1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2021 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 * Copyright (c) 2018 Datto Inc. 29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 30 */ 31 32 /* 33 * Routines to manage ZFS mounts. We separate all the nasty routines that have 34 * to deal with the OS. The following functions are the main entry points -- 35 * they are used by mount and unmount and when changing a filesystem's 36 * mountpoint. 37 * 38 * zfs_is_mounted() 39 * zfs_mount() 40 * zfs_mount_at() 41 * zfs_unmount() 42 * zfs_unmountall() 43 * 44 * This file also contains the functions used to manage sharing filesystems via 45 * NFS and iSCSI: 46 * 47 * zfs_is_shared() 48 * zfs_share() 49 * zfs_unshare() 50 * 51 * zfs_is_shared_nfs() 52 * zfs_is_shared_smb() 53 * zfs_share_proto() 54 * zfs_shareall(); 55 * zfs_unshare_nfs() 56 * zfs_unshare_smb() 57 * zfs_unshareall_nfs() 58 * zfs_unshareall_smb() 59 * zfs_unshareall() 60 * zfs_unshareall_bypath() 61 * 62 * The following functions are available for pool consumers, and will 63 * mount/unmount and share/unshare all datasets within pool: 64 * 65 * zpool_enable_datasets() 66 * zpool_disable_datasets() 67 */ 68 69 #include <dirent.h> 70 #include <dlfcn.h> 71 #include <errno.h> 72 #include <fcntl.h> 73 #include <libgen.h> 74 #include <libintl.h> 75 #include <stdio.h> 76 #include <stdlib.h> 77 #include <strings.h> 78 #include <unistd.h> 79 #include <zone.h> 80 #include <sys/mntent.h> 81 #include <sys/mount.h> 82 #include <sys/stat.h> 83 #include <sys/vfs.h> 84 #include <sys/dsl_crypt.h> 85 86 #include <libzfs.h> 87 88 #include "libzfs_impl.h" 89 #include <thread_pool.h> 90 91 #include <libshare.h> 92 #include <sys/systeminfo.h> 93 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 94 95 static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */ 96 97 static void zfs_mount_task(void *); 98 static zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 99 zfs_share_proto_t); 100 101 /* 102 * The share protocols table must be in the same order as the zfs_share_proto_t 103 * enum in libzfs_impl.h 104 */ 105 proto_table_t proto_table[PROTO_END] = { 106 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 107 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 108 }; 109 110 static zfs_share_proto_t nfs_only[] = { 111 PROTO_NFS, 112 PROTO_END 113 }; 114 115 static zfs_share_proto_t smb_only[] = { 116 PROTO_SMB, 117 PROTO_END 118 }; 119 static zfs_share_proto_t share_all_proto[] = { 120 PROTO_NFS, 121 PROTO_SMB, 122 PROTO_END 123 }; 124 125 126 127 static boolean_t 128 dir_is_empty_stat(const char *dirname) 129 { 130 struct stat st; 131 132 /* 133 * We only want to return false if the given path is a non empty 134 * directory, all other errors are handled elsewhere. 135 */ 136 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 137 return (B_TRUE); 138 } 139 140 /* 141 * An empty directory will still have two entries in it, one 142 * entry for each of "." and "..". 143 */ 144 if (st.st_size > 2) { 145 return (B_FALSE); 146 } 147 148 return (B_TRUE); 149 } 150 151 static boolean_t 152 dir_is_empty_readdir(const char *dirname) 153 { 154 DIR *dirp; 155 struct dirent64 *dp; 156 int dirfd; 157 158 if ((dirfd = openat(AT_FDCWD, dirname, 159 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 160 return (B_TRUE); 161 } 162 163 if ((dirp = fdopendir(dirfd)) == NULL) { 164 (void) close(dirfd); 165 return (B_TRUE); 166 } 167 168 while ((dp = readdir64(dirp)) != NULL) { 169 170 if (strcmp(dp->d_name, ".") == 0 || 171 strcmp(dp->d_name, "..") == 0) 172 continue; 173 174 (void) closedir(dirp); 175 return (B_FALSE); 176 } 177 178 (void) closedir(dirp); 179 return (B_TRUE); 180 } 181 182 /* 183 * Returns true if the specified directory is empty. If we can't open the 184 * directory at all, return true so that the mount can fail with a more 185 * informative error message. 186 */ 187 static boolean_t 188 dir_is_empty(const char *dirname) 189 { 190 struct statfs64 st; 191 192 /* 193 * If the statvfs call fails or the filesystem is not a ZFS 194 * filesystem, fall back to the slow path which uses readdir. 195 */ 196 if ((statfs64(dirname, &st) != 0) || 197 (st.f_type != ZFS_SUPER_MAGIC)) { 198 return (dir_is_empty_readdir(dirname)); 199 } 200 201 /* 202 * At this point, we know the provided path is on a ZFS 203 * filesystem, so we can use stat instead of readdir to 204 * determine if the directory is empty or not. We try to avoid 205 * using readdir because that requires opening "dirname"; this 206 * open file descriptor can potentially end up in a child 207 * process if there's a concurrent fork, thus preventing the 208 * zfs_mount() from otherwise succeeding (the open file 209 * descriptor inherited by the child process will cause the 210 * parent's mount to fail with EBUSY). The performance 211 * implications of replacing the open, read, and close with a 212 * single stat is nice; but is not the main motivation for the 213 * added complexity. 214 */ 215 return (dir_is_empty_stat(dirname)); 216 } 217 218 /* 219 * Checks to see if the mount is active. If the filesystem is mounted, we fill 220 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 221 * 0. 222 */ 223 boolean_t 224 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 225 { 226 struct mnttab entry; 227 228 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 229 return (B_FALSE); 230 231 if (where != NULL) 232 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 233 234 return (B_TRUE); 235 } 236 237 boolean_t 238 zfs_is_mounted(zfs_handle_t *zhp, char **where) 239 { 240 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 241 } 242 243 /* 244 * Checks any higher order concerns about whether the given dataset is 245 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes 246 * that the caller has verified the sanity of mounting the dataset at 247 * mountpoint to the extent the caller wants. 