xref: /freebsd/sys/contrib/openzfs/lib/libzfs/libzfs_mount.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2014, 2020 by Delphix. All rights reserved.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27  * Copyright 2017 RackTop Systems.
28  * Copyright (c) 2018 Datto Inc.
29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 /*
33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
34  * to deal with the OS.  The following functions are the main entry points --
35  * they are used by mount and unmount and when changing a filesystem's
36  * mountpoint.
37  *
38  *	zfs_is_mounted()
39  *	zfs_mount()
40  *	zfs_mount_at()
41  *	zfs_unmount()
42  *	zfs_unmountall()
43  *
44  * This file also contains the functions used to manage sharing filesystems via
45  * NFS and iSCSI:
46  *
47  *	zfs_is_shared()
48  *	zfs_share()
49  *	zfs_unshare()
50  *
51  *	zfs_is_shared_nfs()
52  *	zfs_is_shared_smb()
53  *	zfs_share_proto()
54  *	zfs_shareall();
55  *	zfs_unshare_nfs()
56  *	zfs_unshare_smb()
57  *	zfs_unshareall_nfs()
58  *	zfs_unshareall_smb()
59  *	zfs_unshareall()
60  *	zfs_unshareall_bypath()
61  *
62  * The following functions are available for pool consumers, and will
63  * mount/unmount and share/unshare all datasets within pool:
64  *
65  *	zpool_enable_datasets()
66  *	zpool_disable_datasets()
67  */
68 
69 #include <dirent.h>
70 #include <dlfcn.h>
71 #include <errno.h>
72 #include <fcntl.h>
73 #include <libgen.h>
74 #include <libintl.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <strings.h>
78 #include <unistd.h>
79 #include <zone.h>
80 #include <sys/mntent.h>
81 #include <sys/mount.h>
82 #include <sys/stat.h>
83 #include <sys/vfs.h>
84 #include <sys/dsl_crypt.h>
85 
86 #include <libzfs.h>
87 
88 #include "libzfs_impl.h"
89 #include <thread_pool.h>
90 
91 #include <libshare.h>
92 #include <sys/systeminfo.h>
93 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
94 
95 static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
96 
97 static void zfs_mount_task(void *);
98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
99     zfs_share_proto_t);
100 
101 /*
102  * The share protocols table must be in the same order as the zfs_share_proto_t
103  * enum in libzfs_impl.h
104  */
105 proto_table_t proto_table[PROTO_END] = {
106 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
107 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
108 };
109 
110 zfs_share_proto_t nfs_only[] = {
111 	PROTO_NFS,
112 	PROTO_END
113 };
114 
115 zfs_share_proto_t smb_only[] = {
116 	PROTO_SMB,
117 	PROTO_END
118 };
119 zfs_share_proto_t share_all_proto[] = {
120 	PROTO_NFS,
121 	PROTO_SMB,
122 	PROTO_END
123 };
124 
125 
126 
127 static boolean_t
128 dir_is_empty_stat(const char *dirname)
129 {
130 	struct stat st;
131 
132 	/*
133 	 * We only want to return false if the given path is a non empty
134 	 * directory, all other errors are handled elsewhere.
135 	 */
136 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
137 		return (B_TRUE);
138 	}
139 
140 	/*
141 	 * An empty directory will still have two entries in it, one
142 	 * entry for each of "." and "..".
143 	 */
144 	if (st.st_size > 2) {
145 		return (B_FALSE);
146 	}
147 
148 	return (B_TRUE);
149 }
150 
151 static boolean_t
152 dir_is_empty_readdir(const char *dirname)
153 {
154 	DIR *dirp;
155 	struct dirent64 *dp;
156 	int dirfd;
157 
158 	if ((dirfd = openat(AT_FDCWD, dirname,
159 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
160 		return (B_TRUE);
161 	}
162 
163 	if ((dirp = fdopendir(dirfd)) == NULL) {
164 		(void) close(dirfd);
165 		return (B_TRUE);
166 	}
167 
168 	while ((dp = readdir64(dirp)) != NULL) {
169 
170 		if (strcmp(dp->d_name, ".") == 0 ||
171 		    strcmp(dp->d_name, "..") == 0)
172 			continue;
173 
174 		(void) closedir(dirp);
175 		return (B_FALSE);
176 	}
177 
178 	(void) closedir(dirp);
179 	return (B_TRUE);
180 }
181 
182 /*
183  * Returns true if the specified directory is empty.  If we can't open the
184  * directory at all, return true so that the mount can fail with a more
185  * informative error message.
186  */
187 static boolean_t
188 dir_is_empty(const char *dirname)
189 {
190 	struct statfs64 st;
191 
192 	/*
193 	 * If the statvfs call fails or the filesystem is not a ZFS
194 	 * filesystem, fall back to the slow path which uses readdir.
195 	 */
196 	if ((statfs64(dirname, &st) != 0) ||
197 	    (st.f_type != ZFS_SUPER_MAGIC)) {
198 		return (dir_is_empty_readdir(dirname));
199 	}
200 
201 	/*
202 	 * At this point, we know the provided path is on a ZFS
203 	 * filesystem, so we can use stat instead of readdir to
204 	 * determine if the directory is empty or not. We try to avoid
205 	 * using readdir because that requires opening "dirname"; this
206 	 * open file descriptor can potentially end up in a child
207 	 * process if there's a concurrent fork, thus preventing the
208 	 * zfs_mount() from otherwise succeeding (the open file
209 	 * descriptor inherited by the child process will cause the
210 	 * parent's mount to fail with EBUSY). The performance
211 	 * implications of replacing the open, read, and close with a
212 	 * single stat is nice; but is not the main motivation for the
213 	 * added complexity.
214 	 */
215 	return (dir_is_empty_stat(dirname));
216 }
217 
218 /*
219  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
220  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
221  * 0.
