xref: /freebsd/sys/contrib/openzfs/lib/libzfs/libzfs_mount.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2014, 2021 by Delphix. All rights reserved.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27  * Copyright 2017 RackTop Systems.
28  * Copyright (c) 2018 Datto Inc.
29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 /*
33  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
34  * to deal with the OS.  The following functions are the main entry points --
35  * they are used by mount and unmount and when changing a filesystem's
36  * mountpoint.
37  *
38  *	zfs_is_mounted()
39  *	zfs_mount()
40  *	zfs_mount_at()
41  *	zfs_unmount()
42  *	zfs_unmountall()
43  *
44  * This file also contains the functions used to manage sharing filesystems via
45  * NFS and iSCSI:
46  *
47  *	zfs_is_shared()
48  *	zfs_share()
49  *	zfs_unshare()
50  *
51  *	zfs_is_shared_nfs()
52  *	zfs_is_shared_smb()
53  *	zfs_share_proto()
54  *	zfs_shareall();
55  *	zfs_unshare_nfs()
56  *	zfs_unshare_smb()
57  *	zfs_unshareall_nfs()
58  *	zfs_unshareall_smb()
59  *	zfs_unshareall()
60  *	zfs_unshareall_bypath()
61  *
62  * The following functions are available for pool consumers, and will
63  * mount/unmount and share/unshare all datasets within pool:
64  *
65  *	zpool_enable_datasets()
66  *	zpool_disable_datasets()
67  */
68 
69 #include <dirent.h>
70 #include <dlfcn.h>
71 #include <errno.h>
72 #include <fcntl.h>
73 #include <libgen.h>
74 #include <libintl.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <strings.h>
78 #include <unistd.h>
79 #include <zone.h>
80 #include <sys/mntent.h>
81 #include <sys/mount.h>
82 #include <sys/stat.h>
83 #include <sys/vfs.h>
84 #include <sys/dsl_crypt.h>
85 
86 #include <libzfs.h>
87 
88 #include "libzfs_impl.h"
89 #include <thread_pool.h>
90 
91 #include <libshare.h>
92 #include <sys/systeminfo.h>
93 #define	MAXISALEN	257	/* based on sysinfo(2) man page */
94 
95 static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
96 
97 static void zfs_mount_task(void *);
98 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
99     zfs_share_proto_t);
100 
101 /*
102  * The share protocols table must be in the same order as the zfs_share_proto_t
103  * enum in libzfs_impl.h
104  */
105 proto_table_t proto_table[PROTO_END] = {
106 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
107 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
108 };
109 
110 zfs_share_proto_t nfs_only[] = {
111 	PROTO_NFS,
112 	PROTO_END
113 };
114 
115 zfs_share_proto_t smb_only[] = {
116 	PROTO_SMB,
117 	PROTO_END
118 };
119 zfs_share_proto_t share_all_proto[] = {
120 	PROTO_NFS,
121 	PROTO_SMB,
122 	PROTO_END
123 };
124 
125 
126 
127 static boolean_t
128 dir_is_empty_stat(const char *dirname)
129 {
130 	struct stat st;
131 
132 	/*
133 	 * We only want to return false if the given path is a non empty
134 	 * directory, all other errors are handled elsewhere.
135 	 */
136 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
137 		return (B_TRUE);
138 	}
139 
140 	/*
141 	 * An empty directory will still have two entries in it, one
142 	 * entry for each of "." and "..".
143 	 */
144 	if (st.st_size > 2) {
145 		return (B_FALSE);
146 	}
147 
148 	return (B_TRUE);
149 }
150 
151 static boolean_t
152 dir_is_empty_readdir(const char *dirname)
153 {
154 	DIR *dirp;
155 	struct dirent64 *dp;
156 	int dirfd;
157 
158 	if ((dirfd = openat(AT_FDCWD, dirname,
159 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
160 		return (B_TRUE);
161 	}
162 
163 	if ((dirp = fdopendir(dirfd)) == NULL) {
164 		(void) close(dirfd);
165 		return (B_TRUE);
166 	}
167 
168 	while ((dp = readdir64(dirp)) != NULL) {
169 
170 		if (strcmp(dp->d_name, ".") == 0 ||
171 		    strcmp(dp->d_name, "..") == 0)
172 			continue;
173 
174 		(void) closedir(dirp);
175 		return (B_FALSE);
176 	}
177 
178 	(void) closedir(dirp);
179 	return (B_TRUE);
180 }
181 
182 /*
183  * Returns true if the specified directory is empty.  If we can't open the
184  * directory at all, return true so that the mount can fail with a more
185  * informative error message.
186  */
187 static boolean_t
188 dir_is_empty(const char *dirname)
189 {
190 	struct statfs64 st;
191 
192 	/*
193 	 * If the statvfs call fails or the filesystem is not a ZFS
194 	 * filesystem, fall back to the slow path which uses readdir.
195 	 */
196 	if ((statfs64(dirname, &st) != 0) ||
197 	    (st.f_type != ZFS_SUPER_MAGIC)) {
198 		return (dir_is_empty_readdir(dirname));
199 	}
200 
201 	/*
202 	 * At this point, we know the provided path is on a ZFS
203 	 * filesystem, so we can use stat instead of readdir to
204 	 * determine if the directory is empty or not. We try to avoid
205 	 * using readdir because that requires opening "dirname"; this
206 	 * open file descriptor can potentially end up in a child
207 	 * process if there's a concurrent fork, thus preventing the
208 	 * zfs_mount() from otherwise succeeding (the open file
209 	 * descriptor inherited by the child process will cause the
210 	 * parent's mount to fail with EBUSY). The performance
211 	 * implications of replacing the open, read, and close with a
212 	 * single stat is nice; but is not the main motivation for the
213 	 * added complexity.
214 	 */
215 	return (dir_is_empty_stat(dirname));
216 }
217 
218 /*
219  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
220  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
221  * 0.
