1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2021 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 * Copyright (c) 2018 Datto Inc. 29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 30 */ 31 32 /* 33 * Routines to manage ZFS mounts. We separate all the nasty routines that have 34 * to deal with the OS. The following functions are the main entry points -- 35 * they are used by mount and unmount and when changing a filesystem's 36 * mountpoint. 37 * 38 * zfs_is_mounted() 39 * zfs_mount() 40 * zfs_mount_at() 41 * zfs_unmount() 42 * zfs_unmountall() 43 * 44 * This file also contains the functions used to manage sharing filesystems via 45 * NFS and iSCSI: 46 * 47 * zfs_is_shared() 48 * zfs_share() 49 * zfs_unshare() 50 * 51 * zfs_is_shared_nfs() 52 * zfs_is_shared_smb() 53 * zfs_share_proto() 54 * zfs_shareall(); 55 * zfs_unshare_nfs() 56 * zfs_unshare_smb() 57 * zfs_unshareall_nfs() 58 * zfs_unshareall_smb() 59 * zfs_unshareall() 60 * zfs_unshareall_bypath() 61 * 62 * The following functions are available for pool consumers, and will 63 * mount/unmount and share/unshare all datasets within pool: 64 * 65 * zpool_enable_datasets() 66 * zpool_disable_datasets() 67 */ 68 69 #include <dirent.h> 70 #include <dlfcn.h> 71 #include <errno.h> 72 #include <fcntl.h> 73 #include <libgen.h> 74 #include <libintl.h> 75 #include <stdio.h> 76 #include <stdlib.h> 77 #include <strings.h> 78 #include <unistd.h> 79 #include <zone.h> 80 #include <sys/mntent.h> 81 #include <sys/mount.h> 82 #include <sys/stat.h> 83 #include <sys/vfs.h> 84 #include <sys/dsl_crypt.h> 85 86 #include <libzfs.h> 87 88 #include "libzfs_impl.h" 89 #include <thread_pool.h> 90 91 #include <libshare.h> 92 #include <sys/systeminfo.h> 93 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 94 95 static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */ 96 97 static void zfs_mount_task(void *); 98 static zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 99 zfs_share_proto_t); 100 101 /* 102 * The share protocols table must be in the same order as the zfs_share_proto_t 103 * enum in libzfs_impl.h 104 */ 105 proto_table_t proto_table[PROTO_END] = { 106 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 107 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 108 }; 109 110 static zfs_share_proto_t nfs_only[] = { 111 PROTO_NFS, 112 PROTO_END 113 }; 114 115 static zfs_share_proto_t smb_only[] = { 116 PROTO_SMB, 117 PROTO_END 118 }; 119 static zfs_share_proto_t share_all_proto[] = { 120 PROTO_NFS, 121 PROTO_SMB, 122 PROTO_END 123 }; 124 125 126 127 static boolean_t 128 dir_is_empty_stat(const char *dirname) 129 { 130 struct stat st; 131 132 /* 133 * We only want to return false if the given path is a non empty 134 * directory, all other errors are handled elsewhere. 135 */ 136 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 137 return (B_TRUE); 138 } 139 140 /* 141 * An empty directory will still have two entries in it, one 142 * entry for each of "." and "..". 143 */ 144 if (st.st_size > 2) { 145 return (B_FALSE); 146 } 147 148 return (B_TRUE); 149 } 150 151 static boolean_t 152 dir_is_empty_readdir(const char *dirname) 153 { 154 DIR *dirp; 155 struct dirent64 *dp; 156 int dirfd; 157 158 if ((dirfd = openat(AT_FDCWD, dirname, 159 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 160 return (B_TRUE); 161 } 162 163 if ((dirp = fdopendir(dirfd)) == NULL) { 164 (void) close(dirfd); 165 return (B_TRUE); 166 } 167 168 while ((dp = readdir64(dirp)) != NULL) { 169 170 if (strcmp(dp->d_name, ".") == 0 || 171 strcmp(dp->d_name, "..") == 0) 172 continue; 173 174 (void) closedir(dirp); 175 return (B_FALSE); 176 } 177 178 (void) closedir(dirp); 179 return (B_TRUE); 180 } 181 182 /* 183 * Returns true if the specified directory is empty. If we can't open the 184 * directory at all, return true so that the mount can fail with a more 185 * informative error message. 186 */ 187 static boolean_t 188 dir_is_empty(const char *dirname) 189 { 190 struct statfs64 st; 191 192 /* 193 * If the statvfs call fails or the filesystem is not a ZFS 194 * filesystem, fall back to the slow path which uses readdir. 195 */ 196 if ((statfs64(dirname, &st) != 0) || 197 (st.f_type != ZFS_SUPER_MAGIC)) { 198 return (dir_is_empty_readdir(dirname)); 199 } 200 201 /* 202 * At this point, we know the provided path is on a ZFS 203 * filesystem, so we can use stat instead of readdir to 204 * determine if the directory is empty or not. We try to avoid 205 * using readdir because that requires opening "dirname"; this 206 * open file descriptor can potentially end up in a child 207 * process if there's a concurrent fork, thus preventing the 208 * zfs_mount() from otherwise succeeding (the open file 209 * descriptor inherited by the child process will cause the 210 * parent's mount to fail with EBUSY). The performance 211 * implications of replacing the open, read, and close with a 212 * single stat is nice; but is not the main motivation for the 213 * added complexity. 214 */ 215 return (dir_is_empty_stat(dirname)); 216 } 217 218 /* 219 * Checks to see if the mount is active. If the filesystem is mounted, we fill 220 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 221 * 0. 222 */ 223 boolean_t 224 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 225 { 226 struct mnttab entry; 227 228 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 229 return (B_FALSE); 230 231 if (where != NULL) 232 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 233 234 return (B_TRUE); 235 } 236 237 boolean_t 238 zfs_is_mounted(zfs_handle_t *zhp, char **where) 239 { 240 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 241 } 242 243 /* 244 * Checks any higher order concerns about whether the given dataset is 245 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes 246 * that the caller has verified the sanity of mounting the dataset at 247 * mountpoint to the extent the caller wants. 