xref: /freebsd/sys/contrib/openzfs/lib/libefi/rdwr_efi.c (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2018 by Delphix. All rights reserved.
26  */
27 
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <zlib.h>
35 #include <libintl.h>
36 #include <sys/types.h>
37 #include <sys/dkio.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/vdev_disk.h>
44 #include <linux/fs.h>
45 #include <linux/blkpg.h>
46 
47 static struct uuid_to_ptag {
48 	struct uuid	uuid;
49 } conversion_array[] = {
50 	{ EFI_UNUSED },
51 	{ EFI_BOOT },
52 	{ EFI_ROOT },
53 	{ EFI_SWAP },
54 	{ EFI_USR },
55 	{ EFI_BACKUP },
56 	{ EFI_UNUSED },		/* STAND is never used */
57 	{ EFI_VAR },
58 	{ EFI_HOME },
59 	{ EFI_ALTSCTR },
60 	{ EFI_UNUSED },		/* CACHE (cachefs) is never used */
61 	{ EFI_RESERVED },
62 	{ EFI_SYSTEM },
63 	{ EFI_LEGACY_MBR },
64 	{ EFI_SYMC_PUB },
65 	{ EFI_SYMC_CDS },
66 	{ EFI_MSFT_RESV },
67 	{ EFI_DELL_BASIC },
68 	{ EFI_DELL_RAID },
69 	{ EFI_DELL_SWAP },
70 	{ EFI_DELL_LVM },
71 	{ EFI_DELL_RESV },
72 	{ EFI_AAPL_HFS },
73 	{ EFI_AAPL_UFS },
74 	{ EFI_FREEBSD_BOOT },
75 	{ EFI_FREEBSD_SWAP },
76 	{ EFI_FREEBSD_UFS },
77 	{ EFI_FREEBSD_VINUM },
78 	{ EFI_FREEBSD_ZFS },
79 	{ EFI_BIOS_BOOT },
80 	{ EFI_INTC_RS },
81 	{ EFI_SNE_BOOT },
82 	{ EFI_LENOVO_BOOT },
83 	{ EFI_MSFT_LDMM },
84 	{ EFI_MSFT_LDMD },
85 	{ EFI_MSFT_RE },
86 	{ EFI_IBM_GPFS },
87 	{ EFI_MSFT_STORAGESPACES },
88 	{ EFI_HPQ_DATA },
89 	{ EFI_HPQ_SVC },
90 	{ EFI_RHT_DATA },
91 	{ EFI_RHT_HOME },
92 	{ EFI_RHT_SRV },
93 	{ EFI_RHT_DMCRYPT },
94 	{ EFI_RHT_LUKS },
95 	{ EFI_FREEBSD_DISKLABEL },
96 	{ EFI_AAPL_RAID },
97 	{ EFI_AAPL_RAIDOFFLINE },
98 	{ EFI_AAPL_BOOT },
99 	{ EFI_AAPL_LABEL },
100 	{ EFI_AAPL_TVRECOVERY },
101 	{ EFI_AAPL_CORESTORAGE },
102 	{ EFI_NETBSD_SWAP },
103 	{ EFI_NETBSD_FFS },
104 	{ EFI_NETBSD_LFS },
105 	{ EFI_NETBSD_RAID },
106 	{ EFI_NETBSD_CAT },
107 	{ EFI_NETBSD_CRYPT },
108 	{ EFI_GOOG_KERN },
109 	{ EFI_GOOG_ROOT },
110 	{ EFI_GOOG_RESV },
111 	{ EFI_HAIKU_BFS },
112 	{ EFI_MIDNIGHTBSD_BOOT },
113 	{ EFI_MIDNIGHTBSD_DATA },
114 	{ EFI_MIDNIGHTBSD_SWAP },
115 	{ EFI_MIDNIGHTBSD_UFS },
116 	{ EFI_MIDNIGHTBSD_VINUM },
117 	{ EFI_MIDNIGHTBSD_ZFS },
118 	{ EFI_CEPH_JOURNAL },
119 	{ EFI_CEPH_DMCRYPTJOURNAL },
120 	{ EFI_CEPH_OSD },
121 	{ EFI_CEPH_DMCRYPTOSD },
122 	{ EFI_CEPH_CREATE },
123 	{ EFI_CEPH_DMCRYPTCREATE },
124 	{ EFI_OPENBSD_DISKLABEL },
125 	{ EFI_BBRY_QNX },
126 	{ EFI_BELL_PLAN9 },
127 	{ EFI_VMW_KCORE },
128 	{ EFI_VMW_VMFS },
129 	{ EFI_VMW_RESV },
130 	{ EFI_RHT_ROOTX86 },
131 	{ EFI_RHT_ROOTAMD64 },
132 	{ EFI_RHT_ROOTARM },
133 	{ EFI_RHT_ROOTARM64 },
134 	{ EFI_ACRONIS_SECUREZONE },
135 	{ EFI_ONIE_BOOT },
136 	{ EFI_ONIE_CONFIG },
137 	{ EFI_IBM_PPRPBOOT },
138 	{ EFI_FREEDESKTOP_BOOT }
139 };
140 
141 int efi_debug = 0;
142 
143 static int efi_read(int, struct dk_gpt *);
144 
145 /*
146  * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
147  * one's conditioning will be handled by crc32() internally.
148  */
149 static uint32_t
150 efi_crc32(const unsigned char *buf, unsigned int size)
151 {
152 	uint32_t crc = crc32(0, Z_NULL, 0);
153 
154 	crc = crc32(crc, buf, size);
155 
156 	return (crc);
157 }
158 
159 static int
160 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
161 {
162 	int sector_size;
163 	unsigned long long capacity_size;
164 
165 	if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
166 		return (-1);
167 
168 	if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
169 		return (-1);
170 
171 	*lbsize = (uint_t)sector_size;
172 	*capacity = (diskaddr_t)(capacity_size / sector_size);
173 
174 	return (0);
175 }
176 
177 /*
178  * Return back the device name associated with the file descriptor. The
179  * caller is responsible for freeing the memory associated with the
180  * returned string.
181  */
182 static char *
183 efi_get_devname(int fd)
184 {
185 	char path[32];
186 
187 	/*
188 	 * The libefi API only provides the open fd and not the file path.
189 	 * To handle this realpath(3) is used to resolve the block device
190 	 * name from /proc/self/fd/<fd>.
191 	 */
192 	(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
193 	return (realpath(path, NULL));
194 }
195 
196 static int
197 efi_get_info(int fd, struct dk_cinfo *dki_info)
198 {
199 	char *dev_path;
200 	int rval = 0;
201 
202 	memset(dki_info, 0, sizeof (*dki_info));
203 
204 	/*
205 	 * The simplest way to get the partition number under linux is
206 	 * to parse it out of the /dev/<disk><partition> block device name.