222  */
223 boolean_t
224 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
225 {
226 	struct mnttab entry;
227 
228 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
229 		return (B_FALSE);
230 
231 	if (where != NULL)
232 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
233 
234 	return (B_TRUE);
235 }
236 
237 boolean_t
238 zfs_is_mounted(zfs_handle_t *zhp, char **where)
239 {
240 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
241 }
242 
243 /*
244  * Checks any higher order concerns about whether the given dataset is
245  * mountable, false otherwise.  zfs_is_mountable_internal specifically assumes
246  * that the caller has verified the sanity of mounting the dataset at
247  * mountpoint to the extent the caller wants.
248  */
249 static boolean_t
250 zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint)
251 {
252 
253 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
254 	    getzoneid() == GLOBAL_ZONEID)
255 		return (B_FALSE);
256 
257 	return (B_TRUE);
258 }
259 
260 /*
261  * Returns true if the given dataset is mountable, false otherwise.  Returns the
262  * mountpoint in 'buf'.
263  */
264 boolean_t
265 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
266     zprop_source_t *source, int flags)
267 {
268 	char sourceloc[MAXNAMELEN];
269 	zprop_source_t sourcetype;
270 
271 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
272 	    B_FALSE))
273 		return (B_FALSE);
274 
275 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
276 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
277 
278 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
279 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
280 		return (B_FALSE);
281 
282 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
283 		return (B_FALSE);
284 
285 	if (!zfs_is_mountable_internal(zhp, buf))
286 		return (B_FALSE);
287 
288 	if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
289 		return (B_FALSE);
290 
291 	if (source)
292 		*source = sourcetype;
293 
294 	return (B_TRUE);
295 }
296 
297 /*
298  * The filesystem is mounted by invoking the system mount utility rather
299  * than by the system call mount(2).  This ensures that the /etc/mtab
300  * file is correctly locked for the update.  Performing our own locking
301  * and /etc/mtab update requires making an unsafe assumption about how
302  * the mount utility performs its locking.  Unfortunately, this also means
303  * in the case of a mount failure we do not have the exact errno.  We must
304  * make due with return value from the mount process.
305  *
306  * In the long term a shared library called libmount is under development
307  * which provides a common API to address the locking and errno issues.
308  * Once the standard mount utility has been updated to use this library
309  * we can add an autoconf check to conditionally use it.
310  *
311  * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
312  */
313 
314 static int
315 zfs_add_option(zfs_handle_t *zhp, char *options, int len,
316     zfs_prop_t prop, char *on, char *off)
317 {
318 	char *source;
319 	uint64_t value;
320 
321 	/* Skip adding duplicate default options */
322 	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
323 		return (0);
324 
325 	/*
326 	 * zfs_prop_get_int() is not used to ensure our mount options
327 	 * are not influenced by the current /proc/self/mounts contents.
328 	 */
329 	value = getprop_uint64(zhp, prop, &source);
330 
331 	(void) strlcat(options, ",", len);
332 	(void) strlcat(options, value ? on : off, len);
333 
334 	return (0);
335 }
336 
337 static int
338 zfs_add_options(zfs_handle_t *zhp, char *options, int len)
339 {
340 	int error = 0;
341 
342 	error = zfs_add_option(zhp, options, len,
343 	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
344 	/*
345 	 * don't add relatime/strictatime when atime=off, otherwise strictatime
346 	 * will force atime=on
347 	 */
348 	if (strstr(options, MNTOPT_NOATIME) == NULL) {
349 		error = zfs_add_option(zhp, options, len,
350 		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
351 	}
352 	error = error ? error : zfs_add_option(zhp, options, len,
353 	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
354 	error = error ? error : zfs_add_option(zhp, options, len,
355 	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
356 	error = error ? error : zfs_add_option(zhp, options, len,
357 	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
358 	error = error ? error : zfs_add_option(zhp, options, len,
359 	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
360 	error = error ? error : zfs_add_option(zhp, options, len,
361 	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
362 
363 	return (error);
364 }
365 
366 int
367 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
368 {
369 	char mountpoint[ZFS_MAXPROPLEN];
370 
371 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
372 	    flags))
373 		return (0);
374 
375 	return (zfs_mount_at(zhp, options, flags, mountpoint));
376 }
377 
378 /*
379  * Mount the given filesystem.
380  */
381 int
382 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
383     const char *mountpoint)
384 {
385 	struct stat buf;
386 	char mntopts[MNT_LINE_MAX];
387 	char overlay[ZFS_MAXPROPLEN];
388 	libzfs_handle_t *hdl = zhp->zfs_hdl;
389 	uint64_t keystatus;
390 	int remount = 0, rc;
391 
392 	if (options == NULL) {
393 		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
394 	} else {
395 		(void) strlcpy(mntopts, options, sizeof (mntopts));
396 	}
397 
398 	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
399 		remount = 1;
400 
401 	/* Potentially duplicates some checks if invoked by zfs_mount(). */
402 	if (!zfs_is_mountable_internal(zhp, mountpoint))
403 		return (0);
404 
405 	/*
406 	 * If the pool is imported read-only then all mounts must be read-only
407 	 */
408 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
409 		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
410 
411 	/*
412 	 * Append default mount options which apply to the mount point.
413 	 * This is done because under Linux (unlike Solaris) multiple mount
414 	 * points may reference a single super block.  This means that just
415 	 * given a super block there is no back reference to update the per
416 	 * mount point options.
417 	 */
418 	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
419 	if (rc) {
420 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
421 		    "default options unavailable"));
422 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
423 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
424 		    mountpoint));
425 	}
426 
427 	/*
428 	 * If the filesystem is encrypted the key must be loaded  in order to
429 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
430 	 * or not we attempt to load the keys. Note: we must call
431 	 * zfs_refresh_properties() here since some callers of this function
432 	 * (most notably zpool_enable_datasets()) may implicitly load our key
433 	 * by loading the parent's key first.