248 */ 249 static boolean_t 250 zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint) 251 { 252 253 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 254 getzoneid() == GLOBAL_ZONEID) 255 return (B_FALSE); 256 257 return (B_TRUE); 258 } 259 260 /* 261 * Returns true if the given dataset is mountable, false otherwise. Returns the 262 * mountpoint in 'buf'. 263 */ 264 boolean_t 265 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 266 zprop_source_t *source, int flags) 267 { 268 char sourceloc[MAXNAMELEN]; 269 zprop_source_t sourcetype; 270 271 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type, 272 B_FALSE)) 273 return (B_FALSE); 274 275 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 276 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 277 278 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 279 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 280 return (B_FALSE); 281 282 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 283 return (B_FALSE); 284 285 if (!zfs_is_mountable_internal(zhp, buf)) 286 return (B_FALSE); 287 288 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE)) 289 return (B_FALSE); 290 291 if (source) 292 *source = sourcetype; 293 294 return (B_TRUE); 295 } 296 297 /* 298 * The filesystem is mounted by invoking the system mount utility rather 299 * than by the system call mount(2). This ensures that the /etc/mtab 300 * file is correctly locked for the update. Performing our own locking 301 * and /etc/mtab update requires making an unsafe assumption about how 302 * the mount utility performs its locking. Unfortunately, this also means 303 * in the case of a mount failure we do not have the exact errno. We must 304 * make due with return value from the mount process. 305 * 306 * In the long term a shared library called libmount is under development 307 * which provides a common API to address the locking and errno issues. 308 * Once the standard mount utility has been updated to use this library 309 * we can add an autoconf check to conditionally use it. 310 * 311 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html 312 */ 313 314 static int 315 zfs_add_option(zfs_handle_t *zhp, char *options, int len, 316 zfs_prop_t prop, char *on, char *off) 317 { 318 char *source; 319 uint64_t value; 320 321 /* Skip adding duplicate default options */ 322 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL)) 323 return (0); 324 325 /* 326 * zfs_prop_get_int() is not used to ensure our mount options 327 * are not influenced by the current /proc/self/mounts contents. 328 */ 329 value = getprop_uint64(zhp, prop, &source); 330 331 (void) strlcat(options, ",", len); 332 (void) strlcat(options, value ? on : off, len); 333 334 return (0); 335 } 336 337 static int 338 zfs_add_options(zfs_handle_t *zhp, char *options, int len) 339 { 340 int error = 0; 341 342 error = zfs_add_option(zhp, options, len, 343 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME); 344 /* 345 * don't add relatime/strictatime when atime=off, otherwise strictatime 346 * will force atime=on 347 */ 348 if (strstr(options, MNTOPT_NOATIME) == NULL) { 349 error = zfs_add_option(zhp, options, len, 350 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME); 351 } 352 error = error ? error : zfs_add_option(zhp, options, len, 353 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES); 354 error = error ? error : zfs_add_option(zhp, options, len, 355 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC); 356 error = error ? error : zfs_add_option(zhp, options, len, 357 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW); 358 error = error ? error : zfs_add_option(zhp, options, len, 359 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID); 360 error = error ? error : zfs_add_option(zhp, options, len, 361 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND); 362 363 return (error); 364 } 365 366 int 367 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 368 { 369 char mountpoint[ZFS_MAXPROPLEN]; 370 371 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 372 flags)) 373 return (0); 374 375 return (zfs_mount_at(zhp, options, flags, mountpoint)); 376 } 377 378 /* 379 * Mount the given filesystem. 380 */ 381 int 382 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags, 383 const char *mountpoint) 384 { 385 struct stat buf; 386 char mntopts[MNT_LINE_MAX]; 387 char overlay[ZFS_MAXPROPLEN]; 388 char prop_encroot[MAXNAMELEN]; 389 boolean_t is_encroot; 390 zfs_handle_t *encroot_hp = zhp; 391 libzfs_handle_t *hdl = zhp->zfs_hdl; 392 uint64_t keystatus; 393 int remount = 0, rc; 394 395 if (options == NULL) { 396 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts)); 397 } else { 398 (void) strlcpy(mntopts, options, sizeof (mntopts)); 399 } 400 401 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL) 402 remount = 1; 403 404 /* Potentially duplicates some checks if invoked by zfs_mount(). */ 405 if (!zfs_is_mountable_internal(zhp, mountpoint)) 406 return (0); 407 408 /* 409 * If the pool is imported read-only then all mounts must be read-only 410 */ 411 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 412 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts)); 413 414 /* 415 * Append default mount options which apply to the mount point. 416 * This is done because under Linux (unlike Solaris) multiple mount 417 * points may reference a single super block. This means that just 418 * given a super block there is no back reference to update the per 419 * mount point options. 