhp, options, len,
331 	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
332 	error = error ? error : zfs_add_option(zhp, options, len,
333 	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
334 	error = error ? error : zfs_add_option(zhp, options, len,
335 	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
336 	error = error ? error : zfs_add_option(zhp, options, len,
337 	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
338 
339 	return (error);
340 }
341 
342 int
343 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
344 {
345 	char mountpoint[ZFS_MAXPROPLEN];
346 
347 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
348 	    flags))
349 		return (0);
350 
351 	return (zfs_mount_at(zhp, options, flags, mountpoint));
352 }
353 
354 /*
355  * Mount the given filesystem.
356  */
357 int
358 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
359     const char *mountpoint)
360 {
361 	struct stat buf;
362 	char mntopts[MNT_LINE_MAX];
363 	char overlay[ZFS_MAXPROPLEN];
364 	char prop_encroot[MAXNAMELEN];
365 	boolean_t is_encroot;
366 	zfs_handle_t *encroot_hp = zhp;
367 	libzfs_handle_t *hdl = zhp->zfs_hdl;
368 	uint64_t keystatus;
369 	int remount = 0, rc;
370 
371 	if (options == NULL) {
372 		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
373 	} else {
374 		(void) strlcpy(mntopts, options, sizeof (mntopts));
375 	}
376 
377 	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
378 		remount = 1;
379 
380 	/* Potentially duplicates some checks if invoked by zfs_mount(). */
381 	if (!zfs_is_mountable_internal(zhp))
382 		return (0);
383 
384 	/*
385 	 * If the pool is imported read-only then all mounts must be read-only
386 	 */
387 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
388 		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
389 
390 	/*
391 	 * Append default mount options which apply to the mount point.
392 	 * This is done because under Linux (unlike Solaris) multiple mount
393 	 * points may reference a single super block.  This means that just
394 	 * given a super block there is no back reference to update the per
395 	 * mount point options.
396 	 */
397 	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
398 	if (rc) {
399 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
400 		    "default options unavailable"));
401 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
402 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
403 		    mountpoint));
404 	}
405 
406 	/*
407 	 * If the filesystem is encrypted the key must be loaded  in order to
408 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
409 	 * or not we attempt to load the keys. Note: we must call
410 	 * zfs_refresh_properties() here since some callers of this function
411 	 * (most notably zpool_enable_datasets()) may implicitly load our key
412 	 * by loading the parent's key first.
413 	 */
414 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
415 		zfs_refresh_properties(zhp);
416 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
417 
418 		/*
419 		 * If the key is unavailable and MS_CRYPT is set give the
420 		 * user a chance to enter the key. Otherwise just fail
421 		 * immediately.
422 		 */
423 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
424 			if (flags & MS_CRYPT) {
425 				rc = zfs_crypto_get_encryption_root(zhp,
426 				    &is_encroot, prop_encroot);
427 				if (rc) {
428 					zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
429 					    "Failed to get encryption root for "
430 					    "'%s'."), zfs_get_name(zhp));
431 					return (rc);
432 				}
433 
434 				if (!is_encroot) {
435 					encroot_hp = zfs_open(hdl, prop_encroot,
436 					    ZFS_TYPE_DATASET);
437 					if (encroot_hp == NULL)
438 						return (hdl->libzfs_error);
439 				}
440 
441 				rc = zfs_crypto_load_key(encroot_hp,
442 				    B_FALSE, NULL);
443 
444 				if (!is_encroot)
445 					zfs_close(encroot_hp);
446 				if (rc)
447 					return (rc);
448 			} else {
449 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
450 				    "encryption key not loaded"));
451 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
452 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
453 				    mountpoint));
454 			}
455 		}
456 
457 	}
458 
459 	/*
460 	 * Append zfsutil option so the mount helper allow the mount
461 	 */
462 	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
463 
464 	/* Create the directory if it doesn't already exist */
465 	if (lstat(mountpoint, &buf) != 0) {
466 		if (mkdirp(mountpoint, 0755) != 0) {
467 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
468 			    "failed to create mountpoint: %s"),
469 			    strerror(errno));
470 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
471 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
472 			    mountpoint));
473 		}
474 	}
475 
476 	/*
477 	 * Overlay mounts are enabled by default but may be disabled
478 	 * via the 'overlay' property. The -O flag remains for compatibility.