434 	 */
435 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
436 		zfs_refresh_properties(zhp);
437 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
438 
439 		/*
440 		 * If the key is unavailable and MS_CRYPT is set give the
441 		 * user a chance to enter the key. Otherwise just fail
442 		 * immediately.
443 		 */
444 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
445 			if (flags & MS_CRYPT) {
446 				rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
447 				if (rc)
448 					return (rc);
449 			} else {
450 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
451 				    "encryption key not loaded"));
452 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
453 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
454 				    mountpoint));
455 			}
456 		}
457 
458 	}
459 
460 	/*
461 	 * Append zfsutil option so the mount helper allow the mount
462 	 */
463 	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
464 
465 	/* Create the directory if it doesn't already exist */
466 	if (lstat(mountpoint, &buf) != 0) {
467 		if (mkdirp(mountpoint, 0755) != 0) {
468 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
469 			    "failed to create mountpoint: %s"),
470 			    strerror(errno));
471 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
472 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
473 			    mountpoint));
474 		}
475 	}
476 
477 	/*
478 	 * Overlay mounts are enabled by default but may be disabled
479 	 * via the 'overlay' property. The -O flag remains for compatibility.
480 	 */
481 	if (!(flags & MS_OVERLAY)) {
482 		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
483 		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
484 			if (strcmp(overlay, "on") == 0) {
485 				flags |= MS_OVERLAY;
486 			}
487 		}
488 	}
489 
490 	/*
491 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
492 	 * mount.  We don't perform this check if 'remount' is
493 	 * specified or if overlay option (-O) is given
494 	 */
495 	if ((flags & MS_OVERLAY) == 0 && !remount &&
496 	    !dir_is_empty(mountpoint)) {
497 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
498 		    "directory is not empty"));
499 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
500 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
501 	}
502 
503 	/* perform the mount */
504 	rc = do_mount(zhp, mountpoint, mntopts, flags);
505 	if (rc) {
506 		/*
507 		 * Generic errors are nasty, but there are just way too many
508 		 * from mount(), and they're well-understood.  We pick a few
509 		 * common ones to improve upon.
510 		 */
511 		if (rc == EBUSY) {
512 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
513 			    "mountpoint or dataset is busy"));
514 		} else if (rc == EPERM) {
515 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
516 			    "Insufficient privileges"));
517 		} else if (rc == ENOTSUP) {
518 			char buf[256];
519 			int spa_version;
520 
521 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
522 			(void) snprintf(buf, sizeof (buf),
523 			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
524 			    "file system on a version %d pool. Pool must be"
525 			    " upgraded to mount this file system."),
526 			    (u_longlong_t)zfs_prop_get_int(zhp,
527 			    ZFS_PROP_VERSION), spa_version);
528 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
529 		} else {
530 			zfs_error_aux(hdl, strerror(rc));
531 		}
532 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
533 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
534 		    zhp->zfs_name));
535 	}
536 
537 	/* remove the mounted entry before re-adding on remount */
538 	if (remount)
539 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
540 
541 	/* add the mounted entry into our cache */
542 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
543 	return (0);
544 }
545 
546 /*
547  * Unmount a single filesystem.
548  */
549 static int
550 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
551 {
552 	int error;
553 
554 	error = do_unmount(mountpoint, flags);
555 	if (error != 0) {
556 		int libzfs_err;
557 
558 		switch (error) {
559 		case EBUSY:
560 			libzfs_err = EZFS_BUSY;
561 			break;
562 		case EIO:
563 			libzfs_err = EZFS_IO;
564 			break;
565 		case ENOENT:
566 			libzfs_err = EZFS_NOENT;
567 			break;
568 		case ENOMEM:
569 			libzfs_err = EZFS_NOMEM;
570 			break;
571 		case EPERM:
572 			libzfs_err = EZFS_PERM;
573 			break;
574 		default:
575 			libzfs_err = EZFS_UMOUNTFAILED;
576 		}
577 		return (zfs_error_fmt(hdl, libzfs_err,
578 		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
579 		    mountpoint));
580 	}
581 
582 	return (0);
583 }
584 
585 /*
586  * Unmount the given filesystem.
587  */
588 int
589 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
590 {
591 	libzfs_handle_t *hdl = zhp->zfs_hdl;
592 	struct mnttab entry;
593 	char *mntpt = NULL;
594 	boolean_t encroot, unmounted = B_FALSE;
595 
596 	/* check to see if we need to unmount the filesystem */
597 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
598 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
599 		/*
600 		 * mountpoint may have come from a call to
601 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
602 		 * we know it comes from libzfs_mnttab_find which can
603 		 * then get freed later. We strdup it to play it safe.
604 		 */
605 		if (mountpoint == NULL)
606 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
607 		else
608 			mntpt = zfs_strdup(hdl, mountpoint);
609 
610 		/*
611 		 * Unshare and unmount the filesystem
612 		 */
613 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
614 			free(mntpt);
615 			return (-1);
616 		}
617 		zfs_commit_all_shares();
618 
619 		if (unmount_one(hdl, mntpt, flags) != 0) {
620 			free(mntpt);
621 			(void) zfs_shareall(zhp);
622 			zfs_commit_all_shares();
623 			return (-1);
624 		}
625 
626 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
627 		free(mntpt);
628 		unmounted = B_TRUE;
629 	}
630 
631 	/*
632 	 * If the MS_CRYPT flag is provided we must ensure we attempt to
633 	 * unload the dataset's key regardless of whether we did any work
634 	 * to unmount it. We only do this for encryption roots.