222  */
223 boolean_t
224 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
225 {
226 	struct mnttab entry;
227 
228 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
229 		return (B_FALSE);
230 
231 	if (where != NULL)
232 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
233 
234 	return (B_TRUE);
235 }
236 
237 boolean_t
238 zfs_is_mounted(zfs_handle_t *zhp, char **where)
239 {
240 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
241 }
242 
243 /*
244  * Checks any higher order concerns about whether the given dataset is
245  * mountable, false otherwise.  zfs_is_mountable_internal specifically assumes
246  * that the caller has verified the sanity of mounting the dataset at
247  * mountpoint to the extent the caller wants.
248  */
249 static boolean_t
250 zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint)
251 {
252 
253 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
254 	    getzoneid() == GLOBAL_ZONEID)
255 		return (B_FALSE);
256 
257 	return (B_TRUE);
258 }
259 
260 /*
261  * Returns true if the given dataset is mountable, false otherwise.  Returns the
262  * mountpoint in 'buf'.
263  */
264 boolean_t
265 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
266     zprop_source_t *source, int flags)
267 {
268 	char sourceloc[MAXNAMELEN];
269 	zprop_source_t sourcetype;
270 
271 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
272 	    B_FALSE))
273 		return (B_FALSE);
274 
275 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
276 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
277 
278 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
279 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
280 		return (B_FALSE);
281 
282 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
283 		return (B_FALSE);
284 
285 	if (!zfs_is_mountable_internal(zhp, buf))
286 		return (B_FALSE);
287 
288 	if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
289 		return (B_FALSE);
290 
291 	if (source)
292 		*source = sourcetype;
293 
294 	return (B_TRUE);
295 }
296 
297 /*
298  * The filesystem is mounted by invoking the system mount utility rather
299  * than by the system call mount(2).  This ensures that the /etc/mtab
300  * file is correctly locked for the update.  Performing our own locking
301  * and /etc/mtab update requires making an unsafe assumption about how
302  * the mount utility performs its locking.  Unfortunately, this also means
303  * in the case of a mount failure we do not have the exact errno.  We must
304  * make due with return value from the mount process.
305  *
306  * In the long term a shared library called libmount is under development
307  * which provides a common API to address the locking and errno issues.
308  * Once the standard mount utility has been updated to use this library
309  * we can add an autoconf check to conditionally use it.
310  *
311  * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
312  */
313 
314 static int
315 zfs_add_option(zfs_handle_t *zhp, char *options, int len,
316     zfs_prop_t prop, char *on, char *off)
317 {
318 	char *source;
319 	uint64_t value;
320 
321 	/* Skip adding duplicate default options */
322 	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
323 		return (0);
324 
325 	/*
326 	 * zfs_prop_get_int() is not used to ensure our mount options
327 	 * are not influenced by the current /proc/self/mounts contents.
328 	 */
329 	value = getprop_uint64(zhp, prop, &source);
330 
331 	(void) strlcat(options, ",", len);
332 	(void) strlcat(options, value ? on : off, len);
333 
334 	return (0);
335 }
336 
337 static int
338 zfs_add_options(zfs_handle_t *zhp, char *options, int len)
339 {
340 	int error = 0;
341 
342 	error = zfs_add_option(zhp, options, len,
343 	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
344 	/*
345 	 * don't add relatime/strictatime when atime=off, otherwise strictatime
346 	 * will force atime=on
347 	 */
348 	if (strstr(options, MNTOPT_NOATIME) == NULL) {
349 		error = zfs_add_option(zhp, options, len,
350 		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
351 	}
352 	error = error ? error : zfs_add_option(zhp, options, len,
353 	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
354 	error = error ? error : zfs_add_option(zhp, options, len,
355 	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
356 	error = error ? error : zfs_add_option(zhp, options, len,
357 	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
358 	error = error ? error : zfs_add_option(zhp, options, len,
359 	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
360 	error = error ? error : zfs_add_option(zhp, options, len,
361 	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
362 
363 	return (error);
364 }
365 
366 int
367 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
368 {
369 	char mountpoint[ZFS_MAXPROPLEN];
370 
371 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
372 	    flags))
373 		return (0);
374 
375 	return (zfs_mount_at(zhp, options, flags, mountpoint));
376 }
377 
378 /*
379  * Mount the given filesystem.
380  */
381 int
382 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
383     const char *mountpoint)
384 {
385 	struct stat buf;
386 	char mntopts[MNT_LINE_MAX];
387 	char overlay[ZFS_MAXPROPLEN];
388 	libzfs_handle_t *hdl = zhp->zfs_hdl;
389 	uint64_t keystatus;
390 	int remount = 0, rc;
391 
392 	if (options == NULL) {
393 		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
394 	} else {
395 		(void) strlcpy(mntopts, options, sizeof (mntopts));
396 	}
397 
398 	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
399 		remount = 1;
400 
401 	/* Potentially duplicates some checks if invoked by zfs_mount(). */
402 	if (!zfs_is_mountable_internal(zhp, mountpoint))
403 		return (0);
404 
405 	/*
406 	 * If the pool is imported read-only then all mounts must be read-only
407 	 */
408 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
409 		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
410 
411 	/*
412 	 * Append default mount options which apply to the mount point.
413 	 * This is done because under Linux (unlike Solaris) multiple mount
414 	 * points may reference a single super block.  This means that just
415 	 * given a super block there is no back reference to update the per
416 	 * mount point options.
417 	 */
418 	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
419 	if (rc) {
420 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
421 		    "default options unavailable"));
422 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
423 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
424 		    mountpoint));
425 	}
426 
427 	/*
428 	 * If the filesystem is encrypted the key must be loaded  in order to
429 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
430 	 * or not we attempt to load the keys. Note: we must call
431 	 * zfs_refresh_properties() here since some callers of this function
432 	 * (most notably zpool_enable_datasets()) may implicitly load our key
433 	 * by loading the parent's key first.