248 */ 249 static boolean_t 250 zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint) 251 { 252 253 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 254 getzoneid() == GLOBAL_ZONEID) 255 return (B_FALSE); 256 257 return (B_TRUE); 258 } 259 260 /* 261 * Returns true if the given dataset is mountable, false otherwise. Returns the 262 * mountpoint in 'buf'. 263 */ 264 boolean_t 265 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 266 zprop_source_t *source, int flags) 267 { 268 char sourceloc[MAXNAMELEN]; 269 zprop_source_t sourcetype; 270 271 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type, 272 B_FALSE)) 273 return (B_FALSE); 274 275 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 276 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 277 278 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 279 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 280 return (B_FALSE); 281 282 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 283 return (B_FALSE); 284 285 if (!zfs_is_mountable_internal(zhp, buf)) 286 return (B_FALSE); 287 288 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE)) 289 return (B_FALSE); 290 291 if (source) 292 *source = sourcetype; 293 294 return (B_TRUE); 295 } 296 297 /* 298 * The filesystem is mounted by invoking the system mount utility rather 299 * than by the system call mount(2). This ensures that the /etc/mtab 300 * file is correctly locked for the update. Performing our own locking 301 * and /etc/mtab update requires making an unsafe assumption about how 302 * the mount utility performs its locking. Unfortunately, this also means 303 * in the case of a mount failure we do not have the exact errno. We must 304 * make due with return value from the mount process. 305 * 306 * In the long term a shared library called libmount is under development 307 * which provides a common API to address the locking and errno issues. 308 * Once the standard mount utility has been updated to use this library 309 * we can add an autoconf check to conditionally use it. 310 * 311 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html 312 */ 313 314 static int 315 zfs_add_option(zfs_handle_t *zhp, char *options, int len, 316 zfs_prop_t prop, char *on, char *off) 317 { 318 char *source; 319 uint64_t value; 320 321 /* Skip adding duplicate default options */ 322 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL)) 323 return (0); 324 325 /* 326 * zfs_prop_get_int() is not used to ensure our mount options 327 * are not influenced by the current /proc/self/mounts contents. 328 */ 329 value = getprop_uint64(zhp, prop, &source); 330 331 (void) strlcat(options, ",", len); 332 (void) strlcat(options, value ? on : off, len); 333 334 return (0); 335 } 336 337 static int 338 zfs_add_options(zfs_handle_t *zhp, char *options, int len) 339 { 340 int error = 0; 341 342 error = zfs_add_option(zhp, options, len, 343 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME); 344 /* 345 * don't add relatime/strictatime when atime=off, otherwise strictatime 346 * will force atime=on 347 */ 348 if (strstr(options, MNTOPT_NOATIME) == NULL) { 349 error = zfs_add_option(zhp, options, len, 350 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME); 351 } 352 error = error ? error : zfs_add_option(zhp, options, len, 353 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES); 354 error = error ? error : zfs_add_option(zhp, options, len, 355 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC); 356 error = error ? error : zfs_add_option(zhp, options, len, 357 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW); 358 error = error ? error : zfs_add_option(zhp, options, len, 359 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID); 360 error = error ? error : zfs_add_option(zhp, options, len, 361 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND); 362 363 return (error); 364 } 365 366 int 367 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 368 { 369 char mountpoint[ZFS_MAXPROPLEN]; 370 371 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 372 flags)) 373 return (0); 374 375 return (zfs_mount_at(zhp, options, flags, mountpoint)); 376 } 377 378 /* 379 * Mount the given filesystem. 380 */ 381 int 382 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags, 383 const char *mountpoint) 384 { 385 struct stat buf; 386 char mntopts[MNT_LINE_MAX]; 387 char overlay[ZFS_MAXPROPLEN]; 388 char prop_encroot[MAXNAMELEN]; 389 boolean_t is_encroot; 390 zfs_handle_t *encroot_hp = zhp; 391 libzfs_handle_t *hdl = zhp->zfs_hdl; 392 uint64_t keystatus; 393 int remount = 0, rc; 394 395 if (options == NULL) { 396 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts)); 397 } else { 398 (void) strlcpy(mntopts, options, sizeof (mntopts)); 399 } 400 401 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL) 402 remount = 1; 403 404 /* Potentially duplicates some checks if invoked by zfs_mount(). */ 405 if (!zfs_is_mountable_internal(zhp, mountpoint)) 406 return (0); 407 408 /* 409 * If the pool is imported read-only then all mounts must be read-only 410 */ 411 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 412 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts)); 413 414 /* 415 * Append default mount options which apply to the mount point. 416 * This is done because under Linux (unlike Solaris) multiple mount 417 * points may reference a single super block. This means that just 418 * given a super block there is no back reference to update the per 419 * mount point options. 