xref: /freebsd/sys/contrib/openzfs/cmd/ztest.c (revision d59a76183470685bdf0b88013d2baad1f04f030f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2023, Klara, Inc.
30  */
31 
32 /*
33  * The objective of this program is to provide a DMU/ZAP/SPA stress test
34  * that runs entirely in userland, is easy to use, and easy to extend.
35  *
36  * The overall design of the ztest program is as follows:
37  *
38  * (1) For each major functional area (e.g. adding vdevs to a pool,
39  *     creating and destroying datasets, reading and writing objects, etc)
40  *     we have a simple routine to test that functionality.  These
41  *     individual routines do not have to do anything "stressful".
42  *
43  * (2) We turn these simple functionality tests into a stress test by
44  *     running them all in parallel, with as many threads as desired,
45  *     and spread across as many datasets, objects, and vdevs as desired.
46  *
47  * (3) While all this is happening, we inject faults into the pool to
48  *     verify that self-healing data really works.
49  *
50  * (4) Every time we open a dataset, we change its checksum and compression
51  *     functions.  Thus even individual objects vary from block to block
52  *     in which checksum they use and whether they're compressed.
53  *
54  * (5) To verify that we never lose on-disk consistency after a crash,
55  *     we run the entire test in a child of the main process.
56  *     At random times, the child self-immolates with a SIGKILL.
57  *     This is the software equivalent of pulling the power cord.
58  *     The parent then runs the test again, using the existing
59  *     storage pool, as many times as desired. If backwards compatibility
60  *     testing is enabled ztest will sometimes run the "older" version
61  *     of ztest after a SIGKILL.
62  *
63  * (6) To verify that we don't have future leaks or temporal incursions,
64  *     many of the functional tests record the transaction group number
65  *     as part of their data.  When reading old data, they verify that
66  *     the transaction group number is less than the current, open txg.
67  *     If you add a new test, please do this if applicable.
68  *
69  * (7) Threads are created with a reduced stack size, for sanity checking.
70  *     Therefore, it's important not to allocate huge buffers on the stack.
71  *
72  * When run with no arguments, ztest runs for about five minutes and
73  * produces no output if successful.  To get a little bit of information,
74  * specify -V.  To get more information, specify -VV, and so on.
75  *
76  * To turn this into an overnight stress test, use -T to specify run time.
77  *
78  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
79  * to increase the pool capacity, fanout, and overall stress level.
80  *
81  * Use the -k option to set the desired frequency of kills.
82  *
83  * When ztest invokes itself it passes all relevant information through a
84  * temporary file which is mmap-ed in the child process. This allows shared
85  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
86  * stored at offset 0 of this file and contains information on the size and
87  * number of shared structures in the file. The information stored in this file
88  * must remain backwards compatible with older versions of ztest so that
89  * ztest can invoke them during backwards compatibility testing (-B).
90  */
91 
92 #include <sys/zfs_context.h>
93 #include <sys/spa.h>
94 #include <sys/dmu.h>
95 #include <sys/txg.h>
96 #include <sys/dbuf.h>
97 #include <sys/zap.h>
98 #include <sys/dmu_objset.h>
99 #include <sys/poll.h>
100 #include <sys/stat.h>
101 #include <sys/time.h>
102 #include <sys/wait.h>
103 #include <sys/mman.h>
104 #include <sys/resource.h>
105 #include <sys/zio.h>
106 #include <sys/zil.h>
107 #include <sys/zil_impl.h>
108 #include <sys/vdev_draid.h>
109 #include <sys/vdev_impl.h>
110 #include <sys/vdev_file.h>
111 #include <sys/vdev_initialize.h>
112 #include <sys/vdev_raidz.h>
113 #include <sys/vdev_trim.h>
114 #include <sys/spa_impl.h>
115 #include <sys/metaslab_impl.h>
116 #include <sys/dsl_prop.h>
117 #include <sys/dsl_dataset.h>
118 #include <sys/dsl_destroy.h>
119 #include <sys/dsl_scan.h>
120 #include <sys/zio_checksum.h>
121 #include <sys/zfs_refcount.h>
122 #include <sys/zfeature.h>
123 #include <sys/dsl_userhold.h>
124 #include <sys/abd.h>
125 #include <sys/blake3.h>
126 #include <stdio.h>
127 #include <stdlib.h>
128 #include <unistd.h>
129 #include <getopt.h>
130 #include <signal.h>
131 #include <umem.h>
132 #include <ctype.h>
133 #include <math.h>
134 #include <sys/fs/zfs.h>
135 #include <zfs_fletcher.h>
136 #include <libnvpair.h>
137 #include <libzutil.h>
138 #include <sys/crypto/icp.h>
139 #include <sys/zfs_impl.h>
140 #include <sys/backtrace.h>
141 
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
144 
145 typedef struct ztest_shared_hdr {
146 	uint64_t	zh_hdr_size;
147 	uint64_t	zh_opts_size;
148 	uint64_t	zh_size;
149 	uint64_t	zh_stats_size;
150 	uint64_t	zh_stats_count;
151 	uint64_t	zh_ds_size;
152 	uint64_t	zh_ds_count;
153 	uint64_t	zh_scratch_state_size;
154 } ztest_shared_hdr_t;
155 
156 static ztest_shared_hdr_t *ztest_shared_hdr;
157 
158 enum ztest_class_state {
159 	ZTEST_VDEV_CLASS_OFF,
160 	ZTEST_VDEV_CLASS_ON,
161 	ZTEST_VDEV_CLASS_RND
162 };
163 
164 /* Dedicated RAIDZ Expansion test states */
165 typedef enum {
166 	RAIDZ_EXPAND_NONE,		/* Default is none, must opt-in	*/
167 	RAIDZ_EXPAND_REQUESTED,		/* The '-X' option was used	*/
168 	RAIDZ_EXPAND_STARTED,		/* Testing has commenced	*/
169 	RAIDZ_EXPAND_KILLED,		/* Reached the proccess kill	*/
170 	RAIDZ_EXPAND_CHECKED,		/* Pool scrub verification done	*/
171 } raidz_expand_test_state_t;
172 
173 
174 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
175 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
176 
177 typedef struct ztest_shared_opts {
178 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
179 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
180 	char zo_alt_ztest[MAXNAMELEN];
181 	char zo_alt_libpath[MAXNAMELEN];
182 	uint64_t zo_vdevs;
183 	uint64_t zo_vdevtime;
184 	size_t zo_vdev_size;
185 	int zo_ashift;
186 	int zo_mirrors;
187 	int zo_raid_do_expand;
188 	int zo_raid_children;
189 	int zo_raid_parity;
190 	char zo_raid_type[8];
191 	int zo_draid_data;
192 	int zo_draid_spares;
193 	int zo_datasets;
194 	int zo_threads;
195 	uint64_t zo_passtime;
196 	uint64_t zo_killrate;
197 	int zo_verbose;
198 	int zo_init;
199 	uint64_t zo_time;
200 	uint64_t zo_maxloops;
201 	uint64_t zo_metaslab_force_ganging;
202 	raidz_expand_test_state_t zo_raidz_expand_test;
203 	int zo_mmp_test;
204 	int zo_special_vdevs;
205 	int zo_dump_dbgmsg;
206 	int zo_gvars_count;
207 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
208 } ztest_shared_opts_t;
209 
210 /* Default values for command line options. */
211 #define	DEFAULT_POOL "ztest"
212 #define	DEFAULT_VDEV_DIR "/tmp"
213 #define	DEFAULT_VDEV_COUNT 5
214 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
215 #define	DEFAULT_VDEV_SIZE_STR "256M"
216 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
217 #define	DEFAULT_MIRRORS 2
218 #define	DEFAULT_RAID_CHILDREN 4
219 #define	DEFAULT_RAID_PARITY 1
220 #define	DEFAULT_DRAID_DATA 4
221 #define	DEFAULT_DRAID_SPARES 1
222 #define	DEFAULT_DATASETS_COUNT 7
223 #define	DEFAULT_THREADS 23
224 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
225 #define	DEFAULT_RUN_TIME_STR "300 sec"
226 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
227 #define	DEFAULT_PASS_TIME_STR "60 sec"
228 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
229 #define	DEFAULT_KILLRATE_STR "70%"
230 #define	DEFAULT_INITS 1
231 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
232 #define	DEFAULT_FORCE_GANGING (64 << 10)
233 #define	DEFAULT_FORCE_GANGING_STR "64K"
234 
235 /* Simplifying assumption: -1 is not a valid default. */
236 #define	NO_DEFAULT -1
237 
238 static const ztest_shared_opts_t ztest_opts_defaults = {
239 	.zo_pool = DEFAULT_POOL,
240 	.zo_dir = DEFAULT_VDEV_DIR,
241 	.zo_alt_ztest = { '\0' },
242 	.zo_alt_libpath = { '\0' },
243 	.zo_vdevs = DEFAULT_VDEV_COUNT,
244 	.zo_ashift = DEFAULT_ASHIFT,
245 	.zo_mirrors = DEFAULT_MIRRORS,
246 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
247 	.zo_raid_parity = DEFAULT_RAID_PARITY,
248 	.zo_raid_type = VDEV_TYPE_RAIDZ,
249 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
250 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
251 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
252 	.zo_datasets = DEFAULT_DATASETS_COUNT,
253 	.zo_threads = DEFAULT_THREADS,
254 	.zo_passtime = DEFAULT_PASS_TIME,
255 	.zo_killrate = DEFAULT_KILL_RATE,
256 	.zo_verbose = 0,
257 	.zo_mmp_test = 0,
258 	.zo_init = DEFAULT_INITS,
259 	.zo_time = DEFAULT_RUN_TIME,
260 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
261 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
262 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
263 	.zo_gvars_count = 0,
264 	.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
265 };
266 
267 extern uint64_t metaslab_force_ganging;
268 extern uint64_t metaslab_df_alloc_threshold;
269 extern uint64_t zfs_deadman_synctime_ms;
270 extern uint_t metaslab_preload_limit;
271 extern int zfs_compressed_arc_enabled;
272 extern int zfs_abd_scatter_enabled;
273 extern uint_t dmu_object_alloc_chunk_shift;
274 extern boolean_t zfs_force_some_double_word_sm_entries;
275 extern unsigned long zio_decompress_fail_fraction;
276 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
277 extern uint64_t raidz_expand_max_reflow_bytes;
278 extern uint_t raidz_expand_pause_point;
279 
280 
281 static ztest_shared_opts_t *ztest_shared_opts;
282 static ztest_shared_opts_t ztest_opts;
283 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
284 
285 typedef struct ztest_shared_ds {
286 	uint64_t	zd_seq;
287 } ztest_shared_ds_t;
288 
289 static ztest_shared_ds_t *ztest_shared_ds;
290 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
291 
292 typedef struct ztest_scratch_state {
293 	uint64_t	zs_raidz_scratch_verify_pause;
294 } ztest_shared_scratch_state_t;
295 
296 static ztest_shared_scratch_state_t *ztest_scratch_state;
297 
298 #define	BT_MAGIC	0x123456789abcdefULL
299 #define	MAXFAULTS(zs) \
300 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
301 
302 enum ztest_io_type {
303 	ZTEST_IO_WRITE_TAG,
304 	ZTEST_IO_WRITE_PATTERN,
305 	ZTEST_IO_WRITE_ZEROES,
306 	ZTEST_IO_TRUNCATE,
307 	ZTEST_IO_SETATTR,
308 	ZTEST_IO_REWRITE,
309 	ZTEST_IO_TYPES
310 };
311 
312 typedef struct ztest_block_tag {
313 	uint64_t	bt_magic;
314 	uint64_t	bt_objset;
315 	uint64_t	bt_object;
316 	uint64_t	bt_dnodesize;
317 	uint64_t	bt_offset;
318 	uint64_t	bt_gen;
319 	uint64_t	bt_txg;
320 	uint64_t	bt_crtxg;
321 } ztest_block_tag_t;
322 
323 typedef struct bufwad {
324 	uint64_t	bw_index;
325 	uint64_t	bw_txg;
326 	uint64_t	bw_data;
327 } bufwad_t;
328 
329 /*
330  * It would be better to use a rangelock_t per object.  Unfortunately
331  * the rangelock_t is not a drop-in replacement for rl_t, because we
332  * still need to map from object ID to rangelock_t.
333  */
334 typedef enum {
335 	ZTRL_READER,
336 	ZTRL_WRITER,
337 	ZTRL_APPEND
338 } rl_type_t;
339 
340 typedef struct rll {
341 	void		*rll_writer;
342 	int		rll_readers;
343 	kmutex_t	rll_lock;
344 	kcondvar_t	rll_cv;
345 } rll_t;
346 
347 typedef struct rl {
348 	uint64_t	rl_object;
349 	uint64_t	rl_offset;
350 	uint64_t	rl_size;
351 	rll_t		*rl_lock;
352 } rl_t;
353 
354 #define	ZTEST_RANGE_LOCKS	64
355 #define	ZTEST_OBJECT_LOCKS	64
356 
357 /*
358  * Object descriptor.  Used as a template for object lookup/create/remove.
359  */
360 typedef struct ztest_od {
361 	uint64_t	od_dir;
362 	uint64_t	od_object;
363 	dmu_object_type_t od_type;
364 	dmu_object_type_t od_crtype;
365 	uint64_t	od_blocksize;
366 	uint64_t	od_crblocksize;
367 	uint64_t	od_crdnodesize;
368 	uint64_t	od_gen;
369 	uint64_t	od_crgen;
370 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
371 } ztest_od_t;
372 
373 /*
374  * Per-dataset state.
375  */
376 typedef struct ztest_ds {
377 	ztest_shared_ds_t *zd_shared;
378 	objset_t	*zd_os;
379 	pthread_rwlock_t zd_zilog_lock;
380 	zilog_t		*zd_zilog;
381 	ztest_od_t	*zd_od;		/* debugging aid */
382 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
383 	kmutex_t	zd_dirobj_lock;
384 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
385 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
386 } ztest_ds_t;
387 
388 /*
389  * Per-iteration state.
390  */
391 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
392 
393 typedef struct ztest_info {
394 	ztest_func_t	*zi_func;	/* test function */
395 	uint64_t	zi_iters;	/* iterations per execution */
396 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
397 	const char	*zi_funcname;	/* name of test function */
398 } ztest_info_t;
399 
400 typedef struct ztest_shared_callstate {
401 	uint64_t	zc_count;	/* per-pass count */
402 	uint64_t	zc_time;	/* per-pass time */
403 	uint64_t	zc_next;	/* next time to call this function */
404 } ztest_shared_callstate_t;
405 
406 static ztest_shared_callstate_t *ztest_shared_callstate;
407 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
408 
409 ztest_func_t ztest_dmu_read_write;
410 ztest_func_t ztest_dmu_write_parallel;
411 ztest_func_t ztest_dmu_object_alloc_free;
412 ztest_func_t ztest_dmu_object_next_chunk;
413 ztest_func_t ztest_dmu_commit_callbacks;
414 ztest_func_t ztest_zap;
415 ztest_func_t ztest_zap_parallel;
416 ztest_func_t ztest_zil_commit;
417 ztest_func_t ztest_zil_remount;
418 ztest_func_t ztest_dmu_read_write_zcopy;
419 ztest_func_t ztest_dmu_objset_create_destroy;
420 ztest_func_t ztest_dmu_prealloc;
421 ztest_func_t ztest_fzap;
422 ztest_func_t ztest_dmu_snapshot_create_destroy;
423 ztest_func_t ztest_dsl_prop_get_set;
424 ztest_func_t ztest_spa_prop_get_set;
425 ztest_func_t ztest_spa_create_destroy;
426 ztest_func_t ztest_fault_inject;
427 ztest_func_t ztest_dmu_snapshot_hold;
428 ztest_func_t ztest_mmp_enable_disable;
429 ztest_func_t ztest_scrub;
430 ztest_func_t ztest_dsl_dataset_promote_busy;
431 ztest_func_t ztest_vdev_attach_detach;
432 ztest_func_t ztest_vdev_raidz_attach;
433 ztest_func_t ztest_vdev_LUN_growth;
434 ztest_func_t ztest_vdev_add_remove;
435 ztest_func_t ztest_vdev_class_add;
436 ztest_func_t ztest_vdev_aux_add_remove;
437 ztest_func_t ztest_split_pool;
438 ztest_func_t ztest_reguid;
439 ztest_func_t ztest_spa_upgrade;
440 ztest_func_t ztest_device_removal;
441 ztest_func_t ztest_spa_checkpoint_create_discard;
442 ztest_func_t ztest_initialize;
443 ztest_func_t ztest_trim;
444 ztest_func_t ztest_blake3;
445 ztest_func_t ztest_fletcher;
446 ztest_func_t ztest_fletcher_incr;
447 ztest_func_t ztest_verify_dnode_bt;
448 ztest_func_t ztest_pool_prefetch_ddt;
449 
450 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
451 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
452 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
453 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
454 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
455 
456 #define	ZTI_INIT(func, iters, interval) \
457 	{   .zi_func = (func), \
458 	    .zi_iters = (iters), \
459 	    .zi_interval = (interval), \
460 	    .zi_funcname = # func }
461 
462 static ztest_info_t ztest_info[] = {
463 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
464 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
465 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
466 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
467 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
468 	ZTI_INIT(ztest_zap, 30, &zopt_always),
469 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
470 	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
471 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
472 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
473 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
474 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
475 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
476 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
477 #if 0
478 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
479 #endif
480 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
481 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
482 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
483 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
484 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
485 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
486 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
487 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
488 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
489 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
490 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
491 	ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
492 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
493 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
494 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
495 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
496 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
497 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
498 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
499 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
500 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
501 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
502 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
503 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
504 	ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
505 };
506 
507 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
508 
509 /*
510  * The following struct is used to hold a list of uncalled commit callbacks.
511  * The callbacks are ordered by txg number.
512  */
513 typedef struct ztest_cb_list {
514 	kmutex_t	zcl_callbacks_lock;
515 	list_t		zcl_callbacks;
516 } ztest_cb_list_t;
517 
518 /*
519  * Stuff we need to share writably between parent and child.
520  */
521 typedef struct ztest_shared {
522 	boolean_t	zs_do_init;
523 	hrtime_t	zs_proc_start;
524 	hrtime_t	zs_proc_stop;
525 	hrtime_t	zs_thread_start;
526 	hrtime_t	zs_thread_stop;
527 	hrtime_t	zs_thread_kill;
528 	uint64_t	zs_enospc_count;
529 	uint64_t	zs_vdev_next_leaf;
530 	uint64_t	zs_vdev_aux;
531 	uint64_t	zs_alloc;
532 	uint64_t	zs_space;
533 	uint64_t	zs_splits;
534 	uint64_t	zs_mirrors;
535 	uint64_t	zs_metaslab_sz;
536 	uint64_t	zs_metaslab_df_alloc_threshold;
537 	uint64_t	zs_guid;
538 } ztest_shared_t;
539 
540 #define	ID_PARALLEL	-1ULL
541 
542 static char ztest_dev_template[] = "%s/%s.%llua";
543 static char ztest_aux_template[] = "%s/%s.%s.%llu";
544 static ztest_shared_t *ztest_shared;
545 
546 static spa_t *ztest_spa = NULL;
547 static ztest_ds_t *ztest_ds;
548 
549 static kmutex_t ztest_vdev_lock;
550 static boolean_t ztest_device_removal_active = B_FALSE;
551 static boolean_t ztest_pool_scrubbed = B_FALSE;
552 static kmutex_t ztest_checkpoint_lock;
553 
554 /*
555  * The ztest_name_lock protects the pool and dataset namespace used by
556  * the individual tests. To modify the namespace, consumers must grab
557  * this lock as writer. Grabbing the lock as reader will ensure that the
558  * namespace does not change while the lock is held.
559  */
560 static pthread_rwlock_t ztest_name_lock;
561 
562 static boolean_t ztest_dump_core = B_TRUE;
563 static boolean_t ztest_exiting;
564 
565 /* Global commit callback list */
566 static ztest_cb_list_t zcl;
567 /* Commit cb delay */
568 static uint64_t zc_min_txg_delay = UINT64_MAX;
569 static int zc_cb_counter = 0;
570 
571 /*
572  * Minimum number of commit callbacks that need to be registered for us to check
573  * whether the minimum txg delay is acceptable.
574  */
575 #define	ZTEST_COMMIT_CB_MIN_REG	100
576 
577 /*
578  * If a number of txgs equal to this threshold have been created after a commit
579  * callback has been registered but not called, then we assume there is an
580  * implementation bug.
581  */
582 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
583 
584 enum ztest_object {
585 	ZTEST_META_DNODE = 0,
586 	ZTEST_DIROBJ,
587 	ZTEST_OBJECTS
588 };
589 
590 static __attribute__((noreturn)) void usage(boolean_t requested);
591 static int ztest_scrub_impl(spa_t *spa);
592 
593 /*
594  * These libumem hooks provide a reasonable set of defaults for the allocator's
595  * debugging facilities.
596  */
597 const char *
598 _umem_debug_init(void)
599 {
600 	return ("default,verbose"); /* $UMEM_DEBUG setting */
601 }
602 
603 const char *
604 _umem_logging_init(void)
605 {
606 	return ("fail,contents"); /* $UMEM_LOGGING setting */
607 }
608 
609 static void
610 dump_debug_buffer(void)
611 {
612 	ssize_t ret __attribute__((unused));
613 
614 	if (!ztest_opts.zo_dump_dbgmsg)
615 		return;
616 
617 	/*
618 	 * We use write() instead of printf() so that this function
619 	 * is safe to call from a signal handler.
620 	 */
621 	ret = write(STDERR_FILENO, "\n", 1);
622 	zfs_dbgmsg_print(STDERR_FILENO, "ztest");
623 }
624 
625 static void sig_handler(int signo)
626 {
627 	struct sigaction action;
628 
629 	libspl_backtrace(STDERR_FILENO);
630 	dump_debug_buffer();
631 
632 	/*
633 	 * Restore default action and re-raise signal so SIGSEGV and
634 	 * SIGABRT can trigger a core dump.
635 	 */
636 	action.sa_handler = SIG_DFL;
637 	sigemptyset(&action.sa_mask);
638 	action.sa_flags = 0;
639 	(void) sigaction(signo, &action, NULL);
640 	raise(signo);
641 }
642 
643 #define	FATAL_MSG_SZ	1024
644 
645 static const char *fatal_msg;
646 
647 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
648 fatal(int do_perror, const char *message, ...)
649 {
650 	va_list args;
651 	int save_errno = errno;
652 	char *buf;
653 
654 	(void) fflush(stdout);
655 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
656 	if (buf == NULL)
657 		goto out;
658 
659 	va_start(args, message);
660 	(void) sprintf(buf, "ztest: ");
661 	/* LINTED */
662 	(void) vsprintf(buf + strlen(buf), message, args);
663 	va_end(args);
664 	if (do_perror) {
665 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
666 		    ": %s", strerror(save_errno));
667 	}
668 	(void) fprintf(stderr, "%s\n", buf);
669 	fatal_msg = buf;			/* to ease debugging */
670 
671 out:
672 	if (ztest_dump_core)
673 		abort();
674 	else
675 		dump_debug_buffer();
676 
677 	exit(3);
678 }
679 
680 static int
681 str2shift(const char *buf)
682 {
683 	const char *ends = "BKMGTPEZ";
684 	int i;
685 
686 	if (buf[0] == '\0')
687 		return (0);
688 	for (i = 0; i < strlen(ends); i++) {
689 		if (toupper(buf[0]) == ends[i])
690 			break;
691 	}
692 	if (i == strlen(ends)) {
693 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
694 		    buf);
695 		usage(B_FALSE);
696 	}
697 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
698 		return (10*i);
699 	}
700 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
701 	usage(B_FALSE);
702 }
703 
704 static uint64_t
705 nicenumtoull(const char *buf)
706 {
707 	char *end;
708 	uint64_t val;
709 
710 	val = strtoull(buf, &end, 0);
711 	if (end == buf) {
712 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
713 		usage(B_FALSE);
714 	} else if (end[0] == '.') {
715 		double fval = strtod(buf, &end);
716 		fval *= pow(2, str2shift(end));
717 		/*
718 		 * UINT64_MAX is not exactly representable as a double.
719 		 * The closest representation is UINT64_MAX + 1, so we
720 		 * use a >= comparison instead of > for the bounds check.
721 		 */
722 		if (fval >= (double)UINT64_MAX) {
723 			(void) fprintf(stderr, "ztest: value too large: %s\n",
724 			    buf);
725 			usage(B_FALSE);
726 		}
727 		val = (uint64_t)fval;
728 	} else {
729 		int shift = str2shift(end);
730 		if (shift >= 64 || (val << shift) >> shift != val) {
731 			(void) fprintf(stderr, "ztest: value too large: %s\n",
732 			    buf);
733 			usage(B_FALSE);
734 		}
735 		val <<= shift;
736 	}
737 	return (val);
738 }
739 
740 typedef struct ztest_option {
741 	const char	short_opt;
742 	const char	*long_opt;
743 	const char	*long_opt_param;
744 	const char	*comment;
745 	unsigned int	default_int;
746 	const char	*default_str;
747 } ztest_option_t;
748 
749 /*
750  * The following option_table is used for generating the usage info as well as
751  * the long and short option information for calling getopt_long().
