xref: /freebsd/sys/contrib/openzfs/lib/libefi/rdwr_efi.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2018 by Delphix. All rights reserved.
26  */
27 
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <zlib.h>
35 #include <libintl.h>
36 #include <sys/types.h>
37 #include <sys/dkio.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/vdev_disk.h>
44 #include <linux/fs.h>
45 #include <linux/blkpg.h>
46 
47 static struct uuid_to_ptag {
48 	struct uuid	uuid;
49 } conversion_array[] = {
50 	{ EFI_UNUSED },
51 	{ EFI_BOOT },
52 	{ EFI_ROOT },
53 	{ EFI_SWAP },
54 	{ EFI_USR },
55 	{ EFI_BACKUP },
56 	{ EFI_UNUSED },		/* STAND is never used */
57 	{ EFI_VAR },
58 	{ EFI_HOME },
59 	{ EFI_ALTSCTR },
60 	{ EFI_UNUSED },		/* CACHE (cachefs) is never used */
61 	{ EFI_RESERVED },
62 	{ EFI_SYSTEM },
63 	{ EFI_LEGACY_MBR },
64 	{ EFI_SYMC_PUB },
65 	{ EFI_SYMC_CDS },
66 	{ EFI_MSFT_RESV },
67 	{ EFI_DELL_BASIC },
68 	{ EFI_DELL_RAID },
69 	{ EFI_DELL_SWAP },
70 	{ EFI_DELL_LVM },
71 	{ EFI_DELL_RESV },
72 	{ EFI_AAPL_HFS },
73 	{ EFI_AAPL_UFS },
74 	{ EFI_FREEBSD_BOOT },
75 	{ EFI_FREEBSD_SWAP },
76 	{ EFI_FREEBSD_UFS },
77 	{ EFI_FREEBSD_VINUM },
78 	{ EFI_FREEBSD_ZFS },
79 	{ EFI_BIOS_BOOT },
80 	{ EFI_INTC_RS },
81 	{ EFI_SNE_BOOT },
82 	{ EFI_LENOVO_BOOT },
83 	{ EFI_MSFT_LDMM },
84 	{ EFI_MSFT_LDMD },
85 	{ EFI_MSFT_RE },
86 	{ EFI_IBM_GPFS },
87 	{ EFI_MSFT_STORAGESPACES },
88 	{ EFI_HPQ_DATA },
89 	{ EFI_HPQ_SVC },
90 	{ EFI_RHT_DATA },
91 	{ EFI_RHT_HOME },
92 	{ EFI_RHT_SRV },
93 	{ EFI_RHT_DMCRYPT },
94 	{ EFI_RHT_LUKS },
95 	{ EFI_FREEBSD_DISKLABEL },
96 	{ EFI_AAPL_RAID },
97 	{ EFI_AAPL_RAIDOFFLINE },
98 	{ EFI_AAPL_BOOT },
99 	{ EFI_AAPL_LABEL },
100 	{ EFI_AAPL_TVRECOVERY },
101 	{ EFI_AAPL_CORESTORAGE },
102 	{ EFI_NETBSD_SWAP },
103 	{ EFI_NETBSD_FFS },
104 	{ EFI_NETBSD_LFS },
105 	{ EFI_NETBSD_RAID },
106 	{ EFI_NETBSD_CAT },
107 	{ EFI_NETBSD_CRYPT },
108 	{ EFI_GOOG_KERN },
109 	{ EFI_GOOG_ROOT },
110 	{ EFI_GOOG_RESV },
111 	{ EFI_HAIKU_BFS },
112 	{ EFI_MIDNIGHTBSD_BOOT },
113 	{ EFI_MIDNIGHTBSD_DATA },
114 	{ EFI_MIDNIGHTBSD_SWAP },
115 	{ EFI_MIDNIGHTBSD_UFS },
116 	{ EFI_MIDNIGHTBSD_VINUM },
117 	{ EFI_MIDNIGHTBSD_ZFS },
118 	{ EFI_CEPH_JOURNAL },
119 	{ EFI_CEPH_DMCRYPTJOURNAL },
120 	{ EFI_CEPH_OSD },
121 	{ EFI_CEPH_DMCRYPTOSD },
122 	{ EFI_CEPH_CREATE },
123 	{ EFI_CEPH_DMCRYPTCREATE },
124 	{ EFI_OPENBSD_DISKLABEL },
125 	{ EFI_BBRY_QNX },
126 	{ EFI_BELL_PLAN9 },
127 	{ EFI_VMW_KCORE },
128 	{ EFI_VMW_VMFS },
129 	{ EFI_VMW_RESV },
130 	{ EFI_RHT_ROOTX86 },
131 	{ EFI_RHT_ROOTAMD64 },
132 	{ EFI_RHT_ROOTARM },
133 	{ EFI_RHT_ROOTARM64 },
134 	{ EFI_ACRONIS_SECUREZONE },
135 	{ EFI_ONIE_BOOT },
136 	{ EFI_ONIE_CONFIG },
137 	{ EFI_IBM_PPRPBOOT },
138 	{ EFI_FREEDESKTOP_BOOT }
139 };
140 
141 int efi_debug = 0;
142 
143 static int efi_read(int, struct dk_gpt *);
144 
145 /*
146  * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
147  * one's conditioning will be handled by crc32() internally.
148  */
149 static uint32_t
150 efi_crc32(const unsigned char *buf, unsigned int size)
151 {
152 	uint32_t crc = crc32(0, Z_NULL, 0);
153 
154 	crc = crc32(crc, buf, size);
155 
156 	return (crc);
157 }
158 
159 static int
160 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
161 {
162 	int sector_size;
163 	unsigned long long capacity_size;
164 
165 	if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
166 		return (-1);
167 
168 	if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
169 		return (-1);
170 
171 	*lbsize = (uint_t)sector_size;
172 	*capacity = (diskaddr_t)(capacity_size / sector_size);
173 
174 	return (0);
175 }
176 
177 /*
178  * Return back the device name associated with the file descriptor. The
179  * caller is responsible for freeing the memory associated with the
180  * returned string.
181  */
182 static char *
183 efi_get_devname(int fd)
184 {
185 	char path[32];
186 
187 	/*
188 	 * The libefi API only provides the open fd and not the file path.
189 	 * To handle this realpath(3) is used to resolve the block device
190 	 * name from /proc/self/fd/<fd>.
191 	 */
192 	(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
193 	return (realpath(path, NULL));
194 }
195 
196 static int
197 efi_get_info(int fd, struct dk_cinfo *dki_info)
198 {
199 	char *dev_path;
200 	int rval = 0;
201 
202 	memset(dki_info, 0, sizeof (*dki_info));
203 
204 	/*
205 	 * The simplest way to get the partition number under linux is
206 	 * to parse it out of the /dev/<disk><partition> block device name.