420 */ 421 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts)); 422 if (rc) { 423 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 424 "default options unavailable")); 425 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 426 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 427 mountpoint)); 428 } 429 430 /* 431 * If the filesystem is encrypted the key must be loaded in order to 432 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether 433 * or not we attempt to load the keys. Note: we must call 434 * zfs_refresh_properties() here since some callers of this function 435 * (most notably zpool_enable_datasets()) may implicitly load our key 436 * by loading the parent's key first. 437 */ 438 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 439 zfs_refresh_properties(zhp); 440 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS); 441 442 /* 443 * If the key is unavailable and MS_CRYPT is set give the 444 * user a chance to enter the key. Otherwise just fail 445 * immediately. 446 */ 447 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) { 448 if (flags & MS_CRYPT) { 449 rc = zfs_crypto_get_encryption_root(zhp, 450 &is_encroot, prop_encroot); 451 if (rc) { 452 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 453 "Failed to get encryption root for " 454 "'%s'."), zfs_get_name(zhp)); 455 return (rc); 456 } 457 458 if (!is_encroot) { 459 encroot_hp = zfs_open(hdl, prop_encroot, 460 ZFS_TYPE_DATASET); 461 if (encroot_hp == NULL) 462 return (hdl->libzfs_error); 463 } 464 465 rc = zfs_crypto_load_key(encroot_hp, 466 B_FALSE, NULL); 467 468 if (!is_encroot) 469 zfs_close(encroot_hp); 470 if (rc) 471 return (rc); 472 } else { 473 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 474 "encryption key not loaded")); 475 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 476 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 477 mountpoint)); 478 } 479 } 480 481 } 482 483 /* 484 * Append zfsutil option so the mount helper allow the mount 485 */ 486 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts)); 487 488 /* Create the directory if it doesn't already exist */ 489 if (lstat(mountpoint, &buf) != 0) { 490 if (mkdirp(mountpoint, 0755) != 0) { 491 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 492 "failed to create mountpoint: %s"), 493 strerror(errno)); 494 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 495 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 496 mountpoint)); 497 } 498 } 499 500 /* 501 * Overlay mounts are enabled by default but may be disabled 502 * via the 'overlay' property. The -O flag remains for compatibility. 503 */ 504 if (!(flags & MS_OVERLAY)) { 505 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay, 506 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) { 507 if (strcmp(overlay, "on") == 0) { 508 flags |= MS_OVERLAY; 509 } 510 } 511 } 512 513 /* 514 * Determine if the mountpoint is empty. If so, refuse to perform the 515 * mount. We don't perform this check if 'remount' is 516 * specified or if overlay option (-O) is given 517 */ 518 if ((flags & MS_OVERLAY) == 0 && !remount && 519 !dir_is_empty(mountpoint)) { 520 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 521 "directory is not empty")); 522 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 523 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 524 } 525 526 /* perform the mount */ 527 rc = do_mount(zhp, mountpoint, mntopts, flags); 528 if (rc) { 529 /* 530 * Generic errors are nasty, but there are just way too many 531 * from mount(), and they're well-understood. We pick a few 532 * common ones to improve upon. 533 */ 534 if (rc == EBUSY) { 535 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 536 "mountpoint or dataset is busy")); 537 } else if (rc == EPERM) { 538 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 539 "Insufficient privileges")); 540 } else if (rc == ENOTSUP) { 541 int spa_version; 542 543 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 544 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 545 "Can't mount a version %llu " 546 "file system on a version %d pool. Pool must be" 547 " upgraded to mount this file system."), 548 (u_longlong_t)zfs_prop_get_int(zhp, 549 ZFS_PROP_VERSION), spa_version); 550 } else { 551 zfs_error_aux(hdl, "%s", strerror(rc)); 552 } 553 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 554 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 555 zhp->zfs_name)); 556 } 557 558 /* remove the mounted entry before re-adding on remount */ 559 if (remount) 560 libzfs_mnttab_remove(hdl, zhp->zfs_name); 561 562 /* add the mounted entry into our cache */ 563 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts); 564 return (0); 565 } 566 567 /* 568 * Unmount a single filesystem. 569 */ 570 static int 571 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags) 572 { 573 int error; 574 575 error = do_unmount(zhp, mountpoint, flags); 576 if (error != 0) { 577 int libzfs_err; 578 579 switch (error) { 580 case EBUSY: 581 libzfs_err = EZFS_BUSY; 582 break; 583 case EIO: 584 libzfs_err = EZFS_IO; 585 break; 586 case ENOENT: 587 libzfs_err = EZFS_NOENT; 588 break; 589 case ENOMEM: 590 libzfs_err = EZFS_NOMEM; 591 break; 592 case EPERM: 593 libzfs_err = EZFS_PERM; 594 break; 595 default: 596 libzfs_err = EZFS_UMOUNTFAILED; 597 } 598 return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err, 599 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 600 mountpoint)); 601 } 602 603 return (0); 604 } 605 606 /* 607 * Unmount the given filesystem. 