752  */
753 static ztest_option_t option_table[] = {
754 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
755 	    NULL},
756 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
757 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
758 	{ 'a',	"alignment-shift", "INTEGER",
759 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
760 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
761 	    DEFAULT_MIRRORS, NULL},
762 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
763 	    DEFAULT_RAID_CHILDREN, NULL},
764 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
765 	    DEFAULT_RAID_PARITY, NULL},
766 	{ 'K',  "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
767 	    NO_DEFAULT, "random"},
768 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
769 	    DEFAULT_DRAID_DATA, NULL},
770 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
771 	    DEFAULT_DRAID_SPARES, NULL},
772 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
773 	    DEFAULT_DATASETS_COUNT, NULL},
774 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
775 	    DEFAULT_THREADS, NULL},
776 	{ 'g',	"gang-block-threshold", "INTEGER",
777 	    "Metaslab gang block threshold",
778 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
779 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
780 	    DEFAULT_INITS, NULL},
781 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
782 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
783 	{ 'p',	"pool-name", "STRING", "Pool name",
784 	    NO_DEFAULT, DEFAULT_POOL},
785 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
786 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
787 	{ 'M',	"multi-host", NULL,
788 	    "Multi-host; simulate pool imported on remote host",
789 	    NO_DEFAULT, NULL},
790 	{ 'E',	"use-existing-pool", NULL,
791 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
792 	{ 'T',	"run-time", "INTEGER", "Total run time",
793 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
794 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
795 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
796 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
797 	    DEFAULT_MAX_LOOPS, NULL},
798 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
799 	    NO_DEFAULT, NULL},
800 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
801 	    NO_DEFAULT, "random"},
802 	{ 'X', "raidz-expansion", NULL,
803 	    "Perform a dedicated raidz expansion test",
804 	    NO_DEFAULT, NULL},
805 	{ 'o',	"option", "\"OPTION=INTEGER\"",
806 	    "Set global variable to an unsigned 32-bit integer value",
807 	    NO_DEFAULT, NULL},
808 	{ 'G',	"dump-debug-msg", NULL,
809 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
810 	    NO_DEFAULT, NULL},
811 	{ 'V',	"verbose", NULL,
812 	    "Verbose (use multiple times for ever more verbosity)",
813 	    NO_DEFAULT, NULL},
814 	{ 'h',	"help",	NULL, "Show this help",
815 	    NO_DEFAULT, NULL},
816 	{0, 0, 0, 0, 0, 0}
817 };
818 
819 static struct option *long_opts = NULL;
820 static char *short_opts = NULL;
821 
822 static void
823 init_options(void)
824 {
825 	ASSERT3P(long_opts, ==, NULL);
826 	ASSERT3P(short_opts, ==, NULL);
827 
828 	int count = sizeof (option_table) / sizeof (option_table[0]);
829 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
830 
831 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
832 	int short_opt_index = 0;
833 
834 	for (int i = 0; i < count; i++) {
835 		long_opts[i].val = option_table[i].short_opt;
836 		long_opts[i].name = option_table[i].long_opt;
837 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
838 		    ? required_argument : no_argument;
839 		long_opts[i].flag = NULL;
840 		short_opts[short_opt_index++] = option_table[i].short_opt;
841 		if (option_table[i].long_opt_param != NULL) {
842 			short_opts[short_opt_index++] = ':';
843 		}
844 	}
845 }
846 
847 static void
848 fini_options(void)
849 {
850 	int count = sizeof (option_table) / sizeof (option_table[0]);
851 
852 	umem_free(long_opts, sizeof (struct option) * count);
853 	umem_free(short_opts, sizeof (char) * 2 * count);
854 
855 	long_opts = NULL;
856 	short_opts = NULL;
857 }
858 
859 static __attribute__((noreturn)) void
860 usage(boolean_t requested)
861 {
862 	char option[80];
863 	FILE *fp = requested ? stdout : stderr;
864 
865 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
866 	for (int i = 0; option_table[i].short_opt != 0; i++) {
867 		if (option_table[i].long_opt_param != NULL) {
868 			(void) sprintf(option, "  -%c --%s=%s",
869 			    option_table[i].short_opt,
870 			    option_table[i].long_opt,
871 			    option_table[i].long_opt_param);
872 		} else {
873 			(void) sprintf(option, "  -%c --%s",
874 			    option_table[i].short_opt,
875 			    option_table[i].long_opt);
876 		}
877 		(void) fprintf(fp, "  %-43s%s", option,
878 		    option_table[i].comment);
879 
880 		if (option_table[i].long_opt_param != NULL) {
881 			if (option_table[i].default_str != NULL) {
882 				(void) fprintf(fp, " (default: %s)",
883 				    option_table[i].default_str);
884 			} else if (option_table[i].default_int != NO_DEFAULT) {
885 				(void) fprintf(fp, " (default: %u)",
886 				    option_table[i].default_int);
887 			}
888 		}
889 		(void) fprintf(fp, "\n");
890 	}
891 	exit(requested ? 0 : 1);
892 }
893 
894 static uint64_t
895 ztest_random(uint64_t range)
896 {
897 	uint64_t r;
898 
899 	ASSERT3S(ztest_fd_rand, >=, 0);
900 
901 	if (range == 0)
902 		return (0);
903 
904 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
905 		fatal(B_TRUE, "short read from /dev/urandom");
906 
907 	return (r % range);
908 }
909 
910 static void
911 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
912 {
913 	char name[32];
914 	char *value;
915 	int state = ZTEST_VDEV_CLASS_RND;
916 
917 	(void) strlcpy(name, input, sizeof (name));
918 
919 	value = strchr(name, '=');
920 	if (value == NULL) {
921 		(void) fprintf(stderr, "missing value in property=value "
922 		    "'-C' argument (%s)\n", input);
923 		usage(B_FALSE);
924 	}
925 	*(value) = '\0';
926 	value++;
927 
928 	if (strcmp(value, "on") == 0) {
929 		state = ZTEST_VDEV_CLASS_ON;
930 	} else if (strcmp(value, "off") == 0) {
931 		state = ZTEST_VDEV_CLASS_OFF;
932 	} else if (strcmp(value, "random") == 0) {
933 		state = ZTEST_VDEV_CLASS_RND;
934 	} else {
935 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
936 		usage(B_FALSE);
937 	}
938 
939 	if (strcmp(name, "special") == 0) {
940 		zo->zo_special_vdevs = state;
941 	} else {
942 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
943 		usage(B_FALSE);
944 	}
945 	if (zo->zo_verbose >= 3)
946 		(void) printf("%s vdev state is '%s'\n", name, value);
947 }
948 
949 static void
950 process_options(int argc, char **argv)
951 {
952 	char *path;
953 	ztest_shared_opts_t *zo = &ztest_opts;
954 
955 	int opt;
956 	uint64_t value;
957 	const char *raid_kind = "random";
958 
959 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
960 
961 	init_options();
962 
963 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
964 	    NULL)) != EOF) {
965 		value = 0;
966 		switch (opt) {
967 		case 'v':
968 		case 's':
969 		case 'a':
970 		case 'm':
971 		case 'r':
972 		case 'R':
973 		case 'D':
974 		case 'S':
975 		case 'd':
976 		case 't':
977 		case 'g':
978 		case 'i':
979 		case 'k':
980 		case 'T':
981 		case 'P':
982 		case 'F':
983 			value = nicenumtoull(optarg);
984 		}
985 		switch (opt) {
986 		case 'v':
987 			zo->zo_vdevs = value;
988 			break;
989 		case 's':
990 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
991 			break;
992 		case 'a':
993 			zo->zo_ashift = value;
994 			break;
995 		case 'm':
996 			zo->zo_mirrors = value;
997 			break;
998 		case 'r':
999 			zo->zo_raid_children = MAX(1, value);
1000 			break;
1001 		case 'R':
1002 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1003 			break;
1004 		case 'K':
1005 			raid_kind = optarg;
1006 			break;
1007 		case 'D':
1008 			zo->zo_draid_data = MAX(1, value);
1009 			break;
1010 		case 'S':
1011 			zo->zo_draid_spares = MAX(1, value);
1012 			break;
1013 		case 'd':
1014 			zo->zo_datasets = MAX(1, value);
1015 			break;
1016 		case 't':
1017 			zo->zo_threads = MAX(1, value);
1018 			break;
1019 		case 'g':
1020 			zo->zo_metaslab_force_ganging =
1021 			    MAX(SPA_MINBLOCKSIZE << 1, value);
1022 			break;
1023 		case 'i':
1024 			zo->zo_init = value;
1025 			break;
1026 		case 'k':
1027 			zo->zo_killrate = value;
1028 			break;
1029 		case 'p':
1030 			(void) strlcpy(zo->zo_pool, optarg,
1031 			    sizeof (zo->zo_pool));
1032 			break;
1033 		case 'f':
1034 			path = realpath(optarg, NULL);
1035 			if (path == NULL) {
1036 				(void) fprintf(stderr, "error: %s: %s\n",
1037 				    optarg, strerror(errno));
1038 				usage(B_FALSE);
1039 			} else {
1040 				(void) strlcpy(zo->zo_dir, path,
1041 				    sizeof (zo->zo_dir));
1042 				free(path);
1043 			}
1044 			break;
1045 		case 'M':
1046 			zo->zo_mmp_test = 1;
1047 			break;
1048 		case 'V':
1049 			zo->zo_verbose++;
1050 			break;
1051 		case 'X':
1052 			zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1053 			break;
1054 		case 'E':
1055 			zo->zo_init = 0;
1056 			break;
1057 		case 'T':
1058 			zo->zo_time = value;
1059 			break;
1060 		case 'P':
1061 			zo->zo_passtime = MAX(1, value);
1062 			break;
1063 		case 'F':
1064 			zo->zo_maxloops = MAX(1, value);
1065 			break;
1066 		case 'B':
1067 			(void) strlcpy(zo->zo_alt_ztest, optarg,
1068 			    sizeof (zo->zo_alt_ztest));
1069 			break;
1070 		case 'C':
1071 			ztest_parse_name_value(optarg, zo);
1072 			break;
1073 		case 'o':
1074 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1075 				(void) fprintf(stderr,
1076 				    "max global var count (%zu) exceeded\n",
1077 				    ZO_GVARS_MAX_COUNT);
1078 				usage(B_FALSE);
1079 			}
1080 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1081 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1082 			    ZO_GVARS_MAX_ARGLEN) {
1083 				(void) fprintf(stderr,
1084 				    "global var option '%s' is too long\n",
1085 				    optarg);
1086 				usage(B_FALSE);
1087 			}
1088 			zo->zo_gvars_count++;
1089 			break;
1090 		case 'G':
1091 			zo->zo_dump_dbgmsg = 1;
1092 			break;
1093 		case 'h':
1094 			usage(B_TRUE);
1095 			break;
1096 		case '?':
1097 		default:
1098 			usage(B_FALSE);
1099 			break;
1100 		}
1101 	}
1102 
1103 	fini_options();
1104 
1105 	/* Force compatible options for raidz expansion run */
1106 	if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1107 		zo->zo_mmp_test = 0;
1108 		zo->zo_mirrors = 0;
1109 		zo->zo_vdevs = 1;
1110 		zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1111 		zo->zo_raid_do_expand = B_FALSE;
1112 		raid_kind = "raidz";
1113 	}
1114 
1115 	if (strcmp(raid_kind, "random") == 0) {
1116 		switch (ztest_random(3)) {
1117 		case 0:
1118 			raid_kind = "raidz";
1119 			break;
1120 		case 1:
1121 			raid_kind = "eraidz";
1122 			break;
1123 		case 2:
1124 			raid_kind = "draid";
1125 			break;
1126 		}
1127 
1128 		if (ztest_opts.zo_verbose >= 3)
1129 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1130 	}
1131 
1132 	if (strcmp(raid_kind, "draid") == 0) {
1133 		uint64_t min_devsize;
1134 
1135 		/* With fewer disk use 256M, otherwise 128M is OK */
1136 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1137 		    (256ULL << 20) : (128ULL << 20);
1138 
1139 		/* No top-level mirrors with dRAID for now */
1140 		zo->zo_mirrors = 0;
1141 
1142 		/* Use more appropriate defaults for dRAID */
1143 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1144 			zo->zo_vdevs = 1;
1145 		if (zo->zo_raid_children ==
1146 		    ztest_opts_defaults.zo_raid_children)
1147 			zo->zo_raid_children = 16;
1148 		if (zo->zo_ashift < 12)
1149 			zo->zo_ashift = 12;
1150 		if (zo->zo_vdev_size < min_devsize)
1151 			zo->zo_vdev_size = min_devsize;
1152 
1153 		if (zo->zo_draid_data + zo->zo_raid_parity >
1154 		    zo->zo_raid_children - zo->zo_draid_spares) {
1155 			(void) fprintf(stderr, "error: too few draid "
1156 			    "children (%d) for stripe width (%d)\n",
1157 			    zo->zo_raid_children,
1158 			    zo->zo_draid_data + zo->zo_raid_parity);
1159 			usage(B_FALSE);
1160 		}
1161 
1162 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1163 		    sizeof (zo->zo_raid_type));
1164 
1165 	} else if (strcmp(raid_kind, "eraidz") == 0) {
1166 		/* using eraidz (expandable raidz) */
1167 		zo->zo_raid_do_expand = B_TRUE;
1168 
1169 		/* tests expect top-level to be raidz */
1170 		zo->zo_mirrors = 0;
1171 		zo->zo_vdevs = 1;
1172 
1173 		/* Make sure parity is less than data columns */
1174 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1175 		    zo->zo_raid_children - 1);
1176 
1177 	} else /* using raidz */ {
1178 		ASSERT0(strcmp(raid_kind, "raidz"));
1179 
1180 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1181 		    zo->zo_raid_children - 1);
1182 	}
1183 
1184 	zo->zo_vdevtime =
1185 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1186 	    UINT64_MAX >> 2);
1187 
1188 	if (*zo->zo_alt_ztest) {
1189 		const char *invalid_what = "ztest";
1190 		char *val = zo->zo_alt_ztest;
1191 		if (0 != access(val, X_OK) ||
1192 		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
1193 			goto invalid;
1194 
1195 		int dirlen = strrchr(val, '/') - val;
1196 		strlcpy(zo->zo_alt_libpath, val,
1197 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1198 		invalid_what = "library path", val = zo->zo_alt_libpath;
1199 		if (strrchr(val, '/') == NULL && (errno == EINVAL))
1200 			goto invalid;
1201 		*strrchr(val, '/') = '\0';
1202 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1203 
1204 		if (0 != access(zo->zo_alt_libpath, X_OK))
1205 			goto invalid;
1206 		return;
1207 
1208 invalid:
1209 		ztest_dump_core = B_FALSE;
1210 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1211 	}
1212 }
1213 
1214 static void
1215 ztest_kill(ztest_shared_t *zs)
1216 {
1217 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1218 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1219 
1220 	/*
1221 	 * Before we kill ourselves, make sure that the config is updated.
1222 	 * See comment above spa_write_cachefile().
1223 	 */
1224 	if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1225 		if (mutex_tryenter(&spa_namespace_lock)) {
1226 			spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1227 			    B_FALSE);
1228 			mutex_exit(&spa_namespace_lock);
1229 
1230 			ztest_scratch_state->zs_raidz_scratch_verify_pause =
1231 			    raidz_expand_pause_point;
1232 		} else {
1233 			/*
1234 			 * Do not verify scratch object in case if
1235 			 * spa_namespace_lock cannot be acquired,
1236 			 * it can cause deadlock in spa_config_update().
1237 			 */
1238 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1239 
1240 			return;
1241 		}
1242 	} else {
1243 		mutex_enter(&spa_namespace_lock);
1244 		spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1245 		mutex_exit(&spa_namespace_lock);
1246 	}
1247 
1248 	(void) raise(SIGKILL);
1249 }
1250 
1251 static void
1252 ztest_record_enospc(const char *s)
1253 {
1254 	(void) s;
1255 	ztest_shared->zs_enospc_count++;
1256 }
1257 
1258 static uint64_t
1259 ztest_get_ashift(void)
1260 {
1261 	if (ztest_opts.zo_ashift == 0)
1262 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1263 	return (ztest_opts.zo_ashift);
1264 }
1265 
1266 static boolean_t
1267 ztest_is_draid_spare(const char *name)
1268 {
1269 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1270 
1271 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1272 	    &parity, &vdev_id, &spare_id) == 3) {
1273 		return (B_TRUE);
1274 	}
1275 
1276 	return (B_FALSE);
1277 }
1278 
1279 static nvlist_t *
1280 make_vdev_file(const char *path, const char *aux, const char *pool,
1281     size_t size, uint64_t ashift)
1282 {
1283 	char *pathbuf = NULL;
1284 	uint64_t vdev;
1285 	nvlist_t *file;
1286 	boolean_t draid_spare = B_FALSE;
1287 
1288 
1289 	if (ashift == 0)
1290 		ashift = ztest_get_ashift();
1291 
1292 	if (path == NULL) {
1293 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1294 		path = pathbuf;
1295 
1296 		if (aux != NULL) {
1297 			vdev = ztest_shared->zs_vdev_aux;
1298 			(void) snprintf(pathbuf, MAXPATHLEN,
1299 			    ztest_aux_template, ztest_opts.zo_dir,
1300 			    pool == NULL ? ztest_opts.zo_pool : pool,
1301 			    aux, vdev);
1302 		} else {
1303 			vdev = ztest_shared->zs_vdev_next_leaf++;
1304 			(void) snprintf(pathbuf, MAXPATHLEN,
1305 			    ztest_dev_template, ztest_opts.zo_dir,
1306 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1307 		}
1308 	} else {
1309 		draid_spare = ztest_is_draid_spare(path);
1310 	}
1311 
1312 	if (size != 0 && !draid_spare) {
1313 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1314 		if (fd == -1)
1315 			fatal(B_TRUE, "can't open %s", path);
1316 		if (ftruncate(fd, size) != 0)
1317 			fatal(B_TRUE, "can't ftruncate %s", path);
1318 		(void) close(fd);
1319 	}
1320 
1321 	file = fnvlist_alloc();
1322 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1323 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1324 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1325 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1326 	umem_free(pathbuf, MAXPATHLEN);
1327 
1328 	return (file);
1329 }
1330 
1331 static nvlist_t *
1332 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1333     uint64_t ashift, int r)
1334 {
1335 	nvlist_t *raid, **child;
1336 	int c;
1337 
1338 	if (r < 2)
1339 		return (make_vdev_file(path, aux, pool, size, ashift));
1340 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1341 
1342 	for (c = 0; c < r; c++)
1343 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1344 
1345 	raid = fnvlist_alloc();
1346 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1347 	    ztest_opts.zo_raid_type);
1348 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1349 	    ztest_opts.zo_raid_parity);
1350 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1351 	    (const nvlist_t **)child, r);
1352 
1353 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1354 		uint64_t ndata = ztest_opts.zo_draid_data;
1355 		uint64_t nparity = ztest_opts.zo_raid_parity;
1356 		uint64_t nspares = ztest_opts.zo_draid_spares;
1357 		uint64_t children = ztest_opts.zo_raid_children;
1358 		uint64_t ngroups = 1;
1359 
1360 		/*
1361 		 * Calculate the minimum number of groups required to fill a
1362 		 * slice. This is the LCM of the stripe width (data + parity)
1363 		 * and the number of data drives (children - spares).
1364 		 */
1365 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1366 			ngroups++;
1367 
1368 		/* Store the basic dRAID configuration. */
1369 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1370 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1371 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1372 	}
1373 
1374 	for (c = 0; c < r; c++)
1375 		fnvlist_free(child[c]);
1376 
1377 	umem_free(child, r * sizeof (nvlist_t *));
1378 
1379 	return (raid);
1380 }
1381 
1382 static nvlist_t *
1383 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1384     size_t size, uint64_t ashift, int r, int m)
1385 {
1386 	nvlist_t *mirror, **child;
1387 	int c;
1388 
1389 	if (m < 1)
1390 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1391 
1392 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1393 
1394 	for (c = 0; c < m; c++)
1395 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1396 
1397 	mirror = fnvlist_alloc();
1398 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1399 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1400 	    (const nvlist_t **)child, m);
1401 
1402 	for (c = 0; c < m; c++)
1403 		fnvlist_free(child[c]);
1404 
1405 	umem_free(child, m * sizeof (nvlist_t *));
1406 
1407 	return (mirror);
1408 }
1409 
1410 static nvlist_t *
1411 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1412     uint64_t ashift, const char *class, int r, int m, int t)
1413 {
1414 	nvlist_t *root, **child;
1415 	int c;
1416 	boolean_t log;
1417 
1418 	ASSERT3S(t, >, 0);
1419 
1420 	log = (class != NULL && strcmp(class, "log") == 0);
1421 
1422 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1423 
1424 	for (c = 0; c < t; c++) {
1425 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1426 		    r, m);
1427 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1428 
1429 		if (class != NULL && class[0] != '\0') {
1430 			ASSERT(m > 1 || log);   /* expecting a mirror */
1431 			fnvlist_add_string(child[c],
1432 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1433 		}
1434 	}
1435 
1436 	root = fnvlist_alloc();
1437 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1438 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1439 	    (const nvlist_t **)child, t);
1440 
1441 	for (c = 0; c < t; c++)
1442 		fnvlist_free(child[c]);
1443 
1444 	umem_free(child, t * sizeof (nvlist_t *));
1445 
1446 	return (root);
1447 }
1448 
1449 /*
1450  * Find a random spa version. Returns back a random spa version in the
1451  * range [initial_version, SPA_VERSION_FEATURES].
1452  */
1453 static uint64_t
1454 ztest_random_spa_version(uint64_t initial_version)
1455 {
1456 	uint64_t version = initial_version;
1457 
1458 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1459 		version = version +
1460 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1461 	}
1462 
1463 	if (version > SPA_VERSION_BEFORE_FEATURES)
1464 		version = SPA_VERSION_FEATURES;
1465 
1466 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1467 	return (version);
1468 }
1469 
1470 static int
1471 ztest_random_blocksize(void)
1472 {
1473 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1474 
1475 	/*
1476 	 * Choose a block size >= the ashift.
1477 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1478 	 */
1479 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1480 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1481 		maxbs = 20;
1482 	uint64_t block_shift =
1483 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1484 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1485 }
1486 
1487 static int
1488 ztest_random_dnodesize(void)
1489 {
1490 	int slots;
1491 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1492 
1493 	if (max_slots == DNODE_MIN_SLOTS)
1494 		return (DNODE_MIN_SIZE);
1495 
1496 	/*
1497 	 * Weight the random distribution more heavily toward smaller
1498 	 * dnode sizes since that is more likely to reflect real-world
1499 	 * usage.
1500 	 */
1501 	ASSERT3U(max_slots, >, 4);
1502 	switch (ztest_random(10)) {
1503 	case 0:
1504 		slots = 5 + ztest_random(max_slots - 4);
1505 		break;
1506 	case 1 ... 4:
1507 		slots = 2 + ztest_random(3);
1508 		break;
1509 	default:
1510 		slots = 1;
1511 		break;
1512 	}
1513 
1514 	return (slots << DNODE_SHIFT);
1515 }
1516 
1517 static int
1518 ztest_random_ibshift(void)
1519 {
1520 	return (DN_MIN_INDBLKSHIFT +
1521 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1522 }
1523 
1524 static uint64_t
1525 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1526 {
1527 	uint64_t top;
1528 	vdev_t *rvd = spa->spa_root_vdev;
1529 	vdev_t *tvd;
1530 
1531 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1532 
1533 	do {
1534 		top = ztest_random(rvd->vdev_children);
1535 		tvd = rvd->vdev_child[top];
1536 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1537 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1538 
1539 	return (top);
1540 }
1541 
1542 static uint64_t
1543 ztest_random_dsl_prop(zfs_prop_t prop)
1544 {
1545 	uint64_t value;
1546 
1547 	do {
1548 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1549 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1550 
1551 	return (value);
1552 }
1553 
1554 static int
1555 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1556     boolean_t inherit)
1557 {
1558 	const char *propname = zfs_prop_to_name(prop);
1559 	const char *valname;
1560 	char *setpoint;
1561 	uint64_t curval;
1562 	int error;
1563 
1564 	error = dsl_prop_set_int(osname, propname,
1565 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1566 
1567 	if (error == ENOSPC) {
1568 		ztest_record_enospc(FTAG);
1569 		return (error);
1570 	}
1571 	ASSERT0(error);
1572 
1573 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1574 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1575 
1576 	if (ztest_opts.zo_verbose >= 6) {
1577 		int err;
1578 
1579 		err = zfs_prop_index_to_string(prop, curval, &valname);
1580 		if (err)
1581 			(void) printf("%s %s = %llu at '%s'\n", osname,
1582 			    propname, (unsigned long long)curval, setpoint);
1583 		else
1584 			(void) printf("%s %s = %s at '%s'\n",
1585 			    osname, propname, valname, setpoint);
1586 	}
1587 	umem_free(setpoint, MAXPATHLEN);
1588 
1589 	return (error);
1590 }
1591 
1592 static int
1593 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1594 {
1595 	spa_t *spa = ztest_spa;
1596 	nvlist_t *props = NULL;
1597 	int error;
1598 
1599 	props = fnvlist_alloc();
1600 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1601 
1602 	error = spa_prop_set(spa, props);
1603 
1604 	fnvlist_free(props);
1605 
1606 	if (error == ENOSPC) {
1607 		ztest_record_enospc(FTAG);
1608 		return (error);
1609 	}
1610 	ASSERT0(error);
1611 
1612 	return (error);
1613 }
1614 
1615 static int
1616 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1617     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1618 {
1619 	int err;
1620 	char *cp = NULL;
1621 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1622 
1623 	strlcpy(ddname, name, sizeof (ddname));
1624 	cp = strchr(ddname, '@');
1625 	if (cp != NULL)
1626 		*cp = '\0';
1627 
1628 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1629 	while (decrypt && err == EACCES) {
1630 		dsl_crypto_params_t *dcp;
1631 		nvlist_t *crypto_args = fnvlist_alloc();
1632 
1633 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1634 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1635 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1636 		    crypto_args, &dcp));
1637 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1638 		/*
1639 		 * Note: if there was an error loading, the wkey was not
1640 		 * consumed, and needs to be freed.