434 	 */
435 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
436 		zfs_refresh_properties(zhp);
437 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
438 
439 		/*
440 		 * If the key is unavailable and MS_CRYPT is set give the
441 		 * user a chance to enter the key. Otherwise just fail
442 		 * immediately.
443 		 */
444 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
445 			if (flags & MS_CRYPT) {
446 				rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
447 				if (rc)
448 					return (rc);
449 			} else {
450 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
451 				    "encryption key not loaded"));
452 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
453 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
454 				    mountpoint));
455 			}
456 		}
457 
458 	}
459 
460 	/*
461 	 * Append zfsutil option so the mount helper allow the mount
462 	 */
463 	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
464 
465 	/* Create the directory if it doesn't already exist */
466 	if (lstat(mountpoint, &buf) != 0) {
467 		if (mkdirp(mountpoint, 0755) != 0) {
468 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
469 			    "failed to create mountpoint: %s"),
470 			    strerror(errno));
471 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
472 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
473 			    mountpoint));
474 		}
475 	}
476 
477 	/*
478 	 * Overlay mounts are enabled by default but may be disabled
479 	 * via the 'overlay' property. The -O flag remains for compatibility.
480 	 */
481 	if (!(flags & MS_OVERLAY)) {
482 		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
483 		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
484 			if (strcmp(overlay, "on") == 0) {
485 				flags |= MS_OVERLAY;
486 			}
487 		}
488 	}
489 
490 	/*
491 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
492 	 * mount.  We don't perform this check if 'remount' is
493 	 * specified or if overlay option (-O) is given
494 	 */
495 	if ((flags & MS_OVERLAY) == 0 && !remount &&
496 	    !dir_is_empty(mountpoint)) {
497 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
498 		    "directory is not empty"));
499 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
500 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
501 	}
502 
503 	/* perform the mount */
504 	rc = do_mount(zhp, mountpoint, mntopts, flags);
505 	if (rc) {
506 		/*
507 		 * Generic errors are nasty, but there are just way too many
508 		 * from mount(), and they're well-understood.  We pick a few
509 		 * common ones to improve upon.
510 		 */
511 		if (rc == EBUSY) {
512 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
513 			    "mountpoint or dataset is busy"));
514 		} else if (rc == EPERM) {
515 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
516 			    "Insufficient privileges"));
517 		} else if (rc == ENOTSUP) {
518 			char buf[256];
519 			int spa_version;
520 
521 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
522 			(void) snprintf(buf, sizeof (buf),
523 			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
524 			    "file system on a version %d pool. Pool must be"
525 			    " upgraded to mount this file system."),
526 			    (u_longlong_t)zfs_prop_get_int(zhp,
527 			    ZFS_PROP_VERSION), spa_version);
528 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
529 		} else {
530 			zfs_error_aux(hdl, strerror(rc));
531 		}
532 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
533 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
534 		    zhp->zfs_name));
535 	}
536 
537 	/* remove the mounted entry before re-adding on remount */
538 	if (remount)
539 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
540 
541 	/* add the mounted entry into our cache */
542 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
543 	return (0);
544 }
545 
546 /*
547  * Unmount a single filesystem.
548  */
549 static int
550 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
551 {
552 	int error;
553 
554 	error = do_unmount(mountpoint, flags);
555 	if (error != 0) {
556 		return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
557 		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
558 		    mountpoint));
559 	}
560 
561 	return (0);
562 }
563 
564 /*
565  * Unmount the given filesystem.
566  */
567 int
568 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
569 {
570 	libzfs_handle_t *hdl = zhp->zfs_hdl;
571 	struct mnttab entry;
572 	char *mntpt = NULL;
573 	boolean_t encroot, unmounted = B_FALSE;
574 
575 	/* check to see if we need to unmount the filesystem */
576 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
577 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
578 		/*
579 		 * mountpoint may have come from a call to
580 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
581 		 * we know it comes from libzfs_mnttab_find which can
582 		 * then get freed later. We strdup it to play it safe.
583 		 */
584 		if (mountpoint == NULL)
585 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
586 		else
587 			mntpt = zfs_strdup(hdl, mountpoint);
588 
589 		/*
590 		 * Unshare and unmount the filesystem
591 		 */
592 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
593 			free(mntpt);
594 			return (-1);
595 		}
596 		zfs_commit_all_shares();
597 
598 		if (unmount_one(hdl, mntpt, flags) != 0) {
599 			free(mntpt);
600 			(void) zfs_shareall(zhp);
601 			zfs_commit_all_shares();
602 			return (-1);
603 		}
604 
605 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
606 		free(mntpt);
607 		unmounted = B_TRUE;
608 	}
609 
610 	/*
611 	 * If the MS_CRYPT flag is provided we must ensure we attempt to
612 	 * unload the dataset's key regardless of whether we did any work
613 	 * to unmount it. We only do this for encryption roots.
614 	 */
615 	if ((flags & MS_CRYPT) != 0 &&
616 	    zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
617 		zfs_refresh_properties(zhp);
618 
619 		if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
620 		    unmounted) {
621 			(void) zfs_mount(zhp, NULL, 0);
622 			return (-1);
623 		}
624 
625 		if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
626 		    ZFS_KEYSTATUS_AVAILABLE &&
627 		    zfs_crypto_unload_key(zhp) != 0) {
628 			(void) zfs_mount(zhp, NULL, 0);
629 			return (-1);
630 		}
631 	}
632 
633 	return (0);
634 }
635 
636 /*
637  * Unmount this filesystem and any children inheriting the mountpoint property.