420 */ 421 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts)); 422 if (rc) { 423 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 424 "default options unavailable")); 425 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 426 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 427 mountpoint)); 428 } 429 430 /* 431 * If the filesystem is encrypted the key must be loaded in order to 432 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether 433 * or not we attempt to load the keys. Note: we must call 434 * zfs_refresh_properties() here since some callers of this function 435 * (most notably zpool_enable_datasets()) may implicitly load our key 436 * by loading the parent's key first. 437 */ 438 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 439 zfs_refresh_properties(zhp); 440 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS); 441 442 /* 443 * If the key is unavailable and MS_CRYPT is set give the 444 * user a chance to enter the key. Otherwise just fail 445 * immediately. 446 */ 447 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) { 448 if (flags & MS_CRYPT) { 449 rc = zfs_crypto_get_encryption_root(zhp, 450 &is_encroot, prop_encroot); 451 if (rc) { 452 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 453 "Failed to get encryption root for " 454 "'%s'."), zfs_get_name(zhp)); 455 return (rc); 456 } 457 458 if (!is_encroot) { 459 encroot_hp = zfs_open(hdl, prop_encroot, 460 ZFS_TYPE_DATASET); 461 if (encroot_hp == NULL) 462 return (hdl->libzfs_error); 463 } 464 465 rc = zfs_crypto_load_key(encroot_hp, 466 B_FALSE, NULL); 467 468 if (!is_encroot) 469 zfs_close(encroot_hp); 470 if (rc) 471 return (rc); 472 } else { 473 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 474 "encryption key not loaded")); 475 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 476 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 477 mountpoint)); 478 } 479 } 480 481 } 482 483 /* 484 * Append zfsutil option so the mount helper allow the mount 485 */ 486 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts)); 487 488 /* Create the directory if it doesn't already exist */ 489 if (lstat(mountpoint, &buf) != 0) { 490 if (mkdirp(mountpoint, 0755) != 0) { 491 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 492 "failed to create mountpoint: %s"), 493 strerror(errno)); 494 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 495 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 496 mountpoint)); 497 } 498 } 499 500 /* 501 * Overlay mounts are enabled by default but may be disabled 502 * via the 'overlay' property. The -O flag remains for compatibility. 503 */ 504 if (!(flags & MS_OVERLAY)) { 505 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay, 506 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) { 507 if (strcmp(overlay, "on") == 0) { 508 flags |= MS_OVERLAY; 509 } 510 } 511 } 512 513 /* 514 * Determine if the mountpoint is empty. If so, refuse to perform the 515 * mount. We don't perform this check if 'remount' is 516 * specified or if overlay option (-O) is given 517 */ 518 if ((flags & MS_OVERLAY) == 0 && !remount && 519 !dir_is_empty(mountpoint)) { 520 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 521 "directory is not empty")); 522 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 523 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 524 } 525 526 /* perform the mount */ 527 rc = do_mount(zhp, mountpoint, mntopts, flags); 528 if (rc) { 529 /* 530 * Generic errors are nasty, but there are just way too many 531 * from mount(), and they're well-understood. We pick a few 532 * common ones to improve upon. 533 */ 534 if (rc == EBUSY) { 535 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 536 "mountpoint or dataset is busy")); 537 } else if (rc == EPERM) { 538 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 539 "Insufficient privileges")); 540 } else if (rc == ENOTSUP) { 541 int spa_version; 542 543 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 544 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 545 "Can't mount a version %llu " 546 "file system on a version %d pool. Pool must be" 547 " upgraded to mount this file system."), 548 (u_longlong_t)zfs_prop_get_int(zhp, 549 ZFS_PROP_VERSION), spa_version); 550 } else { 551 zfs_error_aux(hdl, "%s", strerror(rc)); 552 } 553 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 554 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 555 zhp->zfs_name)); 556 } 557 558 /* remove the mounted entry before re-adding on remount */ 559 if (remount) 560 libzfs_mnttab_remove(hdl, zhp->zfs_name); 561 562 /* add the mounted entry into our cache */ 563 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts); 564 return (0); 565 } 566 567 /* 568 * Unmount a single filesystem. 569 */ 570 static int 571 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags) 572 { 573 int error; 574 575 error = do_unmount(zhp, mountpoint, flags); 576 if (error != 0) { 577 int libzfs_err; 578 579 switch (error) { 580 case EBUSY: 581 libzfs_err = EZFS_BUSY; 582 break; 583 case EIO: 584 libzfs_err = EZFS_IO; 585 break; 586 case ENOENT: 587 libzfs_err = EZFS_NOENT; 588 break; 589 case ENOMEM: 590 libzfs_err = EZFS_NOMEM; 591 break; 592 case EPERM: 593 libzfs_err = EZFS_PERM; 594 break; 595 default: 596 libzfs_err = EZFS_UMOUNTFAILED; 597 } 598 if (zhp) { 599 return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err, 600 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 601 mountpoint)); 602 } else { 603 return (-1); 604 } 605 } 606 607 return (0); 608 } 609 610 /* 611 * Unmount the given filesystem. 