207 	 * The kernel creates this using the partition number when it
208 	 * populates /dev/ so it may be trusted.  The tricky bit here is
209 	 * that the naming convention is based on the block device type.
210 	 * So we need to take this in to account when parsing out the
211 	 * partition information.  Aside from the partition number we collect
212 	 * some additional device info.
213 	 */
214 	dev_path = efi_get_devname(fd);
215 	if (dev_path == NULL)
216 		goto error;
217 
218 	if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
219 		strcpy(dki_info->dki_cname, "sd");
220 		dki_info->dki_ctype = DKC_SCSI_CCS;
221 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
222 		    dki_info->dki_dname,
223 		    &dki_info->dki_partition);
224 	} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
225 		strcpy(dki_info->dki_cname, "hd");
226 		dki_info->dki_ctype = DKC_DIRECT;
227 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
228 		    dki_info->dki_dname,
229 		    &dki_info->dki_partition);
230 	} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
231 		strcpy(dki_info->dki_cname, "pseudo");
232 		dki_info->dki_ctype = DKC_MD;
233 		strcpy(dki_info->dki_dname, "md");
234 		rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
235 		    dki_info->dki_dname + 2,
236 		    &dki_info->dki_partition);
237 	} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
238 		strcpy(dki_info->dki_cname, "vd");
239 		dki_info->dki_ctype = DKC_MD;
240 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
241 		    dki_info->dki_dname,
242 		    &dki_info->dki_partition);
243 	} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
244 		strcpy(dki_info->dki_cname, "xvd");
245 		dki_info->dki_ctype = DKC_MD;
246 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
247 		    dki_info->dki_dname,
248 		    &dki_info->dki_partition);
249 	} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
250 		strcpy(dki_info->dki_cname, "zd");
251 		dki_info->dki_ctype = DKC_MD;
252 		strcpy(dki_info->dki_dname, "zd");
253 		rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
254 		    dki_info->dki_dname + 2,
255 		    &dki_info->dki_partition);
256 	} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
257 		strcpy(dki_info->dki_cname, "pseudo");
258 		dki_info->dki_ctype = DKC_VBD;
259 		strcpy(dki_info->dki_dname, "dm-");
260 		rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
261 		    dki_info->dki_dname + 3,
262 		    &dki_info->dki_partition);
263 	} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
264 		strcpy(dki_info->dki_cname, "pseudo");
265 		dki_info->dki_ctype = DKC_PCMCIA_MEM;
266 		strcpy(dki_info->dki_dname, "ram");
267 		rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
268 		    dki_info->dki_dname + 3,
269 		    &dki_info->dki_partition);
270 	} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
271 		strcpy(dki_info->dki_cname, "pseudo");
272 		dki_info->dki_ctype = DKC_VBD;
273 		strcpy(dki_info->dki_dname, "loop");
274 		rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
275 		    dki_info->dki_dname + 4,
276 		    &dki_info->dki_partition);
277 	} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
278 		strcpy(dki_info->dki_cname, "nvme");
279 		dki_info->dki_ctype = DKC_SCSI_CCS;
280 		strcpy(dki_info->dki_dname, "nvme");
281 		(void) sscanf(dev_path, "/dev/nvme%[0-9]",
282 		    dki_info->dki_dname + 4);
283 		size_t controller_length = strlen(
284 		    dki_info->dki_dname);
285 		strcpy(dki_info->dki_dname + controller_length,
286 		    "n");
287 		rval = sscanf(dev_path,
288 		    "/dev/nvme%*[0-9]n%[0-9]p%hu",
289 		    dki_info->dki_dname + controller_length + 1,
290 		    &dki_info->dki_partition);
291 	} else {
292 		strcpy(dki_info->dki_dname, "unknown");
293 		strcpy(dki_info->dki_cname, "unknown");
294 		dki_info->dki_ctype = DKC_UNKNOWN;
295 	}
296 
297 	switch (rval) {
298 	case 0:
299 		errno = EINVAL;
300 		goto error;
301 	case 1:
302 		dki_info->dki_partition = 0;
303 	}
304 
305 	free(dev_path);
306 
307 	return (0);
308 error:
309 	if (efi_debug)
310 		(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
311 
312 	switch (errno) {
313 	case EIO:
314 		return (VT_EIO);
315 	case EINVAL:
316 		return (VT_EINVAL);
317 	default:
318 		return (VT_ERROR);
319 	}
320 }
321 
322 /*
323  * the number of blocks the EFI label takes up (round up to nearest
324  * block)
325  */
326 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
327 				((l) - 1)) / (l)))
328 /* number of partitions -- limited by what we can malloc */
329 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
330 			    sizeof (struct dk_part))
331 
332 int
333 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
334 {
335 	diskaddr_t	capacity = 0;
336 	uint_t		lbsize = 0;
337 	uint_t		nblocks;
338 	size_t		length;
339 	struct dk_gpt	*vptr;
340 	struct uuid	uuid;
341 	struct dk_cinfo	dki_info;
342 
343 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
344 		return (-1);
345 
346 	if (efi_get_info(fd, &dki_info) != 0)
347 		return (-1);
348 
349 	if (dki_info.dki_partition != 0)
350 		return (-1);
351 
352 	if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
353 	    (dki_info.dki_ctype == DKC_VBD) ||
354 	    (dki_info.dki_ctype == DKC_UNKNOWN))
355 		return (-1);
356 
357 	nblocks = NBLOCKS(nparts, lbsize);
358 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
359 		/* 16K plus one block for the GPT */
360 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
361 	}
362 
363 	if (nparts > MAX_PARTS) {
364 		if (efi_debug) {
365 			(void) fprintf(stderr,
366 			"the maximum number of partitions supported is %lu\n",
367 			    MAX_PARTS);
368 		}
369 		return (-1);
370 	}
371 
372 	length = sizeof (struct dk_gpt) +
373 	    sizeof (struct dk_part) * (nparts - 1);
374 
375 	vptr = calloc(1, length);
376 	if (vptr == NULL)
377 		return (-1);
378 
379 	*vtoc = vptr;
380 
381 	vptr->efi_version = EFI_VERSION_CURRENT;
382 	vptr->efi_lbasize = lbsize;
383 	vptr->efi_nparts = nparts;
384 	/*
385 	 * add one block here for the PMBR; on disks with a 512 byte
386 	 * block size and 128 or fewer partitions, efi_first_u_lba
387 	 * should work out to "34"
388 	 */
389 	vptr->efi_first_u_lba = nblocks + 1;
390 	vptr->efi_last_lba = capacity - 1;
391 	vptr->efi_altern_lba = capacity -1;
392 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
393 
394 	(void) uuid_generate((uchar_t *)&uuid);
395 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
396 	return (0);
397 }
398 
399 /*
400  * Read EFI - return partition number upon success.