207 	 * The kernel creates this using the partition number when it
208 	 * populates /dev/ so it may be trusted.  The tricky bit here is
209 	 * that the naming convention is based on the block device type.
210 	 * So we need to take this in to account when parsing out the
211 	 * partition information.  Aside from the partition number we collect
212 	 * some additional device info.
213 	 */
214 	dev_path = efi_get_devname(fd);
215 	if (dev_path == NULL)
216 		goto error;
217 
218 	if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
219 		strcpy(dki_info->dki_cname, "sd");
220 		dki_info->dki_ctype = DKC_SCSI_CCS;
221 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
222 		    dki_info->dki_dname,
223 		    &dki_info->dki_partition);
224 	} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
225 		strcpy(dki_info->dki_cname, "hd");
226 		dki_info->dki_ctype = DKC_DIRECT;
227 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
228 		    dki_info->dki_dname,
229 		    &dki_info->dki_partition);
230 	} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
231 		strcpy(dki_info->dki_cname, "pseudo");
232 		dki_info->dki_ctype = DKC_MD;
233 		strcpy(dki_info->dki_dname, "md");
234 		rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
235 		    dki_info->dki_dname + 2,
236 		    &dki_info->dki_partition);
237 	} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
238 		strcpy(dki_info->dki_cname, "vd");
239 		dki_info->dki_ctype = DKC_MD;
240 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
241 		    dki_info->dki_dname,
242 		    &dki_info->dki_partition);
243 	} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
244 		strcpy(dki_info->dki_cname, "xvd");
245 		dki_info->dki_ctype = DKC_MD;
246 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
247 		    dki_info->dki_dname,
248 		    &dki_info->dki_partition);
249 	} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
250 		strcpy(dki_info->dki_cname, "zd");
251 		dki_info->dki_ctype = DKC_MD;
252 		strcpy(dki_info->dki_dname, "zd");
253 		rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
254 		    dki_info->dki_dname + 2,
255 		    &dki_info->dki_partition);
256 	} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
257 		strcpy(dki_info->dki_cname, "pseudo");
258 		dki_info->dki_ctype = DKC_VBD;
259 		strcpy(dki_info->dki_dname, "dm-");
260 		rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
261 		    dki_info->dki_dname + 3,
262 		    &dki_info->dki_partition);
263 	} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
264 		strcpy(dki_info->dki_cname, "pseudo");
265 		dki_info->dki_ctype = DKC_PCMCIA_MEM;
266 		strcpy(dki_info->dki_dname, "ram");
267 		rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
268 		    dki_info->dki_dname + 3,
269 		    &dki_info->dki_partition);
270 	} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
271 		strcpy(dki_info->dki_cname, "pseudo");
272 		dki_info->dki_ctype = DKC_VBD;
273 		strcpy(dki_info->dki_dname, "loop");
274 		rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
275 		    dki_info->dki_dname + 4,
276 		    &dki_info->dki_partition);
277 	} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
278 		strcpy(dki_info->dki_cname, "nvme");
279 		dki_info->dki_ctype = DKC_SCSI_CCS;
280 		strcpy(dki_info->dki_dname, "nvme");
281 		(void) sscanf(dev_path, "/dev/nvme%[0-9]",
282 		    dki_info->dki_dname + 4);
283 		size_t controller_length = strlen(
284 		    dki_info->dki_dname);
285 		strcpy(dki_info->dki_dname + controller_length,
286 		    "n");
287 		rval = sscanf(dev_path,
288 		    "/dev/nvme%*[0-9]n%[0-9]p%hu",
289 		    dki_info->dki_dname + controller_length + 1,
290 		    &dki_info->dki_partition);
291 	} else {
292 		strcpy(dki_info->dki_dname, "unknown");
293 		strcpy(dki_info->dki_cname, "unknown");
294 		dki_info->dki_ctype = DKC_UNKNOWN;
295 	}
296 
297 	switch (rval) {
298 	case 0:
299 		errno = EINVAL;
300 		goto error;
301 	case 1:
302 		dki_info->dki_partition = 0;
303 	}
304 
305 	free(dev_path);
306 
307 	return (0);
308 error:
309 	if (efi_debug)
310 		(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
311 
312 	switch (errno) {
313 	case EIO:
314 		return (VT_EIO);
315 	case EINVAL:
316 		return (VT_EINVAL);
317 	default:
318 		return (VT_ERROR);
319 	}
320 }
321 
322 /*
323  * the number of blocks the EFI label takes up (round up to nearest
324  * block)
325  */
326 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
327 				((l) - 1)) / (l)))
328 /* number of partitions -- limited by what we can malloc */
329 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
330 			    sizeof (struct dk_part))
331 
332 int
333 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
334 {
335 	diskaddr_t	capacity = 0;
336 	uint_t		lbsize = 0;
337 	uint_t		nblocks;
338 	size_t		length;
339 	struct dk_gpt	*vptr;
340 	struct uuid	uuid;
341 	struct dk_cinfo	dki_info;
342 
343 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
344 		return (-1);
345 
346 	if (efi_get_info(fd, &dki_info) != 0)
347 		return (-1);
348 
349 	if (dki_info.dki_partition != 0)
350 		return (-1);
351 
352 	if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
353 	    (dki_info.dki_ctype == DKC_VBD) ||
354 	    (dki_info.dki_ctype == DKC_UNKNOWN))
355 		return (-1);
356 
357 	nblocks = NBLOCKS(nparts, lbsize);
358 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
359 		/* 16K plus one block for the GPT */
360 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
361 	}
362 
363 	if (nparts > MAX_PARTS) {
364 		if (efi_debug) {
365 			(void) fprintf(stderr,
366 			"the maximum number of partitions supported is %lu\n",
367 			    MAX_PARTS);
368 		}
369 		return (-1);
370 	}
371 
372 	length = sizeof (struct dk_gpt) +
373 	    sizeof (struct dk_part) * (nparts - 1);
374 
375 	vptr = calloc(1, length);
376 	if (vptr == NULL)
377 		return (-1);
378 
379 	*vtoc = vptr;
380 
381 	vptr->efi_version = EFI_VERSION_CURRENT;
382 	vptr->efi_lbasize = lbsize;
383 	vptr->efi_nparts = nparts;
384 	/*
385 	 * add one block here for the PMBR; on disks with a 512 byte
386 	 * block size and 128 or fewer partitions, efi_first_u_lba
387 	 * should work out to "34"
388 	 */
389 	vptr->efi_first_u_lba = nblocks + 1;
390 	vptr->efi_last_lba = capacity - 1;
391 	vptr->efi_altern_lba = capacity -1;
392 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
393 
394 	(void) uuid_generate((uchar_t *)&uuid);
395 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
396 	return (0);
397 }
398 
399 /*
400  * Read EFI - return partition number upon success.