612 */ 613 int 614 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 615 { 616 libzfs_handle_t *hdl = zhp->zfs_hdl; 617 struct mnttab entry; 618 char *mntpt = NULL; 619 boolean_t encroot, unmounted = B_FALSE; 620 621 /* check to see if we need to unmount the filesystem */ 622 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 623 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 624 /* 625 * mountpoint may have come from a call to 626 * getmnt/getmntany if it isn't NULL. If it is NULL, 627 * we know it comes from libzfs_mnttab_find which can 628 * then get freed later. We strdup it to play it safe. 629 */ 630 if (mountpoint == NULL) 631 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 632 else 633 mntpt = zfs_strdup(hdl, mountpoint); 634 635 /* 636 * Unshare and unmount the filesystem 637 */ 638 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) { 639 free(mntpt); 640 return (-1); 641 } 642 zfs_commit_all_shares(); 643 644 if (unmount_one(zhp, mntpt, flags) != 0) { 645 free(mntpt); 646 (void) zfs_shareall(zhp); 647 zfs_commit_all_shares(); 648 return (-1); 649 } 650 651 libzfs_mnttab_remove(hdl, zhp->zfs_name); 652 free(mntpt); 653 unmounted = B_TRUE; 654 } 655 656 /* 657 * If the MS_CRYPT flag is provided we must ensure we attempt to 658 * unload the dataset's key regardless of whether we did any work 659 * to unmount it. We only do this for encryption roots. 660 */ 661 if ((flags & MS_CRYPT) != 0 && 662 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 663 zfs_refresh_properties(zhp); 664 665 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 && 666 unmounted) { 667 (void) zfs_mount(zhp, NULL, 0); 668 return (-1); 669 } 670 671 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 672 ZFS_KEYSTATUS_AVAILABLE && 673 zfs_crypto_unload_key(zhp) != 0) { 674 (void) zfs_mount(zhp, NULL, 0); 675 return (-1); 676 } 677 } 678 679 zpool_disable_volume_os(zhp->zfs_name); 680 681 return (0); 682 } 683 684 /* 685 * Unmount this filesystem and any children inheriting the mountpoint property. 686 * To do this, just act like we're changing the mountpoint property, but don't 687 * remount the filesystems afterwards. 688 */ 689 int 690 zfs_unmountall(zfs_handle_t *zhp, int flags) 691 { 692 prop_changelist_t *clp; 693 int ret; 694 695 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 696 CL_GATHER_ITER_MOUNTED, flags); 697 if (clp == NULL) 698 return (-1); 699 700 ret = changelist_prefix(clp); 701 changelist_free(clp); 702 703 return (ret); 704 } 705 706 boolean_t 707 zfs_is_shared(zfs_handle_t *zhp) 708 { 709 zfs_share_type_t rc = 0; 710 zfs_share_proto_t *curr_proto; 711 712 if (ZFS_IS_VOLUME(zhp)) 713 return (B_FALSE); 714 715 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 716 curr_proto++) 717 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 718 719 return (rc ? B_TRUE : B_FALSE); 720 } 721 722 /* 723 * Unshare a filesystem by mountpoint. 724 */ 725 int 726 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 727 zfs_share_proto_t proto) 728 { 729 int err; 730 731 err = sa_disable_share(mountpoint, proto_table[proto].p_name); 732 if (err != SA_OK) { 733 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 734 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 735 name, sa_errorstr(err))); 736 } 737 return (0); 738 } 739 740 /* 741 * Query libshare for the given mountpoint and protocol, returning 742 * a zfs_share_type_t value. 743 */ 744 zfs_share_type_t 745 is_shared(const char *mountpoint, zfs_share_proto_t proto) 746 { 747 if (sa_is_shared(mountpoint, proto_table[proto].p_name)) { 748 switch (proto) { 749 case PROTO_NFS: 750 return (SHARED_NFS); 751 case PROTO_SMB: 752 return (SHARED_SMB); 753 default: 754 return (SHARED_NOT_SHARED); 755 } 756 } 757 return (SHARED_NOT_SHARED); 758 } 759 760 /* 761 * Share the given filesystem according to the options in the specified 762 * protocol specific properties (sharenfs, sharesmb). We rely 763 * on "libshare" to do the dirty work for us. 764 */ 765 int 766 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 767 { 768 char mountpoint[ZFS_MAXPROPLEN]; 769 char shareopts[ZFS_MAXPROPLEN]; 770 char sourcestr[ZFS_MAXPROPLEN]; 771 zfs_share_proto_t *curr_proto; 772 zprop_source_t sourcetype; 773 int err = 0; 774 775 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0)) 776 return (0); 777 778 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 779 /* 780 * Return success if there are no share options. 781 */ 782 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 783 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 784 ZFS_MAXPROPLEN, B_FALSE) != 0 || 785 strcmp(shareopts, "off") == 0) 786 continue; 787 788 /* 789 * If the 'zoned' property is set, then zfs_is_mountable() 790 * will have already bailed out if we are in the global zone. 791 * But local zones cannot be NFS servers, so we ignore it for 792 * local zones as well. 793 */ 794 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 795 continue; 796 797 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts, 798 proto_table[*curr_proto].p_name); 799 if (err != SA_OK) { 800 return (zfs_error_fmt(zhp->zfs_hdl, 801 proto_table[*curr_proto].p_share_err, 802 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"), 803 zfs_get_name(zhp), sa_errorstr(err))); 804 } 805 806 } 807 return (0); 808 } 809 810 int 811 zfs_share(zfs_handle_t *zhp) 812 { 813 assert(!ZFS_IS_VOLUME(zhp)); 814 return (zfs_share_proto(zhp, share_all_proto)); 815 } 816 817 int 818 zfs_unshare(zfs_handle_t *zhp) 819 { 820 assert(!ZFS_IS_VOLUME(zhp)); 821 return (zfs_unshareall(zhp)); 822 } 823 824 /* 825 * Check to see if the filesystem is currently shared. 