401  */
402 int
403 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
404 {
405 	int			rval;
406 	uint32_t		nparts;
407 	int			length;
408 	struct dk_gpt		*vptr;
409 
410 	/* figure out the number of entries that would fit into 16K */
411 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
412 	length = (int) sizeof (struct dk_gpt) +
413 	    (int) sizeof (struct dk_part) * (nparts - 1);
414 	vptr = calloc(1, length);
415 
416 	if (vptr == NULL)
417 		return (VT_ERROR);
418 
419 	vptr->efi_nparts = nparts;
420 	rval = efi_read(fd, vptr);
421 
422 	if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
423 		void *tmp;
424 		length = (int) sizeof (struct dk_gpt) +
425 		    (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
426 		nparts = vptr->efi_nparts;
427 		if ((tmp = realloc(vptr, length)) == NULL) {
428 			/* cppcheck-suppress doubleFree */
429 			free(vptr);
430 			*vtoc = NULL;
431 			return (VT_ERROR);
432 		} else {
433 			vptr = tmp;
434 			rval = efi_read(fd, vptr);
435 		}
436 	}
437 
438 	if (rval < 0) {
439 		if (efi_debug) {
440 			(void) fprintf(stderr,
441 			    "read of EFI table failed, rval=%d\n", rval);
442 		}
443 		free(vptr);
444 		*vtoc = NULL;
445 	} else {
446 		*vtoc = vptr;
447 	}
448 
449 	return (rval);
450 }
451 
452 static int
453 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
454 {
455 	void *data = dk_ioc->dki_data;
456 	int error;
457 	diskaddr_t capacity;
458 	uint_t lbsize;
459 
460 	/*
461 	 * When the IO is not being performed in kernel as an ioctl we need
462 	 * to know the sector size so we can seek to the proper byte offset.
463 	 */
464 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
465 		if (efi_debug)
466 			fprintf(stderr, "unable to read disk info: %d", errno);
467 
468 		errno = EIO;
469 		return (-1);
470 	}
471 
472 	switch (cmd) {
473 	case DKIOCGETEFI:
474 		if (lbsize == 0) {
475 			if (efi_debug)
476 				(void) fprintf(stderr, "DKIOCGETEFI assuming "
477 				    "LBA %d bytes\n", DEV_BSIZE);
478 
479 			lbsize = DEV_BSIZE;
480 		}
481 
482 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
483 		if (error == -1) {
484 			if (efi_debug)
485 				(void) fprintf(stderr, "DKIOCGETEFI lseek "
486 				    "error: %d\n", errno);
487 			return (error);
488 		}
489 
490 		error = read(fd, data, dk_ioc->dki_length);
491 		if (error == -1) {
492 			if (efi_debug)
493 				(void) fprintf(stderr, "DKIOCGETEFI read "
494 				    "error: %d\n", errno);
495 			return (error);
496 		}
497 
498 		if (error != dk_ioc->dki_length) {
499 			if (efi_debug)
500 				(void) fprintf(stderr, "DKIOCGETEFI short "
501 				    "read of %d bytes\n", error);
502 			errno = EIO;
503 			return (-1);
504 		}
505 		error = 0;
506 		break;
507 
508 	case DKIOCSETEFI:
509 		if (lbsize == 0) {
510 			if (efi_debug)
511 				(void) fprintf(stderr, "DKIOCSETEFI unknown "
512 				    "LBA size\n");
513 			errno = EIO;
514 			return (-1);
515 		}
516 
517 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
518 		if (error == -1) {
519 			if (efi_debug)
520 				(void) fprintf(stderr, "DKIOCSETEFI lseek "
521 				    "error: %d\n", errno);
522 			return (error);
523 		}
524 
525 		error = write(fd, data, dk_ioc->dki_length);
526 		if (error == -1) {
527 			if (efi_debug)
528 				(void) fprintf(stderr, "DKIOCSETEFI write "
529 				    "error: %d\n", errno);
530 			return (error);
531 		}
532 
533 		if (error != dk_ioc->dki_length) {
534 			if (efi_debug)
535 				(void) fprintf(stderr, "DKIOCSETEFI short "
536 				    "write of %d bytes\n", error);
537 			errno = EIO;
538 			return (-1);
539 		}
540 
541 		/* Sync the new EFI table to disk */
542 		error = fsync(fd);
543 		if (error == -1)
544 			return (error);
545 
546 		/* Ensure any local disk cache is also flushed */
547 		if (ioctl(fd, BLKFLSBUF, 0) == -1)
548 			return (error);
549 
550 		error = 0;
551 		break;
552 
553 	default:
554 		if (efi_debug)
555 			(void) fprintf(stderr, "unsupported ioctl()\n");
556 
557 		errno = EIO;
558 		return (-1);
559 	}
560 
561 	return (error);
562 }
563 
564 int
565 efi_rescan(int fd)
566 {
567 	int retry = 10;
568 	int error;
569 
570 	/* Notify the kernel a devices partition table has been updated */
571 	while ((error = ioctl(fd, BLKRRPART)) != 0) {
572 		if ((--retry == 0) || (errno != EBUSY)) {
573 			(void) fprintf(stderr, "the kernel failed to rescan "
574 			    "the partition table: %d\n", errno);
575 			return (-1);
576 		}
577 		usleep(50000);
578 	}
579 
580 	return (0);
581 }
582 
583 static int
584 check_label(int fd, dk_efi_t *dk_ioc)
585 {
586 	efi_gpt_t		*efi;
587 	uint_t			crc;
588 
589 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
590 		switch (errno) {
591 		case EIO:
592 			return (VT_EIO);
593 		default:
594 			return (VT_ERROR);
595 		}
596 	}
597 	efi = dk_ioc->dki_data;
598 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
599 		if (efi_debug)
600 			(void) fprintf(stderr,
601 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
602 			    (long long)efi->efi_gpt_Signature,
603 			    (long long)LE_64(EFI_SIGNATURE));
604 		return (VT_EINVAL);
605 	}
606 
607 	/*
608 	 * check CRC of the header; the size of the header should
609 	 * never be larger than one block
610 	 */
611 	crc = efi->efi_gpt_HeaderCRC32;
612 	efi->efi_gpt_HeaderCRC32 = 0;
613 	len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
614 
615 	if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
616 		if (efi_debug)
617 			(void) fprintf(stderr,
618 			    "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
619 			    headerSize, EFI_MIN_LABEL_SIZE);
620 	}
621 
622 	if ((headerSize > dk_ioc->dki_length) ||
623 	    crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
624 		if (efi_debug)
625 			(void) fprintf(stderr,
626 			    "Bad EFI CRC: 0x%x != 0x%x\n",
627 			    crc, LE_32(efi_crc32((unsigned char *)efi,
628 			    headerSize)));
629 		return (VT_EINVAL);
630 	}
631 
632 	return (0);
633 }
634 
635 static int
636 efi_read(int fd, struct dk_gpt *vtoc)
637 {
638 	int			i, j;
639 	int			label_len;
640 	int			rval = 0;
641 	int			md_flag = 0;
642 	int			vdc_flag = 0;
643 	diskaddr_t		capacity = 0;
644 	uint_t			lbsize = 0;
645 	struct dk_minfo		disk_info;
646 	dk_efi_t		dk_ioc;
647 	efi_gpt_t		*efi;
648 	efi_gpe_t		*efi_parts;
649 	struct dk_cinfo		dki_info;
650 	uint32_t		user_length;
651 	boolean_t		legacy_label = B_FALSE;
652 
653 	/*
654 	 * get the partition number for this file descriptor.