479 	 */
480 	if (!(flags & MS_OVERLAY)) {
481 		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
482 		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
483 			if (strcmp(overlay, "on") == 0) {
484 				flags |= MS_OVERLAY;
485 			}
486 		}
487 	}
488 
489 	/*
490 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
491 	 * mount.  We don't perform this check if 'remount' is
492 	 * specified or if overlay option (-O) is given
493 	 */
494 	if ((flags & MS_OVERLAY) == 0 && !remount &&
495 	    !dir_is_empty(mountpoint)) {
496 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
497 		    "directory is not empty"));
498 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
499 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
500 	}
501 
502 	/* perform the mount */
503 	rc = do_mount(zhp, mountpoint, mntopts, flags);
504 	if (rc) {
505 		/*
506 		 * Generic errors are nasty, but there are just way too many
507 		 * from mount(), and they're well-understood.  We pick a few
508 		 * common ones to improve upon.
509 		 */
510 		if (rc == EBUSY) {
511 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
512 			    "mountpoint or dataset is busy"));
513 		} else if (rc == EPERM) {
514 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
515 			    "Insufficient privileges"));
516 		} else if (rc == ENOTSUP) {
517 			int spa_version;
518 
519 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
520 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
521 			    "Can't mount a version %llu "
522 			    "file system on a version %d pool. Pool must be"
523 			    " upgraded to mount this file system."),
524 			    (u_longlong_t)zfs_prop_get_int(zhp,
525 			    ZFS_PROP_VERSION), spa_version);
526 		} else {
527 			zfs_error_aux(hdl, "%s", strerror(rc));
528 		}
529 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
530 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
531 		    zhp->zfs_name));
532 	}
533 
534 	/* remove the mounted entry before re-adding on remount */
535 	if (remount)
536 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
537 
538 	/* add the mounted entry into our cache */
539 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
540 	return (0);
541 }
542 
543 /*
544  * Unmount a single filesystem.
545  */
546 static int
547 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
548 {
549 	int error;
550 
551 	error = do_unmount(zhp, mountpoint, flags);
552 	if (error != 0) {
553 		int libzfs_err;
554 
555 		switch (error) {
556 		case EBUSY:
557 			libzfs_err = EZFS_BUSY;
558 			break;
559 		case EIO:
560 			libzfs_err = EZFS_IO;
561 			break;
562 		case ENOENT:
563 			libzfs_err = EZFS_NOENT;
564 			break;
565 		case ENOMEM:
566 			libzfs_err = EZFS_NOMEM;
567 			break;
568 		case EPERM:
569 			libzfs_err = EZFS_PERM;
570 			break;
571 		default:
572 			libzfs_err = EZFS_UMOUNTFAILED;
573 		}
574 		if (zhp) {
575 			return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
576 			    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
577 			    mountpoint));
578 		} else {
579 			return (-1);
580 		}
581 	}
582 
583 	return (0);
584 }
585 
586 /*
587  * Unmount the given filesystem.
588  */
589 int
590 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
591 {
592 	libzfs_handle_t *hdl = zhp->zfs_hdl;
593 	struct mnttab entry;
594 	char *mntpt = NULL;
595 	boolean_t encroot, unmounted = B_FALSE;
596 
597 	/* check to see if we need to unmount the filesystem */
598 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
599 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
600 		/*
601 		 * mountpoint may have come from a call to
602 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
603 		 * we know it comes from libzfs_mnttab_find which can
604 		 * then get freed later. We strdup it to play it safe.
605 		 */
606 		if (mountpoint == NULL)
607 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
608 		else
609 			mntpt = zfs_strdup(hdl, mountpoint);
610 
611 		/*
612 		 * Unshare and unmount the filesystem
613 		 */
614 		if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
615 			free(mntpt);
616 			return (-1);
617 		}
618 		zfs_commit_shares(NULL);
619 
620 		if (unmount_one(zhp, mntpt, flags) != 0) {
621 			free(mntpt);
622 			(void) zfs_share(zhp, NULL);
623 			zfs_commit_shares(NULL);
624 			return (-1);
625 		}
626 
627 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
628 		free(mntpt);
629 		unmounted = B_TRUE;
630 	}
631 
632 	/*
633 	 * If the MS_CRYPT flag is provided we must ensure we attempt to
634 	 * unload the dataset's key regardless of whether we did any work
635 	 * to unmount it. We only do this for encryption roots.