638  * To do this, just act like we're changing the mountpoint property, but don't
639  * remount the filesystems afterwards.
640  */
641 int
642 zfs_unmountall(zfs_handle_t *zhp, int flags)
643 {
644 	prop_changelist_t *clp;
645 	int ret;
646 
647 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
648 	    CL_GATHER_ITER_MOUNTED, flags);
649 	if (clp == NULL)
650 		return (-1);
651 
652 	ret = changelist_prefix(clp);
653 	changelist_free(clp);
654 
655 	return (ret);
656 }
657 
658 boolean_t
659 zfs_is_shared(zfs_handle_t *zhp)
660 {
661 	zfs_share_type_t rc = 0;
662 	zfs_share_proto_t *curr_proto;
663 
664 	if (ZFS_IS_VOLUME(zhp))
665 		return (B_FALSE);
666 
667 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
668 	    curr_proto++)
669 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
670 
671 	return (rc ? B_TRUE : B_FALSE);
672 }
673 
674 /*
675  * Unshare a filesystem by mountpoint.
676  */
677 int
678 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
679     zfs_share_proto_t proto)
680 {
681 	int err;
682 
683 	err = sa_disable_share(mountpoint, proto_table[proto].p_name);
684 	if (err != SA_OK) {
685 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
686 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
687 		    name, sa_errorstr(err)));
688 	}
689 	return (0);
690 }
691 
692 /*
693  * Query libshare for the given mountpoint and protocol, returning
694  * a zfs_share_type_t value.
695  */
696 zfs_share_type_t
697 is_shared(const char *mountpoint, zfs_share_proto_t proto)
698 {
699 	if (sa_is_shared(mountpoint, proto_table[proto].p_name)) {
700 		switch (proto) {
701 		case PROTO_NFS:
702 			return (SHARED_NFS);
703 		case PROTO_SMB:
704 			return (SHARED_SMB);
705 		default:
706 			return (SHARED_NOT_SHARED);
707 		}
708 	}
709 	return (SHARED_NOT_SHARED);
710 }
711 
712 /*
713  * Share the given filesystem according to the options in the specified
714  * protocol specific properties (sharenfs, sharesmb).  We rely
715  * on "libshare" to do the dirty work for us.
716  */
717 int
718 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
719 {
720 	char mountpoint[ZFS_MAXPROPLEN];
721 	char shareopts[ZFS_MAXPROPLEN];
722 	char sourcestr[ZFS_MAXPROPLEN];
723 	zfs_share_proto_t *curr_proto;
724 	zprop_source_t sourcetype;
725 	int err = 0;
726 
727 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
728 		return (0);
729 
730 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
731 		/*
732 		 * Return success if there are no share options.
733 		 */
734 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
735 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
736 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
737 		    strcmp(shareopts, "off") == 0)
738 			continue;
739 
740 		/*
741 		 * If the 'zoned' property is set, then zfs_is_mountable()
742 		 * will have already bailed out if we are in the global zone.
743 		 * But local zones cannot be NFS servers, so we ignore it for
744 		 * local zones as well.
745 		 */
746 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
747 			continue;
748 
749 		err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
750 		    proto_table[*curr_proto].p_name);
751 		if (err != SA_OK) {
752 			return (zfs_error_fmt(zhp->zfs_hdl,
753 			    proto_table[*curr_proto].p_share_err,
754 			    dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
755 			    zfs_get_name(zhp), sa_errorstr(err)));
756 		}
757 
758 	}
759 	return (0);
760 }
761 
762 int
763 zfs_share(zfs_handle_t *zhp)
764 {
765 	assert(!ZFS_IS_VOLUME(zhp));
766 	return (zfs_share_proto(zhp, share_all_proto));
767 }
768 
769 int
770 zfs_unshare(zfs_handle_t *zhp)
771 {
772 	assert(!ZFS_IS_VOLUME(zhp));
773 	return (zfs_unshareall(zhp));
774 }
775 
776 /*
777  * Check to see if the filesystem is currently shared.
778  */
779 zfs_share_type_t
780 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
781 {
782 	char *mountpoint;
783 	zfs_share_type_t rc;
784 
785 	if (!zfs_is_mounted(zhp, &mountpoint))
786 		return (SHARED_NOT_SHARED);
787 
788 	if ((rc = is_shared(mountpoint, proto))
789 	    != SHARED_NOT_SHARED) {
790 		if (where != NULL)
791 			*where = mountpoint;
792 		else
793 			free(mountpoint);
794 		return (rc);
795 	} else {
796 		free(mountpoint);
797 		return (SHARED_NOT_SHARED);
798 	}
799 }
800 
801 boolean_t
802 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
803 {
804 	return (zfs_is_shared_proto(zhp, where,
805 	    PROTO_NFS) != SHARED_NOT_SHARED);
806 }
807 
808 boolean_t
809 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
810 {
811 	return (zfs_is_shared_proto(zhp, where,
812 	    PROTO_SMB) != SHARED_NOT_SHARED);
813 }
814 
815 /*
816  * zfs_parse_options(options, proto)
817  *
818  * Call the legacy parse interface to get the protocol specific
819  * options using the NULL arg to indicate that this is a "parse" only.