608 */ 609 int 610 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 611 { 612 libzfs_handle_t *hdl = zhp->zfs_hdl; 613 struct mnttab entry; 614 char *mntpt = NULL; 615 boolean_t encroot, unmounted = B_FALSE; 616 617 /* check to see if we need to unmount the filesystem */ 618 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 619 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 620 /* 621 * mountpoint may have come from a call to 622 * getmnt/getmntany if it isn't NULL. If it is NULL, 623 * we know it comes from libzfs_mnttab_find which can 624 * then get freed later. We strdup it to play it safe. 625 */ 626 if (mountpoint == NULL) 627 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 628 else 629 mntpt = zfs_strdup(hdl, mountpoint); 630 631 /* 632 * Unshare and unmount the filesystem 633 */ 634 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) { 635 free(mntpt); 636 return (-1); 637 } 638 zfs_commit_all_shares(); 639 640 if (unmount_one(zhp, mntpt, flags) != 0) { 641 free(mntpt); 642 (void) zfs_shareall(zhp); 643 zfs_commit_all_shares(); 644 return (-1); 645 } 646 647 libzfs_mnttab_remove(hdl, zhp->zfs_name); 648 free(mntpt); 649 unmounted = B_TRUE; 650 } 651 652 /* 653 * If the MS_CRYPT flag is provided we must ensure we attempt to 654 * unload the dataset's key regardless of whether we did any work 655 * to unmount it. We only do this for encryption roots. 656 */ 657 if ((flags & MS_CRYPT) != 0 && 658 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { 659 zfs_refresh_properties(zhp); 660 661 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 && 662 unmounted) { 663 (void) zfs_mount(zhp, NULL, 0); 664 return (-1); 665 } 666 667 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 668 ZFS_KEYSTATUS_AVAILABLE && 669 zfs_crypto_unload_key(zhp) != 0) { 670 (void) zfs_mount(zhp, NULL, 0); 671 return (-1); 672 } 673 } 674 675 return (0); 676 } 677 678 /* 679 * Unmount this filesystem and any children inheriting the mountpoint property. 680 * To do this, just act like we're changing the mountpoint property, but don't 681 * remount the filesystems afterwards. 682 */ 683 int 684 zfs_unmountall(zfs_handle_t *zhp, int flags) 685 { 686 prop_changelist_t *clp; 687 int ret; 688 689 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 690 CL_GATHER_ITER_MOUNTED, flags); 691 if (clp == NULL) 692 return (-1); 693 694 ret = changelist_prefix(clp); 695 changelist_free(clp); 696 697 return (ret); 698 } 699 700 boolean_t 701 zfs_is_shared(zfs_handle_t *zhp) 702 { 703 zfs_share_type_t rc = 0; 704 zfs_share_proto_t *curr_proto; 705 706 if (ZFS_IS_VOLUME(zhp)) 707 return (B_FALSE); 708 709 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 710 curr_proto++) 711 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 712 713 return (rc ? B_TRUE : B_FALSE); 714 } 715 716 /* 717 * Unshare a filesystem by mountpoint. 718 */ 719 int 720 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 721 zfs_share_proto_t proto) 722 { 723 int err; 724 725 err = sa_disable_share(mountpoint, proto_table[proto].p_name); 726 if (err != SA_OK) { 727 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 728 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 729 name, sa_errorstr(err))); 730 } 731 return (0); 732 } 733 734 /* 735 * Query libshare for the given mountpoint and protocol, returning 736 * a zfs_share_type_t value. 737 */ 738 zfs_share_type_t 739 is_shared(const char *mountpoint, zfs_share_proto_t proto) 740 { 741 if (sa_is_shared(mountpoint, proto_table[proto].p_name)) { 742 switch (proto) { 743 case PROTO_NFS: 744 return (SHARED_NFS); 745 case PROTO_SMB: 746 return (SHARED_SMB); 747 default: 748 return (SHARED_NOT_SHARED); 749 } 750 } 751 return (SHARED_NOT_SHARED); 752 } 753 754 /* 755 * Share the given filesystem according to the options in the specified 756 * protocol specific properties (sharenfs, sharesmb). We rely 757 * on "libshare" to do the dirty work for us. 758 */ 759 int 760 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 761 { 762 char mountpoint[ZFS_MAXPROPLEN]; 763 char shareopts[ZFS_MAXPROPLEN]; 764 char sourcestr[ZFS_MAXPROPLEN]; 765 zfs_share_proto_t *curr_proto; 766 zprop_source_t sourcetype; 767 int err = 0; 768 769 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0)) 770 return (0); 771 772 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 773 /* 774 * Return success if there are no share options. 775 */ 776 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 777 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 778 ZFS_MAXPROPLEN, B_FALSE) != 0 || 779 strcmp(shareopts, "off") == 0) 780 continue; 781 782 /* 783 * If the 'zoned' property is set, then zfs_is_mountable() 784 * will have already bailed out if we are in the global zone. 785 * But local zones cannot be NFS servers, so we ignore it for 786 * local zones as well. 787 */ 788 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 789 continue; 790 791 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts, 792 proto_table[*curr_proto].p_name); 793 if (err != SA_OK) { 794 return (zfs_error_fmt(zhp->zfs_hdl, 795 proto_table[*curr_proto].p_share_err, 796 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"), 797 zfs_get_name(zhp), sa_errorstr(err))); 798 } 799 800 } 801 return (0); 802 } 803 804 int 805 zfs_share(zfs_handle_t *zhp) 806 { 807 assert(!ZFS_IS_VOLUME(zhp)); 808 return (zfs_share_proto(zhp, share_all_proto)); 809 } 810 811 int 812 zfs_unshare(zfs_handle_t *zhp) 813 { 814 assert(!ZFS_IS_VOLUME(zhp)); 815 return (zfs_unshareall(zhp)); 816 } 817 818 /* 819 * Check to see if the filesystem is currently shared. 