1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9271171e0SMartin Matuska * or https://opensource.org/licenses/CDDL-1.0. 10eda14cbcSMatt Macy * See the License for the specific language governing permissions 11eda14cbcSMatt Macy * and limitations under the License. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18eda14cbcSMatt Macy * 19eda14cbcSMatt Macy * CDDL HEADER END 20eda14cbcSMatt Macy */ 21eda14cbcSMatt Macy 22eda14cbcSMatt Macy /* 23eda14cbcSMatt Macy * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24eda14cbcSMatt Macy * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25eda14cbcSMatt Macy * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 26eda14cbcSMatt Macy * Copyright 2017 Nexenta Systems, Inc. 27*7a7741afSMartin Matuska * Copyright (c) 2024, Klara, Inc. 28eda14cbcSMatt Macy */ 29eda14cbcSMatt Macy 30eda14cbcSMatt Macy #ifndef _SYS_ZAP_IMPL_H 31eda14cbcSMatt Macy #define _SYS_ZAP_IMPL_H 32eda14cbcSMatt Macy 33eda14cbcSMatt Macy #include <sys/zap.h> 34eda14cbcSMatt Macy #include <sys/zfs_context.h> 35eda14cbcSMatt Macy #include <sys/avl.h> 36eda14cbcSMatt Macy 37eda14cbcSMatt Macy #ifdef __cplusplus 38eda14cbcSMatt Macy extern "C" { 39eda14cbcSMatt Macy #endif 40eda14cbcSMatt Macy 41eda14cbcSMatt Macy extern int fzap_default_block_shift; 42eda14cbcSMatt Macy 43eda14cbcSMatt Macy #define ZAP_MAGIC 0x2F52AB2ABULL 44eda14cbcSMatt Macy 45eda14cbcSMatt Macy #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_f.zap_block_shift) 46eda14cbcSMatt Macy 47eda14cbcSMatt Macy #define MZAP_ENT_LEN 64 48eda14cbcSMatt Macy #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 49eda14cbcSMatt Macy 50eda14cbcSMatt Macy #define ZAP_NEED_CD (-1U) 51eda14cbcSMatt Macy 52eda14cbcSMatt Macy typedef struct mzap_ent_phys { 53eda14cbcSMatt Macy uint64_t mze_value; 54eda14cbcSMatt Macy uint32_t mze_cd; 55eda14cbcSMatt Macy uint16_t mze_pad; /* in case we want to chain them someday */ 56eda14cbcSMatt Macy char mze_name[MZAP_NAME_LEN]; 57eda14cbcSMatt Macy } mzap_ent_phys_t; 58eda14cbcSMatt Macy 59eda14cbcSMatt Macy typedef struct mzap_phys { 60eda14cbcSMatt Macy uint64_t mz_block_type; /* ZBT_MICRO */ 61eda14cbcSMatt Macy uint64_t mz_salt; 62eda14cbcSMatt Macy uint64_t mz_normflags; 63eda14cbcSMatt Macy uint64_t mz_pad[5]; 64eda14cbcSMatt Macy mzap_ent_phys_t mz_chunk[1]; 65eda14cbcSMatt Macy /* actually variable size depending on block size */ 66eda14cbcSMatt Macy } mzap_phys_t; 67eda14cbcSMatt Macy 68eda14cbcSMatt Macy typedef struct mzap_ent { 69dbd5678dSMartin Matuska uint32_t mze_hash; 70dbd5678dSMartin Matuska uint16_t mze_cd; /* copy from mze_phys->mze_cd */ 71dbd5678dSMartin Matuska uint16_t mze_chunkid; 72eda14cbcSMatt Macy } mzap_ent_t; 73eda14cbcSMatt Macy 74eda14cbcSMatt Macy #define MZE_PHYS(zap, mze) \ 75eda14cbcSMatt Macy (&zap_m_phys(zap)->mz_chunk[(mze)->mze_chunkid]) 76eda14cbcSMatt Macy 77eda14cbcSMatt Macy /* 78eda14cbcSMatt Macy * The (fat) zap is stored in one object. It is an array of 79eda14cbcSMatt Macy * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 80eda14cbcSMatt Macy * 81eda14cbcSMatt Macy * ptrtbl fits in first block: 82eda14cbcSMatt Macy * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 83eda14cbcSMatt Macy * 84eda14cbcSMatt Macy * ptrtbl too big for first block: 85eda14cbcSMatt Macy * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 86eda14cbcSMatt Macy * 87eda14cbcSMatt Macy */ 88eda14cbcSMatt Macy 89eda14cbcSMatt Macy struct dmu_buf; 90eda14cbcSMatt Macy struct zap_leaf; 91eda14cbcSMatt Macy 92eda14cbcSMatt Macy #define ZBT_LEAF ((1ULL << 63) + 0) 93eda14cbcSMatt Macy #define ZBT_HEADER ((1ULL << 63) + 1) 94eda14cbcSMatt Macy #define ZBT_MICRO ((1ULL << 63) + 3) 95eda14cbcSMatt Macy /* any other values are ptrtbl blocks */ 96eda14cbcSMatt Macy 97eda14cbcSMatt Macy /* 98eda14cbcSMatt Macy * the embedded pointer table takes up half a block: 99eda14cbcSMatt Macy * block size / entry size (2^3) / 2 100eda14cbcSMatt Macy */ 101eda14cbcSMatt Macy #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 102eda14cbcSMatt Macy 103eda14cbcSMatt Macy /* 104eda14cbcSMatt Macy * The embedded pointer table starts half-way through the block. Since 105eda14cbcSMatt Macy * the pointer table itself is half the block, it starts at (64-bit) 106eda14cbcSMatt Macy * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 107eda14cbcSMatt Macy */ 108eda14cbcSMatt Macy #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 109eda14cbcSMatt Macy ((uint64_t *)zap_f_phys(zap)) \ 110eda14cbcSMatt Macy [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 111eda14cbcSMatt Macy 112eda14cbcSMatt Macy /* 113eda14cbcSMatt Macy * TAKE NOTE: 114eda14cbcSMatt Macy * If zap_phys_t is modified, zap_byteswap() must be modified. 115eda14cbcSMatt Macy */ 116eda14cbcSMatt Macy typedef struct zap_phys { 117eda14cbcSMatt Macy uint64_t zap_block_type; /* ZBT_HEADER */ 118eda14cbcSMatt Macy uint64_t zap_magic; /* ZAP_MAGIC */ 119eda14cbcSMatt Macy 120eda14cbcSMatt Macy struct zap_table_phys { 121eda14cbcSMatt Macy uint64_t zt_blk; /* starting block number */ 122eda14cbcSMatt Macy uint64_t zt_numblks; /* number of blocks */ 123eda14cbcSMatt Macy uint64_t zt_shift; /* bits to index it */ 124eda14cbcSMatt Macy uint64_t zt_nextblk; /* next (larger) copy start block */ 125eda14cbcSMatt Macy uint64_t zt_blks_copied; /* number source blocks copied */ 126eda14cbcSMatt Macy } zap_ptrtbl; 127eda14cbcSMatt Macy 128eda14cbcSMatt Macy uint64_t zap_freeblk; /* the next free block */ 129eda14cbcSMatt Macy uint64_t zap_num_leafs; /* number of leafs */ 130eda14cbcSMatt Macy uint64_t zap_num_entries; /* number of entries */ 131eda14cbcSMatt Macy uint64_t zap_salt; /* salt to stir into hash function */ 132eda14cbcSMatt Macy uint64_t zap_normflags; /* flags for u8_textprep_str() */ 133eda14cbcSMatt Macy uint64_t zap_flags; /* zap_flags_t */ 134eda14cbcSMatt Macy /* 135eda14cbcSMatt Macy * This structure is followed by padding, and then the embedded 136eda14cbcSMatt Macy * pointer table. The embedded pointer table takes up second 137eda14cbcSMatt Macy * half of the block. It is accessed using the 138eda14cbcSMatt Macy * ZAP_EMBEDDED_PTRTBL_ENT() macro. 139eda14cbcSMatt Macy */ 140eda14cbcSMatt Macy } zap_phys_t; 141eda14cbcSMatt Macy 142eda14cbcSMatt Macy typedef struct zap_table_phys zap_table_phys_t; 143eda14cbcSMatt Macy 144eda14cbcSMatt Macy typedef struct zap { 145eda14cbcSMatt Macy dmu_buf_user_t zap_dbu; 146eda14cbcSMatt Macy objset_t *zap_objset; 147eda14cbcSMatt Macy uint64_t zap_object; 148783d3ff6SMartin Matuska dnode_t *zap_dnode; 149eda14cbcSMatt Macy struct dmu_buf *zap_dbuf; 150eda14cbcSMatt Macy krwlock_t zap_rwlock; 151eda14cbcSMatt Macy boolean_t zap_ismicro; 152eda14cbcSMatt Macy int zap_normflags; 153eda14cbcSMatt Macy uint64_t zap_salt; 154eda14cbcSMatt Macy union { 155eda14cbcSMatt Macy struct { 156eda14cbcSMatt Macy /* 157eda14cbcSMatt Macy * zap_num_entries_mtx protects 158eda14cbcSMatt Macy * zap_num_entries 159eda14cbcSMatt Macy */ 160eda14cbcSMatt Macy kmutex_t zap_num_entries_mtx; 161eda14cbcSMatt Macy int zap_block_shift; 162eda14cbcSMatt Macy } zap_fat; 163eda14cbcSMatt Macy struct { 164eda14cbcSMatt Macy int16_t zap_num_entries; 165eda14cbcSMatt Macy int16_t zap_num_chunks; 166eda14cbcSMatt Macy int16_t zap_alloc_next; 167dbd5678dSMartin Matuska zfs_btree_t zap_tree; 168eda14cbcSMatt Macy } zap_micro; 169eda14cbcSMatt Macy } zap_u; 170eda14cbcSMatt Macy } zap_t; 171eda14cbcSMatt Macy 172eda14cbcSMatt Macy static inline zap_phys_t * 173eda14cbcSMatt Macy zap_f_phys(zap_t *zap) 174eda14cbcSMatt Macy { 175eda14cbcSMatt Macy return (zap->zap_dbuf->db_data); 176eda14cbcSMatt Macy } 177eda14cbcSMatt Macy 178eda14cbcSMatt Macy static inline mzap_phys_t * 179eda14cbcSMatt Macy zap_m_phys(zap_t *zap) 180eda14cbcSMatt Macy { 181eda14cbcSMatt Macy return (zap->zap_dbuf->db_data); 182eda14cbcSMatt Macy } 183eda14cbcSMatt Macy 184eda14cbcSMatt Macy typedef struct zap_name { 185eda14cbcSMatt Macy zap_t *zn_zap; 186eda14cbcSMatt Macy int zn_key_intlen; 187eda14cbcSMatt Macy const void *zn_key_orig; 188eda14cbcSMatt Macy int zn_key_orig_numints; 189eda14cbcSMatt Macy const void *zn_key_norm; 190eda14cbcSMatt Macy int zn_key_norm_numints; 191eda14cbcSMatt Macy uint64_t zn_hash; 192eda14cbcSMatt Macy matchtype_t zn_matchtype; 193eda14cbcSMatt Macy int zn_normflags; 194*7a7741afSMartin Matuska int zn_normbuf_len; 195*7a7741afSMartin Matuska char zn_normbuf[]; 196eda14cbcSMatt Macy } zap_name_t; 197eda14cbcSMatt Macy 198eda14cbcSMatt Macy #define zap_f zap_u.zap_fat 199eda14cbcSMatt Macy #define zap_m zap_u.zap_micro 200eda14cbcSMatt Macy 201eda14cbcSMatt Macy boolean_t zap_match(zap_name_t *zn, const char *matchname); 202eda14cbcSMatt Macy int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 203a0b956f5SMartin Matuska krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 204a0b956f5SMartin Matuska zap_t **zapp); 205a0b956f5SMartin Matuska void zap_unlockdir(zap_t *zap, const void *tag); 206eda14cbcSMatt Macy void zap_evict_sync(void *dbu); 207dbd5678dSMartin Matuska zap_name_t *zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt); 208eda14cbcSMatt Macy void zap_name_free(zap_name_t *zn); 209eda14cbcSMatt Macy int zap_hashbits(zap_t *zap); 210eda14cbcSMatt Macy uint32_t zap_maxcd(zap_t *zap); 211eda14cbcSMatt Macy uint64_t zap_getflags(zap_t *zap); 212eda14cbcSMatt Macy 213*7a7741afSMartin Matuska uint64_t zap_get_micro_max_size(spa_t *spa); 214*7a7741afSMartin Matuska 215eda14cbcSMatt Macy #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 216eda14cbcSMatt Macy 217eda14cbcSMatt Macy void fzap_byteswap(void *buf, size_t size); 218eda14cbcSMatt Macy int fzap_count(zap_t *zap, uint64_t *count); 219eda14cbcSMatt Macy int fzap_lookup(zap_name_t *zn, 220eda14cbcSMatt Macy uint64_t integer_size, uint64_t num_integers, void *buf, 221eda14cbcSMatt Macy char *realname, int rn_len, boolean_t *normalization_conflictp); 222eda14cbcSMatt Macy void fzap_prefetch(zap_name_t *zn); 223eda14cbcSMatt Macy int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, 224a0b956f5SMartin Matuska const void *val, const void *tag, dmu_tx_t *tx); 225eda14cbcSMatt Macy int fzap_update(zap_name_t *zn, 226eda14cbcSMatt Macy int integer_size, uint64_t num_integers, const void *val, 227a0b956f5SMartin Matuska const void *tag, dmu_tx_t *tx); 228eda14cbcSMatt Macy int fzap_length(zap_name_t *zn, 229eda14cbcSMatt Macy uint64_t *integer_size, uint64_t *num_integers); 230eda14cbcSMatt Macy int fzap_remove(zap_name_t *zn, dmu_tx_t *tx); 231eda14cbcSMatt Macy int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za); 232eda14cbcSMatt Macy void fzap_get_stats(zap_t *zap, zap_stats_t *zs); 233eda14cbcSMatt Macy void zap_put_leaf(struct zap_leaf *l); 234eda14cbcSMatt Macy 235eda14cbcSMatt Macy int fzap_add_cd(zap_name_t *zn, 236eda14cbcSMatt Macy uint64_t integer_size, uint64_t num_integers, 237a0b956f5SMartin Matuska const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx); 238eda14cbcSMatt Macy void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags); 239eda14cbcSMatt Macy 240eda14cbcSMatt Macy #ifdef __cplusplus 241eda14cbcSMatt Macy } 242eda14cbcSMatt Macy #endif 243eda14cbcSMatt Macy 244eda14cbcSMatt Macy #endif /* _SYS_ZAP_IMPL_H */ 245