655 	 */
656 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
657 		return (rval);
658 
659 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
660 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
661 		md_flag++;
662 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
663 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
664 		/*
665 		 * The controller and drive name "vdc" (virtual disk client)
666 		 * indicates a LDoms virtual disk.
667 		 */
668 		vdc_flag++;
669 	}
670 
671 	/* get the LBA size */
672 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
673 		if (efi_debug) {
674 			(void) fprintf(stderr,
675 			    "unable to read disk info: %d",
676 			    errno);
677 		}
678 		return (VT_EINVAL);
679 	}
680 
681 	disk_info.dki_lbsize = lbsize;
682 	disk_info.dki_capacity = capacity;
683 
684 	if (disk_info.dki_lbsize == 0) {
685 		if (efi_debug) {
686 			(void) fprintf(stderr,
687 			    "efi_read: assuming LBA 512 bytes\n");
688 		}
689 		disk_info.dki_lbsize = DEV_BSIZE;
690 	}
691 	/*
692 	 * Read the EFI GPT to figure out how many partitions we need
693 	 * to deal with.
694 	 */
695 	dk_ioc.dki_lba = 1;
696 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
697 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
698 	} else {
699 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
700 		    disk_info.dki_lbsize;
701 		if (label_len % disk_info.dki_lbsize) {
702 			/* pad to physical sector size */
703 			label_len += disk_info.dki_lbsize;
704 			label_len &= ~(disk_info.dki_lbsize - 1);
705 		}
706 	}
707 
708 	if (posix_memalign((void **)&dk_ioc.dki_data,
709 	    disk_info.dki_lbsize, label_len))
710 		return (VT_ERROR);
711 
712 	memset(dk_ioc.dki_data, 0, label_len);
713 	dk_ioc.dki_length = disk_info.dki_lbsize;
714 	user_length = vtoc->efi_nparts;
715 	efi = dk_ioc.dki_data;
716 	if (md_flag) {
717 		dk_ioc.dki_length = label_len;
718 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
719 			switch (errno) {
720 			case EIO:
721 				return (VT_EIO);
722 			default:
723 				return (VT_ERROR);
724 			}
725 		}
726 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
727 		/*
728 		 * No valid label here; try the alternate. Note that here
729 		 * we just read GPT header and save it into dk_ioc.data,
730 		 * Later, we will read GUID partition entry array if we
731 		 * can get valid GPT header.
732 		 */
733 
734 		/*
735 		 * This is a workaround for legacy systems. In the past, the
736 		 * last sector of SCSI disk was invisible on x86 platform. At
737 		 * that time, backup label was saved on the next to the last
738 		 * sector. It is possible for users to move a disk from previous
739 		 * solaris system to present system. Here, we attempt to search
740 		 * legacy backup EFI label first.
741 		 */
742 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
743 		dk_ioc.dki_length = disk_info.dki_lbsize;
744 		rval = check_label(fd, &dk_ioc);
745 		if (rval == VT_EINVAL) {
746 			/*
747 			 * we didn't find legacy backup EFI label, try to
748 			 * search backup EFI label in the last block.
749 			 */
750 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
751 			dk_ioc.dki_length = disk_info.dki_lbsize;
752 			rval = check_label(fd, &dk_ioc);
753 			if (rval == 0) {
754 				legacy_label = B_TRUE;
755 				if (efi_debug)
756 					(void) fprintf(stderr,
757 					    "efi_read: primary label corrupt; "
758 					    "using EFI backup label located on"
759 					    " the last block\n");
760 			}
761 		} else {
762 			if ((efi_debug) && (rval == 0))
763 				(void) fprintf(stderr, "efi_read: primary label"
764 				    " corrupt; using legacy EFI backup label "
765 				    " located on the next to last block\n");
766 		}
767 
768 		if (rval == 0) {
769 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
770 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
771 			vtoc->efi_nparts =
772 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
773 			/*
774 			 * Partition tables are between backup GPT header
775 			 * table and ParitionEntryLBA (the starting LBA of
776 			 * the GUID partition entries array). Now that we
777 			 * already got valid GPT header and saved it in
778 			 * dk_ioc.dki_data, we try to get GUID partition
779 			 * entry array here.
780 			 */
781 			/* LINTED */
782 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
783 			    + disk_info.dki_lbsize);
784 			if (legacy_label)
785 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
786 				    dk_ioc.dki_lba;
787 			else
788 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
789 				    dk_ioc.dki_lba;
790 			dk_ioc.dki_length *= disk_info.dki_lbsize;
791 			if (dk_ioc.dki_length >
792 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
793 				rval = VT_EINVAL;
794 			} else {
795 				/*
796 				 * read GUID partition entry array
797 				 */
798 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
799 			}
800 		}
801 
802 	} else if (rval == 0) {
803 
804 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
805 		/* LINTED */
806 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
807 		    + disk_info.dki_lbsize);
808 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
809 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
810 
811 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
812 		/*
813 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
814 		 * ioctl can fail with EINVAL if the virtual disk backend
815 		 * is a ZFS volume serviced by a domain running an old version
816 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
817 		 * initially incorrectly implemented for a ZFS volume and it
818 		 * expected the GPT and GPE to be retrieved with a single ioctl.
819 		 * So we try to read the GPT and the GPE using that old style
820 		 * ioctl.
821 		 */
822 		dk_ioc.dki_lba = 1;
823 		dk_ioc.dki_length = label_len;
824 		rval = check_label(fd, &dk_ioc);
825 	}
826 
827 	if (rval < 0) {
828 		free(efi);
829 		return (rval);
830 	}
831 
832 	/* LINTED -- always longlong aligned */
833 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
834 
835 	/*
836 	 * Assemble this into a "dk_gpt" struct for easier
837 	 * digestibility by applications.