401  */
402 int
403 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
404 {
405 	int			rval;
406 	uint32_t		nparts;
407 	int			length;
408 	struct dk_gpt		*vptr;
409 
410 	/* figure out the number of entries that would fit into 16K */
411 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
412 	length = (int) sizeof (struct dk_gpt) +
413 	    (int) sizeof (struct dk_part) * (nparts - 1);
414 	vptr = calloc(1, length);
415 
416 	if (vptr == NULL)
417 		return (VT_ERROR);
418 
419 	vptr->efi_nparts = nparts;
420 	rval = efi_read(fd, vptr);
421 
422 	if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
423 		void *tmp;
424 		length = (int) sizeof (struct dk_gpt) +
425 		    (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
426 		if ((tmp = realloc(vptr, length)) == NULL) {
427 			/* cppcheck-suppress doubleFree */
428 			free(vptr);
429 			*vtoc = NULL;
430 			return (VT_ERROR);
431 		} else {
432 			vptr = tmp;
433 			rval = efi_read(fd, vptr);
434 		}
435 	}
436 
437 	if (rval < 0) {
438 		if (efi_debug) {
439 			(void) fprintf(stderr,
440 			    "read of EFI table failed, rval=%d\n", rval);
441 		}
442 		free(vptr);
443 		*vtoc = NULL;
444 	} else {
445 		*vtoc = vptr;
446 	}
447 
448 	return (rval);
449 }
450 
451 static int
452 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
453 {
454 	void *data = dk_ioc->dki_data;
455 	int error;
456 	diskaddr_t capacity;
457 	uint_t lbsize;
458 
459 	/*
460 	 * When the IO is not being performed in kernel as an ioctl we need
461 	 * to know the sector size so we can seek to the proper byte offset.
462 	 */
463 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
464 		if (efi_debug)
465 			fprintf(stderr, "unable to read disk info: %d", errno);
466 
467 		errno = EIO;
468 		return (-1);
469 	}
470 
471 	switch (cmd) {
472 	case DKIOCGETEFI:
473 		if (lbsize == 0) {
474 			if (efi_debug)
475 				(void) fprintf(stderr, "DKIOCGETEFI assuming "
476 				    "LBA %d bytes\n", DEV_BSIZE);
477 
478 			lbsize = DEV_BSIZE;
479 		}
480 
481 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
482 		if (error == -1) {
483 			if (efi_debug)
484 				(void) fprintf(stderr, "DKIOCGETEFI lseek "
485 				    "error: %d\n", errno);
486 			return (error);
487 		}
488 
489 		error = read(fd, data, dk_ioc->dki_length);
490 		if (error == -1) {
491 			if (efi_debug)
492 				(void) fprintf(stderr, "DKIOCGETEFI read "
493 				    "error: %d\n", errno);
494 			return (error);
495 		}
496 
497 		if (error != dk_ioc->dki_length) {
498 			if (efi_debug)
499 				(void) fprintf(stderr, "DKIOCGETEFI short "
500 				    "read of %d bytes\n", error);
501 			errno = EIO;
502 			return (-1);
503 		}
504 		error = 0;
505 		break;
506 
507 	case DKIOCSETEFI:
508 		if (lbsize == 0) {
509 			if (efi_debug)
510 				(void) fprintf(stderr, "DKIOCSETEFI unknown "
511 				    "LBA size\n");
512 			errno = EIO;
513 			return (-1);
514 		}
515 
516 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
517 		if (error == -1) {
518 			if (efi_debug)
519 				(void) fprintf(stderr, "DKIOCSETEFI lseek "
520 				    "error: %d\n", errno);
521 			return (error);
522 		}
523 
524 		error = write(fd, data, dk_ioc->dki_length);
525 		if (error == -1) {
526 			if (efi_debug)
527 				(void) fprintf(stderr, "DKIOCSETEFI write "
528 				    "error: %d\n", errno);
529 			return (error);
530 		}
531 
532 		if (error != dk_ioc->dki_length) {
533 			if (efi_debug)
534 				(void) fprintf(stderr, "DKIOCSETEFI short "
535 				    "write of %d bytes\n", error);
536 			errno = EIO;
537 			return (-1);
538 		}
539 
540 		/* Sync the new EFI table to disk */
541 		error = fsync(fd);
542 		if (error == -1)
543 			return (error);
544 
545 		/* Ensure any local disk cache is also flushed */
546 		if (ioctl(fd, BLKFLSBUF, 0) == -1)
547 			return (error);
548 
549 		error = 0;
550 		break;
551 
552 	default:
553 		if (efi_debug)
554 			(void) fprintf(stderr, "unsupported ioctl()\n");
555 
556 		errno = EIO;
557 		return (-1);
558 	}
559 
560 	return (error);
561 }
562 
563 int
564 efi_rescan(int fd)
565 {
566 	int retry = 10;
567 
568 	/* Notify the kernel a devices partition table has been updated */
569 	while (ioctl(fd, BLKRRPART) != 0) {
570 		if ((--retry == 0) || (errno != EBUSY)) {
571 			(void) fprintf(stderr, "the kernel failed to rescan "
572 			    "the partition table: %d\n", errno);
573 			return (-1);
574 		}
575 		usleep(50000);
576 	}
577 
578 	return (0);
579 }
580 
581 static int
582 check_label(int fd, dk_efi_t *dk_ioc)
583 {
584 	efi_gpt_t		*efi;
585 	uint_t			crc;
586 
587 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
588 		switch (errno) {
589 		case EIO:
590 			return (VT_EIO);
591 		default:
592 			return (VT_ERROR);
593 		}
594 	}
595 	efi = dk_ioc->dki_data;
596 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
597 		if (efi_debug)
598 			(void) fprintf(stderr,
599 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
600 			    (long long)efi->efi_gpt_Signature,
601 			    (long long)LE_64(EFI_SIGNATURE));
602 		return (VT_EINVAL);
603 	}
604 
605 	/*
606 	 * check CRC of the header; the size of the header should
607 	 * never be larger than one block
608 	 */
609 	crc = efi->efi_gpt_HeaderCRC32;
610 	efi->efi_gpt_HeaderCRC32 = 0;
611 	len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
612 
613 	if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
614 		if (efi_debug)
615 			(void) fprintf(stderr,
616 			    "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
617 			    headerSize, EFI_MIN_LABEL_SIZE);
618 	}
619 
620 	if ((headerSize > dk_ioc->dki_length) ||
621 	    crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
622 		if (efi_debug)
623 			(void) fprintf(stderr,
624 			    "Bad EFI CRC: 0x%x != 0x%x\n",
625 			    crc, LE_32(efi_crc32((unsigned char *)efi,
626 			    headerSize)));
627 		return (VT_EINVAL);
628 	}
629 
630 	return (0);
631 }
632 
633 static int
634 efi_read(int fd, struct dk_gpt *vtoc)
635 {
636 	int			i, j;
637 	int			label_len;
638 	int			rval = 0;
639 	int			md_flag = 0;
640 	int			vdc_flag = 0;
641 	diskaddr_t		capacity = 0;
642 	uint_t			lbsize = 0;
643 	struct dk_minfo		disk_info;
644 	dk_efi_t		dk_ioc;
645 	efi_gpt_t		*efi;
646 	efi_gpe_t		*efi_parts;
647 	struct dk_cinfo		dki_info;
648 	uint32_t		user_length;
649 	boolean_t		legacy_label = B_FALSE;
650 
651 	/*
652 	 * get the partition number for this file descriptor.