820 */ 821 static zfs_share_type_t 822 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 823 { 824 char *mountpoint; 825 zfs_share_type_t rc; 826 827 if (!zfs_is_mounted(zhp, &mountpoint)) 828 return (SHARED_NOT_SHARED); 829 830 if ((rc = is_shared(mountpoint, proto)) 831 != SHARED_NOT_SHARED) { 832 if (where != NULL) 833 *where = mountpoint; 834 else 835 free(mountpoint); 836 return (rc); 837 } else { 838 free(mountpoint); 839 return (SHARED_NOT_SHARED); 840 } 841 } 842 843 boolean_t 844 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 845 { 846 return (zfs_is_shared_proto(zhp, where, 847 PROTO_NFS) != SHARED_NOT_SHARED); 848 } 849 850 boolean_t 851 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 852 { 853 return (zfs_is_shared_proto(zhp, where, 854 PROTO_SMB) != SHARED_NOT_SHARED); 855 } 856 857 /* 858 * zfs_parse_options(options, proto) 859 * 860 * Call the legacy parse interface to get the protocol specific 861 * options using the NULL arg to indicate that this is a "parse" only. 862 */ 863 int 864 zfs_parse_options(char *options, zfs_share_proto_t proto) 865 { 866 return (sa_validate_shareopts(options, proto_table[proto].p_name)); 867 } 868 869 void 870 zfs_commit_proto(zfs_share_proto_t *proto) 871 { 872 zfs_share_proto_t *curr_proto; 873 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 874 sa_commit_shares(proto_table[*curr_proto].p_name); 875 } 876 } 877 878 void 879 zfs_commit_nfs_shares(void) 880 { 881 zfs_commit_proto(nfs_only); 882 } 883 884 void 885 zfs_commit_smb_shares(void) 886 { 887 zfs_commit_proto(smb_only); 888 } 889 890 void 891 zfs_commit_all_shares(void) 892 { 893 zfs_commit_proto(share_all_proto); 894 } 895 896 void 897 zfs_commit_shares(const char *proto) 898 { 899 if (proto == NULL) 900 zfs_commit_proto(share_all_proto); 901 else if (strcmp(proto, "nfs") == 0) 902 zfs_commit_proto(nfs_only); 903 else if (strcmp(proto, "smb") == 0) 904 zfs_commit_proto(smb_only); 905 } 906 907 int 908 zfs_share_nfs(zfs_handle_t *zhp) 909 { 910 return (zfs_share_proto(zhp, nfs_only)); 911 } 912 913 int 914 zfs_share_smb(zfs_handle_t *zhp) 915 { 916 return (zfs_share_proto(zhp, smb_only)); 917 } 918 919 int 920 zfs_shareall(zfs_handle_t *zhp) 921 { 922 return (zfs_share_proto(zhp, share_all_proto)); 923 } 924 925 /* 926 * Unshare the given filesystem. 927 */ 928 int 929 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 930 zfs_share_proto_t *proto) 931 { 932 libzfs_handle_t *hdl = zhp->zfs_hdl; 933 struct mnttab entry; 934 char *mntpt = NULL; 935 936 /* check to see if need to unmount the filesystem */ 937 if (mountpoint != NULL) 938 mntpt = zfs_strdup(hdl, mountpoint); 939 940 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 941 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 942 zfs_share_proto_t *curr_proto; 943 944 if (mountpoint == NULL) 945 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 946 947 for (curr_proto = proto; *curr_proto != PROTO_END; 948 curr_proto++) { 949 950 if (is_shared(mntpt, *curr_proto)) { 951 if (unshare_one(hdl, zhp->zfs_name, 952 mntpt, *curr_proto) != 0) { 953 if (mntpt != NULL) 954 free(mntpt); 955 return (-1); 956 } 957 } 958 } 959 } 960 if (mntpt != NULL) 961 free(mntpt); 962 963 return (0); 964 } 965 966 int 967 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 968 { 969 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 970 } 971 972 int 973 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 974 { 975 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 976 } 977 978 /* 979 * Same as zfs_unmountall(), but for NFS and SMB unshares. 980 */ 981 static int 982 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 983 { 984 prop_changelist_t *clp; 985 int ret; 986 987 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 988 if (clp == NULL) 989 return (-1); 990 991 ret = changelist_unshare(clp, proto); 992 changelist_free(clp); 993 994 return (ret); 995 } 996 997 int 998 zfs_unshareall_nfs(zfs_handle_t *zhp) 999 { 1000 return (zfs_unshareall_proto(zhp, nfs_only)); 1001 } 1002 1003 int 1004 zfs_unshareall_smb(zfs_handle_t *zhp) 1005 { 1006 return (zfs_unshareall_proto(zhp, smb_only)); 1007 } 1008 1009 int 1010 zfs_unshareall(zfs_handle_t *zhp) 1011 { 1012 return (zfs_unshareall_proto(zhp, share_all_proto)); 1013 } 1014 1015 int 1016 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1017 { 1018 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1019 } 1020 1021 int 1022 zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint, 1023 const char *proto) 1024 { 1025 if (proto == NULL) 1026 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1027 if (strcmp(proto, "nfs") == 0) 1028 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 1029 else if (strcmp(proto, "smb") == 0) 1030 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 1031 else 1032 return (1); 1033 } 1034 1035 /* 1036 * Remove the mountpoint associated with the current dataset, if necessary. 1037 * We only remove the underlying directory if: 1038 * 1039 * - The mountpoint is not 'none' or 'legacy' 1040 * - The mountpoint is non-empty 1041 * - The mountpoint is the default or inherited 1042 * - The 'zoned' property is set, or we're in a local zone 1043 * 1044 * Any other directories we leave alone. 1045 */ 1046 void 1047 remove_mountpoint(zfs_handle_t *zhp) 1048 { 1049 char mountpoint[ZFS_MAXPROPLEN]; 1050 zprop_source_t source; 1051 1052 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1053 &source, 0)) 1054 return; 1055 1056 if (source == ZPROP_SRC_DEFAULT || 1057 source == ZPROP_SRC_INHERITED) { 1058 /* 1059 * Try to remove the directory, silently ignoring any errors. 1060 * The filesystem may have since been removed or moved around, 1061 * and this error isn't really useful to the administrator in 1062 * any way. 1063 */ 1064 (void) rmdir(mountpoint); 1065 } 1066 } 1067 1068 /* 1069 * Add the given zfs handle to the cb_handles array, dynamically reallocating 1070 * the array if it is out of space. 