636 	 */
637 	if ((flags & MS_CRYPT) != 0 &&
638 	    zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
639 		zfs_refresh_properties(zhp);
640 
641 		if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
642 		    unmounted) {
643 			(void) zfs_mount(zhp, NULL, 0);
644 			return (-1);
645 		}
646 
647 		if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
648 		    ZFS_KEYSTATUS_AVAILABLE &&
649 		    zfs_crypto_unload_key(zhp) != 0) {
650 			(void) zfs_mount(zhp, NULL, 0);
651 			return (-1);
652 		}
653 	}
654 
655 	zpool_disable_volume_os(zhp->zfs_name);
656 
657 	return (0);
658 }
659 
660 /*
661  * Unmount this filesystem and any children inheriting the mountpoint property.
662  * To do this, just act like we're changing the mountpoint property, but don't
663  * remount the filesystems afterwards.
664  */
665 int
666 zfs_unmountall(zfs_handle_t *zhp, int flags)
667 {
668 	prop_changelist_t *clp;
669 	int ret;
670 
671 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
672 	    CL_GATHER_ITER_MOUNTED, flags);
673 	if (clp == NULL)
674 		return (-1);
675 
676 	ret = changelist_prefix(clp);
677 	changelist_free(clp);
678 
679 	return (ret);
680 }
681 
682 /*
683  * Unshare a filesystem by mountpoint.
684  */
685 static int
686 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
687     enum sa_protocol proto)
688 {
689 	int err = sa_disable_share(mountpoint, proto);
690 	if (err != SA_OK)
691 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
692 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
693 		    name, sa_errorstr(err)));
694 
695 	return (0);
696 }
697 
698 /*
699  * Share the given filesystem according to the options in the specified
700  * protocol specific properties (sharenfs, sharesmb).  We rely
701  * on "libshare" to do the dirty work for us.
702  */
703 int
704 zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
705 {
706 	char mountpoint[ZFS_MAXPROPLEN];
707 	char shareopts[ZFS_MAXPROPLEN];
708 	char sourcestr[ZFS_MAXPROPLEN];
709 	const enum sa_protocol *curr_proto;
710 	zprop_source_t sourcetype;
711 	int err = 0;
712 
713 	if (proto == NULL)
714 		proto = share_all_proto;
715 
716 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
717 		return (0);
718 
719 	for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
720 		/*
721 		 * Return success if there are no share options.
722 		 */
723 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
724 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
725 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
726 		    strcmp(shareopts, "off") == 0)
727 			continue;
728 
729 		/*
730 		 * If the 'zoned' property is set, then zfs_is_mountable()
731 		 * will have already bailed out if we are in the global zone.
732 		 * But local zones cannot be NFS servers, so we ignore it for
733 		 * local zones as well.
734 		 */
735 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
736 			continue;
737 
738 		err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
739 		    *curr_proto);
740 		if (err != SA_OK) {
741 			return (zfs_error_fmt(zhp->zfs_hdl,
742 			    proto_table[*curr_proto].p_share_err,
743 			    dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
744 			    zfs_get_name(zhp), sa_errorstr(err)));
745 		}
746 
747 	}
748 	return (0);
749 }
750 
751 /*
752  * Check to see if the filesystem is currently shared.
753  */
754 boolean_t
755 zfs_is_shared(zfs_handle_t *zhp, char **where,
756     const enum sa_protocol *proto)
757 {
758 	char *mountpoint;
759 	if (proto == NULL)
760 		proto = share_all_proto;
761 
762 	if (ZFS_IS_VOLUME(zhp))
763 		return (B_FALSE);
764 
765 	if (!zfs_is_mounted(zhp, &mountpoint))
766 		return (B_FALSE);
767 
768 	for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
769 		if (sa_is_shared(mountpoint, *p)) {
770 			if (where != NULL)
771 				*where = mountpoint;
772 			else
773 				free(mountpoint);
774 			return (B_TRUE);
775 		}
776 
777 	free(mountpoint);
778 	return (B_FALSE);
779 }
780 
781 void
782 zfs_commit_shares(const enum sa_protocol *proto)
783 {
784 	if (proto == NULL)
785 		proto = share_all_proto;
786 
787 	for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
788 		sa_commit_shares(*p);
789 }
790 
791 /*
792  * Unshare the given filesystem.