1641 		 */
1642 		dsl_crypto_params_free(dcp, (err != 0));
1643 		fnvlist_free(crypto_args);
1644 
1645 		if (err == EINVAL) {
1646 			/*
1647 			 * We couldn't load a key for this dataset so try
1648 			 * the parent. This loop will eventually hit the
1649 			 * encryption root since ztest only makes clones
1650 			 * as children of their origin datasets.
1651 			 */
1652 			cp = strrchr(ddname, '/');
1653 			if (cp == NULL)
1654 				return (err);
1655 
1656 			*cp = '\0';
1657 			err = EACCES;
1658 			continue;
1659 		} else if (err != 0) {
1660 			break;
1661 		}
1662 
1663 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1664 		break;
1665 	}
1666 
1667 	return (err);
1668 }
1669 
1670 static void
1671 ztest_rll_init(rll_t *rll)
1672 {
1673 	rll->rll_writer = NULL;
1674 	rll->rll_readers = 0;
1675 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1676 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1677 }
1678 
1679 static void
1680 ztest_rll_destroy(rll_t *rll)
1681 {
1682 	ASSERT3P(rll->rll_writer, ==, NULL);
1683 	ASSERT0(rll->rll_readers);
1684 	mutex_destroy(&rll->rll_lock);
1685 	cv_destroy(&rll->rll_cv);
1686 }
1687 
1688 static void
1689 ztest_rll_lock(rll_t *rll, rl_type_t type)
1690 {
1691 	mutex_enter(&rll->rll_lock);
1692 
1693 	if (type == ZTRL_READER) {
1694 		while (rll->rll_writer != NULL)
1695 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1696 		rll->rll_readers++;
1697 	} else {
1698 		while (rll->rll_writer != NULL || rll->rll_readers)
1699 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1700 		rll->rll_writer = curthread;
1701 	}
1702 
1703 	mutex_exit(&rll->rll_lock);
1704 }
1705 
1706 static void
1707 ztest_rll_unlock(rll_t *rll)
1708 {
1709 	mutex_enter(&rll->rll_lock);
1710 
1711 	if (rll->rll_writer) {
1712 		ASSERT0(rll->rll_readers);
1713 		rll->rll_writer = NULL;
1714 	} else {
1715 		ASSERT3S(rll->rll_readers, >, 0);
1716 		ASSERT3P(rll->rll_writer, ==, NULL);
1717 		rll->rll_readers--;
1718 	}
1719 
1720 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1721 		cv_broadcast(&rll->rll_cv);
1722 
1723 	mutex_exit(&rll->rll_lock);
1724 }
1725 
1726 static void
1727 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1728 {
1729 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1730 
1731 	ztest_rll_lock(rll, type);
1732 }
1733 
1734 static void
1735 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1736 {
1737 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1738 
1739 	ztest_rll_unlock(rll);
1740 }
1741 
1742 static rl_t *
1743 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1744     uint64_t size, rl_type_t type)
1745 {
1746 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1747 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1748 	rl_t *rl;
1749 
1750 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1751 	rl->rl_object = object;
1752 	rl->rl_offset = offset;
1753 	rl->rl_size = size;
1754 	rl->rl_lock = rll;
1755 
1756 	ztest_rll_lock(rll, type);
1757 
1758 	return (rl);
1759 }
1760 
1761 static void
1762 ztest_range_unlock(rl_t *rl)
1763 {
1764 	rll_t *rll = rl->rl_lock;
1765 
1766 	ztest_rll_unlock(rll);
1767 
1768 	umem_free(rl, sizeof (*rl));
1769 }
1770 
1771 static void
1772 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1773 {
1774 	zd->zd_os = os;
1775 	zd->zd_zilog = dmu_objset_zil(os);
1776 	zd->zd_shared = szd;
1777 	dmu_objset_name(os, zd->zd_name);
1778 	int l;
1779 
1780 	if (zd->zd_shared != NULL)
1781 		zd->zd_shared->zd_seq = 0;
1782 
1783 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1784 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1785 
1786 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1787 		ztest_rll_init(&zd->zd_object_lock[l]);
1788 
1789 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1790 		ztest_rll_init(&zd->zd_range_lock[l]);
1791 }
1792 
1793 static void
1794 ztest_zd_fini(ztest_ds_t *zd)
1795 {
1796 	int l;
1797 
1798 	mutex_destroy(&zd->zd_dirobj_lock);
1799 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1800 
1801 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1802 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1803 
1804 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1805 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1806 }
1807 
1808 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1809 
1810 static uint64_t
1811 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1812 {
1813 	uint64_t txg;
1814 	int error;
1815 
1816 	/*
1817 	 * Attempt to assign tx to some transaction group.
1818 	 */
1819 	error = dmu_tx_assign(tx, txg_how);
1820 	if (error) {
1821 		if (error == ERESTART) {
1822 			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1823 			dmu_tx_wait(tx);
1824 		} else {
1825 			ASSERT3U(error, ==, ENOSPC);
1826 			ztest_record_enospc(tag);
1827 		}
1828 		dmu_tx_abort(tx);
1829 		return (0);
1830 	}
1831 	txg = dmu_tx_get_txg(tx);
1832 	ASSERT3U(txg, !=, 0);
1833 	return (txg);
1834 }
1835 
1836 static void
1837 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1838     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1839     uint64_t crtxg)
1840 {
1841 	bt->bt_magic = BT_MAGIC;
1842 	bt->bt_objset = dmu_objset_id(os);
1843 	bt->bt_object = object;
1844 	bt->bt_dnodesize = dnodesize;
1845 	bt->bt_offset = offset;
1846 	bt->bt_gen = gen;
1847 	bt->bt_txg = txg;
1848 	bt->bt_crtxg = crtxg;
1849 }
1850 
1851 static void
1852 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1853     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1854     uint64_t crtxg)
1855 {
1856 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1857 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1858 	ASSERT3U(bt->bt_object, ==, object);
1859 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1860 	ASSERT3U(bt->bt_offset, ==, offset);
1861 	ASSERT3U(bt->bt_gen, <=, gen);
1862 	ASSERT3U(bt->bt_txg, <=, txg);
1863 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1864 }
1865 
1866 static ztest_block_tag_t *
1867 ztest_bt_bonus(dmu_buf_t *db)
1868 {
1869 	dmu_object_info_t doi;
1870 	ztest_block_tag_t *bt;
1871 
1872 	dmu_object_info_from_db(db, &doi);
1873 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1874 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1875 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1876 
1877 	return (bt);
1878 }
1879 
1880 /*
1881  * Generate a token to fill up unused bonus buffer space.  Try to make
1882  * it unique to the object, generation, and offset to verify that data
1883  * is not getting overwritten by data from other dnodes.
1884  */
1885 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1886 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1887 
1888 /*
1889  * Fill up the unused bonus buffer region before the block tag with a
1890  * verifiable pattern. Filling the whole bonus area with non-zero data
1891  * helps ensure that all dnode traversal code properly skips the
1892  * interior regions of large dnodes.
1893  */
1894 static void
1895 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1896     objset_t *os, uint64_t gen)
1897 {
1898 	uint64_t *bonusp;
1899 
1900 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1901 
1902 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1903 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1904 		    gen, bonusp - (uint64_t *)db->db_data);
1905 		*bonusp = token;
1906 	}
1907 }
1908 
1909 /*
1910  * Verify that the unused area of a bonus buffer is filled with the
1911  * expected tokens.
1912  */
1913 static void
1914 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1915     objset_t *os, uint64_t gen)
1916 {
1917 	uint64_t *bonusp;
1918 
1919 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1920 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1921 		    gen, bonusp - (uint64_t *)db->db_data);
1922 		VERIFY3U(*bonusp, ==, token);
1923 	}
1924 }
1925 
1926 /*
1927  * ZIL logging ops
1928  */
1929 
1930 #define	lrz_type	lr_mode
1931 #define	lrz_blocksize	lr_uid
1932 #define	lrz_ibshift	lr_gid
1933 #define	lrz_bonustype	lr_rdev
1934 #define	lrz_dnodesize	lr_crtime[1]
1935 
1936 static void
1937 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1938 {
1939 	char *name = (void *)(lr + 1);		/* name follows lr */
1940 	size_t namesize = strlen(name) + 1;
1941 	itx_t *itx;
1942 
1943 	if (zil_replaying(zd->zd_zilog, tx))
1944 		return;
1945 
1946 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1947 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1948 	    sizeof (*lr) + namesize - sizeof (lr_t));
1949 
1950 	zil_itx_assign(zd->zd_zilog, itx, tx);
1951 }
1952 
1953 static void
1954 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1955 {
1956 	char *name = (void *)(lr + 1);		/* name follows lr */
1957 	size_t namesize = strlen(name) + 1;
1958 	itx_t *itx;
1959 
1960 	if (zil_replaying(zd->zd_zilog, tx))
1961 		return;
1962 
1963 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1964 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1965 	    sizeof (*lr) + namesize - sizeof (lr_t));
1966 
1967 	itx->itx_oid = object;
1968 	zil_itx_assign(zd->zd_zilog, itx, tx);
1969 }
1970 
1971 static void
1972 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1973 {
1974 	itx_t *itx;
1975 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1976 
1977 	if (zil_replaying(zd->zd_zilog, tx))
1978 		return;
1979 
1980 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1981 		write_state = WR_INDIRECT;
1982 
1983 	itx = zil_itx_create(TX_WRITE,
1984 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1985 
1986 	if (write_state == WR_COPIED &&
1987 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1988 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1989 		zil_itx_destroy(itx);
1990 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1991 		write_state = WR_NEED_COPY;
1992 	}
1993 	itx->itx_private = zd;
1994 	itx->itx_wr_state = write_state;
1995 	itx->itx_sync = (ztest_random(8) == 0);
1996 
1997 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1998 	    sizeof (*lr) - sizeof (lr_t));
1999 
2000 	zil_itx_assign(zd->zd_zilog, itx, tx);
2001 }
2002 
2003 static void
2004 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2005 {
2006 	itx_t *itx;
2007 
2008 	if (zil_replaying(zd->zd_zilog, tx))
2009 		return;
2010 
2011 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2012 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2013 	    sizeof (*lr) - sizeof (lr_t));
2014 
2015 	itx->itx_sync = B_FALSE;
2016 	zil_itx_assign(zd->zd_zilog, itx, tx);
2017 }
2018 
2019 static void
2020 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2021 {
2022 	itx_t *itx;
2023 
2024 	if (zil_replaying(zd->zd_zilog, tx))
2025 		return;
2026 
2027 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2028 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2029 	    sizeof (*lr) - sizeof (lr_t));
2030 
2031 	itx->itx_sync = B_FALSE;
2032 	zil_itx_assign(zd->zd_zilog, itx, tx);
2033 }
2034 
2035 /*
2036  * ZIL replay ops
2037  */
2038 static int
2039 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2040 {
2041 	ztest_ds_t *zd = arg1;
2042 	lr_create_t *lr = arg2;
2043 	char *name = (void *)(lr + 1);		/* name follows lr */
2044 	objset_t *os = zd->zd_os;
2045 	ztest_block_tag_t *bbt;
2046 	dmu_buf_t *db;
2047 	dmu_tx_t *tx;
2048 	uint64_t txg;
2049 	int error = 0;
2050 	int bonuslen;
2051 
2052 	if (byteswap)
2053 		byteswap_uint64_array(lr, sizeof (*lr));
2054 
2055 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2056 	ASSERT3S(name[0], !=, '\0');
2057 
2058 	tx = dmu_tx_create(os);
2059 
2060 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2061 
2062 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2063 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2064 	} else {
2065 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2066 	}
2067 
2068 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2069 	if (txg == 0)
2070 		return (ENOSPC);
2071 
2072 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2073 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2074 
2075 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2076 		if (lr->lr_foid == 0) {
2077 			lr->lr_foid = zap_create_dnsize(os,
2078 			    lr->lrz_type, lr->lrz_bonustype,
2079 			    bonuslen, lr->lrz_dnodesize, tx);
2080 		} else {
2081 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2082 			    lr->lrz_type, lr->lrz_bonustype,
2083 			    bonuslen, lr->lrz_dnodesize, tx);
2084 		}
2085 	} else {
2086 		if (lr->lr_foid == 0) {
2087 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2088 			    lr->lrz_type, 0, lr->lrz_bonustype,
2089 			    bonuslen, lr->lrz_dnodesize, tx);
2090 		} else {
2091 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2092 			    lr->lrz_type, 0, lr->lrz_bonustype,
2093 			    bonuslen, lr->lrz_dnodesize, tx);
2094 		}
2095 	}
2096 
2097 	if (error) {
2098 		ASSERT3U(error, ==, EEXIST);
2099 		ASSERT(zd->zd_zilog->zl_replay);
2100 		dmu_tx_commit(tx);
2101 		return (error);
2102 	}
2103 
2104 	ASSERT3U(lr->lr_foid, !=, 0);
2105 
2106 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2107 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2108 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2109 
2110 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2111 	bbt = ztest_bt_bonus(db);
2112 	dmu_buf_will_dirty(db, tx);
2113 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2114 	    lr->lr_gen, txg, txg);
2115 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2116 	dmu_buf_rele(db, FTAG);
2117 
2118 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2119 	    &lr->lr_foid, tx));
2120 
2121 	(void) ztest_log_create(zd, tx, lr);
2122 
2123 	dmu_tx_commit(tx);
2124 
2125 	return (0);
2126 }
2127 
2128 static int
2129 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2130 {
2131 	ztest_ds_t *zd = arg1;
2132 	lr_remove_t *lr = arg2;
2133 	char *name = (void *)(lr + 1);		/* name follows lr */
2134 	objset_t *os = zd->zd_os;
2135 	dmu_object_info_t doi;
2136 	dmu_tx_t *tx;
2137 	uint64_t object, txg;
2138 
2139 	if (byteswap)
2140 		byteswap_uint64_array(lr, sizeof (*lr));
2141 
2142 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2143 	ASSERT3S(name[0], !=, '\0');
2144 
2145 	VERIFY0(
2146 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2147 	ASSERT3U(object, !=, 0);
2148 
2149 	ztest_object_lock(zd, object, ZTRL_WRITER);
2150 
2151 	VERIFY0(dmu_object_info(os, object, &doi));
2152 
2153 	tx = dmu_tx_create(os);
2154 
2155 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2156 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2157 
2158 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2159 	if (txg == 0) {
2160 		ztest_object_unlock(zd, object);
2161 		return (ENOSPC);
2162 	}
2163 
2164 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2165 		VERIFY0(zap_destroy(os, object, tx));
2166 	} else {
2167 		VERIFY0(dmu_object_free(os, object, tx));
2168 	}
2169 
2170 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2171 
2172 	(void) ztest_log_remove(zd, tx, lr, object);
2173 
2174 	dmu_tx_commit(tx);
2175 
2176 	ztest_object_unlock(zd, object);
2177 
2178 	return (0);
2179 }
2180 
2181 static int
2182 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2183 {
2184 	ztest_ds_t *zd = arg1;
2185 	lr_write_t *lr = arg2;
2186 	objset_t *os = zd->zd_os;
2187 	void *data = lr + 1;			/* data follows lr */
2188 	uint64_t offset, length;
2189 	ztest_block_tag_t *bt = data;
2190 	ztest_block_tag_t *bbt;
2191 	uint64_t gen, txg, lrtxg, crtxg;
2192 	dmu_object_info_t doi;
2193 	dmu_tx_t *tx;
2194 	dmu_buf_t *db;
2195 	arc_buf_t *abuf = NULL;
2196 	rl_t *rl;
2197 
2198 	if (byteswap)
2199 		byteswap_uint64_array(lr, sizeof (*lr));
2200 
2201 	offset = lr->lr_offset;
2202 	length = lr->lr_length;
2203 
2204 	/* If it's a dmu_sync() block, write the whole block */
2205 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2206 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2207 		if (length < blocksize) {
2208 			offset -= offset % blocksize;
2209 			length = blocksize;
2210 		}
2211 	}
2212 
2213 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2214 		byteswap_uint64_array(bt, sizeof (*bt));
2215 
2216 	if (bt->bt_magic != BT_MAGIC)
2217 		bt = NULL;
2218 
2219 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2220 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2221 
2222 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2223 
2224 	dmu_object_info_from_db(db, &doi);
2225 
2226 	bbt = ztest_bt_bonus(db);
2227 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2228 	gen = bbt->bt_gen;
2229 	crtxg = bbt->bt_crtxg;
2230 	lrtxg = lr->lr_common.lrc_txg;
2231 
2232 	tx = dmu_tx_create(os);
2233 
2234 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2235 
2236 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2237 	    P2PHASE(offset, length) == 0)
2238 		abuf = dmu_request_arcbuf(db, length);
2239 
2240 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2241 	if (txg == 0) {
2242 		if (abuf != NULL)
2243 			dmu_return_arcbuf(abuf);
2244 		dmu_buf_rele(db, FTAG);
2245 		ztest_range_unlock(rl);
2246 		ztest_object_unlock(zd, lr->lr_foid);
2247 		return (ENOSPC);
2248 	}
2249 
2250 	if (bt != NULL) {
2251 		/*
2252 		 * Usually, verify the old data before writing new data --
2253 		 * but not always, because we also want to verify correct
2254 		 * behavior when the data was not recently read into cache.
2255 		 */
2256 		ASSERT(doi.doi_data_block_size);
2257 		ASSERT0(offset % doi.doi_data_block_size);
2258 		if (ztest_random(4) != 0) {
2259 			int prefetch = ztest_random(2) ?
2260 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2261 			ztest_block_tag_t rbt;
2262 
2263 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2264 			    sizeof (rbt), &rbt, prefetch) == 0);
2265 			if (rbt.bt_magic == BT_MAGIC) {
2266 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2267 				    offset, gen, txg, crtxg);
2268 			}
2269 		}
2270 
2271 		/*
2272 		 * Writes can appear to be newer than the bonus buffer because
2273 		 * the ztest_get_data() callback does a dmu_read() of the
2274 		 * open-context data, which may be different than the data
2275 		 * as it was when the write was generated.
2276 		 */
2277 		if (zd->zd_zilog->zl_replay) {
2278 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2279 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2280 			    bt->bt_crtxg);
2281 		}
2282 
2283 		/*
2284 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2285 		 * so that all of the usual ASSERTs will work.
2286 		 */
2287 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2288 		    crtxg);
2289 	}
2290 
2291 	if (abuf == NULL) {
2292 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2293 	} else {
2294 		memcpy(abuf->b_data, data, length);
2295 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2296 	}
2297 
2298 	(void) ztest_log_write(zd, tx, lr);
2299 
2300 	dmu_buf_rele(db, FTAG);
2301 
2302 	dmu_tx_commit(tx);
2303 
2304 	ztest_range_unlock(rl);
2305 	ztest_object_unlock(zd, lr->lr_foid);
2306 
2307 	return (0);
2308 }
2309 
2310 static int
2311 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2312 {
2313 	ztest_ds_t *zd = arg1;
2314 	lr_truncate_t *lr = arg2;
2315 	objset_t *os = zd->zd_os;
2316 	dmu_tx_t *tx;
2317 	uint64_t txg;
2318 	rl_t *rl;
2319 
2320 	if (byteswap)
2321 		byteswap_uint64_array(lr, sizeof (*lr));
2322 
2323 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2324 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2325 	    ZTRL_WRITER);
2326 
2327 	tx = dmu_tx_create(os);
2328 
2329 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2330 
2331 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2332 	if (txg == 0) {
2333 		ztest_range_unlock(rl);
2334 		ztest_object_unlock(zd, lr->lr_foid);
2335 		return (ENOSPC);
2336 	}
2337 
2338 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2339 	    lr->lr_length, tx));
2340 
2341 	(void) ztest_log_truncate(zd, tx, lr);
2342 
2343 	dmu_tx_commit(tx);
2344 
2345 	ztest_range_unlock(rl);
2346 	ztest_object_unlock(zd, lr->lr_foid);
2347 
2348 	return (0);
2349 }
2350 
2351 static int
2352 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2353 {
2354 	ztest_ds_t *zd = arg1;
2355 	lr_setattr_t *lr = arg2;
2356 	objset_t *os = zd->zd_os;
2357 	dmu_tx_t *tx;
2358 	dmu_buf_t *db;
2359 	ztest_block_tag_t *bbt;
2360 	uint64_t txg, lrtxg, crtxg, dnodesize;
2361 
2362 	if (byteswap)
2363 		byteswap_uint64_array(lr, sizeof (*lr));
2364 
2365 	ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2366 
2367 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2368 
2369 	tx = dmu_tx_create(os);
2370 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2371 
2372 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2373 	if (txg == 0) {
2374 		dmu_buf_rele(db, FTAG);
2375 		ztest_object_unlock(zd, lr->lr_foid);
2376 		return (ENOSPC);
2377 	}
2378 
2379 	bbt = ztest_bt_bonus(db);
2380 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2381 	crtxg = bbt->bt_crtxg;
2382 	lrtxg = lr->lr_common.lrc_txg;
2383 	dnodesize = bbt->bt_dnodesize;
2384 
2385 	if (zd->zd_zilog->zl_replay) {
2386 		ASSERT3U(lr->lr_size, !=, 0);
2387 		ASSERT3U(lr->lr_mode, !=, 0);
2388 		ASSERT3U(lrtxg, !=, 0);
2389 	} else {
2390 		/*
2391 		 * Randomly change the size and increment the generation.
2392 		 */
2393 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2394 		    sizeof (*bbt);
2395 		lr->lr_mode = bbt->bt_gen + 1;
2396 		ASSERT0(lrtxg);
2397 	}
2398 
2399 	/*
2400 	 * Verify that the current bonus buffer is not newer than our txg.