838 	 */
839 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
840 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
841 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
842 	vtoc->efi_lbasize = disk_info.dki_lbsize;
843 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
844 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
845 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
846 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
847 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
848 
849 	/*
850 	 * If the array the user passed in is too small, set the length
851 	 * to what it needs to be and return
852 	 */
853 	if (user_length < vtoc->efi_nparts) {
854 		return (VT_EINVAL);
855 	}
856 
857 	for (i = 0; i < vtoc->efi_nparts; i++) {
858 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
859 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
860 
861 		for (j = 0;
862 		    j < sizeof (conversion_array)
863 		    / sizeof (struct uuid_to_ptag); j++) {
864 
865 			if (memcmp(&vtoc->efi_parts[i].p_guid,
866 			    &conversion_array[j].uuid,
867 			    sizeof (struct uuid)) == 0) {
868 				vtoc->efi_parts[i].p_tag = j;
869 				break;
870 			}
871 		}
872 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
873 			continue;
874 		vtoc->efi_parts[i].p_flag =
875 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
876 		vtoc->efi_parts[i].p_start =
877 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
878 		vtoc->efi_parts[i].p_size =
879 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
880 		    vtoc->efi_parts[i].p_start + 1;
881 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
882 			vtoc->efi_parts[i].p_name[j] =
883 			    (uchar_t)LE_16(
884 			    efi_parts[i].efi_gpe_PartitionName[j]);
885 		}
886 
887 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
888 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
889 	}
890 	free(efi);
891 
892 	return (dki_info.dki_partition);
893 }
894 
895 /* writes a "protective" MBR */
896 static int
897 write_pmbr(int fd, struct dk_gpt *vtoc)
898 {
899 	dk_efi_t	dk_ioc;
900 	struct mboot	mb;
901 	uchar_t		*cp;
902 	diskaddr_t	size_in_lba;
903 	uchar_t		*buf;
904 	int		len;
905 
906 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
907 	if (posix_memalign((void **)&buf, len, len))
908 		return (VT_ERROR);
909 
910 	/*
911 	 * Preserve any boot code and disk signature if the first block is
912 	 * already an MBR.
913 	 */
914 	memset(buf, 0, len);
915 	dk_ioc.dki_lba = 0;
916 	dk_ioc.dki_length = len;
917 	/* LINTED -- always longlong aligned */
918 	dk_ioc.dki_data = (efi_gpt_t *)buf;
919 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
920 		memset(&mb, 0, sizeof (mb));
921 		mb.signature = LE_16(MBB_MAGIC);
922 	} else {
923 		(void) memcpy(&mb, buf, sizeof (mb));
924 		if (mb.signature != LE_16(MBB_MAGIC)) {
925 			memset(&mb, 0, sizeof (mb));
926 			mb.signature = LE_16(MBB_MAGIC);
927 		}
928 	}
929 
930 	memset(&mb.parts, 0, sizeof (mb.parts));
931 	cp = (uchar_t *)&mb.parts[0];
932 	/* bootable or not */
933 	*cp++ = 0;
934 	/* beginning CHS; 0xffffff if not representable */
935 	*cp++ = 0xff;
936 	*cp++ = 0xff;
937 	*cp++ = 0xff;
938 	/* OS type */
939 	*cp++ = EFI_PMBR;
940 	/* ending CHS; 0xffffff if not representable */
941 	*cp++ = 0xff;
942 	*cp++ = 0xff;
943 	*cp++ = 0xff;
944 	/* starting LBA: 1 (little endian format) by EFI definition */
945 	*cp++ = 0x01;
946 	*cp++ = 0x00;
947 	*cp++ = 0x00;
948 	*cp++ = 0x00;
949 	/* ending LBA: last block on the disk (little endian format) */
950 	size_in_lba = vtoc->efi_last_lba;
951 	if (size_in_lba < 0xffffffff) {
952 		*cp++ = (size_in_lba & 0x000000ff);
953 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
954 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
955 		*cp++ = (size_in_lba & 0xff000000) >> 24;
956 	} else {
957 		*cp++ = 0xff;
958 		*cp++ = 0xff;
959 		*cp++ = 0xff;
960 		*cp++ = 0xff;
961 	}
962 
963 	(void) memcpy(buf, &mb, sizeof (mb));
964 	/* LINTED -- always longlong aligned */
965 	dk_ioc.dki_data = (efi_gpt_t *)buf;
966 	dk_ioc.dki_lba = 0;
967 	dk_ioc.dki_length = len;
968 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
969 		free(buf);
970 		switch (errno) {
971 		case EIO:
972 			return (VT_EIO);
973 		case EINVAL:
974 			return (VT_EINVAL);
975 		default:
976 			return (VT_ERROR);
977 		}
978 	}
979 	free(buf);
980 	return (0);
981 }
982 
983 /* make sure the user specified something reasonable */
984 static int
985 check_input(struct dk_gpt *vtoc)
986 {
987 	int			resv_part = -1;
988 	int			i, j;
989 	diskaddr_t		istart, jstart, isize, jsize, endsect;
990 
991 	/*
992 	 * Sanity-check the input (make sure no partitions overlap)
993 	 */
994 	for (i = 0; i < vtoc->efi_nparts; i++) {
995 		/* It can't be unassigned and have an actual size */
996 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
997 		    (vtoc->efi_parts[i].p_size != 0)) {
998 			if (efi_debug) {
999 				(void) fprintf(stderr, "partition %d is "
1000 				    "\"unassigned\" but has a size of %llu",
1001 				    i, vtoc->efi_parts[i].p_size);
1002 			}
1003 			return (VT_EINVAL);
1004 		}
1005 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1006 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1007 				continue;
1008 			/* we have encountered an unknown uuid */
1009 			vtoc->efi_parts[i].p_tag = 0xff;
1010 		}
1011 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1012 			if (resv_part != -1) {
1013 				if (efi_debug) {
1014 					(void) fprintf(stderr, "found "
1015 					    "duplicate reserved partition "
1016 					    "at %d\n", i);
1017 				}
1018 				return (VT_EINVAL);
1019 			}
1020 			resv_part = i;
1021 		}
1022 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1023 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1024 			if (efi_debug) {
1025 				(void) fprintf(stderr,
1026 				    "Partition %d starts at %llu.  ",
1027 				    i,