1071 */ 1072 void 1073 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1074 { 1075 if (cbp->cb_alloc == cbp->cb_used) { 1076 size_t newsz; 1077 zfs_handle_t **newhandles; 1078 1079 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 1080 newhandles = zfs_realloc(zhp->zfs_hdl, 1081 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 1082 newsz * sizeof (zfs_handle_t *)); 1083 cbp->cb_handles = newhandles; 1084 cbp->cb_alloc = newsz; 1085 } 1086 cbp->cb_handles[cbp->cb_used++] = zhp; 1087 } 1088 1089 /* 1090 * Recursive helper function used during file system enumeration 1091 */ 1092 static int 1093 zfs_iter_cb(zfs_handle_t *zhp, void *data) 1094 { 1095 get_all_cb_t *cbp = data; 1096 1097 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1098 zfs_close(zhp); 1099 return (0); 1100 } 1101 1102 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1103 zfs_close(zhp); 1104 return (0); 1105 } 1106 1107 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1108 ZFS_KEYSTATUS_UNAVAILABLE) { 1109 zfs_close(zhp); 1110 return (0); 1111 } 1112 1113 /* 1114 * If this filesystem is inconsistent and has a receive resume 1115 * token, we can not mount it. 1116 */ 1117 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1118 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1119 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1120 zfs_close(zhp); 1121 return (0); 1122 } 1123 1124 libzfs_add_handle(cbp, zhp); 1125 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) { 1126 zfs_close(zhp); 1127 return (-1); 1128 } 1129 return (0); 1130 } 1131 1132 /* 1133 * Sort comparator that compares two mountpoint paths. We sort these paths so 1134 * that subdirectories immediately follow their parents. This means that we 1135 * effectively treat the '/' character as the lowest value non-nul char. 1136 * Since filesystems from non-global zones can have the same mountpoint 1137 * as other filesystems, the comparator sorts global zone filesystems to 1138 * the top of the list. This means that the global zone will traverse the 1139 * filesystem list in the correct order and can stop when it sees the 1140 * first zoned filesystem. In a non-global zone, only the delegated 1141 * filesystems are seen. 1142 * 1143 * An example sorted list using this comparator would look like: 1144 * 1145 * /foo 1146 * /foo/bar 1147 * /foo/bar/baz 1148 * /foo/baz 1149 * /foo.bar 1150 * /foo (NGZ1) 1151 * /foo (NGZ2) 1152 * 1153 * The mounting code depends on this ordering to deterministically iterate 1154 * over filesystems in order to spawn parallel mount tasks. 1155 */ 1156 static int 1157 mountpoint_cmp(const void *arga, const void *argb) 1158 { 1159 zfs_handle_t *const *zap = arga; 1160 zfs_handle_t *za = *zap; 1161 zfs_handle_t *const *zbp = argb; 1162 zfs_handle_t *zb = *zbp; 1163 char mounta[MAXPATHLEN]; 1164 char mountb[MAXPATHLEN]; 1165 const char *a = mounta; 1166 const char *b = mountb; 1167 boolean_t gota, gotb; 1168 uint64_t zoneda, zonedb; 1169 1170 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED); 1171 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED); 1172 if (zoneda && !zonedb) 1173 return (1); 1174 if (!zoneda && zonedb) 1175 return (-1); 1176 1177 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 1178 if (gota) { 1179 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 1180 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1181 } 1182 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1183 if (gotb) { 1184 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1185 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1186 } 1187 1188 if (gota && gotb) { 1189 while (*a != '\0' && (*a == *b)) { 1190 a++; 1191 b++; 1192 } 1193 if (*a == *b) 1194 return (0); 1195 if (*a == '\0') 1196 return (-1); 1197 if (*b == '\0') 1198 return (1); 1199 if (*a == '/') 1200 return (-1); 1201 if (*b == '/') 1202 return (1); 1203 return (*a < *b ? -1 : *a > *b); 1204 } 1205 1206 if (gota) 1207 return (-1); 1208 if (gotb) 1209 return (1); 1210 1211 /* 1212 * If neither filesystem has a mountpoint, revert to sorting by 1213 * dataset name. 1214 */ 1215 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1216 } 1217 1218 /* 1219 * Return true if path2 is a child of path1 or path2 equals path1 or 1220 * path1 is "/" (path2 is always a child of "/"). 1221 */ 1222 static boolean_t 1223 libzfs_path_contains(const char *path1, const char *path2) 1224 { 1225 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 || 1226 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/')); 1227 } 1228 1229 /* 1230 * Given a mountpoint specified by idx in the handles array, find the first 1231 * non-descendent of that mountpoint and return its index. Descendant paths 1232 * start with the parent's path. This function relies on the ordering 1233 * enforced by mountpoint_cmp(). 1234 */ 1235 static int 1236 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1237 { 1238 char parent[ZFS_MAXPROPLEN]; 1239 char child[ZFS_MAXPROPLEN]; 1240 int i; 1241 1242 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1243 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1244 1245 for (i = idx + 1; i < num_handles; i++) { 1246 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1247 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1248 if (!libzfs_path_contains(parent, child)) 1249 break; 1250 } 1251 return (i); 1252 } 1253 1254 typedef struct mnt_param { 1255 libzfs_handle_t *mnt_hdl; 1256 tpool_t *mnt_tp; 1257 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1258 size_t mnt_num_handles; 1259 int mnt_idx; /* Index of selected entry to mount */ 1260 zfs_iter_f mnt_func; 1261 void *mnt_data; 1262 } mnt_param_t; 1263 1264 /* 1265 * Allocate and populate the parameter struct for mount function, and 1266 * schedule mounting of the entry selected by idx. 1267 */ 1268 static void 1269 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1270 size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp) 1271 { 1272 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1273 1274 mnt_param->mnt_hdl = hdl; 1275 mnt_param->mnt_tp = tp; 1276 mnt_param->mnt_zhps = handles; 1277 mnt_param->mnt_num_handles = num_handles; 1278 mnt_param->mnt_idx = idx; 1279 mnt_param->mnt_func = func; 1280 mnt_param->mnt_data = data; 1281 1282 (void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param); 1283 } 1284 1285 /* 1286 * This is the structure used to keep state of mounting or sharing operations 1287 * during a call to zpool_enable_datasets(). 