820  */
821 int
822 zfs_parse_options(char *options, zfs_share_proto_t proto)
823 {
824 	return (sa_validate_shareopts(options, proto_table[proto].p_name));
825 }
826 
827 void
828 zfs_commit_proto(zfs_share_proto_t *proto)
829 {
830 	zfs_share_proto_t *curr_proto;
831 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
832 		sa_commit_shares(proto_table[*curr_proto].p_name);
833 	}
834 }
835 
836 void
837 zfs_commit_nfs_shares(void)
838 {
839 	zfs_commit_proto(nfs_only);
840 }
841 
842 void
843 zfs_commit_smb_shares(void)
844 {
845 	zfs_commit_proto(smb_only);
846 }
847 
848 void
849 zfs_commit_all_shares(void)
850 {
851 	zfs_commit_proto(share_all_proto);
852 }
853 
854 void
855 zfs_commit_shares(const char *proto)
856 {
857 	if (proto == NULL)
858 		zfs_commit_proto(share_all_proto);
859 	else if (strcmp(proto, "nfs") == 0)
860 		zfs_commit_proto(nfs_only);
861 	else if (strcmp(proto, "smb") == 0)
862 		zfs_commit_proto(smb_only);
863 }
864 
865 int
866 zfs_share_nfs(zfs_handle_t *zhp)
867 {
868 	return (zfs_share_proto(zhp, nfs_only));
869 }
870 
871 int
872 zfs_share_smb(zfs_handle_t *zhp)
873 {
874 	return (zfs_share_proto(zhp, smb_only));
875 }
876 
877 int
878 zfs_shareall(zfs_handle_t *zhp)
879 {
880 	return (zfs_share_proto(zhp, share_all_proto));
881 }
882 
883 /*
884  * Unshare the given filesystem.
885  */
886 int
887 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
888     zfs_share_proto_t *proto)
889 {
890 	libzfs_handle_t *hdl = zhp->zfs_hdl;
891 	struct mnttab entry;
892 	char *mntpt = NULL;
893 
894 	/* check to see if need to unmount the filesystem */
895 	if (mountpoint != NULL)
896 		mntpt = zfs_strdup(hdl, mountpoint);
897 
898 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
899 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
900 		zfs_share_proto_t *curr_proto;
901 
902 		if (mountpoint == NULL)
903 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
904 
905 		for (curr_proto = proto; *curr_proto != PROTO_END;
906 		    curr_proto++) {
907 
908 			if (is_shared(mntpt, *curr_proto)) {
909 				if (unshare_one(hdl, zhp->zfs_name,
910 				    mntpt, *curr_proto) != 0) {
911 					if (mntpt != NULL)
912 						free(mntpt);
913 					return (-1);
914 				}
915 			}
916 		}
917 	}
918 	if (mntpt != NULL)
919 		free(mntpt);
920 
921 	return (0);
922 }
923 
924 int
925 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
926 {
927 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
928 }
929 
930 int
931 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
932 {
933 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
934 }
935 
936 /*
937  * Same as zfs_unmountall(), but for NFS and SMB unshares.
938  */
939 static int
940 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
941 {
942 	prop_changelist_t *clp;
943 	int ret;
944 
945 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
946 	if (clp == NULL)
947 		return (-1);
948 
949 	ret = changelist_unshare(clp, proto);
950 	changelist_free(clp);
951 
952 	return (ret);
953 }
954 
955 int
956 zfs_unshareall_nfs(zfs_handle_t *zhp)
957 {
958 	return (zfs_unshareall_proto(zhp, nfs_only));
959 }
960 
961 int
962 zfs_unshareall_smb(zfs_handle_t *zhp)
963 {
964 	return (zfs_unshareall_proto(zhp, smb_only));
965 }
966 
967 int
968 zfs_unshareall(zfs_handle_t *zhp)
969 {
970 	return (zfs_unshareall_proto(zhp, share_all_proto));
971 }
972 
973 int
974 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
975 {
976 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
977 }
978 
979 int
980 zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
981     const char *proto)
982 {
983 	if (proto == NULL)
984 		return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
985 	if (strcmp(proto, "nfs") == 0)
986 		return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
987 	else if (strcmp(proto, "smb") == 0)
988 		return (zfs_unshare_proto(zhp, mountpoint, smb_only));
989 	else
990 		return (1);
991 }
992 
993 /*
994  * Remove the mountpoint associated with the current dataset, if necessary.
995  * We only remove the underlying directory if:
996  *
997  *	- The mountpoint is not 'none' or 'legacy'
998  *	- The mountpoint is non-empty
999  *	- The mountpoint is the default or inherited
1000  *	- The 'zoned' property is set, or we're in a local zone
1001  *
1002  * Any other directories we leave alone.
1003  */
1004 void
1005 remove_mountpoint(zfs_handle_t *zhp)
1006 {
1007 	char mountpoint[ZFS_MAXPROPLEN];
1008 	zprop_source_t source;
1009 
1010 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1011 	    &source, 0))
1012 		return;
1013 
1014 	if (source == ZPROP_SRC_DEFAULT ||
1015 	    source == ZPROP_SRC_INHERITED) {
1016 		/*
1017 		 * Try to remove the directory, silently ignoring any errors.
1018 		 * The filesystem may have since been removed or moved around,
1019 		 * and this error isn't really useful to the administrator in
1020 		 * any way.
1021 		 */
1022 		(void) rmdir(mountpoint);
1023 	}
1024 }
1025 
1026 /*
1027  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1028  * the array if it is out of space.
1029  */
1030 void
1031 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1032 {
1033 	if (cbp->cb_alloc == cbp->cb_used) {
1034 		size_t newsz;
1035 		zfs_handle_t **newhandles;
1036 
1037 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1038 		newhandles = zfs_realloc(zhp->zfs_hdl,
1039 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1040 		    newsz * sizeof (zfs_handle_t *));
1041 		cbp->cb_handles = newhandles;
1042 		cbp->cb_alloc = newsz;
1043 	}
1044 	cbp->cb_handles[cbp->cb_used++] = zhp;
1045 }
1046 
1047 /*
1048  * Recursive helper function used during file system enumeration
1049  */
1050 static int
1051 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1052 {
1053 	get_all_cb_t *cbp = data;
1054 
1055 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1056 		zfs_close(zhp);
1057 		return (0);
1058 	}
1059 
1060 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1061 		zfs_close(zhp);
1062 		return (0);
1063 	}
1064 
1065 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1066 	    ZFS_KEYSTATUS_UNAVAILABLE) {
1067 		zfs_close(zhp);
1068 		return (0);
1069 	}
1070 
1071 	/*
1072 	 * If this filesystem is inconsistent and has a receive resume
1073 	 * token, we can not mount it.