2401 	 */
2402 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2403 	    MAX(txg, lrtxg), crtxg);
2404 
2405 	dmu_buf_will_dirty(db, tx);
2406 
2407 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2408 	ASSERT3U(lr->lr_size, <=, db->db_size);
2409 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2410 	bbt = ztest_bt_bonus(db);
2411 
2412 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2413 	    txg, crtxg);
2414 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2415 	dmu_buf_rele(db, FTAG);
2416 
2417 	(void) ztest_log_setattr(zd, tx, lr);
2418 
2419 	dmu_tx_commit(tx);
2420 
2421 	ztest_object_unlock(zd, lr->lr_foid);
2422 
2423 	return (0);
2424 }
2425 
2426 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2427 	NULL,			/* 0 no such transaction type */
2428 	ztest_replay_create,	/* TX_CREATE */
2429 	NULL,			/* TX_MKDIR */
2430 	NULL,			/* TX_MKXATTR */
2431 	NULL,			/* TX_SYMLINK */
2432 	ztest_replay_remove,	/* TX_REMOVE */
2433 	NULL,			/* TX_RMDIR */
2434 	NULL,			/* TX_LINK */
2435 	NULL,			/* TX_RENAME */
2436 	ztest_replay_write,	/* TX_WRITE */
2437 	ztest_replay_truncate,	/* TX_TRUNCATE */
2438 	ztest_replay_setattr,	/* TX_SETATTR */
2439 	NULL,			/* TX_ACL */
2440 	NULL,			/* TX_CREATE_ACL */
2441 	NULL,			/* TX_CREATE_ATTR */
2442 	NULL,			/* TX_CREATE_ACL_ATTR */
2443 	NULL,			/* TX_MKDIR_ACL */
2444 	NULL,			/* TX_MKDIR_ATTR */
2445 	NULL,			/* TX_MKDIR_ACL_ATTR */
2446 	NULL,			/* TX_WRITE2 */
2447 	NULL,			/* TX_SETSAXATTR */
2448 	NULL,			/* TX_RENAME_EXCHANGE */
2449 	NULL,			/* TX_RENAME_WHITEOUT */
2450 };
2451 
2452 /*
2453  * ZIL get_data callbacks
2454  */
2455 
2456 static void
2457 ztest_get_done(zgd_t *zgd, int error)
2458 {
2459 	(void) error;
2460 	ztest_ds_t *zd = zgd->zgd_private;
2461 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2462 
2463 	if (zgd->zgd_db)
2464 		dmu_buf_rele(zgd->zgd_db, zgd);
2465 
2466 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2467 	ztest_object_unlock(zd, object);
2468 
2469 	umem_free(zgd, sizeof (*zgd));
2470 }
2471 
2472 static int
2473 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2474     struct lwb *lwb, zio_t *zio)
2475 {
2476 	(void) arg2;
2477 	ztest_ds_t *zd = arg;
2478 	objset_t *os = zd->zd_os;
2479 	uint64_t object = lr->lr_foid;
2480 	uint64_t offset = lr->lr_offset;
2481 	uint64_t size = lr->lr_length;
2482 	uint64_t txg = lr->lr_common.lrc_txg;
2483 	uint64_t crtxg;
2484 	dmu_object_info_t doi;
2485 	dmu_buf_t *db;
2486 	zgd_t *zgd;
2487 	int error;
2488 
2489 	ASSERT3P(lwb, !=, NULL);
2490 	ASSERT3U(size, !=, 0);
2491 
2492 	ztest_object_lock(zd, object, ZTRL_READER);
2493 	error = dmu_bonus_hold(os, object, FTAG, &db);
2494 	if (error) {
2495 		ztest_object_unlock(zd, object);
2496 		return (error);
2497 	}
2498 
2499 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2500 
2501 	if (crtxg == 0 || crtxg > txg) {
2502 		dmu_buf_rele(db, FTAG);
2503 		ztest_object_unlock(zd, object);
2504 		return (ENOENT);
2505 	}
2506 
2507 	dmu_object_info_from_db(db, &doi);
2508 	dmu_buf_rele(db, FTAG);
2509 	db = NULL;
2510 
2511 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2512 	zgd->zgd_lwb = lwb;
2513 	zgd->zgd_private = zd;
2514 
2515 	if (buf != NULL) {	/* immediate write */
2516 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2517 		    object, offset, size, ZTRL_READER);
2518 
2519 		error = dmu_read(os, object, offset, size, buf,
2520 		    DMU_READ_NO_PREFETCH);
2521 		ASSERT0(error);
2522 	} else {
2523 		ASSERT3P(zio, !=, NULL);
2524 		size = doi.doi_data_block_size;
2525 		if (ISP2(size)) {
2526 			offset = P2ALIGN_TYPED(offset, size, uint64_t);
2527 		} else {
2528 			ASSERT3U(offset, <, size);
2529 			offset = 0;
2530 		}
2531 
2532 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2533 		    object, offset, size, ZTRL_READER);
2534 
2535 		error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2536 
2537 		if (error == 0) {
2538 			blkptr_t *bp = &lr->lr_blkptr;
2539 
2540 			zgd->zgd_db = db;
2541 			zgd->zgd_bp = bp;
2542 
2543 			ASSERT3U(db->db_offset, ==, offset);
2544 			ASSERT3U(db->db_size, ==, size);
2545 
2546 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2547 			    ztest_get_done, zgd);
2548 
2549 			if (error == 0)
2550 				return (0);
2551 		}
2552 	}
2553 
2554 	ztest_get_done(zgd, error);
2555 
2556 	return (error);
2557 }
2558 
2559 static void *
2560 ztest_lr_alloc(size_t lrsize, char *name)
2561 {
2562 	char *lr;
2563 	size_t namesize = name ? strlen(name) + 1 : 0;
2564 
2565 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2566 
2567 	if (name)
2568 		memcpy(lr + lrsize, name, namesize);
2569 
2570 	return (lr);
2571 }
2572 
2573 static void
2574 ztest_lr_free(void *lr, size_t lrsize, char *name)
2575 {
2576 	size_t namesize = name ? strlen(name) + 1 : 0;
2577 
2578 	umem_free(lr, lrsize + namesize);
2579 }
2580 
2581 /*
2582  * Lookup a bunch of objects.  Returns the number of objects not found.
2583  */
2584 static int
2585 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2586 {
2587 	int missing = 0;
2588 	int error;
2589 	int i;
2590 
2591 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2592 
2593 	for (i = 0; i < count; i++, od++) {
2594 		od->od_object = 0;
2595 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2596 		    sizeof (uint64_t), 1, &od->od_object);
2597 		if (error) {
2598 			ASSERT3S(error, ==, ENOENT);
2599 			ASSERT0(od->od_object);
2600 			missing++;
2601 		} else {
2602 			dmu_buf_t *db;
2603 			ztest_block_tag_t *bbt;
2604 			dmu_object_info_t doi;
2605 
2606 			ASSERT3U(od->od_object, !=, 0);
2607 			ASSERT0(missing);	/* there should be no gaps */
2608 
2609 			ztest_object_lock(zd, od->od_object, ZTRL_READER);
2610 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2611 			    FTAG, &db));
2612 			dmu_object_info_from_db(db, &doi);
2613 			bbt = ztest_bt_bonus(db);
2614 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2615 			od->od_type = doi.doi_type;
2616 			od->od_blocksize = doi.doi_data_block_size;
2617 			od->od_gen = bbt->bt_gen;
2618 			dmu_buf_rele(db, FTAG);
2619 			ztest_object_unlock(zd, od->od_object);
2620 		}
2621 	}
2622 
2623 	return (missing);
2624 }
2625 
2626 static int
2627 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2628 {
2629 	int missing = 0;
2630 	int i;
2631 
2632 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2633 
2634 	for (i = 0; i < count; i++, od++) {
2635 		if (missing) {
2636 			od->od_object = 0;
2637 			missing++;
2638 			continue;
2639 		}
2640 
2641 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2642 
2643 		lr->lr_doid = od->od_dir;
2644 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2645 		lr->lrz_type = od->od_crtype;
2646 		lr->lrz_blocksize = od->od_crblocksize;
2647 		lr->lrz_ibshift = ztest_random_ibshift();
2648 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2649 		lr->lrz_dnodesize = od->od_crdnodesize;
2650 		lr->lr_gen = od->od_crgen;
2651 		lr->lr_crtime[0] = time(NULL);
2652 
2653 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2654 			ASSERT0(missing);
2655 			od->od_object = 0;
2656 			missing++;
2657 		} else {
2658 			od->od_object = lr->lr_foid;
2659 			od->od_type = od->od_crtype;
2660 			od->od_blocksize = od->od_crblocksize;
2661 			od->od_gen = od->od_crgen;
2662 			ASSERT3U(od->od_object, !=, 0);
2663 		}
2664 
2665 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2666 	}
2667 
2668 	return (missing);
2669 }
2670 
2671 static int
2672 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2673 {
2674 	int missing = 0;
2675 	int error;
2676 	int i;
2677 
2678 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2679 
2680 	od += count - 1;
2681 
2682 	for (i = count - 1; i >= 0; i--, od--) {
2683 		if (missing) {
2684 			missing++;
2685 			continue;
2686 		}
2687 
2688 		/*
2689 		 * No object was found.
2690 		 */
2691 		if (od->od_object == 0)
2692 			continue;
2693 
2694 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2695 
2696 		lr->lr_doid = od->od_dir;
2697 
2698 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2699 			ASSERT3U(error, ==, ENOSPC);
2700 			missing++;
2701 		} else {
2702 			od->od_object = 0;
2703 		}
2704 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2705 	}
2706 
2707 	return (missing);
2708 }
2709 
2710 static int
2711 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2712     const void *data)
2713 {
2714 	lr_write_t *lr;
2715 	int error;
2716 
2717 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2718 
2719 	lr->lr_foid = object;
2720 	lr->lr_offset = offset;
2721 	lr->lr_length = size;
2722 	lr->lr_blkoff = 0;
2723 	BP_ZERO(&lr->lr_blkptr);
2724 
2725 	memcpy(lr + 1, data, size);
2726 
2727 	error = ztest_replay_write(zd, lr, B_FALSE);
2728 
2729 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2730 
2731 	return (error);
2732 }
2733 
2734 static int
2735 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2736 {
2737 	lr_truncate_t *lr;
2738 	int error;
2739 
2740 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2741 
2742 	lr->lr_foid = object;
2743 	lr->lr_offset = offset;
2744 	lr->lr_length = size;
2745 
2746 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2747 
2748 	ztest_lr_free(lr, sizeof (*lr), NULL);
2749 
2750 	return (error);
2751 }
2752 
2753 static int
2754 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2755 {
2756 	lr_setattr_t *lr;
2757 	int error;
2758 
2759 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2760 
2761 	lr->lr_foid = object;
2762 	lr->lr_size = 0;
2763 	lr->lr_mode = 0;
2764 
2765 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2766 
2767 	ztest_lr_free(lr, sizeof (*lr), NULL);
2768 
2769 	return (error);
2770 }
2771 
2772 static void
2773 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2774 {
2775 	objset_t *os = zd->zd_os;
2776 	dmu_tx_t *tx;
2777 	uint64_t txg;
2778 	rl_t *rl;
2779 
2780 	txg_wait_synced(dmu_objset_pool(os), 0);
2781 
2782 	ztest_object_lock(zd, object, ZTRL_READER);
2783 	rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2784 
2785 	tx = dmu_tx_create(os);
2786 
2787 	dmu_tx_hold_write(tx, object, offset, size);
2788 
2789 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2790 
2791 	if (txg != 0) {
2792 		dmu_prealloc(os, object, offset, size, tx);
2793 		dmu_tx_commit(tx);
2794 		txg_wait_synced(dmu_objset_pool(os), txg);
2795 	} else {
2796 		(void) dmu_free_long_range(os, object, offset, size);
2797 	}
2798 
2799 	ztest_range_unlock(rl);
2800 	ztest_object_unlock(zd, object);
2801 }
2802 
2803 static void
2804 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2805 {
2806 	int err;
2807 	ztest_block_tag_t wbt;
2808 	dmu_object_info_t doi;
2809 	enum ztest_io_type io_type;
2810 	uint64_t blocksize;
2811 	void *data;
2812 
2813 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2814 	blocksize = doi.doi_data_block_size;
2815 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2816 
2817 	/*
2818 	 * Pick an i/o type at random, biased toward writing block tags.
2819 	 */
2820 	io_type = ztest_random(ZTEST_IO_TYPES);
2821 	if (ztest_random(2) == 0)
2822 		io_type = ZTEST_IO_WRITE_TAG;
2823 
2824 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2825 
2826 	switch (io_type) {
2827 
2828 	case ZTEST_IO_WRITE_TAG:
2829 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2830 		    offset, 0, 0, 0);
2831 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2832 		break;
2833 
2834 	case ZTEST_IO_WRITE_PATTERN:
2835 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2836 		if (ztest_random(2) == 0) {
2837 			/*
2838 			 * Induce fletcher2 collisions to ensure that
2839 			 * zio_ddt_collision() detects and resolves them
2840 			 * when using fletcher2-verify for deduplication.
2841 			 */
2842 			((uint64_t *)data)[0] ^= 1ULL << 63;
2843 			((uint64_t *)data)[4] ^= 1ULL << 63;
2844 		}
2845 		(void) ztest_write(zd, object, offset, blocksize, data);
2846 		break;
2847 
2848 	case ZTEST_IO_WRITE_ZEROES:
2849 		memset(data, 0, blocksize);
2850 		(void) ztest_write(zd, object, offset, blocksize, data);
2851 		break;
2852 
2853 	case ZTEST_IO_TRUNCATE:
2854 		(void) ztest_truncate(zd, object, offset, blocksize);
2855 		break;
2856 
2857 	case ZTEST_IO_SETATTR:
2858 		(void) ztest_setattr(zd, object);
2859 		break;
2860 	default:
2861 		break;
2862 
2863 	case ZTEST_IO_REWRITE:
2864 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2865 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2866 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2867 		    B_FALSE);
2868 		ASSERT(err == 0 || err == ENOSPC);
2869 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2870 		    ZFS_PROP_COMPRESSION,
2871 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2872 		    B_FALSE);
2873 		ASSERT(err == 0 || err == ENOSPC);
2874 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2875 
2876 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2877 		    DMU_READ_NO_PREFETCH));
2878 
2879 		(void) ztest_write(zd, object, offset, blocksize, data);
2880 		break;
2881 	}
2882 
2883 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2884 
2885 	umem_free(data, blocksize);
2886 }
2887 
2888 /*
2889  * Initialize an object description template.
2890  */
2891 static void
2892 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2893     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2894     uint64_t gen)
2895 {
2896 	od->od_dir = ZTEST_DIROBJ;
2897 	od->od_object = 0;
2898 
2899 	od->od_crtype = type;
2900 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2901 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2902 	od->od_crgen = gen;
2903 
2904 	od->od_type = DMU_OT_NONE;
2905 	od->od_blocksize = 0;
2906 	od->od_gen = 0;
2907 
2908 	(void) snprintf(od->od_name, sizeof (od->od_name),
2909 	    "%s(%"PRId64")[%"PRIu64"]",
2910 	    tag, id, index);
2911 }
2912 
2913 /*
2914  * Lookup or create the objects for a test using the od template.
2915  * If the objects do not all exist, or if 'remove' is specified,
2916  * remove any existing objects and create new ones.  Otherwise,
2917  * use the existing objects.
2918  */
2919 static int
2920 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2921 {
2922 	int count = size / sizeof (*od);
2923 	int rv = 0;
2924 
2925 	mutex_enter(&zd->zd_dirobj_lock);
2926 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2927 	    (ztest_remove(zd, od, count) != 0 ||
2928 	    ztest_create(zd, od, count) != 0))
2929 		rv = -1;
2930 	zd->zd_od = od;
2931 	mutex_exit(&zd->zd_dirobj_lock);
2932 
2933 	return (rv);
2934 }
2935 
2936 void
2937 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2938 {
2939 	(void) id;
2940 	zilog_t *zilog = zd->zd_zilog;
2941 
2942 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2943 
2944 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2945 
2946 	/*
2947 	 * Remember the committed values in zd, which is in parent/child
2948 	 * shared memory.  If we die, the next iteration of ztest_run()
2949 	 * will verify that the log really does contain this record.
2950 	 */
2951 	mutex_enter(&zilog->zl_lock);
2952 	ASSERT3P(zd->zd_shared, !=, NULL);
2953 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2954 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2955 	mutex_exit(&zilog->zl_lock);
2956 
2957 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2958 }
2959 
2960 /*
2961  * This function is designed to simulate the operations that occur during a
2962  * mount/unmount operation.  We hold the dataset across these operations in an
2963  * attempt to expose any implicit assumptions about ZIL management.
2964  */
2965 void
2966 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2967 {
2968 	(void) id;
2969 	objset_t *os = zd->zd_os;
2970 
2971 	/*
2972 	 * We hold the ztest_vdev_lock so we don't cause problems with
2973 	 * other threads that wish to remove a log device, such as
2974 	 * ztest_device_removal().
2975 	 */
2976 	mutex_enter(&ztest_vdev_lock);
2977 
2978 	/*
2979 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2980 	 * updating the zil (i.e. adding in-memory log records) and the
2981 	 * zd_zilog_lock to block any I/O.
2982 	 */
2983 	mutex_enter(&zd->zd_dirobj_lock);
2984 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2985 
2986 	/* zfsvfs_teardown() */
2987 	zil_close(zd->zd_zilog);
2988 
2989 	/* zfsvfs_setup() */
2990 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2991 	zil_replay(os, zd, ztest_replay_vector);
2992 
2993 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2994 	mutex_exit(&zd->zd_dirobj_lock);
2995 	mutex_exit(&ztest_vdev_lock);
2996 }
2997 
2998 /*
2999  * Verify that we can't destroy an active pool, create an existing pool,
3000  * or create a pool with a bad vdev spec.
3001  */
3002 void
3003 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3004 {
3005 	(void) zd, (void) id;
3006 	ztest_shared_opts_t *zo = &ztest_opts;
3007 	spa_t *spa;
3008 	nvlist_t *nvroot;
3009 
3010 	if (zo->zo_mmp_test)
3011 		return;
3012 
3013 	/*
3014 	 * Attempt to create using a bad file.
3015 	 */
3016 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3017 	VERIFY3U(ENOENT, ==,
3018 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3019 	fnvlist_free(nvroot);
3020 
3021 	/*
3022 	 * Attempt to create using a bad mirror.
3023 	 */
3024 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3025 	VERIFY3U(ENOENT, ==,
3026 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3027 	fnvlist_free(nvroot);
3028 
3029 	/*
3030 	 * Attempt to create an existing pool.  It shouldn't matter
3031 	 * what's in the nvroot; we should fail with EEXIST.
3032 	 */
3033 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
3034 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3035 	VERIFY3U(EEXIST, ==,
3036 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3037 	fnvlist_free(nvroot);
3038 
3039 	/*
3040 	 * We open a reference to the spa and then we try to export it
3041 	 * expecting one of the following errors:
3042 	 *
3043 	 * EBUSY
3044 	 *	Because of the reference we just opened.
3045 	 *
3046 	 * ZFS_ERR_EXPORT_IN_PROGRESS
3047 	 *	For the case that there is another ztest thread doing
3048 	 *	an export concurrently.
3049 	 */
3050 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3051 	int error = spa_destroy(zo->zo_pool);
3052 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3053 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3054 		    spa->spa_name, error);
3055 	}
3056 	spa_close(spa, FTAG);
3057 
3058 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3059 }
3060 
3061 /*
3062  * Start and then stop the MMP threads to ensure the startup and shutdown code
3063  * works properly.  Actual protection and property-related code tested via ZTS.
3064  */
3065 void
3066 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3067 {
3068 	(void) zd, (void) id;
3069 	ztest_shared_opts_t *zo = &ztest_opts;
3070 	spa_t *spa = ztest_spa;
3071 
3072 	if (zo->zo_mmp_test)
3073 		return;
3074 
3075 	/*
3076 	 * Since enabling MMP involves setting a property, it could not be done
3077 	 * while the pool is suspended.
3078 	 */
3079 	if (spa_suspended(spa))
3080 		return;
3081 
3082 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3083 	mutex_enter(&spa->spa_props_lock);
3084 
3085 	zfs_multihost_fail_intervals = 0;
3086 
3087 	if (!spa_multihost(spa)) {
3088 		spa->spa_multihost = B_TRUE;
3089 		mmp_thread_start(spa);
3090 	}
3091 
3092 	mutex_exit(&spa->spa_props_lock);
3093 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3094 
3095 	txg_wait_synced(spa_get_dsl(spa), 0);
3096 	mmp_signal_all_threads();
3097 	txg_wait_synced(spa_get_dsl(spa), 0);
3098 
3099 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3100 	mutex_enter(&spa->spa_props_lock);
3101 
3102 	if (spa_multihost(spa)) {
3103 		mmp_thread_stop(spa);
3104 		spa->spa_multihost = B_FALSE;
3105 	}
3106 
3107 	mutex_exit(&spa->spa_props_lock);
3108 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3109 }
3110 
3111 static int
3112 ztest_get_raidz_children(spa_t *spa)
3113 {
3114 	(void) spa;
3115 	vdev_t *raidvd;
3116 
3117 	ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3118 
3119 	if (ztest_opts.zo_raid_do_expand) {
3120 		raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3121 
3122 		ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3123 
3124 		return (raidvd->vdev_children);
3125 	}
3126 
3127 	return (ztest_opts.zo_raid_children);
3128 }
3129 
3130 void
3131 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3132 {
3133 	(void) zd, (void) id;
3134 	spa_t *spa;
3135 	uint64_t initial_version = SPA_VERSION_INITIAL;
3136 	uint64_t raidz_children, version, newversion;
3137 	nvlist_t *nvroot, *props;
3138 	char *name;
3139 
3140 	if (ztest_opts.zo_mmp_test)
3141 		return;
3142 
3143 	/* dRAID added after feature flags, skip upgrade test. */
3144 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3145 		return;
3146 
3147 	mutex_enter(&ztest_vdev_lock);
3148 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3149 
3150 	/*
3151 	 * Clean up from previous runs.
3152 	 */
3153 	(void) spa_destroy(name);
3154 
3155 	raidz_children = ztest_get_raidz_children(ztest_spa);
3156 
3157 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3158 	    NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3159 
3160 	/*
3161 	 * If we're configuring a RAIDZ device then make sure that the
3162 	 * initial version is capable of supporting that feature.
3163 	 */
3164 	switch (ztest_opts.zo_raid_parity) {
3165 	case 0:
3166 	case 1:
3167 		initial_version = SPA_VERSION_INITIAL;
3168 		break;
3169 	case 2:
3170 		initial_version = SPA_VERSION_RAIDZ2;
3171 		break;
3172 	case 3:
3173 		initial_version = SPA_VERSION_RAIDZ3;
3174 		break;
3175 	}
3176 
3177 	/*
3178 	 * Create a pool with a spa version that can be upgraded. Pick
3179 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3180 	 */
3181 	do {
3182 		version = ztest_random_spa_version(initial_version);
3183 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3184 
3185 	props = fnvlist_alloc();
3186 	fnvlist_add_uint64(props,
3187 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3188 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3189 	fnvlist_free(nvroot);
3190 	fnvlist_free(props);
3191 
3192 	VERIFY0(spa_open(name, &spa, FTAG));
3193 	VERIFY3U(spa_version(spa), ==, version);
3194 	newversion = ztest_random_spa_version(version + 1);
3195 
3196 	if (ztest_opts.zo_verbose >= 4) {
3197 		(void) printf("upgrading spa version from "
3198 		    "%"PRIu64" to %"PRIu64"\n",
3199 		    version, newversion);
3200 	}
3201 
3202 	spa_upgrade(spa, newversion);
3203 	VERIFY3U(spa_version(spa), >, version);
3204 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3205 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3206 	spa_close(spa, FTAG);
3207 
3208 	kmem_strfree(name);
3209 	mutex_exit(&ztest_vdev_lock);
3210 }
3211 
3212 static void
3213 ztest_spa_checkpoint(spa_t *spa)
3214 {
3215 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3216 
3217 	int error = spa_checkpoint(spa->spa_name);
3218 
3219 	switch (error) {
3220 	case 0:
3221 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3222 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3223 	case ZFS_ERR_CHECKPOINT_EXISTS:
3224 	case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3225 		break;
3226 	case ENOSPC:
3227 		ztest_record_enospc(FTAG);
3228 		break;
3229 	default:
3230 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3231 	}
3232 }
3233 
3234 static void
3235 ztest_spa_discard_checkpoint(spa_t *spa)
3236 {
3237 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3238 
3239 	int error = spa_checkpoint_discard(spa->spa_name);
3240 
3241 	switch (error) {
3242 	case 0:
3243 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3244 	case ZFS_ERR_NO_CHECKPOINT:
3245 		break;
3246 	default:
3247 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3248 		    spa->spa_name, error);
3249 	}
3250 
3251 }
3252 
3253 void
3254 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3255 {
3256 	(void) zd, (void) id;
3257 	spa_t *spa = ztest_spa;
3258 
3259 	mutex_enter(&ztest_checkpoint_lock);
3260 	if (ztest_random(2) == 0) {
3261 		ztest_spa_checkpoint(spa);
3262 	} else {
3263 		ztest_spa_discard_checkpoint(spa);
3264 	}
3265 	mutex_exit(&ztest_checkpoint_lock);
3266 }
3267 
3268 
3269 static vdev_t *
3270 vdev_lookup_by_path(vdev_t *vd, const char *path)
3271 {
3272 	vdev_t *mvd;
3273 	int c;
3274 
3275 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3276 		return (vd);
3277 
3278 	for (c = 0; c < vd->vdev_children; c++)
3279 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3280 		    NULL)
3281 			return (mvd);
3282 
3283 	return (NULL);
3284 }
3285 
3286 static int
3287 spa_num_top_vdevs(spa_t *spa)
3288 {
3289 	vdev_t *rvd = spa->spa_root_vdev;
3290 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3291 	return (rvd->vdev_children);
3292 }
3293 
3294 /*
3295  * Verify that vdev_add() works as expected.
3296  */
3297 void
3298 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3299 {
3300 	(void) zd, (void) id;
3301 	ztest_shared_t *zs = ztest_shared;
3302 	spa_t *spa = ztest_spa;
3303 	uint64_t leaves;
3304 	uint64_t guid;
3305 	uint64_t raidz_children;
3306 
3307 	nvlist_t *nvroot;
3308 	int error;
3309 
3310 	if (ztest_opts.zo_mmp_test)
3311 		return;
3312 
3313 	mutex_enter(&ztest_vdev_lock);
3314 	raidz_children = ztest_get_raidz_children(spa);
3315 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3316 
3317 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3318 
3319 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3320 
3321 	/*
3322 	 * If we have slogs then remove them 1/4 of the time.