826 */ 827 static zfs_share_type_t 828 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 829 { 830 char *mountpoint; 831 zfs_share_type_t rc; 832 833 if (!zfs_is_mounted(zhp, &mountpoint)) 834 return (SHARED_NOT_SHARED); 835 836 if ((rc = is_shared(mountpoint, proto)) 837 != SHARED_NOT_SHARED) { 838 if (where != NULL) 839 *where = mountpoint; 840 else 841 free(mountpoint); 842 return (rc); 843 } else { 844 free(mountpoint); 845 return (SHARED_NOT_SHARED); 846 } 847 } 848 849 boolean_t 850 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 851 { 852 return (zfs_is_shared_proto(zhp, where, 853 PROTO_NFS) != SHARED_NOT_SHARED); 854 } 855 856 boolean_t 857 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 858 { 859 return (zfs_is_shared_proto(zhp, where, 860 PROTO_SMB) != SHARED_NOT_SHARED); 861 } 862 863 /* 864 * zfs_parse_options(options, proto) 865 * 866 * Call the legacy parse interface to get the protocol specific 867 * options using the NULL arg to indicate that this is a "parse" only. 868 */ 869 int 870 zfs_parse_options(char *options, zfs_share_proto_t proto) 871 { 872 return (sa_validate_shareopts(options, proto_table[proto].p_name)); 873 } 874 875 void 876 zfs_commit_proto(zfs_share_proto_t *proto) 877 { 878 zfs_share_proto_t *curr_proto; 879 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 880 sa_commit_shares(proto_table[*curr_proto].p_name); 881 } 882 } 883 884 void 885 zfs_commit_nfs_shares(void) 886 { 887 zfs_commit_proto(nfs_only); 888 } 889 890 void 891 zfs_commit_smb_shares(void) 892 { 893 zfs_commit_proto(smb_only); 894 } 895 896 void 897 zfs_commit_all_shares(void) 898 { 899 zfs_commit_proto(share_all_proto); 900 } 901 902 void 903 zfs_commit_shares(const char *proto) 904 { 905 if (proto == NULL) 906 zfs_commit_proto(share_all_proto); 907 else if (strcmp(proto, "nfs") == 0) 908 zfs_commit_proto(nfs_only); 909 else if (strcmp(proto, "smb") == 0) 910 zfs_commit_proto(smb_only); 911 } 912 913 int 914 zfs_share_nfs(zfs_handle_t *zhp) 915 { 916 return (zfs_share_proto(zhp, nfs_only)); 917 } 918 919 int 920 zfs_share_smb(zfs_handle_t *zhp) 921 { 922 return (zfs_share_proto(zhp, smb_only)); 923 } 924 925 int 926 zfs_shareall(zfs_handle_t *zhp) 927 { 928 return (zfs_share_proto(zhp, share_all_proto)); 929 } 930 931 /* 932 * Unshare the given filesystem. 933 */ 934 int 935 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 936 zfs_share_proto_t *proto) 937 { 938 libzfs_handle_t *hdl = zhp->zfs_hdl; 939 struct mnttab entry; 940 char *mntpt = NULL; 941 942 /* check to see if need to unmount the filesystem */ 943 if (mountpoint != NULL) 944 mntpt = zfs_strdup(hdl, mountpoint); 945 946 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 947 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 948 zfs_share_proto_t *curr_proto; 949 950 if (mountpoint == NULL) 951 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 952 953 for (curr_proto = proto; *curr_proto != PROTO_END; 954 curr_proto++) { 955 956 if (is_shared(mntpt, *curr_proto)) { 957 if (unshare_one(hdl, zhp->zfs_name, 958 mntpt, *curr_proto) != 0) { 959 if (mntpt != NULL) 960 free(mntpt); 961 return (-1); 962 } 963 } 964 } 965 } 966 if (mntpt != NULL) 967 free(mntpt); 968 969 return (0); 970 } 971 972 int 973 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 974 { 975 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 976 } 977 978 int 979 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 980 { 981 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 982 } 983 984 /* 985 * Same as zfs_unmountall(), but for NFS and SMB unshares. 986 */ 987 static int 988 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 989 { 990 prop_changelist_t *clp; 991 int ret; 992 993 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 994 if (clp == NULL) 995 return (-1); 996 997 ret = changelist_unshare(clp, proto); 998 changelist_free(clp); 999 1000 return (ret); 1001 } 1002 1003 int 1004 zfs_unshareall_nfs(zfs_handle_t *zhp) 1005 { 1006 return (zfs_unshareall_proto(zhp, nfs_only)); 1007 } 1008 1009 int 1010 zfs_unshareall_smb(zfs_handle_t *zhp) 1011 { 1012 return (zfs_unshareall_proto(zhp, smb_only)); 1013 } 1014 1015 int 1016 zfs_unshareall(zfs_handle_t *zhp) 1017 { 1018 return (zfs_unshareall_proto(zhp, share_all_proto)); 1019 } 1020 1021 int 1022 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1023 { 1024 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1025 } 1026 1027 int 1028 zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint, 1029 const char *proto) 1030 { 1031 if (proto == NULL) 1032 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1033 if (strcmp(proto, "nfs") == 0) 1034 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 1035 else if (strcmp(proto, "smb") == 0) 1036 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 1037 else 1038 return (1); 1039 } 1040 1041 /* 1042 * Remove the mountpoint associated with the current dataset, if necessary. 1043 * We only remove the underlying directory if: 1044 * 1045 * - The mountpoint is not 'none' or 'legacy' 1046 * - The mountpoint is non-empty 1047 * - The mountpoint is the default or inherited 1048 * - The 'zoned' property is set, or we're in a local zone 1049 * 1050 * Any other directories we leave alone. 1051 */ 1052 void 1053 remove_mountpoint(zfs_handle_t *zhp) 1054 { 1055 char mountpoint[ZFS_MAXPROPLEN]; 1056 zprop_source_t source; 1057 1058 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1059 &source, 0)) 1060 return; 1061 1062 if (source == ZPROP_SRC_DEFAULT || 1063 source == ZPROP_SRC_INHERITED) { 1064 /* 1065 * Try to remove the directory, silently ignoring any errors. 1066 * The filesystem may have since been removed or moved around, 1067 * and this error isn't really useful to the administrator in 1068 * any way. 1069 */ 1070 (void) rmdir(mountpoint); 1071 } 1072 } 1073 1074 /* 1075 * Add the given zfs handle to the cb_handles array, dynamically reallocating 1076 * the array if it is out of space. 