653 	 */
654 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
655 		return (rval);
656 
657 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
658 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
659 		md_flag++;
660 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
661 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
662 		/*
663 		 * The controller and drive name "vdc" (virtual disk client)
664 		 * indicates a LDoms virtual disk.
665 		 */
666 		vdc_flag++;
667 	}
668 
669 	/* get the LBA size */
670 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
671 		if (efi_debug) {
672 			(void) fprintf(stderr,
673 			    "unable to read disk info: %d",
674 			    errno);
675 		}
676 		return (VT_EINVAL);
677 	}
678 
679 	disk_info.dki_lbsize = lbsize;
680 	disk_info.dki_capacity = capacity;
681 
682 	if (disk_info.dki_lbsize == 0) {
683 		if (efi_debug) {
684 			(void) fprintf(stderr,
685 			    "efi_read: assuming LBA 512 bytes\n");
686 		}
687 		disk_info.dki_lbsize = DEV_BSIZE;
688 	}
689 	/*
690 	 * Read the EFI GPT to figure out how many partitions we need
691 	 * to deal with.
692 	 */
693 	dk_ioc.dki_lba = 1;
694 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
695 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
696 	} else {
697 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
698 		    disk_info.dki_lbsize;
699 		if (label_len % disk_info.dki_lbsize) {
700 			/* pad to physical sector size */
701 			label_len += disk_info.dki_lbsize;
702 			label_len &= ~(disk_info.dki_lbsize - 1);
703 		}
704 	}
705 
706 	if (posix_memalign((void **)&dk_ioc.dki_data,
707 	    disk_info.dki_lbsize, label_len))
708 		return (VT_ERROR);
709 
710 	memset(dk_ioc.dki_data, 0, label_len);
711 	dk_ioc.dki_length = disk_info.dki_lbsize;
712 	user_length = vtoc->efi_nparts;
713 	efi = dk_ioc.dki_data;
714 	if (md_flag) {
715 		dk_ioc.dki_length = label_len;
716 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
717 			switch (errno) {
718 			case EIO:
719 				return (VT_EIO);
720 			default:
721 				return (VT_ERROR);
722 			}
723 		}
724 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
725 		/*
726 		 * No valid label here; try the alternate. Note that here
727 		 * we just read GPT header and save it into dk_ioc.data,
728 		 * Later, we will read GUID partition entry array if we
729 		 * can get valid GPT header.
730 		 */
731 
732 		/*
733 		 * This is a workaround for legacy systems. In the past, the
734 		 * last sector of SCSI disk was invisible on x86 platform. At
735 		 * that time, backup label was saved on the next to the last
736 		 * sector. It is possible for users to move a disk from previous
737 		 * solaris system to present system. Here, we attempt to search
738 		 * legacy backup EFI label first.
739 		 */
740 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
741 		dk_ioc.dki_length = disk_info.dki_lbsize;
742 		rval = check_label(fd, &dk_ioc);
743 		if (rval == VT_EINVAL) {
744 			/*
745 			 * we didn't find legacy backup EFI label, try to
746 			 * search backup EFI label in the last block.
747 			 */
748 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
749 			dk_ioc.dki_length = disk_info.dki_lbsize;
750 			rval = check_label(fd, &dk_ioc);
751 			if (rval == 0) {
752 				legacy_label = B_TRUE;
753 				if (efi_debug)
754 					(void) fprintf(stderr,
755 					    "efi_read: primary label corrupt; "
756 					    "using EFI backup label located on"
757 					    " the last block\n");
758 			}
759 		} else {
760 			if ((efi_debug) && (rval == 0))
761 				(void) fprintf(stderr, "efi_read: primary label"
762 				    " corrupt; using legacy EFI backup label "
763 				    " located on the next to last block\n");
764 		}
765 
766 		if (rval == 0) {
767 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
768 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
769 			vtoc->efi_nparts =
770 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
771 			/*
772 			 * Partition tables are between backup GPT header
773 			 * table and ParitionEntryLBA (the starting LBA of
774 			 * the GUID partition entries array). Now that we
775 			 * already got valid GPT header and saved it in
776 			 * dk_ioc.dki_data, we try to get GUID partition
777 			 * entry array here.
778 			 */
779 			/* LINTED */
780 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
781 			    + disk_info.dki_lbsize);
782 			if (legacy_label)
783 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
784 				    dk_ioc.dki_lba;
785 			else
786 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
787 				    dk_ioc.dki_lba;
788 			dk_ioc.dki_length *= disk_info.dki_lbsize;
789 			if (dk_ioc.dki_length >
790 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
791 				rval = VT_EINVAL;
792 			} else {
793 				/*
794 				 * read GUID partition entry array
795 				 */
796 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
797 			}
798 		}
799 
800 	} else if (rval == 0) {
801 
802 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
803 		/* LINTED */
804 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
805 		    + disk_info.dki_lbsize);
806 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
807 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
808 
809 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
810 		/*
811 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
812 		 * ioctl can fail with EINVAL if the virtual disk backend
813 		 * is a ZFS volume serviced by a domain running an old version
814 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
815 		 * initially incorrectly implemented for a ZFS volume and it
816 		 * expected the GPT and GPE to be retrieved with a single ioctl.
817 		 * So we try to read the GPT and the GPE using that old style
818 		 * ioctl.
819 		 */
820 		dk_ioc.dki_lba = 1;
821 		dk_ioc.dki_length = label_len;
822 		rval = check_label(fd, &dk_ioc);
823 	}
824 
825 	if (rval < 0) {
826 		free(efi);
827 		return (rval);
828 	}
829 
830 	/* LINTED -- always longlong aligned */
831 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
832 
833 	/*
834 	 * Assemble this into a "dk_gpt" struct for easier
835 	 * digestibility by applications.