1288 */ 1289 typedef struct mount_state { 1290 /* 1291 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1292 * could update this variable concurrently, no synchronization is 1293 * needed as it's only ever set to -1. 1294 */ 1295 int ms_mntstatus; 1296 int ms_mntflags; 1297 const char *ms_mntopts; 1298 } mount_state_t; 1299 1300 static int 1301 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1302 { 1303 mount_state_t *ms = arg; 1304 int ret = 0; 1305 1306 /* 1307 * don't attempt to mount encrypted datasets with 1308 * unloaded keys 1309 */ 1310 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) == 1311 ZFS_KEYSTATUS_UNAVAILABLE) 1312 return (0); 1313 1314 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1315 ret = ms->ms_mntstatus = -1; 1316 return (ret); 1317 } 1318 1319 static int 1320 zfs_share_one(zfs_handle_t *zhp, void *arg) 1321 { 1322 mount_state_t *ms = arg; 1323 int ret = 0; 1324 1325 if (zfs_share(zhp) != 0) 1326 ret = ms->ms_mntstatus = -1; 1327 return (ret); 1328 } 1329 1330 /* 1331 * Thread pool function to mount one file system. On completion, it finds and 1332 * schedules its children to be mounted. This depends on the sorting done in 1333 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1334 * each descending from the previous) will have no parallelism since we always 1335 * have to wait for the parent to finish mounting before we can schedule 1336 * its children. 1337 */ 1338 static void 1339 zfs_mount_task(void *arg) 1340 { 1341 mnt_param_t *mp = arg; 1342 int idx = mp->mnt_idx; 1343 zfs_handle_t **handles = mp->mnt_zhps; 1344 size_t num_handles = mp->mnt_num_handles; 1345 char mountpoint[ZFS_MAXPROPLEN]; 1346 1347 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1348 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1349 1350 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1351 return; 1352 1353 /* 1354 * We dispatch tasks to mount filesystems with mountpoints underneath 1355 * this one. We do this by dispatching the next filesystem with a 1356 * descendant mountpoint of the one we just mounted, then skip all of 1357 * its descendants, dispatch the next descendant mountpoint, and so on. 1358 * The non_descendant_idx() function skips over filesystems that are 1359 * descendants of the filesystem we just dispatched. 1360 */ 1361 for (int i = idx + 1; i < num_handles; 1362 i = non_descendant_idx(handles, num_handles, i)) { 1363 char child[ZFS_MAXPROPLEN]; 1364 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1365 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1366 1367 if (!libzfs_path_contains(mountpoint, child)) 1368 break; /* not a descendant, return */ 1369 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1370 mp->mnt_func, mp->mnt_data, mp->mnt_tp); 1371 } 1372 free(mp); 1373 } 1374 1375 /* 1376 * Issue the func callback for each ZFS handle contained in the handles 1377 * array. This function is used to mount all datasets, and so this function 1378 * guarantees that filesystems for parent mountpoints are called before their 1379 * children. As such, before issuing any callbacks, we first sort the array 1380 * of handles by mountpoint. 1381 * 1382 * Callbacks are issued in one of two ways: 1383 * 1384 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT 1385 * environment variable is set, then we issue callbacks sequentially. 1386 * 1387 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT 1388 * environment variable is not set, then we use a tpool to dispatch threads 1389 * to mount filesystems in parallel. This function dispatches tasks to mount 1390 * the filesystems at the top-level mountpoints, and these tasks in turn 1391 * are responsible for recursively mounting filesystems in their children 1392 * mountpoints. 1393 */ 1394 void 1395 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1396 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel) 1397 { 1398 zoneid_t zoneid = getzoneid(); 1399 1400 /* 1401 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1402 * variable that can be used as a convenience to do a/b comparison 1403 * of serial vs. parallel mounting. 1404 */ 1405 boolean_t serial_mount = !parallel || 1406 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1407 1408 /* 1409 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1410 * of how these are sorted. 1411 */ 1412 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1413 1414 if (serial_mount) { 1415 for (int i = 0; i < num_handles; i++) { 1416 func(handles[i], data); 1417 } 1418 return; 1419 } 1420 1421 /* 1422 * Issue the callback function for each dataset using a parallel 1423 * algorithm that uses a thread pool to manage threads. 1424 */ 1425 tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL); 1426 1427 /* 1428 * There may be multiple "top level" mountpoints outside of the pool's 1429 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1430 * these. 