1077 */ 1078 void 1079 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1080 { 1081 if (cbp->cb_alloc == cbp->cb_used) { 1082 size_t newsz; 1083 zfs_handle_t **newhandles; 1084 1085 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 1086 newhandles = zfs_realloc(zhp->zfs_hdl, 1087 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 1088 newsz * sizeof (zfs_handle_t *)); 1089 cbp->cb_handles = newhandles; 1090 cbp->cb_alloc = newsz; 1091 } 1092 cbp->cb_handles[cbp->cb_used++] = zhp; 1093 } 1094 1095 /* 1096 * Recursive helper function used during file system enumeration 1097 */ 1098 static int 1099 zfs_iter_cb(zfs_handle_t *zhp, void *data) 1100 { 1101 get_all_cb_t *cbp = data; 1102 1103 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1104 zfs_close(zhp); 1105 return (0); 1106 } 1107 1108 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1109 zfs_close(zhp); 1110 return (0); 1111 } 1112 1113 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1114 ZFS_KEYSTATUS_UNAVAILABLE) { 1115 zfs_close(zhp); 1116 return (0); 1117 } 1118 1119 /* 1120 * If this filesystem is inconsistent and has a receive resume 1121 * token, we can not mount it. 1122 */ 1123 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1124 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1125 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1126 zfs_close(zhp); 1127 return (0); 1128 } 1129 1130 libzfs_add_handle(cbp, zhp); 1131 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) { 1132 zfs_close(zhp); 1133 return (-1); 1134 } 1135 return (0); 1136 } 1137 1138 /* 1139 * Sort comparator that compares two mountpoint paths. We sort these paths so 1140 * that subdirectories immediately follow their parents. This means that we 1141 * effectively treat the '/' character as the lowest value non-nul char. 1142 * Since filesystems from non-global zones can have the same mountpoint 1143 * as other filesystems, the comparator sorts global zone filesystems to 1144 * the top of the list. This means that the global zone will traverse the 1145 * filesystem list in the correct order and can stop when it sees the 1146 * first zoned filesystem. In a non-global zone, only the delegated 1147 * filesystems are seen. 1148 * 1149 * An example sorted list using this comparator would look like: 1150 * 1151 * /foo 1152 * /foo/bar 1153 * /foo/bar/baz 1154 * /foo/baz 1155 * /foo.bar 1156 * /foo (NGZ1) 1157 * /foo (NGZ2) 1158 * 1159 * The mounting code depends on this ordering to deterministically iterate 1160 * over filesystems in order to spawn parallel mount tasks. 1161 */ 1162 static int 1163 mountpoint_cmp(const void *arga, const void *argb) 1164 { 1165 zfs_handle_t *const *zap = arga; 1166 zfs_handle_t *za = *zap; 1167 zfs_handle_t *const *zbp = argb; 1168 zfs_handle_t *zb = *zbp; 1169 char mounta[MAXPATHLEN]; 1170 char mountb[MAXPATHLEN]; 1171 const char *a = mounta; 1172 const char *b = mountb; 1173 boolean_t gota, gotb; 1174 uint64_t zoneda, zonedb; 1175 1176 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED); 1177 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED); 1178 if (zoneda && !zonedb) 1179 return (1); 1180 if (!zoneda && zonedb) 1181 return (-1); 1182 1183 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 1184 if (gota) { 1185 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 1186 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1187 } 1188 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1189 if (gotb) { 1190 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1191 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1192 } 1193 1194 if (gota && gotb) { 1195 while (*a != '\0' && (*a == *b)) { 1196 a++; 1197 b++; 1198 } 1199 if (*a == *b) 1200 return (0); 1201 if (*a == '\0') 1202 return (-1); 1203 if (*b == '\0') 1204 return (1); 1205 if (*a == '/') 1206 return (-1); 1207 if (*b == '/') 1208 return (1); 1209 return (*a < *b ? -1 : *a > *b); 1210 } 1211 1212 if (gota) 1213 return (-1); 1214 if (gotb) 1215 return (1); 1216 1217 /* 1218 * If neither filesystem has a mountpoint, revert to sorting by 1219 * dataset name. 1220 */ 1221 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1222 } 1223 1224 /* 1225 * Return true if path2 is a child of path1 or path2 equals path1 or 1226 * path1 is "/" (path2 is always a child of "/"). 1227 */ 1228 static boolean_t 1229 libzfs_path_contains(const char *path1, const char *path2) 1230 { 1231 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 || 1232 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/')); 1233 } 1234 1235 /* 1236 * Given a mountpoint specified by idx in the handles array, find the first 1237 * non-descendent of that mountpoint and return its index. Descendant paths 1238 * start with the parent's path. This function relies on the ordering 1239 * enforced by mountpoint_cmp(). 1240 */ 1241 static int 1242 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1243 { 1244 char parent[ZFS_MAXPROPLEN]; 1245 char child[ZFS_MAXPROPLEN]; 1246 int i; 1247 1248 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1249 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1250 1251 for (i = idx + 1; i < num_handles; i++) { 1252 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1253 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1254 if (!libzfs_path_contains(parent, child)) 1255 break; 1256 } 1257 return (i); 1258 } 1259 1260 typedef struct mnt_param { 1261 libzfs_handle_t *mnt_hdl; 1262 tpool_t *mnt_tp; 1263 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1264 size_t mnt_num_handles; 1265 int mnt_idx; /* Index of selected entry to mount */ 1266 zfs_iter_f mnt_func; 1267 void *mnt_data; 1268 } mnt_param_t; 1269 1270 /* 1271 * Allocate and populate the parameter struct for mount function, and 1272 * schedule mounting of the entry selected by idx. 1273 */ 1274 static void 1275 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1276 size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp) 1277 { 1278 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1279 1280 mnt_param->mnt_hdl = hdl; 1281 mnt_param->mnt_tp = tp; 1282 mnt_param->mnt_zhps = handles; 1283 mnt_param->mnt_num_handles = num_handles; 1284 mnt_param->mnt_idx = idx; 1285 mnt_param->mnt_func = func; 1286 mnt_param->mnt_data = data; 1287 1288 (void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param); 1289 } 1290 1291 /* 1292 * This is the structure used to keep state of mounting or sharing operations 1293 * during a call to zpool_enable_datasets(). 