635 	 */
636 	if ((flags & MS_CRYPT) != 0 &&
637 	    zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
638 		zfs_refresh_properties(zhp);
639 
640 		if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
641 		    unmounted) {
642 			(void) zfs_mount(zhp, NULL, 0);
643 			return (-1);
644 		}
645 
646 		if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
647 		    ZFS_KEYSTATUS_AVAILABLE &&
648 		    zfs_crypto_unload_key(zhp) != 0) {
649 			(void) zfs_mount(zhp, NULL, 0);
650 			return (-1);
651 		}
652 	}
653 
654 	return (0);
655 }
656 
657 /*
658  * Unmount this filesystem and any children inheriting the mountpoint property.
659  * To do this, just act like we're changing the mountpoint property, but don't
660  * remount the filesystems afterwards.
661  */
662 int
663 zfs_unmountall(zfs_handle_t *zhp, int flags)
664 {
665 	prop_changelist_t *clp;
666 	int ret;
667 
668 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
669 	    CL_GATHER_ITER_MOUNTED, flags);
670 	if (clp == NULL)
671 		return (-1);
672 
673 	ret = changelist_prefix(clp);
674 	changelist_free(clp);
675 
676 	return (ret);
677 }
678 
679 boolean_t
680 zfs_is_shared(zfs_handle_t *zhp)
681 {
682 	zfs_share_type_t rc = 0;
683 	zfs_share_proto_t *curr_proto;
684 
685 	if (ZFS_IS_VOLUME(zhp))
686 		return (B_FALSE);
687 
688 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
689 	    curr_proto++)
690 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
691 
692 	return (rc ? B_TRUE : B_FALSE);
693 }
694 
695 /*
696  * Unshare a filesystem by mountpoint.
697  */
698 int
699 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
700     zfs_share_proto_t proto)
701 {
702 	int err;
703 
704 	err = sa_disable_share(mountpoint, proto_table[proto].p_name);
705 	if (err != SA_OK) {
706 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
707 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
708 		    name, sa_errorstr(err)));
709 	}
710 	return (0);
711 }
712 
713 /*
714  * Query libshare for the given mountpoint and protocol, returning
715  * a zfs_share_type_t value.
716  */
717 zfs_share_type_t
718 is_shared(const char *mountpoint, zfs_share_proto_t proto)
719 {
720 	if (sa_is_shared(mountpoint, proto_table[proto].p_name)) {
721 		switch (proto) {
722 		case PROTO_NFS:
723 			return (SHARED_NFS);
724 		case PROTO_SMB:
725 			return (SHARED_SMB);
726 		default:
727 			return (SHARED_NOT_SHARED);
728 		}
729 	}
730 	return (SHARED_NOT_SHARED);
731 }
732 
733 /*
734  * Share the given filesystem according to the options in the specified
735  * protocol specific properties (sharenfs, sharesmb).  We rely
736  * on "libshare" to do the dirty work for us.
737  */
738 int
739 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
740 {
741 	char mountpoint[ZFS_MAXPROPLEN];
742 	char shareopts[ZFS_MAXPROPLEN];
743 	char sourcestr[ZFS_MAXPROPLEN];
744 	zfs_share_proto_t *curr_proto;
745 	zprop_source_t sourcetype;
746 	int err = 0;
747 
748 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
749 		return (0);
750 
751 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
752 		/*
753 		 * Return success if there are no share options.
754 		 */
755 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
756 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
757 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
758 		    strcmp(shareopts, "off") == 0)
759 			continue;
760 
761 		/*
762 		 * If the 'zoned' property is set, then zfs_is_mountable()
763 		 * will have already bailed out if we are in the global zone.
764 		 * But local zones cannot be NFS servers, so we ignore it for
765 		 * local zones as well.
766 		 */
767 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
768 			continue;
769 
770 		err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
771 		    proto_table[*curr_proto].p_name);
772 		if (err != SA_OK) {
773 			return (zfs_error_fmt(zhp->zfs_hdl,
774 			    proto_table[*curr_proto].p_share_err,
775 			    dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
776 			    zfs_get_name(zhp), sa_errorstr(err)));
777 		}
778 
779 	}
780 	return (0);
781 }
782 
783 int
784 zfs_share(zfs_handle_t *zhp)
785 {
786 	assert(!ZFS_IS_VOLUME(zhp));
787 	return (zfs_share_proto(zhp, share_all_proto));
788 }
789 
790 int
791 zfs_unshare(zfs_handle_t *zhp)
792 {
793 	assert(!ZFS_IS_VOLUME(zhp));
794 	return (zfs_unshareall(zhp));
795 }
796 
797 /*
798  * Check to see if the filesystem is currently shared.
799  */
800 zfs_share_type_t
801 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
802 {
803 	char *mountpoint;
804 	zfs_share_type_t rc;
805 
806 	if (!zfs_is_mounted(zhp, &mountpoint))
807 		return (SHARED_NOT_SHARED);
808 
809 	if ((rc = is_shared(mountpoint, proto))
810 	    != SHARED_NOT_SHARED) {
811 		if (where != NULL)
812 			*where = mountpoint;
813 		else
814 			free(mountpoint);
815 		return (rc);
816 	} else {
817 		free(mountpoint);
818 		return (SHARED_NOT_SHARED);
819 	}
820 }
821 
822 boolean_t
823 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
824 {
825 	return (zfs_is_shared_proto(zhp, where,
826 	    PROTO_NFS) != SHARED_NOT_SHARED);
827 }
828 
829 boolean_t
830 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
831 {
832 	return (zfs_is_shared_proto(zhp, where,
833 	    PROTO_SMB) != SHARED_NOT_SHARED);
834 }
835 
836 /*
837  * zfs_parse_options(options, proto)
838  *
839  * Call the legacy parse interface to get the protocol specific
840  * options using the NULL arg to indicate that this is a "parse" only.