3323 	 */
3324 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3325 		metaslab_group_t *mg;
3326 
3327 		/*
3328 		 * find the first real slog in log allocation class
3329 		 */
3330 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3331 		while (!mg->mg_vd->vdev_islog)
3332 			mg = mg->mg_next;
3333 
3334 		guid = mg->mg_vd->vdev_guid;
3335 
3336 		spa_config_exit(spa, SCL_VDEV, FTAG);
3337 
3338 		/*
3339 		 * We have to grab the zs_name_lock as writer to
3340 		 * prevent a race between removing a slog (dmu_objset_find)
3341 		 * and destroying a dataset. Removing the slog will
3342 		 * grab a reference on the dataset which may cause
3343 		 * dsl_destroy_head() to fail with EBUSY thus
3344 		 * leaving the dataset in an inconsistent state.
3345 		 */
3346 		pthread_rwlock_wrlock(&ztest_name_lock);
3347 		error = spa_vdev_remove(spa, guid, B_FALSE);
3348 		pthread_rwlock_unlock(&ztest_name_lock);
3349 
3350 		switch (error) {
3351 		case 0:
3352 		case EEXIST:	/* Generic zil_reset() error */
3353 		case EBUSY:	/* Replay required */
3354 		case EACCES:	/* Crypto key not loaded */
3355 		case ZFS_ERR_CHECKPOINT_EXISTS:
3356 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3357 			break;
3358 		default:
3359 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3360 		}
3361 	} else {
3362 		spa_config_exit(spa, SCL_VDEV, FTAG);
3363 
3364 		/*
3365 		 * Make 1/4 of the devices be log devices
3366 		 */
3367 		nvroot = make_vdev_root(NULL, NULL, NULL,
3368 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3369 		    "log" : NULL, raidz_children, zs->zs_mirrors,
3370 		    1);
3371 
3372 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3373 		fnvlist_free(nvroot);
3374 
3375 		switch (error) {
3376 		case 0:
3377 			break;
3378 		case ENOSPC:
3379 			ztest_record_enospc("spa_vdev_add");
3380 			break;
3381 		default:
3382 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3383 		}
3384 	}
3385 
3386 	mutex_exit(&ztest_vdev_lock);
3387 }
3388 
3389 void
3390 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3391 {
3392 	(void) zd, (void) id;
3393 	ztest_shared_t *zs = ztest_shared;
3394 	spa_t *spa = ztest_spa;
3395 	uint64_t leaves;
3396 	nvlist_t *nvroot;
3397 	uint64_t raidz_children;
3398 	const char *class = (ztest_random(2) == 0) ?
3399 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3400 	int error;
3401 
3402 	/*
3403 	 * By default add a special vdev 50% of the time
3404 	 */
3405 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3406 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3407 	    ztest_random(2) == 0)) {
3408 		return;
3409 	}
3410 
3411 	mutex_enter(&ztest_vdev_lock);
3412 
3413 	/* Only test with mirrors */
3414 	if (zs->zs_mirrors < 2) {
3415 		mutex_exit(&ztest_vdev_lock);
3416 		return;
3417 	}
3418 
3419 	/* requires feature@allocation_classes */
3420 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3421 		mutex_exit(&ztest_vdev_lock);
3422 		return;
3423 	}
3424 
3425 	raidz_children = ztest_get_raidz_children(spa);
3426 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3427 
3428 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3429 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3430 	spa_config_exit(spa, SCL_VDEV, FTAG);
3431 
3432 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3433 	    class, raidz_children, zs->zs_mirrors, 1);
3434 
3435 	error = spa_vdev_add(spa, nvroot, B_FALSE);
3436 	fnvlist_free(nvroot);
3437 
3438 	if (error == ENOSPC)
3439 		ztest_record_enospc("spa_vdev_add");
3440 	else if (error != 0)
3441 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3442 
3443 	/*
3444 	 * 50% of the time allow small blocks in the special class
3445 	 */
3446 	if (error == 0 &&
3447 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3448 		if (ztest_opts.zo_verbose >= 3)
3449 			(void) printf("Enabling special VDEV small blocks\n");
3450 		error = ztest_dsl_prop_set_uint64(zd->zd_name,
3451 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3452 		ASSERT(error == 0 || error == ENOSPC);
3453 	}
3454 
3455 	mutex_exit(&ztest_vdev_lock);
3456 
3457 	if (ztest_opts.zo_verbose >= 3) {
3458 		metaslab_class_t *mc;
3459 
3460 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3461 			mc = spa_special_class(spa);
3462 		else
3463 			mc = spa_dedup_class(spa);
3464 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3465 		    class, (int)mc->mc_groups);
3466 	}
3467 }
3468 
3469 /*
3470  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3471  */
3472 void
3473 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3474 {
3475 	(void) zd, (void) id;
3476 	ztest_shared_t *zs = ztest_shared;
3477 	spa_t *spa = ztest_spa;
3478 	vdev_t *rvd = spa->spa_root_vdev;
3479 	spa_aux_vdev_t *sav;
3480 	const char *aux;
3481 	char *path;
3482 	uint64_t guid = 0;
3483 	int error, ignore_err = 0;
3484 
3485 	if (ztest_opts.zo_mmp_test)
3486 		return;
3487 
3488 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3489 
3490 	if (ztest_random(2) == 0) {
3491 		sav = &spa->spa_spares;
3492 		aux = ZPOOL_CONFIG_SPARES;
3493 	} else {
3494 		sav = &spa->spa_l2cache;
3495 		aux = ZPOOL_CONFIG_L2CACHE;
3496 	}
3497 
3498 	mutex_enter(&ztest_vdev_lock);
3499 
3500 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3501 
3502 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3503 		/*
3504 		 * Pick a random device to remove.
3505 		 */
3506 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3507 
3508 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3509 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3510 			ignore_err = ENOTSUP;
3511 
3512 		guid = svd->vdev_guid;
3513 	} else {
3514 		/*
3515 		 * Find an unused device we can add.
3516 		 */
3517 		zs->zs_vdev_aux = 0;
3518 		for (;;) {
3519 			int c;
3520 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3521 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3522 			    zs->zs_vdev_aux);
3523 			for (c = 0; c < sav->sav_count; c++)
3524 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3525 				    path) == 0)
3526 					break;
3527 			if (c == sav->sav_count &&
3528 			    vdev_lookup_by_path(rvd, path) == NULL)
3529 				break;
3530 			zs->zs_vdev_aux++;
3531 		}
3532 	}
3533 
3534 	spa_config_exit(spa, SCL_VDEV, FTAG);
3535 
3536 	if (guid == 0) {
3537 		/*
3538 		 * Add a new device.
3539 		 */
3540 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3541 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3542 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3543 
3544 		switch (error) {
3545 		case 0:
3546 			break;
3547 		default:
3548 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3549 		}
3550 		fnvlist_free(nvroot);
3551 	} else {
3552 		/*
3553 		 * Remove an existing device.  Sometimes, dirty its
3554 		 * vdev state first to make sure we handle removal
3555 		 * of devices that have pending state changes.
3556 		 */
3557 		if (ztest_random(2) == 0)
3558 			(void) vdev_online(spa, guid, 0, NULL);
3559 
3560 		error = spa_vdev_remove(spa, guid, B_FALSE);
3561 
3562 		switch (error) {
3563 		case 0:
3564 		case EBUSY:
3565 		case ZFS_ERR_CHECKPOINT_EXISTS:
3566 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3567 			break;
3568 		default:
3569 			if (error != ignore_err)
3570 				fatal(B_FALSE,
3571 				    "spa_vdev_remove(%"PRIu64") = %d",
3572 				    guid, error);
3573 		}
3574 	}
3575 
3576 	mutex_exit(&ztest_vdev_lock);
3577 
3578 	umem_free(path, MAXPATHLEN);
3579 }
3580 
3581 /*
3582  * split a pool if it has mirror tlvdevs
3583  */
3584 void
3585 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3586 {
3587 	(void) zd, (void) id;
3588 	ztest_shared_t *zs = ztest_shared;
3589 	spa_t *spa = ztest_spa;
3590 	vdev_t *rvd = spa->spa_root_vdev;
3591 	nvlist_t *tree, **child, *config, *split, **schild;
3592 	uint_t c, children, schildren = 0, lastlogid = 0;
3593 	int error = 0;
3594 
3595 	if (ztest_opts.zo_mmp_test)
3596 		return;
3597 
3598 	mutex_enter(&ztest_vdev_lock);
3599 
3600 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3601 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3602 		mutex_exit(&ztest_vdev_lock);
3603 		return;
3604 	}
3605 
3606 	/* clean up the old pool, if any */
3607 	(void) spa_destroy("splitp");
3608 
3609 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3610 
3611 	/* generate a config from the existing config */
3612 	mutex_enter(&spa->spa_props_lock);
3613 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3614 	mutex_exit(&spa->spa_props_lock);
3615 
3616 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3617 	    &child, &children));
3618 
3619 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3620 	    UMEM_NOFAIL);
3621 	for (c = 0; c < children; c++) {
3622 		vdev_t *tvd = rvd->vdev_child[c];
3623 		nvlist_t **mchild;
3624 		uint_t mchildren;
3625 
3626 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3627 			schild[schildren] = fnvlist_alloc();
3628 			fnvlist_add_string(schild[schildren],
3629 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3630 			fnvlist_add_uint64(schild[schildren],
3631 			    ZPOOL_CONFIG_IS_HOLE, 1);
3632 			if (lastlogid == 0)
3633 				lastlogid = schildren;
3634 			++schildren;
3635 			continue;
3636 		}
3637 		lastlogid = 0;
3638 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3639 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3640 		schild[schildren++] = fnvlist_dup(mchild[0]);
3641 	}
3642 
3643 	/* OK, create a config that can be used to split */
3644 	split = fnvlist_alloc();
3645 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3646 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3647 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3648 
3649 	config = fnvlist_alloc();
3650 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3651 
3652 	for (c = 0; c < schildren; c++)
3653 		fnvlist_free(schild[c]);
3654 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3655 	fnvlist_free(split);
3656 
3657 	spa_config_exit(spa, SCL_VDEV, FTAG);
3658 
3659 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3660 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3661 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3662 
3663 	fnvlist_free(config);
3664 
3665 	if (error == 0) {
3666 		(void) printf("successful split - results:\n");
3667 		mutex_enter(&spa_namespace_lock);
3668 		show_pool_stats(spa);
3669 		show_pool_stats(spa_lookup("splitp"));
3670 		mutex_exit(&spa_namespace_lock);
3671 		++zs->zs_splits;
3672 		--zs->zs_mirrors;
3673 	}
3674 	mutex_exit(&ztest_vdev_lock);
3675 }
3676 
3677 /*
3678  * Verify that we can attach and detach devices.
3679  */
3680 void
3681 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3682 {
3683 	(void) zd, (void) id;
3684 	ztest_shared_t *zs = ztest_shared;
3685 	spa_t *spa = ztest_spa;
3686 	spa_aux_vdev_t *sav = &spa->spa_spares;
3687 	vdev_t *rvd = spa->spa_root_vdev;
3688 	vdev_t *oldvd, *newvd, *pvd;
3689 	nvlist_t *root;
3690 	uint64_t leaves;
3691 	uint64_t leaf, top;
3692 	uint64_t ashift = ztest_get_ashift();
3693 	uint64_t oldguid, pguid;
3694 	uint64_t oldsize, newsize;
3695 	uint64_t raidz_children;
3696 	char *oldpath, *newpath;
3697 	int replacing;
3698 	int oldvd_has_siblings = B_FALSE;
3699 	int newvd_is_spare = B_FALSE;
3700 	int newvd_is_dspare = B_FALSE;
3701 	int oldvd_is_log;
3702 	int oldvd_is_special;
3703 	int error, expected_error;
3704 
3705 	if (ztest_opts.zo_mmp_test)
3706 		return;
3707 
3708 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3709 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3710 
3711 	mutex_enter(&ztest_vdev_lock);
3712 	raidz_children = ztest_get_raidz_children(spa);
3713 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3714 
3715 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3716 
3717 	/*
3718 	 * If a vdev is in the process of being removed, its removal may
3719 	 * finish while we are in progress, leading to an unexpected error
3720 	 * value.  Don't bother trying to attach while we are in the middle
3721 	 * of removal.
3722 	 */
3723 	if (ztest_device_removal_active) {
3724 		spa_config_exit(spa, SCL_ALL, FTAG);
3725 		goto out;
3726 	}
3727 
3728 	/*
3729 	 * RAIDZ leaf VDEV mirrors are not currently supported while a
3730 	 * RAIDZ expansion is in progress.
3731 	 */
3732 	if (ztest_opts.zo_raid_do_expand) {
3733 		spa_config_exit(spa, SCL_ALL, FTAG);
3734 		goto out;
3735 	}
3736 
3737 	/*
3738 	 * Decide whether to do an attach or a replace.
3739 	 */
3740 	replacing = ztest_random(2);
3741 
3742 	/*
3743 	 * Pick a random top-level vdev.
3744 	 */
3745 	top = ztest_random_vdev_top(spa, B_TRUE);
3746 
3747 	/*
3748 	 * Pick a random leaf within it.
3749 	 */
3750 	leaf = ztest_random(leaves);
3751 
3752 	/*
3753 	 * Locate this vdev.
3754 	 */
3755 	oldvd = rvd->vdev_child[top];
3756 
3757 	/* pick a child from the mirror */
3758 	if (zs->zs_mirrors >= 1) {
3759 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3760 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3761 		oldvd = oldvd->vdev_child[leaf / raidz_children];
3762 	}
3763 
3764 	/* pick a child out of the raidz group */
3765 	if (ztest_opts.zo_raid_children > 1) {
3766 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3767 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3768 		else
3769 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3770 		oldvd = oldvd->vdev_child[leaf % raidz_children];
3771 	}
3772 
3773 	/*
3774 	 * If we're already doing an attach or replace, oldvd may be a
3775 	 * mirror vdev -- in which case, pick a random child.
3776 	 */
3777 	while (oldvd->vdev_children != 0) {
3778 		oldvd_has_siblings = B_TRUE;
3779 		ASSERT3U(oldvd->vdev_children, >=, 2);
3780 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3781 	}
3782 
3783 	oldguid = oldvd->vdev_guid;
3784 	oldsize = vdev_get_min_asize(oldvd);
3785 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3786 	oldvd_is_special =
3787 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3788 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3789 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3790 	pvd = oldvd->vdev_parent;
3791 	pguid = pvd->vdev_guid;
3792 
3793 	/*
3794 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3795 	 * to the detach the pool is scrubbed in order to prevent creating
3796 	 * unrepairable blocks as a result of the data corruption injection.
3797 	 */
3798 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3799 		spa_config_exit(spa, SCL_ALL, FTAG);
3800 
3801 		error = ztest_scrub_impl(spa);
3802 		if (error)
3803 			goto out;
3804 
3805 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3806 		if (error != 0 && error != ENODEV && error != EBUSY &&
3807 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3808 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3809 			fatal(B_FALSE, "detach (%s) returned %d",
3810 			    oldpath, error);
3811 		goto out;
3812 	}
3813 
3814 	/*
3815 	 * For the new vdev, choose with equal probability between the two
3816 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3817 	 */
3818 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3819 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3820 		newvd_is_spare = B_TRUE;
3821 
3822 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3823 			newvd_is_dspare = B_TRUE;
3824 
3825 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3826 	} else {
3827 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3828 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3829 		    top * leaves + leaf);
3830 		if (ztest_random(2) == 0)
3831 			newpath[strlen(newpath) - 1] = 'b';
3832 		newvd = vdev_lookup_by_path(rvd, newpath);
3833 	}
3834 
3835 	if (newvd) {
3836 		/*
3837 		 * Reopen to ensure the vdev's asize field isn't stale.
3838 		 */
3839 		vdev_reopen(newvd);
3840 		newsize = vdev_get_min_asize(newvd);
3841 	} else {
3842 		/*
3843 		 * Make newsize a little bigger or smaller than oldsize.
3844 		 * If it's smaller, the attach should fail.
3845 		 * If it's larger, and we're doing a replace,
3846 		 * we should get dynamic LUN growth when we're done.
3847 		 */
3848 		newsize = 10 * oldsize / (9 + ztest_random(3));
3849 	}
3850 
3851 	/*
3852 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3853 	 * unless it's a replace; in that case any non-replacing parent is OK.
3854 	 *
3855 	 * If newvd is already part of the pool, it should fail with EBUSY.
3856 	 *
3857 	 * If newvd is too small, it should fail with EOVERFLOW.
3858 	 *
3859 	 * If newvd is a distributed spare and it's being attached to a
3860 	 * dRAID which is not its parent it should fail with EINVAL.
3861 	 */
3862 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3863 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3864 	    pvd->vdev_ops == &vdev_replacing_ops ||
3865 	    pvd->vdev_ops == &vdev_spare_ops))
3866 		expected_error = ENOTSUP;
3867 	else if (newvd_is_spare &&
3868 	    (!replacing || oldvd_is_log || oldvd_is_special))
3869 		expected_error = ENOTSUP;
3870 	else if (newvd == oldvd)
3871 		expected_error = replacing ? 0 : EBUSY;
3872 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3873 		expected_error = EBUSY;
3874 	else if (!newvd_is_dspare && newsize < oldsize)
3875 		expected_error = EOVERFLOW;
3876 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3877 		expected_error = EDOM;
3878 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3879 		expected_error = EINVAL;
3880 	else
3881 		expected_error = 0;
3882 
3883 	spa_config_exit(spa, SCL_ALL, FTAG);
3884 
3885 	/*
3886 	 * Build the nvlist describing newpath.
3887 	 */
3888 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3889 	    ashift, NULL, 0, 0, 1);
3890 
3891 	/*
3892 	 * When supported select either a healing or sequential resilver.
3893 	 */
3894 	boolean_t rebuilding = B_FALSE;
3895 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3896 	    pvd->vdev_ops ==  &vdev_root_ops) {
3897 		rebuilding = !!ztest_random(2);
3898 	}
3899 
3900 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3901 
3902 	fnvlist_free(root);
3903 
3904 	/*
3905 	 * If our parent was the replacing vdev, but the replace completed,
3906 	 * then instead of failing with ENOTSUP we may either succeed,
3907 	 * fail with ENODEV, or fail with EOVERFLOW.
3908 	 */
3909 	if (expected_error == ENOTSUP &&
3910 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3911 		expected_error = error;
3912 
3913 	/*
3914 	 * If someone grew the LUN, the replacement may be too small.
3915 	 */
3916 	if (error == EOVERFLOW || error == EBUSY)
3917 		expected_error = error;
3918 
3919 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3920 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3921 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3922 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3923 		expected_error = error;
3924 
3925 	if (error != expected_error && expected_error != EBUSY) {
3926 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3927 		    "returned %d, expected %d",
3928 		    oldpath, oldsize, newpath,
3929 		    newsize, replacing, error, expected_error);
3930 	}
3931 out:
3932 	mutex_exit(&ztest_vdev_lock);
3933 
3934 	umem_free(oldpath, MAXPATHLEN);
3935 	umem_free(newpath, MAXPATHLEN);
3936 }
3937 
3938 static void
3939 raidz_scratch_verify(void)
3940 {
3941 	spa_t *spa;
3942 	uint64_t write_size, logical_size, offset;
3943 	raidz_reflow_scratch_state_t state;
3944 	vdev_raidz_expand_t *vre;
3945 	vdev_t *raidvd;
3946 
3947 	ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3948 
3949 	if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3950 		return;
3951 
3952 	kernel_init(SPA_MODE_READ);
3953 
3954 	mutex_enter(&spa_namespace_lock);
3955 	spa = spa_lookup(ztest_opts.zo_pool);
3956 	ASSERT(spa);
3957 	spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3958 	mutex_exit(&spa_namespace_lock);
3959 
3960 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3961 
3962 	ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3963 
3964 	mutex_enter(&ztest_vdev_lock);
3965 
3966 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3967 
3968 	vre = spa->spa_raidz_expand;
3969 	if (vre == NULL)
3970 		goto out;
3971 
3972 	raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3973 	offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3974 	state = RRSS_GET_STATE(&spa->spa_uberblock);
3975 	write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3976 	    uint64_t);
3977 	logical_size = write_size * raidvd->vdev_children;
3978 
3979 	switch (state) {
3980 		/*
3981 		 * Initial state of reflow process.  RAIDZ expansion was
3982 		 * requested by user, but scratch object was not created.
3983 		 */
3984 		case RRSS_SCRATCH_NOT_IN_USE:
3985 			ASSERT3U(offset, ==, 0);
3986 			break;
3987 
3988 		/*
3989 		 * Scratch object was synced and stored in boot area.
3990 		 */
3991 		case RRSS_SCRATCH_VALID:
3992 
3993 		/*
3994 		 * Scratch object was synced back to raidz start offset,
3995 		 * raidz is ready for sector by sector reflow process.
3996 		 */
3997 		case RRSS_SCRATCH_INVALID_SYNCED:
3998 
3999 		/*
4000 		 * Scratch object was synced back to raidz start offset
4001 		 * on zpool importing, raidz is ready for sector by sector
4002 		 * reflow process.
4003 		 */
4004 		case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4005 			ASSERT3U(offset, ==, logical_size);
4006 			break;
4007 
4008 		/*
4009 		 * Sector by sector reflow process started.
4010 		 */
4011 		case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4012 			ASSERT3U(offset, >=, logical_size);
4013 			break;
4014 	}
4015 
4016 out:
4017 	spa_config_exit(spa, SCL_ALL, FTAG);
4018 
4019 	mutex_exit(&ztest_vdev_lock);
4020 
4021 	ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4022 
4023 	spa_close(spa, FTAG);
4024 	kernel_fini();
4025 }
4026 
4027 static void
4028 ztest_scratch_thread(void *arg)
4029 {
4030 	(void) arg;
4031 
4032 	/* wait up to 10 seconds */
4033 	for (int t = 100; t > 0; t -= 1) {
4034 		if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4035 			thread_exit();
4036 
4037 		(void) poll(NULL, 0, 100);
4038 	}
4039 
4040 	/* killed when the scratch area progress reached a certain point */
4041 	ztest_kill(ztest_shared);
4042 }
4043 
4044 /*
4045  * Verify that we can attach raidz device.
4046  */
4047 void
4048 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4049 {
4050 	(void) zd, (void) id;
4051 	ztest_shared_t *zs = ztest_shared;
4052 	spa_t *spa = ztest_spa;
4053 	uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4054 	kthread_t *scratch_thread = NULL;
4055 	vdev_t *newvd, *pvd;
4056 	nvlist_t *root;
4057 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4058 	int error, expected_error = 0;
4059 
4060 	mutex_enter(&ztest_vdev_lock);
4061 
4062 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4063 
4064 	/* Only allow attach when raid-kind = 'eraidz' */
4065 	if (!ztest_opts.zo_raid_do_expand) {
4066 		spa_config_exit(spa, SCL_ALL, FTAG);
4067 		goto out;
4068 	}
4069 
4070 	if (ztest_opts.zo_mmp_test) {
4071 		spa_config_exit(spa, SCL_ALL, FTAG);
4072 		goto out;
4073 	}
4074 
4075 	if (ztest_device_removal_active) {
4076 		spa_config_exit(spa, SCL_ALL, FTAG);
4077 		goto out;
4078 	}
4079 
4080 	pvd = vdev_lookup_top(spa, 0);
4081 
4082 	ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4083 
4084 	/*
4085 	 * Get size of a child of the raidz group,
4086 	 * make sure device is a bit bigger
4087 	 */
4088 	newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4089 	newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4090 
4091 	/*
4092 	 * Get next attached leaf id
4093 	 */
4094 	raidz_children = ztest_get_raidz_children(spa);
4095 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4096 	zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4097 
4098 	if (spa->spa_raidz_expand)
4099 		expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4100 
4101 	spa_config_exit(spa, SCL_ALL, FTAG);
4102 
4103 	/*
4104 	 * Path to vdev to be attached
4105 	 */
4106 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4107 	    ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4108 
4109 	/*
4110 	 * Build the nvlist describing newpath.
4111 	 */
4112 	root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4113 	    0, 0, 1);
4114 
4115 	/*
4116 	 * 50% of the time, set raidz_expand_pause_point to cause
4117 	 * raidz_reflow_scratch_sync() to pause at a certain point and
4118 	 * then kill the test after 10 seconds so raidz_scratch_verify()
4119 	 * can confirm consistency when the pool is imported.