1294 */ 1295 typedef struct mount_state { 1296 /* 1297 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1298 * could update this variable concurrently, no synchronization is 1299 * needed as it's only ever set to -1. 1300 */ 1301 int ms_mntstatus; 1302 int ms_mntflags; 1303 const char *ms_mntopts; 1304 } mount_state_t; 1305 1306 static int 1307 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1308 { 1309 mount_state_t *ms = arg; 1310 int ret = 0; 1311 1312 /* 1313 * don't attempt to mount encrypted datasets with 1314 * unloaded keys 1315 */ 1316 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1317 ZFS_KEYSTATUS_UNAVAILABLE) 1318 return (0); 1319 1320 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1321 ret = ms->ms_mntstatus = -1; 1322 return (ret); 1323 } 1324 1325 static int 1326 zfs_share_one(zfs_handle_t *zhp, void *arg) 1327 { 1328 mount_state_t *ms = arg; 1329 int ret = 0; 1330 1331 if (zfs_share(zhp) != 0) 1332 ret = ms->ms_mntstatus = -1; 1333 return (ret); 1334 } 1335 1336 /* 1337 * Thread pool function to mount one file system. On completion, it finds and 1338 * schedules its children to be mounted. This depends on the sorting done in 1339 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1340 * each descending from the previous) will have no parallelism since we always 1341 * have to wait for the parent to finish mounting before we can schedule 1342 * its children. 1343 */ 1344 static void 1345 zfs_mount_task(void *arg) 1346 { 1347 mnt_param_t *mp = arg; 1348 int idx = mp->mnt_idx; 1349 zfs_handle_t **handles = mp->mnt_zhps; 1350 size_t num_handles = mp->mnt_num_handles; 1351 char mountpoint[ZFS_MAXPROPLEN]; 1352 1353 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1354 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1355 1356 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1357 return; 1358 1359 /* 1360 * We dispatch tasks to mount filesystems with mountpoints underneath 1361 * this one. We do this by dispatching the next filesystem with a 1362 * descendant mountpoint of the one we just mounted, then skip all of 1363 * its descendants, dispatch the next descendant mountpoint, and so on. 1364 * The non_descendant_idx() function skips over filesystems that are 1365 * descendants of the filesystem we just dispatched. 1366 */ 1367 for (int i = idx + 1; i < num_handles; 1368 i = non_descendant_idx(handles, num_handles, i)) { 1369 char child[ZFS_MAXPROPLEN]; 1370 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1371 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1372 1373 if (!libzfs_path_contains(mountpoint, child)) 1374 break; /* not a descendant, return */ 1375 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1376 mp->mnt_func, mp->mnt_data, mp->mnt_tp); 1377 } 1378 free(mp); 1379 } 1380 1381 /* 1382 * Issue the func callback for each ZFS handle contained in the handles 1383 * array. This function is used to mount all datasets, and so this function 1384 * guarantees that filesystems for parent mountpoints are called before their 1385 * children. As such, before issuing any callbacks, we first sort the array 1386 * of handles by mountpoint. 1387 * 1388 * Callbacks are issued in one of two ways: 1389 * 1390 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT 1391 * environment variable is set, then we issue callbacks sequentially. 1392 * 1393 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT 1394 * environment variable is not set, then we use a tpool to dispatch threads 1395 * to mount filesystems in parallel. This function dispatches tasks to mount 1396 * the filesystems at the top-level mountpoints, and these tasks in turn 1397 * are responsible for recursively mounting filesystems in their children 1398 * mountpoints. 1399 */ 1400 void 1401 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1402 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel) 1403 { 1404 zoneid_t zoneid = getzoneid(); 1405 1406 /* 1407 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1408 * variable that can be used as a convenience to do a/b comparison 1409 * of serial vs. parallel mounting. 1410 */ 1411 boolean_t serial_mount = !parallel || 1412 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1413 1414 /* 1415 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1416 * of how these are sorted. 1417 */ 1418 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1419 1420 if (serial_mount) { 1421 for (int i = 0; i < num_handles; i++) { 1422 func(handles[i], data); 1423 } 1424 return; 1425 } 1426 1427 /* 1428 * Issue the callback function for each dataset using a parallel 1429 * algorithm that uses a thread pool to manage threads. 1430 */ 1431 tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL); 1432 1433 /* 1434 * There may be multiple "top level" mountpoints outside of the pool's 1435 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1436 * these. 