841  */
842 int
843 zfs_parse_options(char *options, zfs_share_proto_t proto)
844 {
845 	return (sa_validate_shareopts(options, proto_table[proto].p_name));
846 }
847 
848 void
849 zfs_commit_proto(zfs_share_proto_t *proto)
850 {
851 	zfs_share_proto_t *curr_proto;
852 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
853 		sa_commit_shares(proto_table[*curr_proto].p_name);
854 	}
855 }
856 
857 void
858 zfs_commit_nfs_shares(void)
859 {
860 	zfs_commit_proto(nfs_only);
861 }
862 
863 void
864 zfs_commit_smb_shares(void)
865 {
866 	zfs_commit_proto(smb_only);
867 }
868 
869 void
870 zfs_commit_all_shares(void)
871 {
872 	zfs_commit_proto(share_all_proto);
873 }
874 
875 void
876 zfs_commit_shares(const char *proto)
877 {
878 	if (proto == NULL)
879 		zfs_commit_proto(share_all_proto);
880 	else if (strcmp(proto, "nfs") == 0)
881 		zfs_commit_proto(nfs_only);
882 	else if (strcmp(proto, "smb") == 0)
883 		zfs_commit_proto(smb_only);
884 }
885 
886 int
887 zfs_share_nfs(zfs_handle_t *zhp)
888 {
889 	return (zfs_share_proto(zhp, nfs_only));
890 }
891 
892 int
893 zfs_share_smb(zfs_handle_t *zhp)
894 {
895 	return (zfs_share_proto(zhp, smb_only));
896 }
897 
898 int
899 zfs_shareall(zfs_handle_t *zhp)
900 {
901 	return (zfs_share_proto(zhp, share_all_proto));
902 }
903 
904 /*
905  * Unshare the given filesystem.
906  */
907 int
908 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
909     zfs_share_proto_t *proto)
910 {
911 	libzfs_handle_t *hdl = zhp->zfs_hdl;
912 	struct mnttab entry;
913 	char *mntpt = NULL;
914 
915 	/* check to see if need to unmount the filesystem */
916 	if (mountpoint != NULL)
917 		mntpt = zfs_strdup(hdl, mountpoint);
918 
919 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
920 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
921 		zfs_share_proto_t *curr_proto;
922 
923 		if (mountpoint == NULL)
924 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
925 
926 		for (curr_proto = proto; *curr_proto != PROTO_END;
927 		    curr_proto++) {
928 
929 			if (is_shared(mntpt, *curr_proto)) {
930 				if (unshare_one(hdl, zhp->zfs_name,
931 				    mntpt, *curr_proto) != 0) {
932 					if (mntpt != NULL)
933 						free(mntpt);
934 					return (-1);
935 				}
936 			}
937 		}
938 	}
939 	if (mntpt != NULL)
940 		free(mntpt);
941 
942 	return (0);
943 }
944 
945 int
946 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
947 {
948 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
949 }
950 
951 int
952 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
953 {
954 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
955 }
956 
957 /*
958  * Same as zfs_unmountall(), but for NFS and SMB unshares.
959  */
960 static int
961 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
962 {
963 	prop_changelist_t *clp;
964 	int ret;
965 
966 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
967 	if (clp == NULL)
968 		return (-1);
969 
970 	ret = changelist_unshare(clp, proto);
971 	changelist_free(clp);
972 
973 	return (ret);
974 }
975 
976 int
977 zfs_unshareall_nfs(zfs_handle_t *zhp)
978 {
979 	return (zfs_unshareall_proto(zhp, nfs_only));
980 }
981 
982 int
983 zfs_unshareall_smb(zfs_handle_t *zhp)
984 {
985 	return (zfs_unshareall_proto(zhp, smb_only));
986 }
987 
988 int
989 zfs_unshareall(zfs_handle_t *zhp)
990 {
991 	return (zfs_unshareall_proto(zhp, share_all_proto));
992 }
993 
994 int
995 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
996 {
997 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
998 }
999 
1000 int
1001 zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
1002     const char *proto)
1003 {
1004 	if (proto == NULL)
1005 		return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1006 	if (strcmp(proto, "nfs") == 0)
1007 		return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1008 	else if (strcmp(proto, "smb") == 0)
1009 		return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1010 	else
1011 		return (1);
1012 }
1013 
1014 /*
1015  * Remove the mountpoint associated with the current dataset, if necessary.
1016  * We only remove the underlying directory if:
1017  *
1018  *	- The mountpoint is not 'none' or 'legacy'
1019  *	- The mountpoint is non-empty
1020  *	- The mountpoint is the default or inherited
1021  *	- The 'zoned' property is set, or we're in a local zone
1022  *
1023  * Any other directories we leave alone.
1024  */
1025 void
1026 remove_mountpoint(zfs_handle_t *zhp)
1027 {
1028 	char mountpoint[ZFS_MAXPROPLEN];
1029 	zprop_source_t source;
1030 
1031 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1032 	    &source, 0))
1033 		return;
1034 
1035 	if (source == ZPROP_SRC_DEFAULT ||
1036 	    source == ZPROP_SRC_INHERITED) {
1037 		/*
1038 		 * Try to remove the directory, silently ignoring any errors.
1039 		 * The filesystem may have since been removed or moved around,
1040 		 * and this error isn't really useful to the administrator in
1041 		 * any way.
1042 		 */
1043 		(void) rmdir(mountpoint);
1044 	}
1045 }
1046 
1047 /*
1048  * Add the given zfs handle to the cb_handles array, dynamically reallocating
1049  * the array if it is out of space.