836 	 */
837 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
838 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
839 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
840 	vtoc->efi_lbasize = disk_info.dki_lbsize;
841 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
842 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
843 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
844 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
845 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
846 
847 	/*
848 	 * If the array the user passed in is too small, set the length
849 	 * to what it needs to be and return
850 	 */
851 	if (user_length < vtoc->efi_nparts) {
852 		return (VT_EINVAL);
853 	}
854 
855 	for (i = 0; i < vtoc->efi_nparts; i++) {
856 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
857 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
858 
859 		for (j = 0;
860 		    j < sizeof (conversion_array)
861 		    / sizeof (struct uuid_to_ptag); j++) {
862 
863 			if (memcmp(&vtoc->efi_parts[i].p_guid,
864 			    &conversion_array[j].uuid,
865 			    sizeof (struct uuid)) == 0) {
866 				vtoc->efi_parts[i].p_tag = j;
867 				break;
868 			}
869 		}
870 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
871 			continue;
872 		vtoc->efi_parts[i].p_flag =
873 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
874 		vtoc->efi_parts[i].p_start =
875 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
876 		vtoc->efi_parts[i].p_size =
877 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
878 		    vtoc->efi_parts[i].p_start + 1;
879 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
880 			vtoc->efi_parts[i].p_name[j] =
881 			    (uchar_t)LE_16(
882 			    efi_parts[i].efi_gpe_PartitionName[j]);
883 		}
884 
885 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
886 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
887 	}
888 	free(efi);
889 
890 	return (dki_info.dki_partition);
891 }
892 
893 /* writes a "protective" MBR */
894 static int
895 write_pmbr(int fd, struct dk_gpt *vtoc)
896 {
897 	dk_efi_t	dk_ioc;
898 	struct mboot	mb;
899 	uchar_t		*cp;
900 	diskaddr_t	size_in_lba;
901 	uchar_t		*buf;
902 	int		len;
903 
904 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
905 	if (posix_memalign((void **)&buf, len, len))
906 		return (VT_ERROR);
907 
908 	/*
909 	 * Preserve any boot code and disk signature if the first block is
910 	 * already an MBR.
911 	 */
912 	memset(buf, 0, len);
913 	dk_ioc.dki_lba = 0;
914 	dk_ioc.dki_length = len;
915 	/* LINTED -- always longlong aligned */
916 	dk_ioc.dki_data = (efi_gpt_t *)buf;
917 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
918 		memset(&mb, 0, sizeof (mb));
919 		mb.signature = LE_16(MBB_MAGIC);
920 	} else {
921 		(void) memcpy(&mb, buf, sizeof (mb));
922 		if (mb.signature != LE_16(MBB_MAGIC)) {
923 			memset(&mb, 0, sizeof (mb));
924 			mb.signature = LE_16(MBB_MAGIC);
925 		}
926 	}
927 
928 	memset(&mb.parts, 0, sizeof (mb.parts));
929 	cp = (uchar_t *)&mb.parts[0];
930 	/* bootable or not */
931 	*cp++ = 0;
932 	/* beginning CHS; 0xffffff if not representable */
933 	*cp++ = 0xff;
934 	*cp++ = 0xff;
935 	*cp++ = 0xff;
936 	/* OS type */
937 	*cp++ = EFI_PMBR;
938 	/* ending CHS; 0xffffff if not representable */
939 	*cp++ = 0xff;
940 	*cp++ = 0xff;
941 	*cp++ = 0xff;
942 	/* starting LBA: 1 (little endian format) by EFI definition */
943 	*cp++ = 0x01;
944 	*cp++ = 0x00;
945 	*cp++ = 0x00;
946 	*cp++ = 0x00;
947 	/* ending LBA: last block on the disk (little endian format) */
948 	size_in_lba = vtoc->efi_last_lba;
949 	if (size_in_lba < 0xffffffff) {
950 		*cp++ = (size_in_lba & 0x000000ff);
951 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
952 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
953 		*cp++ = (size_in_lba & 0xff000000) >> 24;
954 	} else {
955 		*cp++ = 0xff;
956 		*cp++ = 0xff;
957 		*cp++ = 0xff;
958 		*cp++ = 0xff;
959 	}
960 
961 	(void) memcpy(buf, &mb, sizeof (mb));
962 	/* LINTED -- always longlong aligned */
963 	dk_ioc.dki_data = (efi_gpt_t *)buf;
964 	dk_ioc.dki_lba = 0;
965 	dk_ioc.dki_length = len;
966 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
967 		free(buf);
968 		switch (errno) {
969 		case EIO:
970 			return (VT_EIO);
971 		case EINVAL:
972 			return (VT_EINVAL);
973 		default:
974 			return (VT_ERROR);
975 		}
976 	}
977 	free(buf);
978 	return (0);
979 }
980 
981 /* make sure the user specified something reasonable */
982 static int
983 check_input(struct dk_gpt *vtoc)
984 {
985 	int			resv_part = -1;
986 	int			i, j;
987 	diskaddr_t		istart, jstart, isize, jsize, endsect;
988 
989 	/*
990 	 * Sanity-check the input (make sure no partitions overlap)
991 	 */
992 	for (i = 0; i < vtoc->efi_nparts; i++) {
993 		/* It can't be unassigned and have an actual size */
994 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
995 		    (vtoc->efi_parts[i].p_size != 0)) {
996 			if (efi_debug) {
997 				(void) fprintf(stderr, "partition %d is "
998 				    "\"unassigned\" but has a size of %llu",
999 				    i, vtoc->efi_parts[i].p_size);
1000 			}
1001 			return (VT_EINVAL);
1002 		}
1003 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1004 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1005 				continue;
1006 			/* we have encountered an unknown uuid */
1007 			vtoc->efi_parts[i].p_tag = 0xff;
1008 		}
1009 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1010 			if (resv_part != -1) {
1011 				if (efi_debug) {
1012 					(void) fprintf(stderr, "found "
1013 					    "duplicate reserved partition "
1014 					    "at %d\n", i);
1015 				}
1016 				return (VT_EINVAL);
1017 			}
1018 			resv_part = i;
1019 		}
1020 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1021 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1022 			if (efi_debug) {
1023 				(void) fprintf(stderr,
1024 				    "Partition %d starts at %llu.  ",
1025 				    i,
1026 				    vtoc->efi_parts[i].p_start);