793  */
794 int
795 zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
796     const enum sa_protocol *proto)
797 {
798 	libzfs_handle_t *hdl = zhp->zfs_hdl;
799 	struct mnttab entry;
800 
801 	if (proto == NULL)
802 		proto = share_all_proto;
803 
804 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
805 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
806 
807 		/* check to see if need to unmount the filesystem */
808 		const char *mntpt = mountpoint ?: entry.mnt_mountp;
809 
810 		for (const enum sa_protocol *curr_proto = proto;
811 		    *curr_proto != SA_NO_PROTOCOL; curr_proto++)
812 			if (sa_is_shared(mntpt, *curr_proto) &&
813 			    unshare_one(hdl, zhp->zfs_name,
814 			    mntpt, *curr_proto) != 0)
815 					return (-1);
816 	}
817 
818 	return (0);
819 }
820 
821 /*
822  * Same as zfs_unmountall(), but for NFS and SMB unshares.
823  */
824 int
825 zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
826 {
827 	prop_changelist_t *clp;
828 	int ret;
829 
830 	if (proto == NULL)
831 		proto = share_all_proto;
832 
833 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
834 	if (clp == NULL)
835 		return (-1);
836 
837 	ret = changelist_unshare(clp, proto);
838 	changelist_free(clp);
839 
840 	return (ret);
841 }
842 
843 /*
844  * Remove the mountpoint associated with the current dataset, if necessary.
845  * We only remove the underlying directory if:
846  *
847  *	- The mountpoint is not 'none' or 'legacy'
848  *	- The mountpoint is non-empty
849  *	- The mountpoint is the default or inherited
850  *	- The 'zoned' property is set, or we're in a local zone
851  *
852  * Any other directories we leave alone.
853  */
854 void
855 remove_mountpoint(zfs_handle_t *zhp)
856 {
857 	char mountpoint[ZFS_MAXPROPLEN];
858 	zprop_source_t source;
859 
860 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
861 	    &source, 0))
862 		return;
863 
864 	if (source == ZPROP_SRC_DEFAULT ||
865 	    source == ZPROP_SRC_INHERITED) {
866 		/*
867 		 * Try to remove the directory, silently ignoring any errors.
868 		 * The filesystem may have since been removed or moved around,
869 		 * and this error isn't really useful to the administrator in
870 		 * any way.
871 		 */
872 		(void) rmdir(mountpoint);
873 	}
874 }
875 
876 /*
877  * Add the given zfs handle to the cb_handles array, dynamically reallocating
878  * the array if it is out of space.
879  */
880 void
881 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
882 {
883 	if (cbp->cb_alloc == cbp->cb_used) {
884 		size_t newsz;
885 		zfs_handle_t **newhandles;
886 
887 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
888 		newhandles = zfs_realloc(zhp->zfs_hdl,
889 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
890 		    newsz * sizeof (zfs_handle_t *));
891 		cbp->cb_handles = newhandles;
892 		cbp->cb_alloc = newsz;
893 	}
894 	cbp->cb_handles[cbp->cb_used++] = zhp;
895 }
896 
897 /*
898  * Recursive helper function used during file system enumeration
899  */
900 static int
901 zfs_iter_cb(zfs_handle_t *zhp, void *data)
902 {
903 	get_all_cb_t *cbp = data;
904 
905 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
906 		zfs_close(zhp);
907 		return (0);
908 	}
909 
910 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
911 		zfs_close(zhp);
912 		return (0);
913 	}
914 
915 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
916 	    ZFS_KEYSTATUS_UNAVAILABLE) {
917 		zfs_close(zhp);
918 		return (0);
919 	}
920 
921 	/*
922 	 * If this filesystem is inconsistent and has a receive resume
923 	 * token, we can not mount it.