1028 				    vtoc->efi_parts[i].p_start);
1029 				(void) fprintf(stderr,
1030 				    "It must be between %llu and %llu.\n",
1031 				    vtoc->efi_first_u_lba,
1032 				    vtoc->efi_last_u_lba);
1033 			}
1034 			return (VT_EINVAL);
1035 		}
1036 		if ((vtoc->efi_parts[i].p_start +
1037 		    vtoc->efi_parts[i].p_size <
1038 		    vtoc->efi_first_u_lba) ||
1039 		    (vtoc->efi_parts[i].p_start +
1040 		    vtoc->efi_parts[i].p_size >
1041 		    vtoc->efi_last_u_lba + 1)) {
1042 			if (efi_debug) {
1043 				(void) fprintf(stderr,
1044 				    "Partition %d ends at %llu.  ",
1045 				    i,
1046 				    vtoc->efi_parts[i].p_start +
1047 				    vtoc->efi_parts[i].p_size);
1048 				(void) fprintf(stderr,
1049 				    "It must be between %llu and %llu.\n",
1050 				    vtoc->efi_first_u_lba,
1051 				    vtoc->efi_last_u_lba);
1052 			}
1053 			return (VT_EINVAL);
1054 		}
1055 
1056 		for (j = 0; j < vtoc->efi_nparts; j++) {
1057 			isize = vtoc->efi_parts[i].p_size;
1058 			jsize = vtoc->efi_parts[j].p_size;
1059 			istart = vtoc->efi_parts[i].p_start;
1060 			jstart = vtoc->efi_parts[j].p_start;
1061 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1062 				endsect = jstart + jsize -1;
1063 				if ((jstart <= istart) &&
1064 				    (istart <= endsect)) {
1065 					if (efi_debug) {
1066 						(void) fprintf(stderr,
1067 						    "Partition %d overlaps "
1068 						    "partition %d.", i, j);
1069 					}
1070 					return (VT_EINVAL);
1071 				}
1072 			}
1073 		}
1074 	}
1075 	/* just a warning for now */
1076 	if ((resv_part == -1) && efi_debug) {
1077 		(void) fprintf(stderr,
1078 		    "no reserved partition found\n");
1079 	}
1080 	return (0);
1081 }
1082 
1083 static int
1084 call_blkpg_ioctl(int fd, int command, diskaddr_t start,
1085     diskaddr_t size, uint_t pno)
1086 {
1087 	struct blkpg_ioctl_arg ioctl_arg;
1088 	struct blkpg_partition  linux_part;
1089 	memset(&linux_part, 0, sizeof (linux_part));
1090 
1091 	char *path = efi_get_devname(fd);
1092 	if (path == NULL) {
1093 		(void) fprintf(stderr, "failed to retrieve device name\n");
1094 		return (VT_EINVAL);
1095 	}
1096 
1097 	linux_part.start = start;
1098 	linux_part.length = size;
1099 	linux_part.pno = pno;
1100 	snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
1101 	linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
1102 	free(path);
1103 
1104 	ioctl_arg.op = command;
1105 	ioctl_arg.flags = 0;
1106 	ioctl_arg.datalen = sizeof (struct blkpg_partition);
1107 	ioctl_arg.data = &linux_part;
1108 
1109 	return (ioctl(fd, BLKPG, &ioctl_arg));
1110 }
1111 
1112 /*
1113  * add all the unallocated space to the current label
1114  */
1115 int
1116 efi_use_whole_disk(int fd)
1117 {
1118 	struct dk_gpt *efi_label = NULL;
1119 	int rval;
1120 	int i;
1121 	uint_t resv_index = 0, data_index = 0;
1122 	diskaddr_t resv_start = 0, data_start = 0;
1123 	diskaddr_t data_size, limit, difference;
1124 	boolean_t sync_needed = B_FALSE;
1125 	uint_t nblocks;
1126 
1127 	rval = efi_alloc_and_read(fd, &efi_label);
1128 	if (rval < 0) {
1129 		if (efi_label != NULL)
1130 			efi_free(efi_label);
1131 		return (rval);
1132 	}
1133 
1134 	/*
1135 	 * Find the last physically non-zero partition.
1136 	 * This should be the reserved partition.
1137 	 */
1138 	for (i = 0; i < efi_label->efi_nparts; i ++) {
1139 		if (resv_start < efi_label->efi_parts[i].p_start) {
1140 			resv_start = efi_label->efi_parts[i].p_start;
1141 			resv_index = i;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Find the last physically non-zero partition before that.
1147 	 * This is the data partition.
1148 	 */
1149 	for (i = 0; i < resv_index; i ++) {
1150 		if (data_start < efi_label->efi_parts[i].p_start) {
1151 			data_start = efi_label->efi_parts[i].p_start;
1152 			data_index = i;
1153 		}
1154 	}
1155 	data_size = efi_label->efi_parts[data_index].p_size;
1156 
1157 	/*
1158 	 * See the "efi_alloc_and_init" function for more information
1159 	 * about where this "nblocks" value comes from.
1160 	 */
1161 	nblocks = efi_label->efi_first_u_lba - 1;
1162 
1163 	/*
1164 	 * Determine if the EFI label is out of sync. We check that:
1165 	 *
1166 	 * 1. the data partition ends at the limit we set, and
1167 	 * 2. the reserved partition starts at the limit we set.
1168 	 *
1169 	 * If either of these conditions is not met, then we need to
1170 	 * resync the EFI label.
1171 	 *
1172 	 * The limit is the last usable LBA, determined by the last LBA
1173 	 * and the first usable LBA fields on the EFI label of the disk
1174 	 * (see the lines directly above). Additionally, we factor in
1175 	 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1176 	 * P2ALIGN it to ensure the partition boundaries are aligned
1177 	 * (for performance reasons). The alignment should match the
1178 	 * alignment used by the "zpool_label_disk" function.
1179 	 */
1180 	limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
1181 	    PARTITION_END_ALIGNMENT);
1182 	if (data_start + data_size != limit || resv_start != limit)
1183 		sync_needed = B_TRUE;
1184 
1185 	if (efi_debug && sync_needed)
1186 		(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1187 
1188 	/*
1189 	 * If alter_lba is 1, we are using the backup label.
1190 	 * Since we can locate the backup label by disk capacity,
1191 	 * there must be no unallocated space.
1192 	 */
1193 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1194 	    >= efi_label->efi_last_lba && !sync_needed)) {
1195 		if (efi_debug) {
1196 			(void) fprintf(stderr,
1197 			    "efi_use_whole_disk: requested space not found\n");
1198 		}
1199 		efi_free(efi_label);
1200 		return (VT_ENOSPC);
1201 	}
1202 
1203 	/*
1204 	 * Verify that we've found the reserved partition by checking
1205 	 * that it looks the way it did when we created it in zpool_label_disk.
1206 	 * If we've found the incorrect partition, then we know that this
1207 	 * device was reformatted and no longer is solely used by ZFS.