4120 	 */
4121 	if (ztest_random(2) == 0 && expected_error == 0) {
4122 		raidz_expand_pause_point =
4123 		    ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4124 		scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4125 		    ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4126 	}
4127 
4128 	error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4129 
4130 	nvlist_free(root);
4131 
4132 	if (error == EOVERFLOW || error == ENXIO ||
4133 	    error == ZFS_ERR_CHECKPOINT_EXISTS ||
4134 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
4135 		expected_error = error;
4136 
4137 	if (error != 0 && error != expected_error) {
4138 		fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4139 		    newpath, newsize, error, expected_error);
4140 	}
4141 
4142 	if (raidz_expand_pause_point) {
4143 		if (error != 0) {
4144 			/*
4145 			 * Do not verify scratch object in case of error
4146 			 * returned by vdev attaching.
4147 			 */
4148 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4149 		}
4150 
4151 		VERIFY0(thread_join(scratch_thread));
4152 	}
4153 out:
4154 	mutex_exit(&ztest_vdev_lock);
4155 
4156 	umem_free(newpath, MAXPATHLEN);
4157 }
4158 
4159 void
4160 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4161 {
4162 	(void) zd, (void) id;
4163 	spa_t *spa = ztest_spa;
4164 	vdev_t *vd;
4165 	uint64_t guid;
4166 	int error;
4167 
4168 	mutex_enter(&ztest_vdev_lock);
4169 
4170 	if (ztest_device_removal_active) {
4171 		mutex_exit(&ztest_vdev_lock);
4172 		return;
4173 	}
4174 
4175 	/*
4176 	 * Remove a random top-level vdev and wait for removal to finish.
4177 	 */
4178 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4179 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4180 	guid = vd->vdev_guid;
4181 	spa_config_exit(spa, SCL_VDEV, FTAG);
4182 
4183 	error = spa_vdev_remove(spa, guid, B_FALSE);
4184 	if (error == 0) {
4185 		ztest_device_removal_active = B_TRUE;
4186 		mutex_exit(&ztest_vdev_lock);
4187 
4188 		/*
4189 		 * spa->spa_vdev_removal is created in a sync task that
4190 		 * is initiated via dsl_sync_task_nowait(). Since the
4191 		 * task may not run before spa_vdev_remove() returns, we
4192 		 * must wait at least 1 txg to ensure that the removal
4193 		 * struct has been created.
4194 		 */
4195 		txg_wait_synced(spa_get_dsl(spa), 0);
4196 
4197 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4198 			txg_wait_synced(spa_get_dsl(spa), 0);
4199 	} else {
4200 		mutex_exit(&ztest_vdev_lock);
4201 		return;
4202 	}
4203 
4204 	/*
4205 	 * The pool needs to be scrubbed after completing device removal.
4206 	 * Failure to do so may result in checksum errors due to the
4207 	 * strategy employed by ztest_fault_inject() when selecting which
4208 	 * offset are redundant and can be damaged.
4209 	 */
4210 	error = spa_scan(spa, POOL_SCAN_SCRUB);
4211 	if (error == 0) {
4212 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4213 			txg_wait_synced(spa_get_dsl(spa), 0);
4214 	}
4215 
4216 	mutex_enter(&ztest_vdev_lock);
4217 	ztest_device_removal_active = B_FALSE;
4218 	mutex_exit(&ztest_vdev_lock);
4219 }
4220 
4221 /*
4222  * Callback function which expands the physical size of the vdev.
4223  */
4224 static vdev_t *
4225 grow_vdev(vdev_t *vd, void *arg)
4226 {
4227 	spa_t *spa __maybe_unused = vd->vdev_spa;
4228 	size_t *newsize = arg;
4229 	size_t fsize;
4230 	int fd;
4231 
4232 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4233 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4234 
4235 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4236 		return (vd);
4237 
4238 	fsize = lseek(fd, 0, SEEK_END);
4239 	VERIFY0(ftruncate(fd, *newsize));
4240 
4241 	if (ztest_opts.zo_verbose >= 6) {
4242 		(void) printf("%s grew from %lu to %lu bytes\n",
4243 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4244 	}
4245 	(void) close(fd);
4246 	return (NULL);
4247 }
4248 
4249 /*
4250  * Callback function which expands a given vdev by calling vdev_online().
4251  */
4252 static vdev_t *
4253 online_vdev(vdev_t *vd, void *arg)
4254 {
4255 	(void) arg;
4256 	spa_t *spa = vd->vdev_spa;
4257 	vdev_t *tvd = vd->vdev_top;
4258 	uint64_t guid = vd->vdev_guid;
4259 	uint64_t generation = spa->spa_config_generation + 1;
4260 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4261 	int error;
4262 
4263 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4264 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4265 
4266 	/* Calling vdev_online will initialize the new metaslabs */
4267 	spa_config_exit(spa, SCL_STATE, spa);
4268 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4269 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4270 
4271 	/*
4272 	 * If vdev_online returned an error or the underlying vdev_open
4273 	 * failed then we abort the expand. The only way to know that
4274 	 * vdev_open fails is by checking the returned newstate.
4275 	 */
4276 	if (error || newstate != VDEV_STATE_HEALTHY) {
4277 		if (ztest_opts.zo_verbose >= 5) {
4278 			(void) printf("Unable to expand vdev, state %u, "
4279 			    "error %d\n", newstate, error);
4280 		}
4281 		return (vd);
4282 	}
4283 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4284 
4285 	/*
4286 	 * Since we dropped the lock we need to ensure that we're
4287 	 * still talking to the original vdev. It's possible this
4288 	 * vdev may have been detached/replaced while we were
4289 	 * trying to online it.
4290 	 */
4291 	if (generation != spa->spa_config_generation) {
4292 		if (ztest_opts.zo_verbose >= 5) {
4293 			(void) printf("vdev configuration has changed, "
4294 			    "guid %"PRIu64", state %"PRIu64", "
4295 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
4296 			    guid,
4297 			    tvd->vdev_state,
4298 			    generation,
4299 			    spa->spa_config_generation);
4300 		}
4301 		return (vd);
4302 	}
4303 	return (NULL);
4304 }
4305 
4306 /*
4307  * Traverse the vdev tree calling the supplied function.
4308  * We continue to walk the tree until we either have walked all
4309  * children or we receive a non-NULL return from the callback.
4310  * If a NULL callback is passed, then we just return back the first
4311  * leaf vdev we encounter.
4312  */
4313 static vdev_t *
4314 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4315 {
4316 	uint_t c;
4317 
4318 	if (vd->vdev_ops->vdev_op_leaf) {
4319 		if (func == NULL)
4320 			return (vd);
4321 		else
4322 			return (func(vd, arg));
4323 	}
4324 
4325 	for (c = 0; c < vd->vdev_children; c++) {
4326 		vdev_t *cvd = vd->vdev_child[c];
4327 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4328 			return (cvd);
4329 	}
4330 	return (NULL);
4331 }
4332 
4333 /*
4334  * Verify that dynamic LUN growth works as expected.
4335  */
4336 void
4337 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4338 {
4339 	(void) zd, (void) id;
4340 	spa_t *spa = ztest_spa;
4341 	vdev_t *vd, *tvd;
4342 	metaslab_class_t *mc;
4343 	metaslab_group_t *mg;
4344 	size_t psize, newsize;
4345 	uint64_t top;
4346 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4347 
4348 	mutex_enter(&ztest_checkpoint_lock);
4349 	mutex_enter(&ztest_vdev_lock);
4350 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4351 
4352 	/*
4353 	 * If there is a vdev removal in progress, it could complete while
4354 	 * we are running, in which case we would not be able to verify
4355 	 * that the metaslab_class space increased (because it decreases
4356 	 * when the device removal completes).
4357 	 */
4358 	if (ztest_device_removal_active) {
4359 		spa_config_exit(spa, SCL_STATE, spa);
4360 		mutex_exit(&ztest_vdev_lock);
4361 		mutex_exit(&ztest_checkpoint_lock);
4362 		return;
4363 	}
4364 
4365 	/*
4366 	 * If we are under raidz expansion, the test can failed because the
4367 	 * metaslabs count will not increase immediately after the vdev is
4368 	 * expanded. It will happen only after raidz expansion completion.
4369 	 */
4370 	if (spa->spa_raidz_expand) {
4371 		spa_config_exit(spa, SCL_STATE, spa);
4372 		mutex_exit(&ztest_vdev_lock);
4373 		mutex_exit(&ztest_checkpoint_lock);
4374 		return;
4375 	}
4376 
4377 	top = ztest_random_vdev_top(spa, B_TRUE);
4378 
4379 	tvd = spa->spa_root_vdev->vdev_child[top];
4380 	mg = tvd->vdev_mg;
4381 	mc = mg->mg_class;
4382 	old_ms_count = tvd->vdev_ms_count;
4383 	old_class_space = metaslab_class_get_space(mc);
4384 
4385 	/*
4386 	 * Determine the size of the first leaf vdev associated with
4387 	 * our top-level device.
4388 	 */
4389 	vd = vdev_walk_tree(tvd, NULL, NULL);
4390 	ASSERT3P(vd, !=, NULL);
4391 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4392 
4393 	psize = vd->vdev_psize;
4394 
4395 	/*
4396 	 * We only try to expand the vdev if it's healthy, less than 4x its
4397 	 * original size, and it has a valid psize.
4398 	 */
4399 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4400 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4401 		spa_config_exit(spa, SCL_STATE, spa);
4402 		mutex_exit(&ztest_vdev_lock);
4403 		mutex_exit(&ztest_checkpoint_lock);
4404 		return;
4405 	}
4406 	ASSERT3U(psize, >, 0);
4407 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4408 	ASSERT3U(newsize, >, psize);
4409 
4410 	if (ztest_opts.zo_verbose >= 6) {
4411 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4412 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4413 	}
4414 
4415 	/*
4416 	 * Growing the vdev is a two step process:
4417 	 *	1). expand the physical size (i.e. relabel)
4418 	 *	2). online the vdev to create the new metaslabs
4419 	 */
4420 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4421 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4422 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4423 		if (ztest_opts.zo_verbose >= 5) {
4424 			(void) printf("Could not expand LUN because "
4425 			    "the vdev configuration changed.\n");
4426 		}
4427 		spa_config_exit(spa, SCL_STATE, spa);
4428 		mutex_exit(&ztest_vdev_lock);
4429 		mutex_exit(&ztest_checkpoint_lock);
4430 		return;
4431 	}
4432 
4433 	spa_config_exit(spa, SCL_STATE, spa);
4434 
4435 	/*
4436 	 * Expanding the LUN will update the config asynchronously,
4437 	 * thus we must wait for the async thread to complete any
4438 	 * pending tasks before proceeding.
4439 	 */
4440 	for (;;) {
4441 		boolean_t done;
4442 		mutex_enter(&spa->spa_async_lock);
4443 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4444 		mutex_exit(&spa->spa_async_lock);
4445 		if (done)
4446 			break;
4447 		txg_wait_synced(spa_get_dsl(spa), 0);
4448 		(void) poll(NULL, 0, 100);
4449 	}
4450 
4451 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4452 
4453 	tvd = spa->spa_root_vdev->vdev_child[top];
4454 	new_ms_count = tvd->vdev_ms_count;
4455 	new_class_space = metaslab_class_get_space(mc);
4456 
4457 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4458 		if (ztest_opts.zo_verbose >= 5) {
4459 			(void) printf("Could not verify LUN expansion due to "
4460 			    "intervening vdev offline or remove.\n");
4461 		}
4462 		spa_config_exit(spa, SCL_STATE, spa);
4463 		mutex_exit(&ztest_vdev_lock);
4464 		mutex_exit(&ztest_checkpoint_lock);
4465 		return;
4466 	}
4467 
4468 	/*
4469 	 * Make sure we were able to grow the vdev.
4470 	 */
4471 	if (new_ms_count <= old_ms_count) {
4472 		fatal(B_FALSE,
4473 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4474 		    old_ms_count, new_ms_count);
4475 	}
4476 
4477 	/*
4478 	 * Make sure we were able to grow the pool.
4479 	 */
4480 	if (new_class_space <= old_class_space) {
4481 		fatal(B_FALSE,
4482 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4483 		    old_class_space, new_class_space);
4484 	}
4485 
4486 	if (ztest_opts.zo_verbose >= 5) {
4487 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4488 
4489 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4490 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4491 		(void) printf("%s grew from %s to %s\n",
4492 		    spa->spa_name, oldnumbuf, newnumbuf);
4493 	}
4494 
4495 	spa_config_exit(spa, SCL_STATE, spa);
4496 	mutex_exit(&ztest_vdev_lock);
4497 	mutex_exit(&ztest_checkpoint_lock);
4498 }
4499 
4500 /*
4501  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4502  */
4503 static void
4504 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4505 {
4506 	(void) arg, (void) cr;
4507 
4508 	/*
4509 	 * Create the objects common to all ztest datasets.
4510 	 */
4511 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4512 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4513 }
4514 
4515 static int
4516 ztest_dataset_create(char *dsname)
4517 {
4518 	int err;
4519 	uint64_t rand;
4520 	dsl_crypto_params_t *dcp = NULL;
4521 
4522 	/*
4523 	 * 50% of the time, we create encrypted datasets
4524 	 * using a random cipher suite and a hard-coded
4525 	 * wrapping key.
4526 	 */
4527 	rand = ztest_random(2);
4528 	if (rand != 0) {
4529 		nvlist_t *crypto_args = fnvlist_alloc();
4530 		nvlist_t *props = fnvlist_alloc();
4531 
4532 		/* slight bias towards the default cipher suite */
4533 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4534 		if (rand < ZIO_CRYPT_AES_128_CCM)
4535 			rand = ZIO_CRYPT_ON;
4536 
4537 		fnvlist_add_uint64(props,
4538 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4539 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4540 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4541 
4542 		/*
4543 		 * These parameters aren't really used by the kernel. They
4544 		 * are simply stored so that userspace knows how to load
4545 		 * the wrapping key.
4546 		 */
4547 		fnvlist_add_uint64(props,
4548 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4549 		fnvlist_add_string(props,
4550 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4551 		fnvlist_add_uint64(props,
4552 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4553 		fnvlist_add_uint64(props,
4554 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4555 
4556 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4557 		    crypto_args, &dcp));
4558 
4559 		/*
4560 		 * Cycle through all available encryption implementations
4561 		 * to verify interoperability.
4562 		 */
4563 		VERIFY0(gcm_impl_set("cycle"));
4564 		VERIFY0(aes_impl_set("cycle"));
4565 
4566 		fnvlist_free(crypto_args);
4567 		fnvlist_free(props);
4568 	}
4569 
4570 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4571 	    ztest_objset_create_cb, NULL);
4572 	dsl_crypto_params_free(dcp, !!err);
4573 
4574 	rand = ztest_random(100);
4575 	if (err || rand < 80)
4576 		return (err);
4577 
4578 	if (ztest_opts.zo_verbose >= 5)
4579 		(void) printf("Setting dataset %s to sync always\n", dsname);
4580 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4581 	    ZFS_SYNC_ALWAYS, B_FALSE));
4582 }
4583 
4584 static int
4585 ztest_objset_destroy_cb(const char *name, void *arg)
4586 {
4587 	(void) arg;
4588 	objset_t *os;
4589 	dmu_object_info_t doi;
4590 	int error;
4591 
4592 	/*
4593 	 * Verify that the dataset contains a directory object.
4594 	 */
4595 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4596 	    B_TRUE, FTAG, &os));
4597 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4598 	if (error != ENOENT) {
4599 		/* We could have crashed in the middle of destroying it */
4600 		ASSERT0(error);
4601 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4602 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4603 	}
4604 	dmu_objset_disown(os, B_TRUE, FTAG);
4605 
4606 	/*
4607 	 * Destroy the dataset.
4608 	 */
4609 	if (strchr(name, '@') != NULL) {
4610 		error = dsl_destroy_snapshot(name, B_TRUE);
4611 		if (error != ECHRNG) {
4612 			/*
4613 			 * The program was executed, but encountered a runtime
4614 			 * error, such as insufficient slop, or a hold on the
4615 			 * dataset.
4616 			 */
4617 			ASSERT0(error);
4618 		}
4619 	} else {
4620 		error = dsl_destroy_head(name);
4621 		if (error == ENOSPC) {
4622 			/* There could be checkpoint or insufficient slop */
4623 			ztest_record_enospc(FTAG);
4624 		} else if (error != EBUSY) {
4625 			/* There could be a hold on this dataset */
4626 			ASSERT0(error);
4627 		}
4628 	}
4629 	return (0);
4630 }
4631 
4632 static boolean_t
4633 ztest_snapshot_create(char *osname, uint64_t id)
4634 {
4635 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4636 	int error;
4637 
4638 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4639 
4640 	error = dmu_objset_snapshot_one(osname, snapname);
4641 	if (error == ENOSPC) {
4642 		ztest_record_enospc(FTAG);
4643 		return (B_FALSE);
4644 	}
4645 	if (error != 0 && error != EEXIST && error != ECHRNG) {
4646 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4647 		    snapname, error);
4648 	}
4649 	return (B_TRUE);
4650 }
4651 
4652 static boolean_t
4653 ztest_snapshot_destroy(char *osname, uint64_t id)
4654 {
4655 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4656 	int error;
4657 
4658 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4659 	    osname, id);
4660 
4661 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4662 	if (error != 0 && error != ENOENT && error != ECHRNG)
4663 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4664 		    snapname, error);
4665 	return (B_TRUE);
4666 }
4667 
4668 void
4669 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4670 {
4671 	(void) zd;
4672 	ztest_ds_t *zdtmp;
4673 	int iters;
4674 	int error;
4675 	objset_t *os, *os2;
4676 	char name[ZFS_MAX_DATASET_NAME_LEN];
4677 	zilog_t *zilog;
4678 	int i;
4679 
4680 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4681 
4682 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4683 
4684 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4685 	    ztest_opts.zo_pool, id);
4686 
4687 	/*
4688 	 * If this dataset exists from a previous run, process its replay log
4689 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4690 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4691 	 */
4692 	if (ztest_random(2) == 0 &&
4693 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4694 	    B_TRUE, FTAG, &os) == 0) {
4695 		ztest_zd_init(zdtmp, NULL, os);
4696 		zil_replay(os, zdtmp, ztest_replay_vector);
4697 		ztest_zd_fini(zdtmp);
4698 		dmu_objset_disown(os, B_TRUE, FTAG);
4699 	}
4700 
4701 	/*
4702 	 * There may be an old instance of the dataset we're about to
4703 	 * create lying around from a previous run.  If so, destroy it
4704 	 * and all of its snapshots.
4705 	 */
4706 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4707 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4708 
4709 	/*
4710 	 * Verify that the destroyed dataset is no longer in the namespace.
4711 	 * It may still be present if the destroy above fails with ENOSPC.
4712 	 */
4713 	error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4714 	    FTAG, &os);
4715 	if (error == 0) {
4716 		dmu_objset_disown(os, B_TRUE, FTAG);
4717 		ztest_record_enospc(FTAG);
4718 		goto out;
4719 	}
4720 	VERIFY3U(ENOENT, ==, error);
4721 
4722 	/*
4723 	 * Verify that we can create a new dataset.
4724 	 */
4725 	error = ztest_dataset_create(name);
4726 	if (error) {
4727 		if (error == ENOSPC) {
4728 			ztest_record_enospc(FTAG);
4729 			goto out;
4730 		}
4731 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4732 	}
4733 
4734 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4735 	    FTAG, &os));
4736 
4737 	ztest_zd_init(zdtmp, NULL, os);
4738 
4739 	/*
4740 	 * Open the intent log for it.
4741 	 */
4742 	zilog = zil_open(os, ztest_get_data, NULL);
4743 
4744 	/*
4745 	 * Put some objects in there, do a little I/O to them,
4746 	 * and randomly take a couple of snapshots along the way.
4747 	 */
4748 	iters = ztest_random(5);
4749 	for (i = 0; i < iters; i++) {
4750 		ztest_dmu_object_alloc_free(zdtmp, id);
4751 		if (ztest_random(iters) == 0)
4752 			(void) ztest_snapshot_create(name, i);
4753 	}
4754 
4755 	/*
4756 	 * Verify that we cannot create an existing dataset.
4757 	 */
4758 	VERIFY3U(EEXIST, ==,
4759 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4760 
4761 	/*
4762 	 * Verify that we can hold an objset that is also owned.
4763 	 */
4764 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4765 	dmu_objset_rele(os2, FTAG);
4766 
4767 	/*
4768 	 * Verify that we cannot own an objset that is already owned.
4769 	 */
4770 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4771 	    B_FALSE, B_TRUE, FTAG, &os2));
4772 
4773 	zil_close(zilog);
4774 	dmu_objset_disown(os, B_TRUE, FTAG);
4775 	ztest_zd_fini(zdtmp);
4776 out:
4777 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4778 
4779 	umem_free(zdtmp, sizeof (ztest_ds_t));
4780 }
4781 
4782 /*
4783  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4784  */
4785 void
4786 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4787 {
4788 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4789 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4790 	(void) ztest_snapshot_create(zd->zd_name, id);
4791 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4792 }
4793 
4794 /*
4795  * Cleanup non-standard snapshots and clones.
4796  */
4797 static void
4798 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4799 {
4800 	char *snap1name;
4801 	char *clone1name;
4802 	char *snap2name;
4803 	char *clone2name;
4804 	char *snap3name;
4805 	int error;
4806 
4807 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4808 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4809 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4810 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4811 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4812 
4813 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4814 	    osname, id);
4815 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4816 	    osname, id);
4817 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4818 	    clone1name, id);
4819 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4820 	    osname, id);
4821 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4822 	    clone1name, id);
4823 
4824 	error = dsl_destroy_head(clone2name);
4825 	if (error && error != ENOENT)
4826 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4827 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4828 	if (error && error != ENOENT)
4829 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4830 		    snap3name, error);
4831 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4832 	if (error && error != ENOENT)
4833 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4834 		    snap2name, error);
4835 	error = dsl_destroy_head(clone1name);
4836 	if (error && error != ENOENT)
4837 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4838 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4839 	if (error && error != ENOENT)
4840 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4841 		    snap1name, error);
4842 
4843 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4844 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4845 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4846 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4847 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4848 }
4849 
4850 /*
4851  * Verify dsl_dataset_promote handles EBUSY
4852  */
4853 void
4854 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4855 {
4856 	objset_t *os;
4857 	char *snap1name;
4858 	char *clone1name;
4859 	char *snap2name;
4860 	char *clone2name;
4861 	char *snap3name;
4862 	char *osname = zd->zd_name;
4863 	int error;
4864 
4865 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4866 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4867 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4868 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4869 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4870 
4871 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4872 
4873 	ztest_dsl_dataset_cleanup(osname, id);
4874 
4875 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4876 	    osname, id);
4877 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4878 	    osname, id);
4879 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4880 	    clone1name, id);
4881 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4882 	    osname, id);
4883 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4884 	    clone1name, id);
4885 
4886 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4887 	if (error && error != EEXIST) {
4888 		if (error == ENOSPC) {
4889 			ztest_record_enospc(FTAG);
4890 			goto out;
4891 		}
4892 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4893 	}
4894 
4895 	error = dmu_objset_clone(clone1name, snap1name);
4896 	if (error) {
4897 		if (error == ENOSPC) {
4898 			ztest_record_enospc(FTAG);
4899 			goto out;
4900 		}
4901 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4902 	}
4903 
4904 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4905 	if (error && error != EEXIST) {
4906 		if (error == ENOSPC) {
4907 			ztest_record_enospc(FTAG);
4908 			goto out;
4909 		}
4910 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4911 	}
4912 
4913 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4914 	if (error && error != EEXIST) {
4915 		if (error == ENOSPC) {
4916 			ztest_record_enospc(FTAG);
4917 			goto out;
4918 		}
4919 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4920 	}
4921 
4922 	error = dmu_objset_clone(clone2name, snap3name);
4923 	if (error) {
4924 		if (error == ENOSPC) {
4925 			ztest_record_enospc(FTAG);
4926 			goto out;
4927 		}
4928 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4929 	}
4930 
4931 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4932 	    FTAG, &os);
4933 	if (error)
4934 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4935 	error = dsl_dataset_promote(clone2name, NULL);
4936 	if (error == ENOSPC) {
4937 		dmu_objset_disown(os, B_TRUE, FTAG);
4938 		ztest_record_enospc(FTAG);
4939 		goto out;
4940 	}
4941 	if (error != EBUSY)
4942 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4943 		    clone2name, error);
4944 	dmu_objset_disown(os, B_TRUE, FTAG);
4945 
4946 out:
4947 	ztest_dsl_dataset_cleanup(osname, id);
4948 
4949 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4950 
4951 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4952 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4953 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4954 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4955 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4956 }
4957 
4958 #undef OD_ARRAY_SIZE
4959 #define	OD_ARRAY_SIZE	4
4960 
4961 /*
4962  * Verify that dmu_object_{alloc,free} work as expected.