1027 				(void) fprintf(stderr,
1028 				    "It must be between %llu and %llu.\n",
1029 				    vtoc->efi_first_u_lba,
1030 				    vtoc->efi_last_u_lba);
1031 			}
1032 			return (VT_EINVAL);
1033 		}
1034 		if ((vtoc->efi_parts[i].p_start +
1035 		    vtoc->efi_parts[i].p_size <
1036 		    vtoc->efi_first_u_lba) ||
1037 		    (vtoc->efi_parts[i].p_start +
1038 		    vtoc->efi_parts[i].p_size >
1039 		    vtoc->efi_last_u_lba + 1)) {
1040 			if (efi_debug) {
1041 				(void) fprintf(stderr,
1042 				    "Partition %d ends at %llu.  ",
1043 				    i,
1044 				    vtoc->efi_parts[i].p_start +
1045 				    vtoc->efi_parts[i].p_size);
1046 				(void) fprintf(stderr,
1047 				    "It must be between %llu and %llu.\n",
1048 				    vtoc->efi_first_u_lba,
1049 				    vtoc->efi_last_u_lba);
1050 			}
1051 			return (VT_EINVAL);
1052 		}
1053 
1054 		for (j = 0; j < vtoc->efi_nparts; j++) {
1055 			isize = vtoc->efi_parts[i].p_size;
1056 			jsize = vtoc->efi_parts[j].p_size;
1057 			istart = vtoc->efi_parts[i].p_start;
1058 			jstart = vtoc->efi_parts[j].p_start;
1059 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1060 				endsect = jstart + jsize -1;
1061 				if ((jstart <= istart) &&
1062 				    (istart <= endsect)) {
1063 					if (efi_debug) {
1064 						(void) fprintf(stderr,
1065 						    "Partition %d overlaps "
1066 						    "partition %d.", i, j);
1067 					}
1068 					return (VT_EINVAL);
1069 				}
1070 			}
1071 		}
1072 	}
1073 	/* just a warning for now */
1074 	if ((resv_part == -1) && efi_debug) {
1075 		(void) fprintf(stderr,
1076 		    "no reserved partition found\n");
1077 	}
1078 	return (0);
1079 }
1080 
1081 static int
1082 call_blkpg_ioctl(int fd, int command, diskaddr_t start,
1083     diskaddr_t size, uint_t pno)
1084 {
1085 	struct blkpg_ioctl_arg ioctl_arg;
1086 	struct blkpg_partition  linux_part;
1087 	memset(&linux_part, 0, sizeof (linux_part));
1088 
1089 	char *path = efi_get_devname(fd);
1090 	if (path == NULL) {
1091 		(void) fprintf(stderr, "failed to retrieve device name\n");
1092 		return (VT_EINVAL);
1093 	}
1094 
1095 	linux_part.start = start;
1096 	linux_part.length = size;
1097 	linux_part.pno = pno;
1098 	snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
1099 	linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
1100 	free(path);
1101 
1102 	ioctl_arg.op = command;
1103 	ioctl_arg.flags = 0;
1104 	ioctl_arg.datalen = sizeof (struct blkpg_partition);
1105 	ioctl_arg.data = &linux_part;
1106 
1107 	return (ioctl(fd, BLKPG, &ioctl_arg));
1108 }
1109 
1110 /*
1111  * add all the unallocated space to the current label
1112  */
1113 int
1114 efi_use_whole_disk(int fd)
1115 {
1116 	struct dk_gpt *efi_label = NULL;
1117 	int rval;
1118 	int i;
1119 	uint_t resv_index = 0, data_index = 0;
1120 	diskaddr_t resv_start = 0, data_start = 0;
1121 	diskaddr_t data_size, limit, difference;
1122 	boolean_t sync_needed = B_FALSE;
1123 	uint_t nblocks;
1124 
1125 	rval = efi_alloc_and_read(fd, &efi_label);
1126 	if (rval < 0) {
1127 		if (efi_label != NULL)
1128 			efi_free(efi_label);
1129 		return (rval);
1130 	}
1131 
1132 	/*
1133 	 * Find the last physically non-zero partition.
1134 	 * This should be the reserved partition.
1135 	 */
1136 	for (i = 0; i < efi_label->efi_nparts; i ++) {
1137 		if (resv_start < efi_label->efi_parts[i].p_start) {
1138 			resv_start = efi_label->efi_parts[i].p_start;
1139 			resv_index = i;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Find the last physically non-zero partition before that.
1145 	 * This is the data partition.
1146 	 */
1147 	for (i = 0; i < resv_index; i ++) {
1148 		if (data_start < efi_label->efi_parts[i].p_start) {
1149 			data_start = efi_label->efi_parts[i].p_start;
1150 			data_index = i;
1151 		}
1152 	}
1153 	data_size = efi_label->efi_parts[data_index].p_size;
1154 
1155 	/*
1156 	 * See the "efi_alloc_and_init" function for more information
1157 	 * about where this "nblocks" value comes from.
1158 	 */
1159 	nblocks = efi_label->efi_first_u_lba - 1;
1160 
1161 	/*
1162 	 * Determine if the EFI label is out of sync. We check that:
1163 	 *
1164 	 * 1. the data partition ends at the limit we set, and
1165 	 * 2. the reserved partition starts at the limit we set.
1166 	 *
1167 	 * If either of these conditions is not met, then we need to
1168 	 * resync the EFI label.
1169 	 *
1170 	 * The limit is the last usable LBA, determined by the last LBA
1171 	 * and the first usable LBA fields on the EFI label of the disk
1172 	 * (see the lines directly above). Additionally, we factor in
1173 	 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1174 	 * P2ALIGN it to ensure the partition boundaries are aligned
1175 	 * (for performance reasons). The alignment should match the
1176 	 * alignment used by the "zpool_label_disk" function.
1177 	 */
1178 	limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks -
1179 	    EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t);
1180 	if (data_start + data_size != limit || resv_start != limit)
1181 		sync_needed = B_TRUE;
1182 
1183 	if (efi_debug && sync_needed)
1184 		(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1185 
1186 	/*
1187 	 * If alter_lba is 1, we are using the backup label.
1188 	 * Since we can locate the backup label by disk capacity,
1189 	 * there must be no unallocated space.
1190 	 */
1191 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1192 	    >= efi_label->efi_last_lba && !sync_needed)) {
1193 		if (efi_debug) {
1194 			(void) fprintf(stderr,
1195 			    "efi_use_whole_disk: requested space not found\n");
1196 		}
1197 		efi_free(efi_label);
1198 		return (VT_ENOSPC);
1199 	}
1200 
1201 	/*
1202 	 * Verify that we've found the reserved partition by checking
1203 	 * that it looks the way it did when we created it in zpool_label_disk.
1204 	 * If we've found the incorrect partition, then we know that this
1205 	 * device was reformatted and no longer is solely used by ZFS.