1431 */ 1432 for (int i = 0; i < num_handles; 1433 i = non_descendant_idx(handles, num_handles, i)) { 1434 /* 1435 * Since the mountpoints have been sorted so that the zoned 1436 * filesystems are at the end, a zoned filesystem seen from 1437 * the global zone means that we're done. 1438 */ 1439 if (zoneid == GLOBAL_ZONEID && 1440 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED)) 1441 break; 1442 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1443 tp); 1444 } 1445 1446 tpool_wait(tp); /* wait for all scheduled mounts to complete */ 1447 tpool_destroy(tp); 1448 } 1449 1450 /* 1451 * Mount and share all datasets within the given pool. This assumes that no 1452 * datasets within the pool are currently mounted. 1453 */ 1454 int 1455 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1456 { 1457 get_all_cb_t cb = { 0 }; 1458 mount_state_t ms = { 0 }; 1459 zfs_handle_t *zfsp; 1460 int ret = 0; 1461 1462 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1463 ZFS_TYPE_DATASET)) == NULL) 1464 goto out; 1465 1466 /* 1467 * Gather all non-snapshot datasets within the pool. Start by adding 1468 * the root filesystem for this pool to the list, and then iterate 1469 * over all child filesystems. 1470 */ 1471 libzfs_add_handle(&cb, zfsp); 1472 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0) 1473 goto out; 1474 1475 /* 1476 * Mount all filesystems 1477 */ 1478 ms.ms_mntopts = mntopts; 1479 ms.ms_mntflags = flags; 1480 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1481 zfs_mount_one, &ms, B_TRUE); 1482 if (ms.ms_mntstatus != 0) 1483 ret = ms.ms_mntstatus; 1484 1485 /* 1486 * Share all filesystems that need to be shared. This needs to be 1487 * a separate pass because libshare is not mt-safe, and so we need 1488 * to share serially. 1489 */ 1490 ms.ms_mntstatus = 0; 1491 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1492 zfs_share_one, &ms, B_FALSE); 1493 if (ms.ms_mntstatus != 0) 1494 ret = ms.ms_mntstatus; 1495 else 1496 zfs_commit_all_shares(); 1497 1498 out: 1499 for (int i = 0; i < cb.cb_used; i++) 1500 zfs_close(cb.cb_handles[i]); 1501 free(cb.cb_handles); 1502 1503 return (ret); 1504 } 1505 1506 struct sets_s { 1507 char *mountpoint; 1508 zfs_handle_t *dataset; 1509 }; 1510 1511 static int 1512 mountpoint_compare(const void *a, const void *b) 1513 { 1514 const struct sets_s *mounta = (struct sets_s *)a; 1515 const struct sets_s *mountb = (struct sets_s *)b; 1516 1517 return (strcmp(mountb->mountpoint, mounta->mountpoint)); 1518 } 1519 1520 /* 1521 * Unshare and unmount all datasets within the given pool. We don't want to 1522 * rely on traversing the DSL to discover the filesystems within the pool, 1523 * because this may be expensive (if not all of them are mounted), and can fail 1524 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts 1525 * and gather all the filesystems that are currently mounted. 1526 */ 1527 int 1528 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1529 { 1530 int used, alloc; 1531 FILE *mnttab; 1532 struct mnttab entry; 1533 size_t namelen; 1534 struct sets_s *sets = NULL; 1535 libzfs_handle_t *hdl = zhp->zpool_hdl; 1536 int i; 1537 int ret = -1; 1538 int flags = (force ? MS_FORCE : 0); 1539 1540 namelen = strlen(zhp->zpool_name); 1541 1542 if ((mnttab = fopen(MNTTAB, "re")) == NULL) 1543 return (ENOENT); 1544 1545 used = alloc = 0; 1546 while (getmntent(mnttab, &entry) == 0) { 1547 /* 1548 * Ignore non-ZFS entries. 1549 */ 1550 if (entry.mnt_fstype == NULL || 1551 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1552 continue; 1553 1554 /* 1555 * Ignore filesystems not within this pool. 1556 */ 1557 if (entry.mnt_mountp == NULL || 1558 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1559 (entry.mnt_special[namelen] != '/' && 1560 entry.mnt_special[namelen] != '\0')) 1561 continue; 1562 1563 /* 1564 * At this point we've found a filesystem within our pool. Add 1565 * it to our growing list. 1566 */ 1567 if (used == alloc) { 1568 if (alloc == 0) { 1569 1570 if ((sets = zfs_alloc(hdl, 1571 8 * sizeof (struct sets_s))) == NULL) 1572 goto out; 1573 1574 alloc = 8; 1575 } else { 1576 void *ptr; 1577 1578 if ((ptr = zfs_realloc(hdl, sets, 1579 alloc * sizeof (struct sets_s), 1580 alloc * 2 * sizeof (struct sets_s))) 1581 == NULL) 1582 goto out; 1583 sets = ptr; 1584 1585 alloc *= 2; 1586 } 1587 } 1588 1589 if ((sets[used].mountpoint = zfs_strdup(hdl, 1590 entry.mnt_mountp)) == NULL) 1591 goto out; 1592 1593 /* 1594 * This is allowed to fail, in case there is some I/O error. It 1595 * is only used to determine if we need to remove the underlying 1596 * mountpoint, so failure is not fatal. 1597 */ 1598 sets[used].dataset = make_dataset_handle(hdl, 1599 entry.mnt_special); 1600 1601 used++; 1602 } 1603 1604 /* 1605 * At this point, we have the entire list of filesystems, so sort it by 1606 * mountpoint. 1607 */ 1608 qsort(sets, used, sizeof (struct sets_s), mountpoint_compare); 1609 1610 /* 1611 * Walk through and first unshare everything. 1612 */ 1613 for (i = 0; i < used; i++) { 1614 zfs_share_proto_t *curr_proto; 1615 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1616 curr_proto++) { 1617 if (is_shared(sets[i].mountpoint, *curr_proto) && 1618 unshare_one(hdl, sets[i].mountpoint, 1619 sets[i].mountpoint, *curr_proto) != 0) 1620 goto out; 1621 } 1622 } 1623 zfs_commit_all_shares(); 1624 1625 /* 1626 * Now unmount everything, removing the underlying directories as 1627 * appropriate. 1628 */ 1629 for (i = 0; i < used; i++) { 1630 if (unmount_one(sets[i].dataset, sets[i].mountpoint, 1631 flags) != 0) 1632 goto out; 1633 } 1634 1635 for (i = 0; i < used; i++) { 1636 if (sets[i].dataset) 1637 remove_mountpoint(sets[i].dataset); 1638 } 1639 1640 ret = 0; 1641 out: 1642 (void) fclose(mnttab); 1643 for (i = 0; i < used; i++) { 1644 if (sets[i].dataset) 1645 zfs_close(sets[i].dataset); 1646 free(sets[i].mountpoint); 1647 } 1648 free(sets); 1649 1650 return (ret); 1651 } 1652