1074 	 */
1075 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1076 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1077 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1078 		zfs_close(zhp);
1079 		return (0);
1080 	}
1081 
1082 	libzfs_add_handle(cbp, zhp);
1083 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1084 		zfs_close(zhp);
1085 		return (-1);
1086 	}
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Sort comparator that compares two mountpoint paths. We sort these paths so
1092  * that subdirectories immediately follow their parents. This means that we
1093  * effectively treat the '/' character as the lowest value non-nul char.
1094  * Since filesystems from non-global zones can have the same mountpoint
1095  * as other filesystems, the comparator sorts global zone filesystems to
1096  * the top of the list. This means that the global zone will traverse the
1097  * filesystem list in the correct order and can stop when it sees the
1098  * first zoned filesystem. In a non-global zone, only the delegated
1099  * filesystems are seen.
1100  *
1101  * An example sorted list using this comparator would look like:
1102  *
1103  * /foo
1104  * /foo/bar
1105  * /foo/bar/baz
1106  * /foo/baz
1107  * /foo.bar
1108  * /foo (NGZ1)
1109  * /foo (NGZ2)
1110  *
1111  * The mounting code depends on this ordering to deterministically iterate
1112  * over filesystems in order to spawn parallel mount tasks.
1113  */
1114 static int
1115 mountpoint_cmp(const void *arga, const void *argb)
1116 {
1117 	zfs_handle_t *const *zap = arga;
1118 	zfs_handle_t *za = *zap;
1119 	zfs_handle_t *const *zbp = argb;
1120 	zfs_handle_t *zb = *zbp;
1121 	char mounta[MAXPATHLEN];
1122 	char mountb[MAXPATHLEN];
1123 	const char *a = mounta;
1124 	const char *b = mountb;
1125 	boolean_t gota, gotb;
1126 	uint64_t zoneda, zonedb;
1127 
1128 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1129 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1130 	if (zoneda && !zonedb)
1131 		return (1);
1132 	if (!zoneda && zonedb)
1133 		return (-1);
1134 
1135 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1136 	if (gota) {
1137 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1138 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1139 	}
1140 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1141 	if (gotb) {
1142 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1143 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1144 	}
1145 
1146 	if (gota && gotb) {
1147 		while (*a != '\0' && (*a == *b)) {
1148 			a++;
1149 			b++;
1150 		}
1151 		if (*a == *b)
1152 			return (0);
1153 		if (*a == '\0')
1154 			return (-1);
1155 		if (*b == '\0')
1156 			return (1);
1157 		if (*a == '/')
1158 			return (-1);
1159 		if (*b == '/')
1160 			return (1);
1161 		return (*a < *b ? -1 : *a > *b);
1162 	}
1163 
1164 	if (gota)
1165 		return (-1);
1166 	if (gotb)
1167 		return (1);
1168 
1169 	/*
1170 	 * If neither filesystem has a mountpoint, revert to sorting by
1171 	 * dataset name.
1172 	 */
1173 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1174 }
1175 
1176 /*
1177  * Return true if path2 is a child of path1 or path2 equals path1 or
1178  * path1 is "/" (path2 is always a child of "/").
1179  */
1180 static boolean_t
1181 libzfs_path_contains(const char *path1, const char *path2)
1182 {
1183 	return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1184 	    (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1185 }
1186 
1187 /*
1188  * Given a mountpoint specified by idx in the handles array, find the first
1189  * non-descendent of that mountpoint and return its index. Descendant paths
1190  * start with the parent's path. This function relies on the ordering
1191  * enforced by mountpoint_cmp().
1192  */
1193 static int
1194 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1195 {
1196 	char parent[ZFS_MAXPROPLEN];
1197 	char child[ZFS_MAXPROPLEN];
1198 	int i;
1199 
1200 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1201 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1202 
1203 	for (i = idx + 1; i < num_handles; i++) {
1204 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1205 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1206 		if (!libzfs_path_contains(parent, child))
1207 			break;
1208 	}
1209 	return (i);
1210 }
1211 
1212 typedef struct mnt_param {
1213 	libzfs_handle_t	*mnt_hdl;
1214 	tpool_t		*mnt_tp;
1215 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1216 	size_t		mnt_num_handles;
1217 	int		mnt_idx;	/* Index of selected entry to mount */
1218 	zfs_iter_f	mnt_func;
1219 	void		*mnt_data;
1220 } mnt_param_t;
1221 
1222 /*
1223  * Allocate and populate the parameter struct for mount function, and
1224  * schedule mounting of the entry selected by idx.
1225  */
1226 static void
1227 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1228     size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1229 {
1230 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1231 
1232 	mnt_param->mnt_hdl = hdl;
1233 	mnt_param->mnt_tp = tp;
1234 	mnt_param->mnt_zhps = handles;
1235 	mnt_param->mnt_num_handles = num_handles;
1236 	mnt_param->mnt_idx = idx;
1237 	mnt_param->mnt_func = func;
1238 	mnt_param->mnt_data = data;
1239 
1240 	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
1241 }
1242 
1243 /*
1244  * This is the structure used to keep state of mounting or sharing operations
1245  * during a call to zpool_enable_datasets().
1246  */
1247 typedef struct mount_state {
1248 	/*
1249 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1250 	 * could update this variable concurrently, no synchronization is
1251 	 * needed as it's only ever set to -1.