1208 	 */
1209 	if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1210 	    (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1211 	    (resv_index != 8)) {
1212 		if (efi_debug) {
1213 			(void) fprintf(stderr,
1214 			    "efi_use_whole_disk: wholedisk not available\n");
1215 		}
1216 		efi_free(efi_label);
1217 		return (VT_ENOSPC);
1218 	}
1219 
1220 	if (data_start + data_size != resv_start) {
1221 		if (efi_debug) {
1222 			(void) fprintf(stderr,
1223 			    "efi_use_whole_disk: "
1224 			    "data_start (%lli) + "
1225 			    "data_size (%lli) != "
1226 			    "resv_start (%lli)\n",
1227 			    data_start, data_size, resv_start);
1228 		}
1229 
1230 		return (VT_EINVAL);
1231 	}
1232 
1233 	if (limit < resv_start) {
1234 		if (efi_debug) {
1235 			(void) fprintf(stderr,
1236 			    "efi_use_whole_disk: "
1237 			    "limit (%lli) < resv_start (%lli)\n",
1238 			    limit, resv_start);
1239 		}
1240 
1241 		return (VT_EINVAL);
1242 	}
1243 
1244 	difference = limit - resv_start;
1245 
1246 	if (efi_debug)
1247 		(void) fprintf(stderr,
1248 		    "efi_use_whole_disk: difference is %lli\n", difference);
1249 
1250 	/*
1251 	 * Move the reserved partition. There is currently no data in
1252 	 * here except fabricated devids (which get generated via
1253 	 * efi_write()). So there is no need to copy data.
1254 	 */
1255 	efi_label->efi_parts[data_index].p_size += difference;
1256 	efi_label->efi_parts[resv_index].p_start += difference;
1257 	efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1258 
1259 	/*
1260 	 * Rescanning the partition table in the kernel can result
1261 	 * in the device links to be removed (see comment in vdev_disk_open).
1262 	 * If BLKPG_RESIZE_PARTITION is available, then we can resize
1263 	 * the partition table online and avoid having to remove the device
1264 	 * links used by the pool. This provides a very deterministic
1265 	 * approach to resizing devices and does not require any
1266 	 * loops waiting for devices to reappear.
1267 	 */
1268 #ifdef BLKPG_RESIZE_PARTITION
1269 	/*
1270 	 * Delete the reserved partition since we're about to expand
1271 	 * the data partition and it would overlap with the reserved
1272 	 * partition.
1273 	 * NOTE: The starting index for the ioctl is 1 while for the
1274 	 * EFI partitions it's 0. For that reason we have to add one
1275 	 * whenever we make an ioctl call.
1276 	 */
1277 	rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
1278 	if (rval != 0)
1279 		goto out;
1280 
1281 	/*
1282 	 * Expand the data partition
1283 	 */
1284 	rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
1285 	    efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
1286 	    efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
1287 	    data_index + 1);
1288 	if (rval != 0) {
1289 		(void) fprintf(stderr, "Unable to resize data "
1290 		    "partition:  %d\n", rval);
1291 		/*
1292 		 * Since we failed to resize, we need to reset the start
1293 		 * of the reserve partition and re-create it.
1294 		 */
1295 		efi_label->efi_parts[resv_index].p_start -= difference;
1296 	}
1297 
1298 	/*
1299 	 * Re-add the reserved partition. If we've expanded the data partition
1300 	 * then we'll move the reserve partition to the end of the data
1301 	 * partition. Otherwise, we'll recreate the partition in its original
1302 	 * location. Note that we do this as best-effort and ignore any
1303 	 * errors that may arise here. This will ensure that we finish writing
1304 	 * the EFI label.
1305 	 */
1306 	(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
1307 	    efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
1308 	    efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
1309 	    resv_index + 1);
1310 #endif
1311 
1312 	/*
1313 	 * We're now ready to write the EFI label.
1314 	 */
1315 	if (rval == 0) {
1316 		rval = efi_write(fd, efi_label);
1317 		if (rval < 0 && efi_debug) {
1318 			(void) fprintf(stderr, "efi_use_whole_disk:fail "
1319 			    "to write label, rval=%d\n", rval);
1320 		}
1321 	}
1322 
1323 out:
1324 	efi_free(efi_label);
1325 	return (rval);
1326 }
1327 
1328 /*
1329  * write EFI label and backup label
1330  */
1331 int
1332 efi_write(int fd, struct dk_gpt *vtoc)
1333 {
1334 	dk_efi_t		dk_ioc;
1335 	efi_gpt_t		*efi;
1336 	efi_gpe_t		*efi_parts;
1337 	int			i, j;
1338 	struct dk_cinfo		dki_info;
1339 	int			rval;
1340 	int			md_flag = 0;
1341 	int			nblocks;
1342 	diskaddr_t		lba_backup_gpt_hdr;
1343 
1344 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
1345 		return (rval);
1346 
1347 	/* check if we are dealing with a metadevice */
1348 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1349 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1350 		md_flag = 1;
1351 	}
1352 
1353 	if (check_input(vtoc)) {
1354 		/*
1355 		 * not valid; if it's a metadevice just pass it down
1356 		 * because SVM will do its own checking
1357 		 */
1358 		if (md_flag == 0) {
1359 			return (VT_EINVAL);
1360 		}
1361 	}
1362 
1363 	dk_ioc.dki_lba = 1;
1364 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1365 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1366 	} else {
1367 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1368 		    vtoc->efi_lbasize) *
1369 		    vtoc->efi_lbasize;
1370 	}
1371 
1372 	/*
1373 	 * the number of blocks occupied by GUID partition entry array
1374 	 */
1375 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1376 
1377 	/*
1378 	 * Backup GPT header is located on the block after GUID
1379 	 * partition entry array. Here, we calculate the address
1380 	 * for backup GPT header.
1381 	 */
1382 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1383 	if (posix_memalign((void **)&dk_ioc.dki_data,
1384 	    vtoc->efi_lbasize, dk_ioc.dki_length))
1385 		return (VT_ERROR);
1386 
1387 	memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1388 	efi = dk_ioc.dki_data;
1389 
1390 	/* stuff user's input into EFI struct */
1391 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1392 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1393 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1394 	efi->efi_gpt_Reserved1 = 0;
1395 	efi->efi_gpt_MyLBA = LE_64(1ULL);
1396 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1397 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1398 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1399 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1400 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1401 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1402 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1403 
1404 	/* LINTED -- always longlong aligned */
1405 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1406 
1407 	for (i = 0; i < vtoc->efi_nparts; i++) {
1408 		for (j = 0;
1409 		    j < sizeof (conversion_array) /
1410 		    sizeof (struct uuid_to_ptag); j++) {
1411 
1412 			if (vtoc->efi_parts[i].p_tag == j) {
1413 				UUID_LE_CONVERT(
1414 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
1415 				    conversion_array[j].uuid);
1416 				break;
1417 			}
1418 		}
1419 
1420 		if (j == sizeof (conversion_array) /
1421 		    sizeof (struct uuid_to_ptag)) {
1422 			/*
1423 			 * If we didn't have a matching uuid match, bail here.
1424 			 * Don't write a label with unknown uuid.