4963  */
4964 void
4965 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4966 {
4967 	ztest_od_t *od;
4968 	int batchsize;
4969 	int size;
4970 	int b;
4971 
4972 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4973 	od = umem_alloc(size, UMEM_NOFAIL);
4974 	batchsize = OD_ARRAY_SIZE;
4975 
4976 	for (b = 0; b < batchsize; b++)
4977 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4978 		    0, 0, 0);
4979 
4980 	/*
4981 	 * Destroy the previous batch of objects, create a new batch,
4982 	 * and do some I/O on the new objects.
4983 	 */
4984 	if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
4985 		zd->zd_od = NULL;
4986 		umem_free(od, size);
4987 		return;
4988 	}
4989 
4990 	while (ztest_random(4 * batchsize) != 0)
4991 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4992 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4993 
4994 	umem_free(od, size);
4995 }
4996 
4997 /*
4998  * Rewind the global allocator to verify object allocation backfilling.
4999  */
5000 void
5001 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5002 {
5003 	(void) id;
5004 	objset_t *os = zd->zd_os;
5005 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5006 	uint64_t object;
5007 
5008 	/*
5009 	 * Rewind the global allocator randomly back to a lower object number
5010 	 * to force backfilling and reclamation of recently freed dnodes.
5011 	 */
5012 	mutex_enter(&os->os_obj_lock);
5013 	object = ztest_random(os->os_obj_next_chunk);
5014 	os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5015 	    uint64_t);
5016 	mutex_exit(&os->os_obj_lock);
5017 }
5018 
5019 #undef OD_ARRAY_SIZE
5020 #define	OD_ARRAY_SIZE	2
5021 
5022 /*
5023  * Verify that dmu_{read,write} work as expected.
5024  */
5025 void
5026 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5027 {
5028 	int size;
5029 	ztest_od_t *od;
5030 
5031 	objset_t *os = zd->zd_os;
5032 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5033 	od = umem_alloc(size, UMEM_NOFAIL);
5034 	dmu_tx_t *tx;
5035 	int freeit, error;
5036 	uint64_t i, n, s, txg;
5037 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5038 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5039 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5040 	uint64_t regions = 997;
5041 	uint64_t stride = 123456789ULL;
5042 	uint64_t width = 40;
5043 	int free_percent = 5;
5044 
5045 	/*
5046 	 * This test uses two objects, packobj and bigobj, that are always
5047 	 * updated together (i.e. in the same tx) so that their contents are
5048 	 * in sync and can be compared.  Their contents relate to each other
5049 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5050 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5051 	 * for any index n, there are three bufwads that should be identical:
5052 	 *
5053 	 *	packobj, at offset n * sizeof (bufwad_t)
5054 	 *	bigobj, at the head of the nth chunk
5055 	 *	bigobj, at the tail of the nth chunk
5056 	 *
5057 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
5058 	 * and it doesn't have any relation to the object blocksize.
5059 	 * The only requirement is that it can hold at least two bufwads.
5060 	 *
5061 	 * Normally, we write the bufwad to each of these locations.
5062 	 * However, free_percent of the time we instead write zeroes to
5063 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
5064 	 * bigobj to packobj, we can verify that the DMU is correctly
5065 	 * tracking which parts of an object are allocated and free,
5066 	 * and that the contents of the allocated blocks are correct.
5067 	 */
5068 
5069 	/*
5070 	 * Read the directory info.  If it's the first time, set things up.
5071 	 */
5072 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5073 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5074 	    chunksize);
5075 
5076 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5077 		umem_free(od, size);
5078 		return;
5079 	}
5080 
5081 	bigobj = od[0].od_object;
5082 	packobj = od[1].od_object;
5083 	chunksize = od[0].od_gen;
5084 	ASSERT3U(chunksize, ==, od[1].od_gen);
5085 
5086 	/*
5087 	 * Prefetch a random chunk of the big object.
5088 	 * Our aim here is to get some async reads in flight
5089 	 * for blocks that we may free below; the DMU should
5090 	 * handle this race correctly.
5091 	 */
5092 	n = ztest_random(regions) * stride + ztest_random(width);
5093 	s = 1 + ztest_random(2 * width - 1);
5094 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5095 	    ZIO_PRIORITY_SYNC_READ);
5096 
5097 	/*
5098 	 * Pick a random index and compute the offsets into packobj and bigobj.
5099 	 */
5100 	n = ztest_random(regions) * stride + ztest_random(width);
5101 	s = 1 + ztest_random(width - 1);
5102 
5103 	packoff = n * sizeof (bufwad_t);
5104 	packsize = s * sizeof (bufwad_t);
5105 
5106 	bigoff = n * chunksize;
5107 	bigsize = s * chunksize;
5108 
5109 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5110 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5111 
5112 	/*
5113 	 * free_percent of the time, free a range of bigobj rather than
5114 	 * overwriting it.
5115 	 */
5116 	freeit = (ztest_random(100) < free_percent);
5117 
5118 	/*
5119 	 * Read the current contents of our objects.
5120 	 */
5121 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
5122 	    DMU_READ_PREFETCH);
5123 	ASSERT0(error);
5124 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5125 	    DMU_READ_PREFETCH);
5126 	ASSERT0(error);
5127 
5128 	/*
5129 	 * Get a tx for the mods to both packobj and bigobj.
5130 	 */
5131 	tx = dmu_tx_create(os);
5132 
5133 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
5134 
5135 	if (freeit)
5136 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5137 	else
5138 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5139 
5140 	/* This accounts for setting the checksum/compression. */
5141 	dmu_tx_hold_bonus(tx, bigobj);
5142 
5143 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5144 	if (txg == 0) {
5145 		umem_free(packbuf, packsize);
5146 		umem_free(bigbuf, bigsize);
5147 		umem_free(od, size);
5148 		return;
5149 	}
5150 
5151 	enum zio_checksum cksum;
5152 	do {
5153 		cksum = (enum zio_checksum)
5154 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5155 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5156 	dmu_object_set_checksum(os, bigobj, cksum, tx);
5157 
5158 	enum zio_compress comp;
5159 	do {
5160 		comp = (enum zio_compress)
5161 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5162 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5163 	dmu_object_set_compress(os, bigobj, comp, tx);
5164 
5165 	/*
5166 	 * For each index from n to n + s, verify that the existing bufwad
5167 	 * in packobj matches the bufwads at the head and tail of the
5168 	 * corresponding chunk in bigobj.  Then update all three bufwads
5169 	 * with the new values we want to write out.
5170 	 */
5171 	for (i = 0; i < s; i++) {
5172 		/* LINTED */
5173 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5174 		/* LINTED */
5175 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5176 		/* LINTED */
5177 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5178 
5179 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5180 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5181 
5182 		if (pack->bw_txg > txg)
5183 			fatal(B_FALSE,
5184 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5185 			    pack->bw_txg, txg);
5186 
5187 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5188 			fatal(B_FALSE, "wrong index: "
5189 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5190 			    pack->bw_index, n, i);
5191 
5192 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5193 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5194 			    pack, bigH);
5195 
5196 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5197 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5198 			    pack, bigT);
5199 
5200 		if (freeit) {
5201 			memset(pack, 0, sizeof (bufwad_t));
5202 		} else {
5203 			pack->bw_index = n + i;
5204 			pack->bw_txg = txg;
5205 			pack->bw_data = 1 + ztest_random(-2ULL);
5206 		}
5207 		*bigH = *pack;
5208 		*bigT = *pack;
5209 	}
5210 
5211 	/*
5212 	 * We've verified all the old bufwads, and made new ones.
5213 	 * Now write them out.
5214 	 */
5215 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5216 
5217 	if (freeit) {
5218 		if (ztest_opts.zo_verbose >= 7) {
5219 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5220 			    " txg %"PRIx64"\n",
5221 			    bigoff, bigsize, txg);
5222 		}
5223 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5224 	} else {
5225 		if (ztest_opts.zo_verbose >= 7) {
5226 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5227 			    " txg %"PRIx64"\n",
5228 			    bigoff, bigsize, txg);
5229 		}
5230 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5231 	}
5232 
5233 	dmu_tx_commit(tx);
5234 
5235 	/*
5236 	 * Sanity check the stuff we just wrote.
5237 	 */
5238 	{
5239 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5240 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5241 
5242 		VERIFY0(dmu_read(os, packobj, packoff,
5243 		    packsize, packcheck, DMU_READ_PREFETCH));
5244 		VERIFY0(dmu_read(os, bigobj, bigoff,
5245 		    bigsize, bigcheck, DMU_READ_PREFETCH));
5246 
5247 		ASSERT0(memcmp(packbuf, packcheck, packsize));
5248 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5249 
5250 		umem_free(packcheck, packsize);
5251 		umem_free(bigcheck, bigsize);
5252 	}
5253 
5254 	umem_free(packbuf, packsize);
5255 	umem_free(bigbuf, bigsize);
5256 	umem_free(od, size);
5257 }
5258 
5259 static void
5260 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5261     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5262 {
5263 	uint64_t i;
5264 	bufwad_t *pack;
5265 	bufwad_t *bigH;
5266 	bufwad_t *bigT;
5267 
5268 	/*
5269 	 * For each index from n to n + s, verify that the existing bufwad
5270 	 * in packobj matches the bufwads at the head and tail of the
5271 	 * corresponding chunk in bigobj.  Then update all three bufwads
5272 	 * with the new values we want to write out.
5273 	 */
5274 	for (i = 0; i < s; i++) {
5275 		/* LINTED */
5276 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5277 		/* LINTED */
5278 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5279 		/* LINTED */
5280 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5281 
5282 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5283 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5284 
5285 		if (pack->bw_txg > txg)
5286 			fatal(B_FALSE,
5287 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5288 			    pack->bw_txg, txg);
5289 
5290 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5291 			fatal(B_FALSE, "wrong index: "
5292 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5293 			    pack->bw_index, n, i);
5294 
5295 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5296 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5297 			    pack, bigH);
5298 
5299 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5300 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5301 			    pack, bigT);
5302 
5303 		pack->bw_index = n + i;
5304 		pack->bw_txg = txg;
5305 		pack->bw_data = 1 + ztest_random(-2ULL);
5306 
5307 		*bigH = *pack;
5308 		*bigT = *pack;
5309 	}
5310 }
5311 
5312 #undef OD_ARRAY_SIZE
5313 #define	OD_ARRAY_SIZE	2
5314 
5315 void
5316 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5317 {
5318 	objset_t *os = zd->zd_os;
5319 	ztest_od_t *od;
5320 	dmu_tx_t *tx;
5321 	uint64_t i;
5322 	int error;
5323 	int size;
5324 	uint64_t n, s, txg;
5325 	bufwad_t *packbuf, *bigbuf;
5326 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5327 	uint64_t blocksize = ztest_random_blocksize();
5328 	uint64_t chunksize = blocksize;
5329 	uint64_t regions = 997;
5330 	uint64_t stride = 123456789ULL;
5331 	uint64_t width = 9;
5332 	dmu_buf_t *bonus_db;
5333 	arc_buf_t **bigbuf_arcbufs;
5334 	dmu_object_info_t doi;
5335 
5336 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5337 	od = umem_alloc(size, UMEM_NOFAIL);
5338 
5339 	/*
5340 	 * This test uses two objects, packobj and bigobj, that are always
5341 	 * updated together (i.e. in the same tx) so that their contents are
5342 	 * in sync and can be compared.  Their contents relate to each other
5343 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5344 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5345 	 * for any index n, there are three bufwads that should be identical:
5346 	 *
5347 	 *	packobj, at offset n * sizeof (bufwad_t)
5348 	 *	bigobj, at the head of the nth chunk
5349 	 *	bigobj, at the tail of the nth chunk
5350 	 *
5351 	 * The chunk size is set equal to bigobj block size so that
5352 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5353 	 */
5354 
5355 	/*
5356 	 * Read the directory info.  If it's the first time, set things up.
5357 	 */
5358 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5359 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5360 	    chunksize);
5361 
5362 
5363 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5364 		umem_free(od, size);
5365 		return;
5366 	}
5367 
5368 	bigobj = od[0].od_object;
5369 	packobj = od[1].od_object;
5370 	blocksize = od[0].od_blocksize;
5371 	chunksize = blocksize;
5372 	ASSERT3U(chunksize, ==, od[1].od_gen);
5373 
5374 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5375 	VERIFY(ISP2(doi.doi_data_block_size));
5376 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5377 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5378 
5379 	/*
5380 	 * Pick a random index and compute the offsets into packobj and bigobj.
5381 	 */
5382 	n = ztest_random(regions) * stride + ztest_random(width);
5383 	s = 1 + ztest_random(width - 1);
5384 
5385 	packoff = n * sizeof (bufwad_t);
5386 	packsize = s * sizeof (bufwad_t);
5387 
5388 	bigoff = n * chunksize;
5389 	bigsize = s * chunksize;
5390 
5391 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5392 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5393 
5394 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5395 
5396 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5397 
5398 	/*
5399 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5400 	 * Iteration 1 test zcopy to already referenced dbufs.
5401 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5402 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5403 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5404 	 * Iteration 5 test zcopy when it can't be done.
5405 	 * Iteration 6 one more zcopy write.
5406 	 */
5407 	for (i = 0; i < 7; i++) {
5408 		uint64_t j;
5409 		uint64_t off;
5410 
5411 		/*
5412 		 * In iteration 5 (i == 5) use arcbufs
5413 		 * that don't match bigobj blksz to test
5414 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5415 		 * assign an arcbuf to a dbuf.
5416 		 */
5417 		for (j = 0; j < s; j++) {
5418 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5419 				bigbuf_arcbufs[j] =
5420 				    dmu_request_arcbuf(bonus_db, chunksize);
5421 			} else {
5422 				bigbuf_arcbufs[2 * j] =
5423 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5424 				bigbuf_arcbufs[2 * j + 1] =
5425 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5426 			}
5427 		}
5428 
5429 		/*
5430 		 * Get a tx for the mods to both packobj and bigobj.
5431 		 */
5432 		tx = dmu_tx_create(os);
5433 
5434 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5435 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5436 
5437 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5438 		if (txg == 0) {
5439 			umem_free(packbuf, packsize);
5440 			umem_free(bigbuf, bigsize);
5441 			for (j = 0; j < s; j++) {
5442 				if (i != 5 ||
5443 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5444 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5445 				} else {
5446 					dmu_return_arcbuf(
5447 					    bigbuf_arcbufs[2 * j]);
5448 					dmu_return_arcbuf(
5449 					    bigbuf_arcbufs[2 * j + 1]);
5450 				}
5451 			}
5452 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5453 			umem_free(od, size);
5454 			dmu_buf_rele(bonus_db, FTAG);
5455 			return;
5456 		}
5457 
5458 		/*
5459 		 * 50% of the time don't read objects in the 1st iteration to
5460 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5461 		 * no existing dbufs for the specified offsets.
5462 		 */
5463 		if (i != 0 || ztest_random(2) != 0) {
5464 			error = dmu_read(os, packobj, packoff,
5465 			    packsize, packbuf, DMU_READ_PREFETCH);
5466 			ASSERT0(error);
5467 			error = dmu_read(os, bigobj, bigoff, bigsize,
5468 			    bigbuf, DMU_READ_PREFETCH);
5469 			ASSERT0(error);
5470 		}
5471 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5472 		    n, chunksize, txg);
5473 
5474 		/*
5475 		 * We've verified all the old bufwads, and made new ones.
5476 		 * Now write them out.
5477 		 */
5478 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5479 		if (ztest_opts.zo_verbose >= 7) {
5480 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5481 			    " txg %"PRIx64"\n",
5482 			    bigoff, bigsize, txg);
5483 		}
5484 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5485 			dmu_buf_t *dbt;
5486 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5487 				memcpy(bigbuf_arcbufs[j]->b_data,
5488 				    (caddr_t)bigbuf + (off - bigoff),
5489 				    chunksize);
5490 			} else {
5491 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5492 				    (caddr_t)bigbuf + (off - bigoff),
5493 				    chunksize / 2);
5494 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5495 				    (caddr_t)bigbuf + (off - bigoff) +
5496 				    chunksize / 2,
5497 				    chunksize / 2);
5498 			}
5499 
5500 			if (i == 1) {
5501 				VERIFY(dmu_buf_hold(os, bigobj, off,
5502 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5503 			}
5504 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5505 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5506 				    off, bigbuf_arcbufs[j], tx));
5507 			} else {
5508 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5509 				    off, bigbuf_arcbufs[2 * j], tx));
5510 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5511 				    off + chunksize / 2,
5512 				    bigbuf_arcbufs[2 * j + 1], tx));
5513 			}
5514 			if (i == 1) {
5515 				dmu_buf_rele(dbt, FTAG);
5516 			}
5517 		}
5518 		dmu_tx_commit(tx);
5519 
5520 		/*
5521 		 * Sanity check the stuff we just wrote.
5522 		 */
5523 		{
5524 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5525 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5526 
5527 			VERIFY0(dmu_read(os, packobj, packoff,
5528 			    packsize, packcheck, DMU_READ_PREFETCH));
5529 			VERIFY0(dmu_read(os, bigobj, bigoff,
5530 			    bigsize, bigcheck, DMU_READ_PREFETCH));
5531 
5532 			ASSERT0(memcmp(packbuf, packcheck, packsize));
5533 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5534 
5535 			umem_free(packcheck, packsize);
5536 			umem_free(bigcheck, bigsize);
5537 		}
5538 		if (i == 2) {
5539 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5540 		} else if (i == 3) {
5541 			txg_wait_synced(dmu_objset_pool(os), 0);
5542 		}
5543 	}
5544 
5545 	dmu_buf_rele(bonus_db, FTAG);
5546 	umem_free(packbuf, packsize);
5547 	umem_free(bigbuf, bigsize);
5548 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5549 	umem_free(od, size);
5550 }
5551 
5552 void
5553 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5554 {
5555 	(void) id;
5556 	ztest_od_t *od;
5557 
5558 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5559 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5560 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5561 
5562 	/*
5563 	 * Have multiple threads write to large offsets in an object
5564 	 * to verify that parallel writes to an object -- even to the
5565 	 * same blocks within the object -- doesn't cause any trouble.
5566 	 */
5567 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5568 
5569 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5570 		return;
5571 
5572 	while (ztest_random(10) != 0)
5573 		ztest_io(zd, od->od_object, offset);
5574 
5575 	umem_free(od, sizeof (ztest_od_t));
5576 }
5577 
5578 void
5579 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5580 {
5581 	ztest_od_t *od;
5582 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5583 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5584 	uint64_t count = ztest_random(20) + 1;
5585 	uint64_t blocksize = ztest_random_blocksize();
5586 	void *data;
5587 
5588 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5589 
5590 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5591 
5592 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5593 	    !ztest_random(2)) != 0) {
5594 		umem_free(od, sizeof (ztest_od_t));
5595 		return;
5596 	}
5597 
5598 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5599 		umem_free(od, sizeof (ztest_od_t));
5600 		return;
5601 	}
5602 
5603 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5604 
5605 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5606 
5607 	while (ztest_random(count) != 0) {
5608 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5609 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5610 		    data) != 0)
5611 			break;
5612 		while (ztest_random(4) != 0)
5613 			ztest_io(zd, od->od_object, randoff);
5614 	}
5615 
5616 	umem_free(data, blocksize);
5617 	umem_free(od, sizeof (ztest_od_t));
5618 }
5619 
5620 /*
5621  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5622  */
5623 #define	ZTEST_ZAP_MIN_INTS	1
5624 #define	ZTEST_ZAP_MAX_INTS	4
5625 #define	ZTEST_ZAP_MAX_PROPS	1000
5626 
5627 void
5628 ztest_zap(ztest_ds_t *zd, uint64_t id)
5629 {
5630 	objset_t *os = zd->zd_os;
5631 	ztest_od_t *od;
5632 	uint64_t object;
5633 	uint64_t txg, last_txg;
5634 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5635 	uint64_t zl_ints, zl_intsize, prop;
5636 	int i, ints;
5637 	dmu_tx_t *tx;
5638 	char propname[100], txgname[100];
5639 	int error;
5640 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5641 
5642 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5643 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5644 
5645 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5646 	    !ztest_random(2)) != 0)
5647 		goto out;
5648 
5649 	object = od->od_object;
5650 
5651 	/*
5652 	 * Generate a known hash collision, and verify that
5653 	 * we can lookup and remove both entries.
5654 	 */
5655 	tx = dmu_tx_create(os);
5656 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5657 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5658 	if (txg == 0)
5659 		goto out;
5660 	for (i = 0; i < 2; i++) {
5661 		value[i] = i;
5662 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5663 		    1, &value[i], tx));
5664 	}
5665 	for (i = 0; i < 2; i++) {
5666 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5667 		    sizeof (uint64_t), 1, &value[i], tx));
5668 		VERIFY0(
5669 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5670 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5671 		ASSERT3U(zl_ints, ==, 1);
5672 	}
5673 	for (i = 0; i < 2; i++) {
5674 		VERIFY0(zap_remove(os, object, hc[i], tx));
5675 	}
5676 	dmu_tx_commit(tx);
5677 
5678 	/*
5679 	 * Generate a bunch of random entries.
5680 	 */
5681 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5682 
5683 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5684 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5685 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5686 	memset(value, 0, sizeof (value));
5687 	last_txg = 0;
5688 
5689 	/*
5690 	 * If these zap entries already exist, validate their contents.
5691 	 */
5692 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5693 	if (error == 0) {
5694 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5695 		ASSERT3U(zl_ints, ==, 1);
5696 
5697 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5698 		    zl_ints, &last_txg));
5699 
5700 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5701 		    &zl_ints));
5702 
5703 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5704 		ASSERT3U(zl_ints, ==, ints);
5705 
5706 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5707 		    zl_ints, value));
5708 
5709 		for (i = 0; i < ints; i++) {
5710 			ASSERT3U(value[i], ==, last_txg + object + i);
5711 		}
5712 	} else {
5713 		ASSERT3U(error, ==, ENOENT);
5714 	}
5715 
5716 	/*
5717 	 * Atomically update two entries in our zap object.
5718 	 * The first is named txg_%llu, and contains the txg
5719 	 * in which the property was last updated.  The second
5720 	 * is named prop_%llu, and the nth element of its value
5721 	 * should be txg + object + n.
5722 	 */
5723 	tx = dmu_tx_create(os);
5724 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5725 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5726 	if (txg == 0)
5727 		goto out;
5728 
5729 	if (last_txg > txg)
5730 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5731 		    last_txg, txg);
5732 
5733 	for (i = 0; i < ints; i++)
5734 		value[i] = txg + object + i;
5735 
5736 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5737 	    1, &txg, tx));
5738 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5739 	    ints, value, tx));
5740 
5741 	dmu_tx_commit(tx);
5742 
5743 	/*
5744 	 * Remove a random pair of entries.
5745 	 */
5746 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5747 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5748 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5749 
5750 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5751 
5752 	if (error == ENOENT)
5753 		goto out;
5754 
5755 	ASSERT0(error);
5756 
5757 	tx = dmu_tx_create(os);
5758 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5759 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5760 	if (txg == 0)
5761 		goto out;
5762 	VERIFY0(zap_remove(os, object, txgname, tx));
5763 	VERIFY0(zap_remove(os, object, propname, tx));
5764 	dmu_tx_commit(tx);
5765 out:
5766 	umem_free(od, sizeof (ztest_od_t));
5767 }
5768 
5769 /*
5770  * Test case to test the upgrading of a microzap to fatzap.
5771  */
5772 void
5773 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5774 {
5775 	objset_t *os = zd->zd_os;
5776 	ztest_od_t *od;
5777 	uint64_t object, txg, value;
5778 
5779 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5780 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5781 
5782 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5783 	    !ztest_random(2)) != 0)
5784 		goto out;
5785 	object = od->od_object;
5786 
5787 	/*
5788 	 * Add entries to this ZAP and make sure it spills over
5789 	 * and gets upgraded to a fatzap. Also, since we are adding
5790 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5791 	 */
5792 	for (value = 0; value < 2050; value++) {
5793 		char name[ZFS_MAX_DATASET_NAME_LEN];
5794 		dmu_tx_t *tx;
5795 		int error;
5796 
5797 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5798 		    id, value);
5799 
5800 		tx = dmu_tx_create(os);
5801 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5802 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5803 		if (txg == 0)
5804 			goto out;
5805 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5806 		    &value, tx);
5807 		ASSERT(error == 0 || error == EEXIST);
5808 		dmu_tx_commit(tx);
5809 	}
5810 out:
5811 	umem_free(od, sizeof (ztest_od_t));
5812 }
5813 
5814 void
5815 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5816 {
5817 	(void) id;
5818 	objset_t *os = zd->zd_os;
5819 	ztest_od_t *od;
5820 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5821 	dmu_tx_t *tx;
5822 	int i, namelen, error;
5823 	int micro = ztest_random(2);
5824 	char name[20], string_value[20];
5825 	void *data;
5826 
5827 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5828 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5829 
5830 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5831 		umem_free(od, sizeof (ztest_od_t));
5832 		return;
5833 	}
5834 
5835 	object = od->od_object;
5836 
5837 	/*
5838 	 * Generate a random name of the form 'xxx.....' where each
5839 	 * x is a random printable character and the dots are dots.