924 	 */
925 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
926 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
927 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
928 		zfs_close(zhp);
929 		return (0);
930 	}
931 
932 	libzfs_add_handle(cbp, zhp);
933 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
934 		zfs_close(zhp);
935 		return (-1);
936 	}
937 	return (0);
938 }
939 
940 /*
941  * Sort comparator that compares two mountpoint paths. We sort these paths so
942  * that subdirectories immediately follow their parents. This means that we
943  * effectively treat the '/' character as the lowest value non-nul char.
944  * Since filesystems from non-global zones can have the same mountpoint
945  * as other filesystems, the comparator sorts global zone filesystems to
946  * the top of the list. This means that the global zone will traverse the
947  * filesystem list in the correct order and can stop when it sees the
948  * first zoned filesystem. In a non-global zone, only the delegated
949  * filesystems are seen.
950  *
951  * An example sorted list using this comparator would look like:
952  *
953  * /foo
954  * /foo/bar
955  * /foo/bar/baz
956  * /foo/baz
957  * /foo.bar
958  * /foo (NGZ1)
959  * /foo (NGZ2)
960  *
961  * The mounting code depends on this ordering to deterministically iterate
962  * over filesystems in order to spawn parallel mount tasks.
963  */
964 static int
965 mountpoint_cmp(const void *arga, const void *argb)
966 {
967 	zfs_handle_t *const *zap = arga;
968 	zfs_handle_t *za = *zap;
969 	zfs_handle_t *const *zbp = argb;
970 	zfs_handle_t *zb = *zbp;
971 	char mounta[MAXPATHLEN];
972 	char mountb[MAXPATHLEN];
973 	const char *a = mounta;
974 	const char *b = mountb;
975 	boolean_t gota, gotb;
976 	uint64_t zoneda, zonedb;
977 
978 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
979 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
980 	if (zoneda && !zonedb)
981 		return (1);
982 	if (!zoneda && zonedb)
983 		return (-1);
984 
985 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
986 	if (gota) {
987 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
988 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
989 	}
990 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
991 	if (gotb) {
992 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
993 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
994 	}
995 
996 	if (gota && gotb) {
997 		while (*a != '\0' && (*a == *b)) {
998 			a++;
999 			b++;
1000 		}
1001 		if (*a == *b)
1002 			return (0);
1003 		if (*a == '\0')
1004 			return (-1);
1005 		if (*b == '\0')
1006 			return (1);
1007 		if (*a == '/')
1008 			return (-1);
1009 		if (*b == '/')
1010 			return (1);
1011 		return (*a < *b ? -1 : *a > *b);
1012 	}
1013 
1014 	if (gota)
1015 		return (-1);
1016 	if (gotb)
1017 		return (1);
1018 
1019 	/*
1020 	 * If neither filesystem has a mountpoint, revert to sorting by
1021 	 * dataset name.
1022 	 */
1023 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1024 }
1025 
1026 /*
1027  * Return true if path2 is a child of path1 or path2 equals path1 or
1028  * path1 is "/" (path2 is always a child of "/").
1029  */
1030 static boolean_t
1031 libzfs_path_contains(const char *path1, const char *path2)
1032 {
1033 	return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1034 	    (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1035 }
1036 
1037 /*
1038  * Given a mountpoint specified by idx in the handles array, find the first
1039  * non-descendent of that mountpoint and return its index. Descendant paths
1040  * start with the parent's path. This function relies on the ordering
1041  * enforced by mountpoint_cmp().
1042  */
1043 static int
1044 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1045 {
1046 	char parent[ZFS_MAXPROPLEN];
1047 	char child[ZFS_MAXPROPLEN];
1048 	int i;
1049 
1050 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1051 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1052 
1053 	for (i = idx + 1; i < num_handles; i++) {
1054 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1055 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1056 		if (!libzfs_path_contains(parent, child))
1057 			break;
1058 	}
1059 	return (i);
1060 }
1061 
1062 typedef struct mnt_param {
1063 	libzfs_handle_t	*mnt_hdl;
1064 	tpool_t		*mnt_tp;
1065 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1066 	size_t		mnt_num_handles;
1067 	int		mnt_idx;	/* Index of selected entry to mount */
1068 	zfs_iter_f	mnt_func;
1069 	void		*mnt_data;
1070 } mnt_param_t;
1071 
1072 /*
1073  * Allocate and populate the parameter struct for mount function, and
1074  * schedule mounting of the entry selected by idx.