1206 	 */
1207 	if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1208 	    (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1209 	    (resv_index != 8)) {
1210 		if (efi_debug) {
1211 			(void) fprintf(stderr,
1212 			    "efi_use_whole_disk: wholedisk not available\n");
1213 		}
1214 		efi_free(efi_label);
1215 		return (VT_ENOSPC);
1216 	}
1217 
1218 	if (data_start + data_size != resv_start) {
1219 		if (efi_debug) {
1220 			(void) fprintf(stderr,
1221 			    "efi_use_whole_disk: "
1222 			    "data_start (%lli) + "
1223 			    "data_size (%lli) != "
1224 			    "resv_start (%lli)\n",
1225 			    data_start, data_size, resv_start);
1226 		}
1227 
1228 		return (VT_EINVAL);
1229 	}
1230 
1231 	if (limit < resv_start) {
1232 		if (efi_debug) {
1233 			(void) fprintf(stderr,
1234 			    "efi_use_whole_disk: "
1235 			    "limit (%lli) < resv_start (%lli)\n",
1236 			    limit, resv_start);
1237 		}
1238 
1239 		return (VT_EINVAL);
1240 	}
1241 
1242 	difference = limit - resv_start;
1243 
1244 	if (efi_debug)
1245 		(void) fprintf(stderr,
1246 		    "efi_use_whole_disk: difference is %lli\n", difference);
1247 
1248 	/*
1249 	 * Move the reserved partition. There is currently no data in
1250 	 * here except fabricated devids (which get generated via
1251 	 * efi_write()). So there is no need to copy data.
1252 	 */
1253 	efi_label->efi_parts[data_index].p_size += difference;
1254 	efi_label->efi_parts[resv_index].p_start += difference;
1255 	efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1256 
1257 	/*
1258 	 * Rescanning the partition table in the kernel can result
1259 	 * in the device links to be removed (see comment in vdev_disk_open).
1260 	 * If BLKPG_RESIZE_PARTITION is available, then we can resize
1261 	 * the partition table online and avoid having to remove the device
1262 	 * links used by the pool. This provides a very deterministic
1263 	 * approach to resizing devices and does not require any
1264 	 * loops waiting for devices to reappear.
1265 	 */
1266 #ifdef BLKPG_RESIZE_PARTITION
1267 	/*
1268 	 * Delete the reserved partition since we're about to expand
1269 	 * the data partition and it would overlap with the reserved
1270 	 * partition.
1271 	 * NOTE: The starting index for the ioctl is 1 while for the
1272 	 * EFI partitions it's 0. For that reason we have to add one
1273 	 * whenever we make an ioctl call.
1274 	 */
1275 	rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
1276 	if (rval != 0)
1277 		goto out;
1278 
1279 	/*
1280 	 * Expand the data partition
1281 	 */
1282 	rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
1283 	    efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
1284 	    efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
1285 	    data_index + 1);
1286 	if (rval != 0) {
1287 		(void) fprintf(stderr, "Unable to resize data "
1288 		    "partition:  %d\n", rval);
1289 		/*
1290 		 * Since we failed to resize, we need to reset the start
1291 		 * of the reserve partition and re-create it.
1292 		 */
1293 		efi_label->efi_parts[resv_index].p_start -= difference;
1294 	}
1295 
1296 	/*
1297 	 * Re-add the reserved partition. If we've expanded the data partition
1298 	 * then we'll move the reserve partition to the end of the data
1299 	 * partition. Otherwise, we'll recreate the partition in its original
1300 	 * location. Note that we do this as best-effort and ignore any
1301 	 * errors that may arise here. This will ensure that we finish writing
1302 	 * the EFI label.
1303 	 */
1304 	(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
1305 	    efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
1306 	    efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
1307 	    resv_index + 1);
1308 #endif
1309 
1310 	/*
1311 	 * We're now ready to write the EFI label.
1312 	 */
1313 	if (rval == 0) {
1314 		rval = efi_write(fd, efi_label);
1315 		if (rval < 0 && efi_debug) {
1316 			(void) fprintf(stderr, "efi_use_whole_disk:fail "
1317 			    "to write label, rval=%d\n", rval);
1318 		}
1319 	}
1320 
1321 out:
1322 	efi_free(efi_label);
1323 	return (rval);
1324 }
1325 
1326 /*
1327  * write EFI label and backup label
1328  */
1329 int
1330 efi_write(int fd, struct dk_gpt *vtoc)
1331 {
1332 	dk_efi_t		dk_ioc;
1333 	efi_gpt_t		*efi;
1334 	efi_gpe_t		*efi_parts;
1335 	int			i, j;
1336 	struct dk_cinfo		dki_info;
1337 	int			rval;
1338 	int			md_flag = 0;
1339 	int			nblocks;
1340 	diskaddr_t		lba_backup_gpt_hdr;
1341 
1342 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
1343 		return (rval);
1344 
1345 	/* check if we are dealing with a metadevice */
1346 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1347 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1348 		md_flag = 1;
1349 	}
1350 
1351 	if (check_input(vtoc)) {
1352 		/*
1353 		 * not valid; if it's a metadevice just pass it down
1354 		 * because SVM will do its own checking
1355 		 */
1356 		if (md_flag == 0) {
1357 			return (VT_EINVAL);
1358 		}
1359 	}
1360 
1361 	dk_ioc.dki_lba = 1;
1362 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1363 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1364 	} else {
1365 		dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts,
1366 		    vtoc->efi_lbasize) *
1367 		    vtoc->efi_lbasize;
1368 	}
1369 
1370 	/*
1371 	 * the number of blocks occupied by GUID partition entry array
1372 	 */
1373 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1374 
1375 	/*
1376 	 * Backup GPT header is located on the block after GUID
1377 	 * partition entry array. Here, we calculate the address
1378 	 * for backup GPT header.
1379 	 */
1380 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1381 	if (posix_memalign((void **)&dk_ioc.dki_data,
1382 	    vtoc->efi_lbasize, dk_ioc.dki_length))
1383 		return (VT_ERROR);
1384 
1385 	memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1386 	efi = dk_ioc.dki_data;
1387 
1388 	/* stuff user's input into EFI struct */
1389 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1390 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1391 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1392 	efi->efi_gpt_Reserved1 = 0;
1393 	efi->efi_gpt_MyLBA = LE_64(1ULL);
1394 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1395 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1396 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1397 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1398 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1399 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1400 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1401 
1402 	/* LINTED -- always longlong aligned */
1403 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1404 
1405 	for (i = 0; i < vtoc->efi_nparts; i++) {
1406 		for (j = 0;
1407 		    j < sizeof (conversion_array) /
1408 		    sizeof (struct uuid_to_ptag); j++) {
1409 
1410 			if (vtoc->efi_parts[i].p_tag == j) {
1411 				UUID_LE_CONVERT(
1412 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
1413 				    conversion_array[j].uuid);
1414 				break;
1415 			}
1416 		}
1417 
1418 		if (j == sizeof (conversion_array) /
1419 		    sizeof (struct uuid_to_ptag)) {
1420 			/*
1421 			 * If we didn't have a matching uuid match, bail here.
1422 			 * Don't write a label with unknown uuid.