1050  */
1051 void
1052 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1053 {
1054 	if (cbp->cb_alloc == cbp->cb_used) {
1055 		size_t newsz;
1056 		zfs_handle_t **newhandles;
1057 
1058 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1059 		newhandles = zfs_realloc(zhp->zfs_hdl,
1060 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1061 		    newsz * sizeof (zfs_handle_t *));
1062 		cbp->cb_handles = newhandles;
1063 		cbp->cb_alloc = newsz;
1064 	}
1065 	cbp->cb_handles[cbp->cb_used++] = zhp;
1066 }
1067 
1068 /*
1069  * Recursive helper function used during file system enumeration
1070  */
1071 static int
1072 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1073 {
1074 	get_all_cb_t *cbp = data;
1075 
1076 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1077 		zfs_close(zhp);
1078 		return (0);
1079 	}
1080 
1081 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1082 		zfs_close(zhp);
1083 		return (0);
1084 	}
1085 
1086 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1087 	    ZFS_KEYSTATUS_UNAVAILABLE) {
1088 		zfs_close(zhp);
1089 		return (0);
1090 	}
1091 
1092 	/*
1093 	 * If this filesystem is inconsistent and has a receive resume
1094 	 * token, we can not mount it.
1095 	 */
1096 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1097 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1098 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1099 		zfs_close(zhp);
1100 		return (0);
1101 	}
1102 
1103 	libzfs_add_handle(cbp, zhp);
1104 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1105 		zfs_close(zhp);
1106 		return (-1);
1107 	}
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Sort comparator that compares two mountpoint paths. We sort these paths so
1113  * that subdirectories immediately follow their parents. This means that we
1114  * effectively treat the '/' character as the lowest value non-nul char.
1115  * Since filesystems from non-global zones can have the same mountpoint
1116  * as other filesystems, the comparator sorts global zone filesystems to
1117  * the top of the list. This means that the global zone will traverse the
1118  * filesystem list in the correct order and can stop when it sees the
1119  * first zoned filesystem. In a non-global zone, only the delegated
1120  * filesystems are seen.
1121  *
1122  * An example sorted list using this comparator would look like:
1123  *
1124  * /foo
1125  * /foo/bar
1126  * /foo/bar/baz
1127  * /foo/baz
1128  * /foo.bar
1129  * /foo (NGZ1)
1130  * /foo (NGZ2)
1131  *
1132  * The mounting code depends on this ordering to deterministically iterate
1133  * over filesystems in order to spawn parallel mount tasks.
1134  */
1135 static int
1136 mountpoint_cmp(const void *arga, const void *argb)
1137 {
1138 	zfs_handle_t *const *zap = arga;
1139 	zfs_handle_t *za = *zap;
1140 	zfs_handle_t *const *zbp = argb;
1141 	zfs_handle_t *zb = *zbp;
1142 	char mounta[MAXPATHLEN];
1143 	char mountb[MAXPATHLEN];
1144 	const char *a = mounta;
1145 	const char *b = mountb;
1146 	boolean_t gota, gotb;
1147 	uint64_t zoneda, zonedb;
1148 
1149 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1150 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1151 	if (zoneda && !zonedb)
1152 		return (1);
1153 	if (!zoneda && zonedb)
1154 		return (-1);
1155 
1156 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1157 	if (gota) {
1158 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1159 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1160 	}
1161 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1162 	if (gotb) {
1163 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1164 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1165 	}
1166 
1167 	if (gota && gotb) {
1168 		while (*a != '\0' && (*a == *b)) {
1169 			a++;
1170 			b++;
1171 		}
1172 		if (*a == *b)
1173 			return (0);
1174 		if (*a == '\0')
1175 			return (-1);
1176 		if (*b == '\0')
1177 			return (1);
1178 		if (*a == '/')
1179 			return (-1);
1180 		if (*b == '/')
1181 			return (1);
1182 		return (*a < *b ? -1 : *a > *b);
1183 	}
1184 
1185 	if (gota)
1186 		return (-1);
1187 	if (gotb)
1188 		return (1);
1189 
1190 	/*
1191 	 * If neither filesystem has a mountpoint, revert to sorting by
1192 	 * dataset name.
1193 	 */
1194 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1195 }
1196 
1197 /*
1198  * Return true if path2 is a child of path1 or path2 equals path1 or
1199  * path1 is "/" (path2 is always a child of "/").
1200  */
1201 static boolean_t
1202 libzfs_path_contains(const char *path1, const char *path2)
1203 {
1204 	return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1205 	    (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1206 }
1207 
1208 /*
1209  * Given a mountpoint specified by idx in the handles array, find the first
1210  * non-descendent of that mountpoint and return its index. Descendant paths
1211  * start with the parent's path. This function relies on the ordering
1212  * enforced by mountpoint_cmp().
1213  */
1214 static int
1215 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1216 {
1217 	char parent[ZFS_MAXPROPLEN];
1218 	char child[ZFS_MAXPROPLEN];
1219 	int i;
1220 
1221 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1222 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1223 
1224 	for (i = idx + 1; i < num_handles; i++) {
1225 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1226 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1227 		if (!libzfs_path_contains(parent, child))
1228 			break;
1229 	}
1230 	return (i);
1231 }
1232 
1233 typedef struct mnt_param {
1234 	libzfs_handle_t	*mnt_hdl;
1235 	tpool_t		*mnt_tp;
1236 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1237 	size_t		mnt_num_handles;
1238 	int		mnt_idx;	/* Index of selected entry to mount */
1239 	zfs_iter_f	mnt_func;
1240 	void		*mnt_data;
1241 } mnt_param_t;
1242 
1243 /*
1244  * Allocate and populate the parameter struct for mount function, and
1245  * schedule mounting of the entry selected by idx.
1246  */
1247 static void
1248 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1249     size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1250 {
1251 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1252 
1253 	mnt_param->mnt_hdl = hdl;
1254 	mnt_param->mnt_tp = tp;
1255 	mnt_param->mnt_zhps = handles;
1256 	mnt_param->mnt_num_handles = num_handles;
1257 	mnt_param->mnt_idx = idx;
1258 	mnt_param->mnt_func = func;
1259 	mnt_param->mnt_data = data;
1260 
1261 	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
1262 }
1263 
1264 /*
1265  * This is the structure used to keep state of mounting or sharing operations
1266  * during a call to zpool_enable_datasets().