1075  */
1076 static void
1077 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1078     size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1079 {
1080 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1081 
1082 	mnt_param->mnt_hdl = hdl;
1083 	mnt_param->mnt_tp = tp;
1084 	mnt_param->mnt_zhps = handles;
1085 	mnt_param->mnt_num_handles = num_handles;
1086 	mnt_param->mnt_idx = idx;
1087 	mnt_param->mnt_func = func;
1088 	mnt_param->mnt_data = data;
1089 
1090 	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
1091 }
1092 
1093 /*
1094  * This is the structure used to keep state of mounting or sharing operations
1095  * during a call to zpool_enable_datasets().
1096  */
1097 typedef struct mount_state {
1098 	/*
1099 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1100 	 * could update this variable concurrently, no synchronization is
1101 	 * needed as it's only ever set to -1.
1102 	 */
1103 	int		ms_mntstatus;
1104 	int		ms_mntflags;
1105 	const char	*ms_mntopts;
1106 } mount_state_t;
1107 
1108 static int
1109 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1110 {
1111 	mount_state_t *ms = arg;
1112 	int ret = 0;
1113 
1114 	/*
1115 	 * don't attempt to mount encrypted datasets with
1116 	 * unloaded keys
1117 	 */
1118 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1119 	    ZFS_KEYSTATUS_UNAVAILABLE)
1120 		return (0);
1121 
1122 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1123 		ret = ms->ms_mntstatus = -1;
1124 	return (ret);
1125 }
1126 
1127 static int
1128 zfs_share_one(zfs_handle_t *zhp, void *arg)
1129 {
1130 	mount_state_t *ms = arg;
1131 	int ret = 0;
1132 
1133 	if (zfs_share(zhp, NULL) != 0)
1134 		ret = ms->ms_mntstatus = -1;
1135 	return (ret);
1136 }
1137 
1138 /*
1139  * Thread pool function to mount one file system. On completion, it finds and
1140  * schedules its children to be mounted. This depends on the sorting done in
1141  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1142  * each descending from the previous) will have no parallelism since we always
1143  * have to wait for the parent to finish mounting before we can schedule
1144  * its children.
1145  */
1146 static void
1147 zfs_mount_task(void *arg)
1148 {
1149 	mnt_param_t *mp = arg;
1150 	int idx = mp->mnt_idx;
1151 	zfs_handle_t **handles = mp->mnt_zhps;
1152 	size_t num_handles = mp->mnt_num_handles;
1153 	char mountpoint[ZFS_MAXPROPLEN];
1154 
1155 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1156 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1157 
1158 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1159 		goto out;
1160 
1161 	/*
1162 	 * We dispatch tasks to mount filesystems with mountpoints underneath
1163 	 * this one. We do this by dispatching the next filesystem with a
1164 	 * descendant mountpoint of the one we just mounted, then skip all of
1165 	 * its descendants, dispatch the next descendant mountpoint, and so on.
1166 	 * The non_descendant_idx() function skips over filesystems that are
1167 	 * descendants of the filesystem we just dispatched.
1168 	 */
1169 	for (int i = idx + 1; i < num_handles;
1170 	    i = non_descendant_idx(handles, num_handles, i)) {
1171 		char child[ZFS_MAXPROPLEN];
1172 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1173 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1174 
1175 		if (!libzfs_path_contains(mountpoint, child))
1176 			break; /* not a descendant, return */
1177 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1178 		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1179 	}
1180 
1181 out:
1182 	free(mp);
1183 }
1184 
1185 /*
1186  * Issue the func callback for each ZFS handle contained in the handles
1187  * array. This function is used to mount all datasets, and so this function
1188  * guarantees that filesystems for parent mountpoints are called before their
1189  * children. As such, before issuing any callbacks, we first sort the array
1190  * of handles by mountpoint.
1191  *
1192  * Callbacks are issued in one of two ways:
1193  *
1194  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1195  *    environment variable is set, then we issue callbacks sequentially.