1425 			 */
1426 			if (efi_debug) {
1427 				(void) fprintf(stderr,
1428 				    "Unknown uuid for p_tag %d\n",
1429 				    vtoc->efi_parts[i].p_tag);
1430 			}
1431 			return (VT_EINVAL);
1432 		}
1433 
1434 		/* Zero's should be written for empty partitions */
1435 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1436 			continue;
1437 
1438 		efi_parts[i].efi_gpe_StartingLBA =
1439 		    LE_64(vtoc->efi_parts[i].p_start);
1440 		efi_parts[i].efi_gpe_EndingLBA =
1441 		    LE_64(vtoc->efi_parts[i].p_start +
1442 		    vtoc->efi_parts[i].p_size - 1);
1443 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1444 		    LE_16(vtoc->efi_parts[i].p_flag);
1445 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1446 			efi_parts[i].efi_gpe_PartitionName[j] =
1447 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1448 		}
1449 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1450 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1451 			(void) uuid_generate((uchar_t *)
1452 			    &vtoc->efi_parts[i].p_uguid);
1453 		}
1454 		memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
1455 		    &vtoc->efi_parts[i].p_uguid,
1456 		    sizeof (uuid_t));
1457 	}
1458 	efi->efi_gpt_PartitionEntryArrayCRC32 =
1459 	    LE_32(efi_crc32((unsigned char *)efi_parts,
1460 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1461 	efi->efi_gpt_HeaderCRC32 =
1462 	    LE_32(efi_crc32((unsigned char *)efi,
1463 	    LE_32(efi->efi_gpt_HeaderSize)));
1464 
1465 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1466 		free(dk_ioc.dki_data);
1467 		switch (errno) {
1468 		case EIO:
1469 			return (VT_EIO);
1470 		case EINVAL:
1471 			return (VT_EINVAL);
1472 		default:
1473 			return (VT_ERROR);
1474 		}
1475 	}
1476 	/* if it's a metadevice we're done */
1477 	if (md_flag) {
1478 		free(dk_ioc.dki_data);
1479 		return (0);
1480 	}
1481 
1482 	/* write backup partition array */
1483 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1484 	dk_ioc.dki_length -= vtoc->efi_lbasize;
1485 	/* LINTED */
1486 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1487 	    vtoc->efi_lbasize);
1488 
1489 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1490 		/*
1491 		 * we wrote the primary label okay, so don't fail
1492 		 */
1493 		if (efi_debug) {
1494 			(void) fprintf(stderr,
1495 			    "write of backup partitions to block %llu "
1496 			    "failed, errno %d\n",
1497 			    vtoc->efi_last_u_lba + 1,
1498 			    errno);
1499 		}
1500 	}
1501 	/*
1502 	 * now swap MyLBA and AlternateLBA fields and write backup
1503 	 * partition table header
1504 	 */
1505 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1506 	dk_ioc.dki_length = vtoc->efi_lbasize;
1507 	/* LINTED */
1508 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1509 	    vtoc->efi_lbasize);
1510 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1511 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1512 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1513 	efi->efi_gpt_HeaderCRC32 = 0;
1514 	efi->efi_gpt_HeaderCRC32 =
1515 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1516 	    LE_32(efi->efi_gpt_HeaderSize)));
1517 
1518 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1519 		if (efi_debug) {
1520 			(void) fprintf(stderr,
1521 			    "write of backup header to block %llu failed, "
1522 			    "errno %d\n",
1523 			    lba_backup_gpt_hdr,
1524 			    errno);
1525 		}
1526 	}
1527 	/* write the PMBR */
1528 	(void) write_pmbr(fd, vtoc);
1529 	free(dk_ioc.dki_data);
1530 
1531 	return (0);
1532 }
1533 
1534 void
1535 efi_free(struct dk_gpt *ptr)
1536 {
1537 	free(ptr);
1538 }
1539 
1540 void
1541 efi_err_check(struct dk_gpt *vtoc)
1542 {
1543 	int			resv_part = -1;
1544 	int			i, j;
1545 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1546 	int			overlap = 0;
1547 
1548 	/*
1549 	 * make sure no partitions overlap
1550 	 */
1551 	for (i = 0; i < vtoc->efi_nparts; i++) {
1552 		/* It can't be unassigned and have an actual size */
1553 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1554 		    (vtoc->efi_parts[i].p_size != 0)) {
1555 			(void) fprintf(stderr,
1556 			    "partition %d is \"unassigned\" but has a size "
1557 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1558 		}
1559 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1560 			continue;
1561 		}
1562 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1563 			if (resv_part != -1) {
1564 				(void) fprintf(stderr,
1565 				    "found duplicate reserved partition at "
1566 				    "%d\n", i);
1567 			}
1568 			resv_part = i;
1569 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1570 				(void) fprintf(stderr,
1571 				    "Warning: reserved partition size must "
1572 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1573 		}
1574 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1575 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1576 			(void) fprintf(stderr,
1577 			    "Partition %d starts at %llu\n",
1578 			    i,
1579 			    vtoc->efi_parts[i].p_start);
1580 			(void) fprintf(stderr,
1581 			    "It must be between %llu and %llu.\n",
1582 			    vtoc->efi_first_u_lba,
1583 			    vtoc->efi_last_u_lba);
1584 		}
1585 		if ((vtoc->efi_parts[i].p_start +
1586 		    vtoc->efi_parts[i].p_size <
1587 		    vtoc->efi_first_u_lba) ||
1588 		    (vtoc->efi_parts[i].p_start +
1589 		    vtoc->efi_parts[i].p_size >
1590 		    vtoc->efi_last_u_lba + 1)) {
1591 			(void) fprintf(stderr,
1592 			    "Partition %d ends at %llu\n",
1593 			    i,
1594 			    vtoc->efi_parts[i].p_start +
1595 			    vtoc->efi_parts[i].p_size);
1596 			(void) fprintf(stderr,
1597 			    "It must be between %llu and %llu.\n",
1598 			    vtoc->efi_first_u_lba,
1599 			    vtoc->efi_last_u_lba);
1600 		}
1601 
1602 		for (j = 0; j < vtoc->efi_nparts; j++) {
1603 			isize = vtoc->efi_parts[i].p_size;
1604 			jsize = vtoc->efi_parts[j].p_size;
1605 			istart = vtoc->efi_parts[i].p_start;
1606 			jstart = vtoc->efi_parts[j].p_start;
1607 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1608 				endsect = jstart + jsize -1;
1609 				if ((jstart <= istart) &&
1610 				    (istart <= endsect)) {
1611 					if (!overlap) {
1612 					(void) fprintf(stderr,
1613 					    "label error: EFI Labels do not "
1614 					    "support overlapping partitions\n");
1615 					}
1616 					(void) fprintf(stderr,
1617 					    "Partition %d overlaps partition "
1618 					    "%d.\n", i, j);
1619 					overlap = 1;
1620 				}
1621 			}
1622 		}
1623 	}
1624 	/* make sure there is a reserved partition */
1625 	if (resv_part == -1) {
1626 		(void) fprintf(stderr,
1627 		    "no reserved partition found\n");
1628 	}
1629 }
1630