1267  */
1268 typedef struct mount_state {
1269 	/*
1270 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1271 	 * could update this variable concurrently, no synchronization is
1272 	 * needed as it's only ever set to -1.
1273 	 */
1274 	int		ms_mntstatus;
1275 	int		ms_mntflags;
1276 	const char	*ms_mntopts;
1277 } mount_state_t;
1278 
1279 static int
1280 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1281 {
1282 	mount_state_t *ms = arg;
1283 	int ret = 0;
1284 
1285 	/*
1286 	 * don't attempt to mount encrypted datasets with
1287 	 * unloaded keys
1288 	 */
1289 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1290 	    ZFS_KEYSTATUS_UNAVAILABLE)
1291 		return (0);
1292 
1293 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1294 		ret = ms->ms_mntstatus = -1;
1295 	return (ret);
1296 }
1297 
1298 static int
1299 zfs_share_one(zfs_handle_t *zhp, void *arg)
1300 {
1301 	mount_state_t *ms = arg;
1302 	int ret = 0;
1303 
1304 	if (zfs_share(zhp) != 0)
1305 		ret = ms->ms_mntstatus = -1;
1306 	return (ret);
1307 }
1308 
1309 /*
1310  * Thread pool function to mount one file system. On completion, it finds and
1311  * schedules its children to be mounted. This depends on the sorting done in
1312  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1313  * each descending from the previous) will have no parallelism since we always
1314  * have to wait for the parent to finish mounting before we can schedule
1315  * its children.
1316  */
1317 static void
1318 zfs_mount_task(void *arg)
1319 {
1320 	mnt_param_t *mp = arg;
1321 	int idx = mp->mnt_idx;
1322 	zfs_handle_t **handles = mp->mnt_zhps;
1323 	size_t num_handles = mp->mnt_num_handles;
1324 	char mountpoint[ZFS_MAXPROPLEN];
1325 
1326 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1327 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1328 
1329 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1330 		return;
1331 
1332 	/*
1333 	 * We dispatch tasks to mount filesystems with mountpoints underneath
1334 	 * this one. We do this by dispatching the next filesystem with a
1335 	 * descendant mountpoint of the one we just mounted, then skip all of
1336 	 * its descendants, dispatch the next descendant mountpoint, and so on.
1337 	 * The non_descendant_idx() function skips over filesystems that are
1338 	 * descendants of the filesystem we just dispatched.
1339 	 */
1340 	for (int i = idx + 1; i < num_handles;
1341 	    i = non_descendant_idx(handles, num_handles, i)) {
1342 		char child[ZFS_MAXPROPLEN];
1343 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1344 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1345 
1346 		if (!libzfs_path_contains(mountpoint, child))
1347 			break; /* not a descendant, return */
1348 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1349 		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1350 	}
1351 	free(mp);
1352 }
1353 
1354 /*
1355  * Issue the func callback for each ZFS handle contained in the handles
1356  * array. This function is used to mount all datasets, and so this function
1357  * guarantees that filesystems for parent mountpoints are called before their
1358  * children. As such, before issuing any callbacks, we first sort the array
1359  * of handles by mountpoint.
1360  *
1361  * Callbacks are issued in one of two ways:
1362  *
1363  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1364  *    environment variable is set, then we issue callbacks sequentially.
1365  *
1366  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1367  *    environment variable is not set, then we use a tpool to dispatch threads
1368  *    to mount filesystems in parallel. This function dispatches tasks to mount
1369  *    the filesystems at the top-level mountpoints, and these tasks in turn
1370  *    are responsible for recursively mounting filesystems in their children
1371  *    mountpoints.
1372  */
1373 void
1374 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1375     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1376 {
1377 	zoneid_t zoneid = getzoneid();
1378 
1379 	/*
1380 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1381 	 * variable that can be used as a convenience to do a/b comparison
1382 	 * of serial vs. parallel mounting.
1383 	 */
1384 	boolean_t serial_mount = !parallel ||
1385 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1386 
1387 	/*
1388 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1389 	 * of how these are sorted.
1390 	 */
1391 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1392 
1393 	if (serial_mount) {
1394 		for (int i = 0; i < num_handles; i++) {
1395 			func(handles[i], data);
1396 		}
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * Issue the callback function for each dataset using a parallel
1402 	 * algorithm that uses a thread pool to manage threads.
1403 	 */
1404 	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
1405 
1406 	/*
1407 	 * There may be multiple "top level" mountpoints outside of the pool's
1408 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1409 	 * these.
1410 	 */
1411 	for (int i = 0; i < num_handles;
1412 	    i = non_descendant_idx(handles, num_handles, i)) {
1413 		/*
1414 		 * Since the mountpoints have been sorted so that the zoned
1415 		 * filesystems are at the end, a zoned filesystem seen from
1416 		 * the global zone means that we're done.
1417 		 */
1418 		if (zoneid == GLOBAL_ZONEID &&
1419 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1420 			break;
1421 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1422 		    tp);
1423 	}
1424 
1425 	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
1426 	tpool_destroy(tp);
1427 }
1428 
1429 /*
1430  * Mount and share all datasets within the given pool.  This assumes that no
1431  * datasets within the pool are currently mounted.
1432  */
1433 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1434 int
1435 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1436 {
1437 	get_all_cb_t cb = { 0 };
1438 	mount_state_t ms = { 0 };
1439 	zfs_handle_t *zfsp;
1440 	int ret = 0;
1441 
1442 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1443 	    ZFS_TYPE_DATASET)) == NULL)
1444 		goto out;
1445 
1446 	/*
1447 	 * Gather all non-snapshot datasets within the pool. Start by adding
1448 	 * the root filesystem for this pool to the list, and then iterate
1449 	 * over all child filesystems.