1196  *
1197  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1198  *    environment variable is not set, then we use a tpool to dispatch threads
1199  *    to mount filesystems in parallel. This function dispatches tasks to mount
1200  *    the filesystems at the top-level mountpoints, and these tasks in turn
1201  *    are responsible for recursively mounting filesystems in their children
1202  *    mountpoints.
1203  */
1204 void
1205 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1206     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1207 {
1208 	zoneid_t zoneid = getzoneid();
1209 
1210 	/*
1211 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1212 	 * variable that can be used as a convenience to do a/b comparison
1213 	 * of serial vs. parallel mounting.
1214 	 */
1215 	boolean_t serial_mount = !parallel ||
1216 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1217 
1218 	/*
1219 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1220 	 * of how these are sorted.
1221 	 */
1222 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1223 
1224 	if (serial_mount) {
1225 		for (int i = 0; i < num_handles; i++) {
1226 			func(handles[i], data);
1227 		}
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * Issue the callback function for each dataset using a parallel
1233 	 * algorithm that uses a thread pool to manage threads.
1234 	 */
1235 	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
1236 
1237 	/*
1238 	 * There may be multiple "top level" mountpoints outside of the pool's
1239 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1240 	 * these.
1241 	 */
1242 	for (int i = 0; i < num_handles;
1243 	    i = non_descendant_idx(handles, num_handles, i)) {
1244 		/*
1245 		 * Since the mountpoints have been sorted so that the zoned
1246 		 * filesystems are at the end, a zoned filesystem seen from
1247 		 * the global zone means that we're done.
1248 		 */
1249 		if (zoneid == GLOBAL_ZONEID &&
1250 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1251 			break;
1252 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1253 		    tp);
1254 	}
1255 
1256 	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
1257 	tpool_destroy(tp);
1258 }
1259 
1260 /*
1261  * Mount and share all datasets within the given pool.  This assumes that no
1262  * datasets within the pool are currently mounted.
1263  */
1264 int
1265 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1266 {
1267 	get_all_cb_t cb = { 0 };
1268 	mount_state_t ms = { 0 };
1269 	zfs_handle_t *zfsp;
1270 	int ret = 0;
1271 
1272 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1273 	    ZFS_TYPE_DATASET)) == NULL)
1274 		goto out;
1275 
1276 	/*
1277 	 * Gather all non-snapshot datasets within the pool. Start by adding
1278 	 * the root filesystem for this pool to the list, and then iterate
1279 	 * over all child filesystems.
1280 	 */
1281 	libzfs_add_handle(&cb, zfsp);
1282 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1283 		goto out;
1284 
1285 	/*
1286 	 * Mount all filesystems
1287 	 */
1288 	ms.ms_mntopts = mntopts;
1289 	ms.ms_mntflags = flags;
1290 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1291 	    zfs_mount_one, &ms, B_TRUE);
1292 	if (ms.ms_mntstatus != 0)
1293 		ret = ms.ms_mntstatus;
1294 
1295 	/*
1296 	 * Share all filesystems that need to be shared. This needs to be
1297 	 * a separate pass because libshare is not mt-safe, and so we need
1298 	 * to share serially.
1299 	 */
1300 	ms.ms_mntstatus = 0;
1301 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1302 	    zfs_share_one, &ms, B_FALSE);
1303 	if (ms.ms_mntstatus != 0)
1304 		ret = ms.ms_mntstatus;
1305 	else
1306 		zfs_commit_shares(NULL);
1307 
1308 out:
1309 	for (int i = 0; i < cb.cb_used; i++)
1310 		zfs_close(cb.cb_handles[i]);
1311 	free(cb.cb_handles);
1312 
1313 	return (ret);
1314 }
1315 
1316 struct sets_s {
1317 	char *mountpoint;
1318 	zfs_handle_t *dataset;
1319 };
1320 
1321 static int
1322 mountpoint_compare(const void *a, const void *b)
1323 {
1324 	const struct sets_s *mounta = (struct sets_s *)a;
1325 	const struct sets_s *mountb = (struct sets_s *)b;
1326 
1327 	return (strcmp(mountb->mountpoint, mounta->mountpoint));
1328 }
1329 
1330 /*
1331  * Unshare and unmount all datasets within the given pool.  We don't want to
1332  * rely on traversing the DSL to discover the filesystems within the pool,
1333  * because this may be expensive (if not all of them are mounted), and can fail
1334  * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
1335  * and gather all the filesystems that are currently mounted.