1252 	 */
1253 	int		ms_mntstatus;
1254 	int		ms_mntflags;
1255 	const char	*ms_mntopts;
1256 } mount_state_t;
1257 
1258 static int
1259 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1260 {
1261 	mount_state_t *ms = arg;
1262 	int ret = 0;
1263 
1264 	/*
1265 	 * don't attempt to mount encrypted datasets with
1266 	 * unloaded keys
1267 	 */
1268 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1269 	    ZFS_KEYSTATUS_UNAVAILABLE)
1270 		return (0);
1271 
1272 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1273 		ret = ms->ms_mntstatus = -1;
1274 	return (ret);
1275 }
1276 
1277 static int
1278 zfs_share_one(zfs_handle_t *zhp, void *arg)
1279 {
1280 	mount_state_t *ms = arg;
1281 	int ret = 0;
1282 
1283 	if (zfs_share(zhp) != 0)
1284 		ret = ms->ms_mntstatus = -1;
1285 	return (ret);
1286 }
1287 
1288 /*
1289  * Thread pool function to mount one file system. On completion, it finds and
1290  * schedules its children to be mounted. This depends on the sorting done in
1291  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1292  * each descending from the previous) will have no parallelism since we always
1293  * have to wait for the parent to finish mounting before we can schedule
1294  * its children.
1295  */
1296 static void
1297 zfs_mount_task(void *arg)
1298 {
1299 	mnt_param_t *mp = arg;
1300 	int idx = mp->mnt_idx;
1301 	zfs_handle_t **handles = mp->mnt_zhps;
1302 	size_t num_handles = mp->mnt_num_handles;
1303 	char mountpoint[ZFS_MAXPROPLEN];
1304 
1305 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1306 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1307 
1308 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1309 		return;
1310 
1311 	/*
1312 	 * We dispatch tasks to mount filesystems with mountpoints underneath
1313 	 * this one. We do this by dispatching the next filesystem with a
1314 	 * descendant mountpoint of the one we just mounted, then skip all of
1315 	 * its descendants, dispatch the next descendant mountpoint, and so on.
1316 	 * The non_descendant_idx() function skips over filesystems that are
1317 	 * descendants of the filesystem we just dispatched.
1318 	 */
1319 	for (int i = idx + 1; i < num_handles;
1320 	    i = non_descendant_idx(handles, num_handles, i)) {
1321 		char child[ZFS_MAXPROPLEN];
1322 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1323 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1324 
1325 		if (!libzfs_path_contains(mountpoint, child))
1326 			break; /* not a descendant, return */
1327 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1328 		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1329 	}
1330 	free(mp);
1331 }
1332 
1333 /*
1334  * Issue the func callback for each ZFS handle contained in the handles
1335  * array. This function is used to mount all datasets, and so this function
1336  * guarantees that filesystems for parent mountpoints are called before their
1337  * children. As such, before issuing any callbacks, we first sort the array
1338  * of handles by mountpoint.
1339  *
1340  * Callbacks are issued in one of two ways:
1341  *
1342  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1343  *    environment variable is set, then we issue callbacks sequentially.
1344  *
1345  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1346  *    environment variable is not set, then we use a tpool to dispatch threads
1347  *    to mount filesystems in parallel. This function dispatches tasks to mount
1348  *    the filesystems at the top-level mountpoints, and these tasks in turn
1349  *    are responsible for recursively mounting filesystems in their children
1350  *    mountpoints.
1351  */
1352 void
1353 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1354     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1355 {
1356 	zoneid_t zoneid = getzoneid();
1357 
1358 	/*
1359 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1360 	 * variable that can be used as a convenience to do a/b comparison
1361 	 * of serial vs. parallel mounting.
1362 	 */
1363 	boolean_t serial_mount = !parallel ||
1364 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1365 
1366 	/*
1367 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1368 	 * of how these are sorted.
1369 	 */
1370 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1371 
1372 	if (serial_mount) {
1373 		for (int i = 0; i < num_handles; i++) {
1374 			func(handles[i], data);
1375 		}
1376 		return;
1377 	}
1378 
1379 	/*
1380 	 * Issue the callback function for each dataset using a parallel
1381 	 * algorithm that uses a thread pool to manage threads.
1382 	 */
1383 	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
1384 
1385 	/*
1386 	 * There may be multiple "top level" mountpoints outside of the pool's
1387 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1388 	 * these.
1389 	 */
1390 	for (int i = 0; i < num_handles;
1391 	    i = non_descendant_idx(handles, num_handles, i)) {
1392 		/*
1393 		 * Since the mountpoints have been sorted so that the zoned
1394 		 * filesystems are at the end, a zoned filesystem seen from
1395 		 * the global zone means that we're done.
1396 		 */
1397 		if (zoneid == GLOBAL_ZONEID &&
1398 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1399 			break;
1400 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1401 		    tp);
1402 	}
1403 
1404 	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
1405 	tpool_destroy(tp);
1406 }
1407 
1408 /*
1409  * Mount and share all datasets within the given pool.  This assumes that no
1410  * datasets within the pool are currently mounted.
1411  */
1412 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1413 int
1414 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1415 {
1416 	get_all_cb_t cb = { 0 };
1417 	mount_state_t ms = { 0 };
1418 	zfs_handle_t *zfsp;
1419 	int ret = 0;
1420 
1421 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1422 	    ZFS_TYPE_DATASET)) == NULL)
1423 		goto out;
1424 
1425 	/*
1426 	 * Gather all non-snapshot datasets within the pool. Start by adding
1427 	 * the root filesystem for this pool to the list, and then iterate
1428 	 * over all child filesystems.