1450 	 */
1451 	libzfs_add_handle(&cb, zfsp);
1452 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1453 		goto out;
1454 
1455 	/*
1456 	 * Mount all filesystems
1457 	 */
1458 	ms.ms_mntopts = mntopts;
1459 	ms.ms_mntflags = flags;
1460 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1461 	    zfs_mount_one, &ms, B_TRUE);
1462 	if (ms.ms_mntstatus != 0)
1463 		ret = ms.ms_mntstatus;
1464 
1465 	/*
1466 	 * Share all filesystems that need to be shared. This needs to be
1467 	 * a separate pass because libshare is not mt-safe, and so we need
1468 	 * to share serially.
1469 	 */
1470 	ms.ms_mntstatus = 0;
1471 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1472 	    zfs_share_one, &ms, B_FALSE);
1473 	if (ms.ms_mntstatus != 0)
1474 		ret = ms.ms_mntstatus;
1475 	else
1476 		zfs_commit_all_shares();
1477 
1478 out:
1479 	for (int i = 0; i < cb.cb_used; i++)
1480 		zfs_close(cb.cb_handles[i]);
1481 	free(cb.cb_handles);
1482 
1483 	return (ret);
1484 }
1485 
1486 static int
1487 mountpoint_compare(const void *a, const void *b)
1488 {
1489 	const char *mounta = *((char **)a);
1490 	const char *mountb = *((char **)b);
1491 
1492 	return (strcmp(mountb, mounta));
1493 }
1494 
1495 /* alias for 2002/240 */
1496 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1497 /*
1498  * Unshare and unmount all datasets within the given pool.  We don't want to
1499  * rely on traversing the DSL to discover the filesystems within the pool,
1500  * because this may be expensive (if not all of them are mounted), and can fail
1501  * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
1502  * and gather all the filesystems that are currently mounted.
1503  */
1504 int
1505 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1506 {
1507 	int used, alloc;
1508 	struct mnttab entry;
1509 	size_t namelen;
1510 	char **mountpoints = NULL;
1511 	zfs_handle_t **datasets = NULL;
1512 	libzfs_handle_t *hdl = zhp->zpool_hdl;
1513 	int i;
1514 	int ret = -1;
1515 	int flags = (force ? MS_FORCE : 0);
1516 
1517 	namelen = strlen(zhp->zpool_name);
1518 
1519 	/* Reopen MNTTAB to prevent reading stale data from open file */
1520 	if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
1521 		return (ENOENT);
1522 
1523 	used = alloc = 0;
1524 	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1525 		/*
1526 		 * Ignore non-ZFS entries.
1527 		 */
1528 		if (entry.mnt_fstype == NULL ||
1529 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1530 			continue;
1531 
1532 		/*
1533 		 * Ignore filesystems not within this pool.
1534 		 */
1535 		if (entry.mnt_mountp == NULL ||
1536 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1537 		    (entry.mnt_special[namelen] != '/' &&
1538 		    entry.mnt_special[namelen] != '\0'))
1539 			continue;
1540 
1541 		/*
1542 		 * At this point we've found a filesystem within our pool.  Add
1543 		 * it to our growing list.
1544 		 */
1545 		if (used == alloc) {
1546 			if (alloc == 0) {
1547 				if ((mountpoints = zfs_alloc(hdl,
1548 				    8 * sizeof (void *))) == NULL)
1549 					goto out;
1550 
1551 				if ((datasets = zfs_alloc(hdl,
1552 				    8 * sizeof (void *))) == NULL)
1553 					goto out;
1554 
1555 				alloc = 8;
1556 			} else {
1557 				void *ptr;
1558 
1559 				if ((ptr = zfs_realloc(hdl, mountpoints,
1560 				    alloc * sizeof (void *),
1561 				    alloc * 2 * sizeof (void *))) == NULL)
1562 					goto out;
1563 				mountpoints = ptr;
1564 
1565 				if ((ptr = zfs_realloc(hdl, datasets,
1566 				    alloc * sizeof (void *),
1567 				    alloc * 2 * sizeof (void *))) == NULL)
1568 					goto out;
1569 				datasets = ptr;
1570 
1571 				alloc *= 2;
1572 			}
1573 		}
1574 
1575 		if ((mountpoints[used] = zfs_strdup(hdl,
1576 		    entry.mnt_mountp)) == NULL)
1577 			goto out;
1578 
1579 		/*
1580 		 * This is allowed to fail, in case there is some I/O error.  It
1581 		 * is only used to determine if we need to remove the underlying
1582 		 * mountpoint, so failure is not fatal.
1583 		 */
1584 		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1585 
1586 		used++;
1587 	}
1588 
1589 	/*
1590 	 * At this point, we have the entire list of filesystems, so sort it by
1591 	 * mountpoint.
1592 	 */
1593 	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1594 
1595 	/*
1596 	 * Walk through and first unshare everything.
1597 	 */
1598 	for (i = 0; i < used; i++) {
1599 		zfs_share_proto_t *curr_proto;
1600 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1601 		    curr_proto++) {
1602 			if (is_shared(mountpoints[i], *curr_proto) &&
1603 			    unshare_one(hdl, mountpoints[i],
1604 			    mountpoints[i], *curr_proto) != 0)
1605 				goto out;
1606 		}
1607 	}
1608 	zfs_commit_all_shares();
1609 
1610 	/*
1611 	 * Now unmount everything, removing the underlying directories as
1612 	 * appropriate.
1613 	 */
1614 	for (i = 0; i < used; i++) {
1615 		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1616 			goto out;
1617 	}
1618 
1619 	for (i = 0; i < used; i++) {
1620 		if (datasets[i])
1621 			remove_mountpoint(datasets[i]);
1622 	}
1623 
1624 	ret = 0;
1625 out:
1626 	for (i = 0; i < used; i++) {
1627 		if (datasets[i])
1628 			zfs_close(datasets[i]);
1629 		free(mountpoints[i]);
1630 	}
1631 	free(datasets);
1632 	free(mountpoints);
1633 
1634 	return (ret);
1635 }
1636