1437 */ 1438 for (int i = 0; i < num_handles; 1439 i = non_descendant_idx(handles, num_handles, i)) { 1440 /* 1441 * Since the mountpoints have been sorted so that the zoned 1442 * filesystems are at the end, a zoned filesystem seen from 1443 * the global zone means that we're done. 1444 */ 1445 if (zoneid == GLOBAL_ZONEID && 1446 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED)) 1447 break; 1448 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1449 tp); 1450 } 1451 1452 tpool_wait(tp); /* wait for all scheduled mounts to complete */ 1453 tpool_destroy(tp); 1454 } 1455 1456 /* 1457 * Mount and share all datasets within the given pool. This assumes that no 1458 * datasets within the pool are currently mounted. 1459 */ 1460 int 1461 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1462 { 1463 get_all_cb_t cb = { 0 }; 1464 mount_state_t ms = { 0 }; 1465 zfs_handle_t *zfsp; 1466 int ret = 0; 1467 1468 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1469 ZFS_TYPE_DATASET)) == NULL) 1470 goto out; 1471 1472 /* 1473 * Gather all non-snapshot datasets within the pool. Start by adding 1474 * the root filesystem for this pool to the list, and then iterate 1475 * over all child filesystems. 1476 */ 1477 libzfs_add_handle(&cb, zfsp); 1478 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0) 1479 goto out; 1480 1481 /* 1482 * Mount all filesystems 1483 */ 1484 ms.ms_mntopts = mntopts; 1485 ms.ms_mntflags = flags; 1486 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1487 zfs_mount_one, &ms, B_TRUE); 1488 if (ms.ms_mntstatus != 0) 1489 ret = ms.ms_mntstatus; 1490 1491 /* 1492 * Share all filesystems that need to be shared. This needs to be 1493 * a separate pass because libshare is not mt-safe, and so we need 1494 * to share serially. 1495 */ 1496 ms.ms_mntstatus = 0; 1497 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1498 zfs_share_one, &ms, B_FALSE); 1499 if (ms.ms_mntstatus != 0) 1500 ret = ms.ms_mntstatus; 1501 else 1502 zfs_commit_all_shares(); 1503 1504 out: 1505 for (int i = 0; i < cb.cb_used; i++) 1506 zfs_close(cb.cb_handles[i]); 1507 free(cb.cb_handles); 1508 1509 return (ret); 1510 } 1511 1512 struct sets_s { 1513 char *mountpoint; 1514 zfs_handle_t *dataset; 1515 }; 1516 1517 static int 1518 mountpoint_compare(const void *a, const void *b) 1519 { 1520 const struct sets_s *mounta = (struct sets_s *)a; 1521 const struct sets_s *mountb = (struct sets_s *)b; 1522 1523 return (strcmp(mountb->mountpoint, mounta->mountpoint)); 1524 } 1525 1526 /* 1527 * Unshare and unmount all datasets within the given pool. We don't want to 1528 * rely on traversing the DSL to discover the filesystems within the pool, 1529 * because this may be expensive (if not all of them are mounted), and can fail 1530 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts 1531 * and gather all the filesystems that are currently mounted. 1532 */ 1533 int 1534 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1535 { 1536 int used, alloc; 1537 FILE *mnttab; 1538 struct mnttab entry; 1539 size_t namelen; 1540 struct sets_s *sets = NULL; 1541 libzfs_handle_t *hdl = zhp->zpool_hdl; 1542 int i; 1543 int ret = -1; 1544 int flags = (force ? MS_FORCE : 0); 1545 1546 namelen = strlen(zhp->zpool_name); 1547 1548 if ((mnttab = fopen(MNTTAB, "re")) == NULL) 1549 return (ENOENT); 1550 1551 used = alloc = 0; 1552 while (getmntent(mnttab, &entry) == 0) { 1553 /* 1554 * Ignore non-ZFS entries. 1555 */ 1556 if (entry.mnt_fstype == NULL || 1557 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1558 continue; 1559 1560 /* 1561 * Ignore filesystems not within this pool. 1562 */ 1563 if (entry.mnt_mountp == NULL || 1564 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1565 (entry.mnt_special[namelen] != '/' && 1566 entry.mnt_special[namelen] != '\0')) 1567 continue; 1568 1569 /* 1570 * At this point we've found a filesystem within our pool. Add 1571 * it to our growing list. 1572 */ 1573 if (used == alloc) { 1574 if (alloc == 0) { 1575 1576 if ((sets = zfs_alloc(hdl, 1577 8 * sizeof (struct sets_s))) == NULL) 1578 goto out; 1579 1580 alloc = 8; 1581 } else { 1582 void *ptr; 1583 1584 if ((ptr = zfs_realloc(hdl, sets, 1585 alloc * sizeof (struct sets_s), 1586 alloc * 2 * sizeof (struct sets_s))) 1587 == NULL) 1588 goto out; 1589 sets = ptr; 1590 1591 alloc *= 2; 1592 } 1593 } 1594 1595 if ((sets[used].mountpoint = zfs_strdup(hdl, 1596 entry.mnt_mountp)) == NULL) 1597 goto out; 1598 1599 /* 1600 * This is allowed to fail, in case there is some I/O error. It 1601 * is only used to determine if we need to remove the underlying 1602 * mountpoint, so failure is not fatal. 1603 */ 1604 sets[used].dataset = make_dataset_handle(hdl, 1605 entry.mnt_special); 1606 1607 used++; 1608 } 1609 1610 /* 1611 * At this point, we have the entire list of filesystems, so sort it by 1612 * mountpoint. 1613 */ 1614 qsort(sets, used, sizeof (struct sets_s), mountpoint_compare); 1615 1616 /* 1617 * Walk through and first unshare everything. 1618 */ 1619 for (i = 0; i < used; i++) { 1620 zfs_share_proto_t *curr_proto; 1621 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1622 curr_proto++) { 1623 if (is_shared(sets[i].mountpoint, *curr_proto) && 1624 unshare_one(hdl, sets[i].mountpoint, 1625 sets[i].mountpoint, *curr_proto) != 0) 1626 goto out; 1627 } 1628 } 1629 zfs_commit_all_shares(); 1630 1631 /* 1632 * Now unmount everything, removing the underlying directories as 1633 * appropriate. 1634 */ 1635 for (i = 0; i < used; i++) { 1636 if (unmount_one(sets[i].dataset, sets[i].mountpoint, 1637 flags) != 0) 1638 goto out; 1639 } 1640 1641 for (i = 0; i < used; i++) { 1642 if (sets[i].dataset) 1643 remove_mountpoint(sets[i].dataset); 1644 } 1645 1646 zpool_disable_datasets_os(zhp, force); 1647 1648 ret = 0; 1649 out: 1650 (void) fclose(mnttab); 1651 for (i = 0; i < used; i++) { 1652 if (sets[i].dataset) 1653 zfs_close(sets[i].dataset); 1654 free(sets[i].mountpoint); 1655 } 1656 free(sets); 1657 1658 return (ret); 1659 } 1660