1429 	 */
1430 	libzfs_add_handle(&cb, zfsp);
1431 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1432 		goto out;
1433 
1434 	/*
1435 	 * Mount all filesystems
1436 	 */
1437 	ms.ms_mntopts = mntopts;
1438 	ms.ms_mntflags = flags;
1439 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1440 	    zfs_mount_one, &ms, B_TRUE);
1441 	if (ms.ms_mntstatus != 0)
1442 		ret = ms.ms_mntstatus;
1443 
1444 	/*
1445 	 * Share all filesystems that need to be shared. This needs to be
1446 	 * a separate pass because libshare is not mt-safe, and so we need
1447 	 * to share serially.
1448 	 */
1449 	ms.ms_mntstatus = 0;
1450 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1451 	    zfs_share_one, &ms, B_FALSE);
1452 	if (ms.ms_mntstatus != 0)
1453 		ret = ms.ms_mntstatus;
1454 	else
1455 		zfs_commit_all_shares();
1456 
1457 out:
1458 	for (int i = 0; i < cb.cb_used; i++)
1459 		zfs_close(cb.cb_handles[i]);
1460 	free(cb.cb_handles);
1461 
1462 	return (ret);
1463 }
1464 
1465 static int
1466 mountpoint_compare(const void *a, const void *b)
1467 {
1468 	const char *mounta = *((char **)a);
1469 	const char *mountb = *((char **)b);
1470 
1471 	return (strcmp(mountb, mounta));
1472 }
1473 
1474 /* alias for 2002/240 */
1475 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1476 /*
1477  * Unshare and unmount all datasets within the given pool.  We don't want to
1478  * rely on traversing the DSL to discover the filesystems within the pool,
1479  * because this may be expensive (if not all of them are mounted), and can fail
1480  * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
1481  * and gather all the filesystems that are currently mounted.
1482  */
1483 int
1484 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1485 {
1486 	int used, alloc;
1487 	struct mnttab entry;
1488 	size_t namelen;
1489 	char **mountpoints = NULL;
1490 	zfs_handle_t **datasets = NULL;
1491 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1492 	int i;
1493 	int ret = -1;
1494 	int flags = (force ? MS_FORCE : 0);
1495 
1496 	namelen = strlen(zhp->zpool_name);
1497 
1498 	/* Reopen MNTTAB to prevent reading stale data from open file */
1499 	if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
1500 		return (ENOENT);
1501 
1502 	used = alloc = 0;
1503 	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1504 		/*
1505 		 * Ignore non-ZFS entries.
1506 		 */
1507 		if (entry.mnt_fstype == NULL ||
1508 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1509 			continue;
1510 
1511 		/*
1512 		 * Ignore filesystems not within this pool.
1513 		 */
1514 		if (entry.mnt_mountp == NULL ||
1515 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1516 		    (entry.mnt_special[namelen] != '/' &&
1517 		    entry.mnt_special[namelen] != '\0'))
1518 			continue;
1519 
1520 		/*
1521 		 * At this point we've found a filesystem within our pool.  Add
1522 		 * it to our growing list.
1523 		 */
1524 		if (used == alloc) {
1525 			if (alloc == 0) {
1526 				if ((mountpoints = zfs_alloc(hdl,
1527 				    8 * sizeof (void *))) == NULL)
1528 					goto out;
1529 
1530 				if ((datasets = zfs_alloc(hdl,
1531 				    8 * sizeof (void *))) == NULL)
1532 					goto out;
1533 
1534 				alloc = 8;
1535 			} else {
1536 				void *ptr;
1537 
1538 				if ((ptr = zfs_realloc(hdl, mountpoints,
1539 				    alloc * sizeof (void *),
1540 				    alloc * 2 * sizeof (void *))) == NULL)
1541 					goto out;
1542 				mountpoints = ptr;
1543 
1544 				if ((ptr = zfs_realloc(hdl, datasets,
1545 				    alloc * sizeof (void *),
1546 				    alloc * 2 * sizeof (void *))) == NULL)
1547 					goto out;
1548 				datasets = ptr;
1549 
1550 				alloc *= 2;
1551 			}
1552 		}
1553 
1554 		if ((mountpoints[used] = zfs_strdup(hdl,
1555 		    entry.mnt_mountp)) == NULL)
1556 			goto out;
1557 
1558 		/*
1559 		 * This is allowed to fail, in case there is some I/O error.  It
1560 		 * is only used to determine if we need to remove the underlying
1561 		 * mountpoint, so failure is not fatal.
1562 		 */
1563 		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1564 
1565 		used++;
1566 	}
1567 
1568 	/*
1569 	 * At this point, we have the entire list of filesystems, so sort it by
1570 	 * mountpoint.
1571 	 */
1572 	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1573 
1574 	/*
1575 	 * Walk through and first unshare everything.
1576 	 */
1577 	for (i = 0; i < used; i++) {
1578 		zfs_share_proto_t *curr_proto;
1579 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1580 		    curr_proto++) {
1581 			if (is_shared(mountpoints[i], *curr_proto) &&
1582 			    unshare_one(hdl, mountpoints[i],
1583 			    mountpoints[i], *curr_proto) != 0)
1584 				goto out;
1585 		}
1586 	}
1587 	zfs_commit_all_shares();
1588 
1589 	/*
1590 	 * Now unmount everything, removing the underlying directories as
1591 	 * appropriate.
1592 	 */
1593 	for (i = 0; i < used; i++) {
1594 		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1595 			goto out;
1596 	}
1597 
1598 	for (i = 0; i < used; i++) {
1599 		if (datasets[i])
1600 			remove_mountpoint(datasets[i]);
1601 	}
1602 
1603 	ret = 0;
1604 out:
1605 	for (i = 0; i < used; i++) {
1606 		if (datasets[i])
1607 			zfs_close(datasets[i]);
1608 		free(mountpoints[i]);
1609 	}
1610 	free(datasets);
1611 	free(mountpoints);
1612 
1613 	return (ret);
1614 }
1615