1423 			 */
1424 			if (efi_debug) {
1425 				(void) fprintf(stderr,
1426 				    "Unknown uuid for p_tag %d\n",
1427 				    vtoc->efi_parts[i].p_tag);
1428 			}
1429 			return (VT_EINVAL);
1430 		}
1431 
1432 		/* Zero's should be written for empty partitions */
1433 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1434 			continue;
1435 
1436 		efi_parts[i].efi_gpe_StartingLBA =
1437 		    LE_64(vtoc->efi_parts[i].p_start);
1438 		efi_parts[i].efi_gpe_EndingLBA =
1439 		    LE_64(vtoc->efi_parts[i].p_start +
1440 		    vtoc->efi_parts[i].p_size - 1);
1441 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1442 		    LE_16(vtoc->efi_parts[i].p_flag);
1443 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1444 			efi_parts[i].efi_gpe_PartitionName[j] =
1445 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1446 		}
1447 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1448 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1449 			(void) uuid_generate((uchar_t *)
1450 			    &vtoc->efi_parts[i].p_uguid);
1451 		}
1452 		memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
1453 		    &vtoc->efi_parts[i].p_uguid,
1454 		    sizeof (uuid_t));
1455 	}
1456 	efi->efi_gpt_PartitionEntryArrayCRC32 =
1457 	    LE_32(efi_crc32((unsigned char *)efi_parts,
1458 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1459 	efi->efi_gpt_HeaderCRC32 =
1460 	    LE_32(efi_crc32((unsigned char *)efi,
1461 	    LE_32(efi->efi_gpt_HeaderSize)));
1462 
1463 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1464 		free(dk_ioc.dki_data);
1465 		switch (errno) {
1466 		case EIO:
1467 			return (VT_EIO);
1468 		case EINVAL:
1469 			return (VT_EINVAL);
1470 		default:
1471 			return (VT_ERROR);
1472 		}
1473 	}
1474 	/* if it's a metadevice we're done */
1475 	if (md_flag) {
1476 		free(dk_ioc.dki_data);
1477 		return (0);
1478 	}
1479 
1480 	/* write backup partition array */
1481 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1482 	dk_ioc.dki_length -= vtoc->efi_lbasize;
1483 	/* LINTED */
1484 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1485 	    vtoc->efi_lbasize);
1486 
1487 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1488 		/*
1489 		 * we wrote the primary label okay, so don't fail
1490 		 */
1491 		if (efi_debug) {
1492 			(void) fprintf(stderr,
1493 			    "write of backup partitions to block %llu "
1494 			    "failed, errno %d\n",
1495 			    vtoc->efi_last_u_lba + 1,
1496 			    errno);
1497 		}
1498 	}
1499 	/*
1500 	 * now swap MyLBA and AlternateLBA fields and write backup
1501 	 * partition table header
1502 	 */
1503 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1504 	dk_ioc.dki_length = vtoc->efi_lbasize;
1505 	/* LINTED */
1506 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1507 	    vtoc->efi_lbasize);
1508 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1509 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1510 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1511 	efi->efi_gpt_HeaderCRC32 = 0;
1512 	efi->efi_gpt_HeaderCRC32 =
1513 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1514 	    LE_32(efi->efi_gpt_HeaderSize)));
1515 
1516 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1517 		if (efi_debug) {
1518 			(void) fprintf(stderr,
1519 			    "write of backup header to block %llu failed, "
1520 			    "errno %d\n",
1521 			    lba_backup_gpt_hdr,
1522 			    errno);
1523 		}
1524 	}
1525 	/* write the PMBR */
1526 	(void) write_pmbr(fd, vtoc);
1527 	free(dk_ioc.dki_data);
1528 
1529 	return (0);
1530 }
1531 
1532 void
1533 efi_free(struct dk_gpt *ptr)
1534 {
1535 	free(ptr);
1536 }
1537 
1538 void
1539 efi_err_check(struct dk_gpt *vtoc)
1540 {
1541 	int			resv_part = -1;
1542 	int			i, j;
1543 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1544 	int			overlap = 0;
1545 
1546 	/*
1547 	 * make sure no partitions overlap
1548 	 */
1549 	for (i = 0; i < vtoc->efi_nparts; i++) {
1550 		/* It can't be unassigned and have an actual size */
1551 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1552 		    (vtoc->efi_parts[i].p_size != 0)) {
1553 			(void) fprintf(stderr,
1554 			    "partition %d is \"unassigned\" but has a size "
1555 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1556 		}
1557 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1558 			continue;
1559 		}
1560 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1561 			if (resv_part != -1) {
1562 				(void) fprintf(stderr,
1563 				    "found duplicate reserved partition at "
1564 				    "%d\n", i);
1565 			}
1566 			resv_part = i;
1567 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1568 				(void) fprintf(stderr,
1569 				    "Warning: reserved partition size must "
1570 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1571 		}
1572 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1573 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1574 			(void) fprintf(stderr,
1575 			    "Partition %d starts at %llu\n",
1576 			    i,
1577 			    vtoc->efi_parts[i].p_start);
1578 			(void) fprintf(stderr,
1579 			    "It must be between %llu and %llu.\n",
1580 			    vtoc->efi_first_u_lba,
1581 			    vtoc->efi_last_u_lba);
1582 		}
1583 		if ((vtoc->efi_parts[i].p_start +
1584 		    vtoc->efi_parts[i].p_size <
1585 		    vtoc->efi_first_u_lba) ||
1586 		    (vtoc->efi_parts[i].p_start +
1587 		    vtoc->efi_parts[i].p_size >
1588 		    vtoc->efi_last_u_lba + 1)) {
1589 			(void) fprintf(stderr,
1590 			    "Partition %d ends at %llu\n",
1591 			    i,
1592 			    vtoc->efi_parts[i].p_start +
1593 			    vtoc->efi_parts[i].p_size);
1594 			(void) fprintf(stderr,
1595 			    "It must be between %llu and %llu.\n",
1596 			    vtoc->efi_first_u_lba,
1597 			    vtoc->efi_last_u_lba);
1598 		}
1599 
1600 		for (j = 0; j < vtoc->efi_nparts; j++) {
1601 			isize = vtoc->efi_parts[i].p_size;
1602 			jsize = vtoc->efi_parts[j].p_size;
1603 			istart = vtoc->efi_parts[i].p_start;
1604 			jstart = vtoc->efi_parts[j].p_start;
1605 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1606 				endsect = jstart + jsize -1;
1607 				if ((jstart <= istart) &&
1608 				    (istart <= endsect)) {
1609 					if (!overlap) {
1610 					(void) fprintf(stderr,
1611 					    "label error: EFI Labels do not "
1612 					    "support overlapping partitions\n");
1613 					}
1614 					(void) fprintf(stderr,
1615 					    "Partition %d overlaps partition "
1616 					    "%d.\n", i, j);
1617 					overlap = 1;
1618 				}
1619 			}
1620 		}
1621 	}
1622 	/* make sure there is a reserved partition */
1623 	if (resv_part == -1) {
1624 		(void) fprintf(stderr,
1625 		    "no reserved partition found\n");
1626 	}
1627 }
1628