1336  */
1337 int
1338 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1339 {
1340 	int used, alloc;
1341 	FILE *mnttab;
1342 	struct mnttab entry;
1343 	size_t namelen;
1344 	struct sets_s *sets = NULL;
1345 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1346 	int i;
1347 	int ret = -1;
1348 	int flags = (force ? MS_FORCE : 0);
1349 
1350 	namelen = strlen(zhp->zpool_name);
1351 
1352 	if ((mnttab = fopen(MNTTAB, "re")) == NULL)
1353 		return (ENOENT);
1354 
1355 	used = alloc = 0;
1356 	while (getmntent(mnttab, &entry) == 0) {
1357 		/*
1358 		 * Ignore non-ZFS entries.
1359 		 */
1360 		if (entry.mnt_fstype == NULL ||
1361 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1362 			continue;
1363 
1364 		/*
1365 		 * Ignore filesystems not within this pool.
1366 		 */
1367 		if (entry.mnt_mountp == NULL ||
1368 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1369 		    (entry.mnt_special[namelen] != '/' &&
1370 		    entry.mnt_special[namelen] != '\0'))
1371 			continue;
1372 
1373 		/*
1374 		 * At this point we've found a filesystem within our pool.  Add
1375 		 * it to our growing list.
1376 		 */
1377 		if (used == alloc) {
1378 			if (alloc == 0) {
1379 				sets = zfs_alloc(hdl,
1380 				    8 * sizeof (struct sets_s));
1381 				alloc = 8;
1382 			} else {
1383 				sets = zfs_realloc(hdl, sets,
1384 				    alloc * sizeof (struct sets_s),
1385 				    alloc * 2 * sizeof (struct sets_s));
1386 
1387 				alloc *= 2;
1388 			}
1389 		}
1390 
1391 		sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
1392 
1393 		/*
1394 		 * This is allowed to fail, in case there is some I/O error.  It
1395 		 * is only used to determine if we need to remove the underlying
1396 		 * mountpoint, so failure is not fatal.
1397 		 */
1398 		sets[used].dataset = make_dataset_handle(hdl,
1399 		    entry.mnt_special);
1400 
1401 		used++;
1402 	}
1403 
1404 	/*
1405 	 * At this point, we have the entire list of filesystems, so sort it by
1406 	 * mountpoint.
1407 	 */
1408 	if (used != 0)
1409 		qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
1410 
1411 	/*
1412 	 * Walk through and first unshare everything.
1413 	 */
1414 	for (i = 0; i < used; i++) {
1415 		for (enum sa_protocol i = 0; i < SA_PROTOCOL_COUNT; ++i) {
1416 			if (sa_is_shared(sets[i].mountpoint, i) &&
1417 			    unshare_one(hdl, sets[i].mountpoint,
1418 			    sets[i].mountpoint, i) != 0)
1419 				goto out;
1420 		}
1421 	}
1422 	zfs_commit_shares(NULL);
1423 
1424 	/*
1425 	 * Now unmount everything, removing the underlying directories as
1426 	 * appropriate.
1427 	 */
1428 	for (i = 0; i < used; i++) {
1429 		if (unmount_one(sets[i].dataset, sets[i].mountpoint,
1430 		    flags) != 0)
1431 			goto out;
1432 	}
1433 
1434 	for (i = 0; i < used; i++) {
1435 		if (sets[i].dataset)
1436 			remove_mountpoint(sets[i].dataset);
1437 	}
1438 
1439 	zpool_disable_datasets_os(zhp, force);
1440 
1441 	ret = 0;
1442 out:
1443 	(void) fclose(mnttab);
1444 	for (i = 0; i < used; i++) {
1445 		if (sets[i].dataset)
1446 			zfs_close(sets[i].dataset);
1447 		free(sets[i].mountpoint);
1448 	}
1449 	free(sets);
1450 
1451 	return (ret);
1452 }
1453