5840 	 * There are 94 such characters, and the name length goes from
5841 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5842 	 */
5843 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5844 
5845 	for (i = 0; i < 3; i++)
5846 		name[i] = '!' + ztest_random('~' - '!' + 1);
5847 	for (; i < namelen - 1; i++)
5848 		name[i] = '.';
5849 	name[i] = '\0';
5850 
5851 	if ((namelen & 1) || micro) {
5852 		wsize = sizeof (txg);
5853 		wc = 1;
5854 		data = &txg;
5855 	} else {
5856 		wsize = 1;
5857 		wc = namelen;
5858 		data = string_value;
5859 	}
5860 
5861 	count = -1ULL;
5862 	VERIFY0(zap_count(os, object, &count));
5863 	ASSERT3S(count, !=, -1ULL);
5864 
5865 	/*
5866 	 * Select an operation: length, lookup, add, update, remove.
5867 	 */
5868 	i = ztest_random(5);
5869 
5870 	if (i >= 2) {
5871 		tx = dmu_tx_create(os);
5872 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5873 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5874 		if (txg == 0) {
5875 			umem_free(od, sizeof (ztest_od_t));
5876 			return;
5877 		}
5878 		memcpy(string_value, name, namelen);
5879 	} else {
5880 		tx = NULL;
5881 		txg = 0;
5882 		memset(string_value, 0, namelen);
5883 	}
5884 
5885 	switch (i) {
5886 
5887 	case 0:
5888 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5889 		if (error == 0) {
5890 			ASSERT3U(wsize, ==, zl_wsize);
5891 			ASSERT3U(wc, ==, zl_wc);
5892 		} else {
5893 			ASSERT3U(error, ==, ENOENT);
5894 		}
5895 		break;
5896 
5897 	case 1:
5898 		error = zap_lookup(os, object, name, wsize, wc, data);
5899 		if (error == 0) {
5900 			if (data == string_value &&
5901 			    memcmp(name, data, namelen) != 0)
5902 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5903 				    name, (char *)data, namelen);
5904 		} else {
5905 			ASSERT3U(error, ==, ENOENT);
5906 		}
5907 		break;
5908 
5909 	case 2:
5910 		error = zap_add(os, object, name, wsize, wc, data, tx);
5911 		ASSERT(error == 0 || error == EEXIST);
5912 		break;
5913 
5914 	case 3:
5915 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5916 		break;
5917 
5918 	case 4:
5919 		error = zap_remove(os, object, name, tx);
5920 		ASSERT(error == 0 || error == ENOENT);
5921 		break;
5922 	}
5923 
5924 	if (tx != NULL)
5925 		dmu_tx_commit(tx);
5926 
5927 	umem_free(od, sizeof (ztest_od_t));
5928 }
5929 
5930 /*
5931  * Commit callback data.
5932  */
5933 typedef struct ztest_cb_data {
5934 	list_node_t		zcd_node;
5935 	uint64_t		zcd_txg;
5936 	int			zcd_expected_err;
5937 	boolean_t		zcd_added;
5938 	boolean_t		zcd_called;
5939 	spa_t			*zcd_spa;
5940 } ztest_cb_data_t;
5941 
5942 /* This is the actual commit callback function */
5943 static void
5944 ztest_commit_callback(void *arg, int error)
5945 {
5946 	ztest_cb_data_t *data = arg;
5947 	uint64_t synced_txg;
5948 
5949 	VERIFY3P(data, !=, NULL);
5950 	VERIFY3S(data->zcd_expected_err, ==, error);
5951 	VERIFY(!data->zcd_called);
5952 
5953 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5954 	if (data->zcd_txg > synced_txg)
5955 		fatal(B_FALSE,
5956 		    "commit callback of txg %"PRIu64" called prematurely, "
5957 		    "last synced txg = %"PRIu64"\n",
5958 		    data->zcd_txg, synced_txg);
5959 
5960 	data->zcd_called = B_TRUE;
5961 
5962 	if (error == ECANCELED) {
5963 		ASSERT0(data->zcd_txg);
5964 		ASSERT(!data->zcd_added);
5965 
5966 		/*
5967 		 * The private callback data should be destroyed here, but
5968 		 * since we are going to check the zcd_called field after
5969 		 * dmu_tx_abort(), we will destroy it there.
5970 		 */
5971 		return;
5972 	}
5973 
5974 	ASSERT(data->zcd_added);
5975 	ASSERT3U(data->zcd_txg, !=, 0);
5976 
5977 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5978 
5979 	/* See if this cb was called more quickly */
5980 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5981 		zc_min_txg_delay = synced_txg - data->zcd_txg;
5982 
5983 	/* Remove our callback from the list */
5984 	list_remove(&zcl.zcl_callbacks, data);
5985 
5986 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5987 
5988 	umem_free(data, sizeof (ztest_cb_data_t));
5989 }
5990 
5991 /* Allocate and initialize callback data structure */
5992 static ztest_cb_data_t *
5993 ztest_create_cb_data(objset_t *os, uint64_t txg)
5994 {
5995 	ztest_cb_data_t *cb_data;
5996 
5997 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5998 
5999 	cb_data->zcd_txg = txg;
6000 	cb_data->zcd_spa = dmu_objset_spa(os);
6001 	list_link_init(&cb_data->zcd_node);
6002 
6003 	return (cb_data);
6004 }
6005 
6006 /*
6007  * Commit callback test.
6008  */
6009 void
6010 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6011 {
6012 	objset_t *os = zd->zd_os;
6013 	ztest_od_t *od;
6014 	dmu_tx_t *tx;
6015 	ztest_cb_data_t *cb_data[3], *tmp_cb;
6016 	uint64_t old_txg, txg;
6017 	int i, error = 0;
6018 
6019 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6020 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6021 
6022 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6023 		umem_free(od, sizeof (ztest_od_t));
6024 		return;
6025 	}
6026 
6027 	tx = dmu_tx_create(os);
6028 
6029 	cb_data[0] = ztest_create_cb_data(os, 0);
6030 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6031 
6032 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6033 
6034 	/* Every once in a while, abort the transaction on purpose */
6035 	if (ztest_random(100) == 0)
6036 		error = -1;
6037 
6038 	if (!error)
6039 		error = dmu_tx_assign(tx, TXG_NOWAIT);
6040 
6041 	txg = error ? 0 : dmu_tx_get_txg(tx);
6042 
6043 	cb_data[0]->zcd_txg = txg;
6044 	cb_data[1] = ztest_create_cb_data(os, txg);
6045 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6046 
6047 	if (error) {
6048 		/*
6049 		 * It's not a strict requirement to call the registered
6050 		 * callbacks from inside dmu_tx_abort(), but that's what
6051 		 * it's supposed to happen in the current implementation
6052 		 * so we will check for that.
6053 		 */
6054 		for (i = 0; i < 2; i++) {
6055 			cb_data[i]->zcd_expected_err = ECANCELED;
6056 			VERIFY(!cb_data[i]->zcd_called);
6057 		}
6058 
6059 		dmu_tx_abort(tx);
6060 
6061 		for (i = 0; i < 2; i++) {
6062 			VERIFY(cb_data[i]->zcd_called);
6063 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6064 		}
6065 
6066 		umem_free(od, sizeof (ztest_od_t));
6067 		return;
6068 	}
6069 
6070 	cb_data[2] = ztest_create_cb_data(os, txg);
6071 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6072 
6073 	/*
6074 	 * Read existing data to make sure there isn't a future leak.
6075 	 */
6076 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6077 	    &old_txg, DMU_READ_PREFETCH));
6078 
6079 	if (old_txg > txg)
6080 		fatal(B_FALSE,
6081 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
6082 		    old_txg, txg);
6083 
6084 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6085 
6086 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6087 
6088 	/*
6089 	 * Since commit callbacks don't have any ordering requirement and since
6090 	 * it is theoretically possible for a commit callback to be called
6091 	 * after an arbitrary amount of time has elapsed since its txg has been
6092 	 * synced, it is difficult to reliably determine whether a commit
6093 	 * callback hasn't been called due to high load or due to a flawed
6094 	 * implementation.
6095 	 *
6096 	 * In practice, we will assume that if after a certain number of txgs a
6097 	 * commit callback hasn't been called, then most likely there's an
6098 	 * implementation bug..
6099 	 */
6100 	tmp_cb = list_head(&zcl.zcl_callbacks);
6101 	if (tmp_cb != NULL &&
6102 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6103 		fatal(B_FALSE,
6104 		    "Commit callback threshold exceeded, "
6105 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6106 		    tmp_cb->zcd_txg, txg);
6107 	}
6108 
6109 	/*
6110 	 * Let's find the place to insert our callbacks.
6111 	 *
6112 	 * Even though the list is ordered by txg, it is possible for the
6113 	 * insertion point to not be the end because our txg may already be
6114 	 * quiescing at this point and other callbacks in the open txg
6115 	 * (from other objsets) may have sneaked in.
6116 	 */
6117 	tmp_cb = list_tail(&zcl.zcl_callbacks);
6118 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6119 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6120 
6121 	/* Add the 3 callbacks to the list */
6122 	for (i = 0; i < 3; i++) {
6123 		if (tmp_cb == NULL)
6124 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6125 		else
6126 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6127 			    cb_data[i]);
6128 
6129 		cb_data[i]->zcd_added = B_TRUE;
6130 		VERIFY(!cb_data[i]->zcd_called);
6131 
6132 		tmp_cb = cb_data[i];
6133 	}
6134 
6135 	zc_cb_counter += 3;
6136 
6137 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6138 
6139 	dmu_tx_commit(tx);
6140 
6141 	umem_free(od, sizeof (ztest_od_t));
6142 }
6143 
6144 /*
6145  * Visit each object in the dataset. Verify that its properties
6146  * are consistent what was stored in the block tag when it was created,
6147  * and that its unused bonus buffer space has not been overwritten.
6148  */
6149 void
6150 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6151 {
6152 	(void) id;
6153 	objset_t *os = zd->zd_os;
6154 	uint64_t obj;
6155 	int err = 0;
6156 
6157 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6158 		ztest_block_tag_t *bt = NULL;
6159 		dmu_object_info_t doi;
6160 		dmu_buf_t *db;
6161 
6162 		ztest_object_lock(zd, obj, ZTRL_READER);
6163 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6164 			ztest_object_unlock(zd, obj);
6165 			continue;
6166 		}
6167 
6168 		dmu_object_info_from_db(db, &doi);
6169 		if (doi.doi_bonus_size >= sizeof (*bt))
6170 			bt = ztest_bt_bonus(db);
6171 
6172 		if (bt && bt->bt_magic == BT_MAGIC) {
6173 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6174 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
6175 			    bt->bt_crtxg);
6176 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6177 		}
6178 
6179 		dmu_buf_rele(db, FTAG);
6180 		ztest_object_unlock(zd, obj);
6181 	}
6182 }
6183 
6184 void
6185 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6186 {
6187 	(void) id;
6188 	zfs_prop_t proplist[] = {
6189 		ZFS_PROP_CHECKSUM,
6190 		ZFS_PROP_COMPRESSION,
6191 		ZFS_PROP_COPIES,
6192 		ZFS_PROP_DEDUP
6193 	};
6194 
6195 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6196 
6197 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6198 		int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6199 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6200 		ASSERT(error == 0 || error == ENOSPC);
6201 	}
6202 
6203 	int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6204 	    ztest_random_blocksize(), (int)ztest_random(2));
6205 	ASSERT(error == 0 || error == ENOSPC);
6206 
6207 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6208 }
6209 
6210 void
6211 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6212 {
6213 	(void) zd, (void) id;
6214 
6215 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6216 
6217 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6218 
6219 	nvlist_t *props = fnvlist_alloc();
6220 
6221 	VERIFY0(spa_prop_get(ztest_spa, props));
6222 
6223 	if (ztest_opts.zo_verbose >= 6)
6224 		dump_nvlist(props, 4);
6225 
6226 	fnvlist_free(props);
6227 
6228 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6229 }
6230 
6231 static int
6232 user_release_one(const char *snapname, const char *holdname)
6233 {
6234 	nvlist_t *snaps, *holds;
6235 	int error;
6236 
6237 	snaps = fnvlist_alloc();
6238 	holds = fnvlist_alloc();
6239 	fnvlist_add_boolean(holds, holdname);
6240 	fnvlist_add_nvlist(snaps, snapname, holds);
6241 	fnvlist_free(holds);
6242 	error = dsl_dataset_user_release(snaps, NULL);
6243 	fnvlist_free(snaps);
6244 	return (error);
6245 }
6246 
6247 /*
6248  * Test snapshot hold/release and deferred destroy.
6249  */
6250 void
6251 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6252 {
6253 	int error;
6254 	objset_t *os = zd->zd_os;
6255 	objset_t *origin;
6256 	char snapname[100];
6257 	char fullname[100];
6258 	char clonename[100];
6259 	char tag[100];
6260 	char osname[ZFS_MAX_DATASET_NAME_LEN];
6261 	nvlist_t *holds;
6262 
6263 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6264 
6265 	dmu_objset_name(os, osname);
6266 
6267 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6268 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6269 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6270 	    osname, id);
6271 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6272 
6273 	/*
6274 	 * Clean up from any previous run.
6275 	 */
6276 	error = dsl_destroy_head(clonename);
6277 	if (error != ENOENT)
6278 		ASSERT0(error);
6279 	error = user_release_one(fullname, tag);
6280 	if (error != ESRCH && error != ENOENT)
6281 		ASSERT0(error);
6282 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6283 	if (error != ENOENT)
6284 		ASSERT0(error);
6285 
6286 	/*
6287 	 * Create snapshot, clone it, mark snap for deferred destroy,
6288 	 * destroy clone, verify snap was also destroyed.
6289 	 */
6290 	error = dmu_objset_snapshot_one(osname, snapname);
6291 	if (error) {
6292 		if (error == ENOSPC) {
6293 			ztest_record_enospc("dmu_objset_snapshot");
6294 			goto out;
6295 		}
6296 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6297 	}
6298 
6299 	error = dmu_objset_clone(clonename, fullname);
6300 	if (error) {
6301 		if (error == ENOSPC) {
6302 			ztest_record_enospc("dmu_objset_clone");
6303 			goto out;
6304 		}
6305 		fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6306 	}
6307 
6308 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6309 	if (error) {
6310 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6311 		    fullname, error);
6312 	}
6313 
6314 	error = dsl_destroy_head(clonename);
6315 	if (error)
6316 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6317 
6318 	error = dmu_objset_hold(fullname, FTAG, &origin);
6319 	if (error != ENOENT)
6320 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6321 
6322 	/*
6323 	 * Create snapshot, add temporary hold, verify that we can't
6324 	 * destroy a held snapshot, mark for deferred destroy,
6325 	 * release hold, verify snapshot was destroyed.
6326 	 */
6327 	error = dmu_objset_snapshot_one(osname, snapname);
6328 	if (error) {
6329 		if (error == ENOSPC) {
6330 			ztest_record_enospc("dmu_objset_snapshot");
6331 			goto out;
6332 		}
6333 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6334 	}
6335 
6336 	holds = fnvlist_alloc();
6337 	fnvlist_add_string(holds, fullname, tag);
6338 	error = dsl_dataset_user_hold(holds, 0, NULL);
6339 	fnvlist_free(holds);
6340 
6341 	if (error == ENOSPC) {
6342 		ztest_record_enospc("dsl_dataset_user_hold");
6343 		goto out;
6344 	} else if (error) {
6345 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6346 		    fullname, tag, error);
6347 	}
6348 
6349 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6350 	if (error != EBUSY) {
6351 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6352 		    fullname, error);
6353 	}
6354 
6355 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6356 	if (error) {
6357 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6358 		    fullname, error);
6359 	}
6360 
6361 	error = user_release_one(fullname, tag);
6362 	if (error)
6363 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6364 		    fullname, tag, error);
6365 
6366 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6367 
6368 out:
6369 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6370 }
6371 
6372 /*
6373  * Inject random faults into the on-disk data.
6374  */
6375 void
6376 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6377 {
6378 	(void) zd, (void) id;
6379 	ztest_shared_t *zs = ztest_shared;
6380 	spa_t *spa = ztest_spa;
6381 	int fd;
6382 	uint64_t offset;
6383 	uint64_t leaves;
6384 	uint64_t bad = 0x1990c0ffeedecadeull;
6385 	uint64_t top, leaf;
6386 	uint64_t raidz_children;
6387 	char *path0;
6388 	char *pathrand;
6389 	size_t fsize;
6390 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6391 	int iters = 1000;
6392 	int maxfaults;
6393 	int mirror_save;
6394 	vdev_t *vd0 = NULL;
6395 	uint64_t guid0 = 0;
6396 	boolean_t islog = B_FALSE;
6397 	boolean_t injected = B_FALSE;
6398 
6399 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6400 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6401 
6402 	mutex_enter(&ztest_vdev_lock);
6403 
6404 	/*
6405 	 * Device removal is in progress, fault injection must be disabled
6406 	 * until it completes and the pool is scrubbed.  The fault injection
6407 	 * strategy for damaging blocks does not take in to account evacuated
6408 	 * blocks which may have already been damaged.
6409 	 */
6410 	if (ztest_device_removal_active)
6411 		goto out;
6412 
6413 	/*
6414 	 * The fault injection strategy for damaging blocks cannot be used
6415 	 * if raidz expansion is in progress. The leaves value
6416 	 * (attached raidz children) is variable and strategy for damaging
6417 	 * blocks will corrupt same data blocks on different child vdevs
6418 	 * because of the reflow process.
6419 	 */
6420 	if (spa->spa_raidz_expand != NULL)
6421 		goto out;
6422 
6423 	maxfaults = MAXFAULTS(zs);
6424 	raidz_children = ztest_get_raidz_children(spa);
6425 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6426 	mirror_save = zs->zs_mirrors;
6427 
6428 	ASSERT3U(leaves, >=, 1);
6429 
6430 	/*
6431 	 * While ztest is running the number of leaves will not change.  This
6432 	 * is critical for the fault injection logic as it determines where
6433 	 * errors can be safely injected such that they are always repairable.
6434 	 *
6435 	 * When restarting ztest a different number of leaves may be requested
6436 	 * which will shift the regions to be damaged.  This is fine as long
6437 	 * as the pool has been scrubbed prior to using the new mapping.
6438 	 * Failure to do can result in non-repairable damage being injected.
6439 	 */
6440 	if (ztest_pool_scrubbed == B_FALSE)
6441 		goto out;
6442 
6443 	/*
6444 	 * Grab the name lock as reader. There are some operations
6445 	 * which don't like to have their vdevs changed while
6446 	 * they are in progress (i.e. spa_change_guid). Those
6447 	 * operations will have grabbed the name lock as writer.
6448 	 */
6449 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6450 
6451 	/*
6452 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6453 	 */
6454 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6455 
6456 	if (ztest_random(2) == 0) {
6457 		/*
6458 		 * Inject errors on a normal data device or slog device.
6459 		 */
6460 		top = ztest_random_vdev_top(spa, B_TRUE);
6461 		leaf = ztest_random(leaves) + zs->zs_splits;
6462 
6463 		/*
6464 		 * Generate paths to the first leaf in this top-level vdev,
6465 		 * and to the random leaf we selected.  We'll induce transient
6466 		 * write failures and random online/offline activity on leaf 0,
6467 		 * and we'll write random garbage to the randomly chosen leaf.
6468 		 */
6469 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6470 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6471 		    top * leaves + zs->zs_splits);
6472 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6473 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6474 		    top * leaves + leaf);
6475 
6476 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6477 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6478 			islog = B_TRUE;
6479 
6480 		/*
6481 		 * If the top-level vdev needs to be resilvered
6482 		 * then we only allow faults on the device that is
6483 		 * resilvering.
6484 		 */
6485 		if (vd0 != NULL && maxfaults != 1 &&
6486 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6487 		    vd0->vdev_resilver_txg != 0)) {
6488 			/*
6489 			 * Make vd0 explicitly claim to be unreadable,
6490 			 * or unwritable, or reach behind its back
6491 			 * and close the underlying fd.  We can do this if
6492 			 * maxfaults == 0 because we'll fail and reexecute,
6493 			 * and we can do it if maxfaults >= 2 because we'll
6494 			 * have enough redundancy.  If maxfaults == 1, the
6495 			 * combination of this with injection of random data
6496 			 * corruption below exceeds the pool's fault tolerance.
6497 			 */
6498 			vdev_file_t *vf = vd0->vdev_tsd;
6499 
6500 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6501 			    (long long)vd0->vdev_id, (int)maxfaults);
6502 
6503 			if (vf != NULL && ztest_random(3) == 0) {
6504 				(void) close(vf->vf_file->f_fd);
6505 				vf->vf_file->f_fd = -1;
6506 			} else if (ztest_random(2) == 0) {
6507 				vd0->vdev_cant_read = B_TRUE;
6508 			} else {
6509 				vd0->vdev_cant_write = B_TRUE;
6510 			}
6511 			guid0 = vd0->vdev_guid;
6512 		}
6513 	} else {
6514 		/*
6515 		 * Inject errors on an l2cache device.
6516 		 */
6517 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6518 
6519 		if (sav->sav_count == 0) {
6520 			spa_config_exit(spa, SCL_STATE, FTAG);
6521 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6522 			goto out;
6523 		}
6524 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6525 		guid0 = vd0->vdev_guid;
6526 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6527 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6528 
6529 		leaf = 0;
6530 		leaves = 1;
6531 		maxfaults = INT_MAX;	/* no limit on cache devices */
6532 	}
6533 
6534 	spa_config_exit(spa, SCL_STATE, FTAG);
6535 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6536 
6537 	/*
6538 	 * If we can tolerate two or more faults, or we're dealing
6539 	 * with a slog, randomly online/offline vd0.
6540 	 */
6541 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6542 		if (ztest_random(10) < 6) {
6543 			int flags = (ztest_random(2) == 0 ?
6544 			    ZFS_OFFLINE_TEMPORARY : 0);
6545 
6546 			/*
6547 			 * We have to grab the zs_name_lock as writer to
6548 			 * prevent a race between offlining a slog and
6549 			 * destroying a dataset. Offlining the slog will
6550 			 * grab a reference on the dataset which may cause
6551 			 * dsl_destroy_head() to fail with EBUSY thus
6552 			 * leaving the dataset in an inconsistent state.
6553 			 */
6554 			if (islog)
6555 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6556 
6557 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6558 
6559 			if (islog)
6560 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6561 		} else {
6562 			/*
6563 			 * Ideally we would like to be able to randomly
6564 			 * call vdev_[on|off]line without holding locks
6565 			 * to force unpredictable failures but the side
6566 			 * effects of vdev_[on|off]line prevent us from
6567 			 * doing so.
6568 			 */
6569 			(void) vdev_online(spa, guid0, 0, NULL);
6570 		}
6571 	}
6572 
6573 	if (maxfaults == 0)
6574 		goto out;
6575 
6576 	/*
6577 	 * We have at least single-fault tolerance, so inject data corruption.
6578 	 */
6579 	fd = open(pathrand, O_RDWR);
6580 
6581 	if (fd == -1) /* we hit a gap in the device namespace */
6582 		goto out;
6583 
6584 	fsize = lseek(fd, 0, SEEK_END);
6585 
6586 	while (--iters != 0) {
6587 		/*
6588 		 * The offset must be chosen carefully to ensure that
6589 		 * we do not inject a given logical block with errors
6590 		 * on two different leaf devices, because ZFS can not
6591 		 * tolerate that (if maxfaults==1).
6592 		 *
6593 		 * To achieve this we divide each leaf device into
6594 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6595 		 * Each chunk is further divided into error-injection
6596 		 * ranges (can accept errors) and clear ranges (we do
6597 		 * not inject errors in those). Each error-injection
6598 		 * range can accept errors only for a single leaf vdev.
6599 		 * Error-injection ranges are separated by clear ranges.
6600 		 *
6601 		 * For example, with 3 leaves, each chunk looks like:
6602 		 *    0 to  32M: injection range for leaf 0
6603 		 *  32M to  64M: clear range - no injection allowed
6604 		 *  64M to  96M: injection range for leaf 1
6605 		 *  96M to 128M: clear range - no injection allowed
6606 		 * 128M to 160M: injection range for leaf 2
6607 		 * 160M to 192M: clear range - no injection allowed
6608 		 *
6609 		 * Each clear range must be large enough such that a
6610 		 * single block cannot straddle it. This way a block
6611 		 * can't be a target in two different injection ranges
6612 		 * (on different leaf vdevs).
6613 		 */
6614 		offset = ztest_random(fsize / (leaves << bshift)) *
6615 		    (leaves << bshift) + (leaf << bshift) +
6616 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6617 
6618 		/*
6619 		 * Only allow damage to the labels at one end of the vdev.
6620 		 *
6621 		 * If all labels are damaged, the device will be totally
6622 		 * inaccessible, which will result in loss of data,
6623 		 * because we also damage (parts of) the other side of
6624 		 * the mirror/raidz.
6625 		 *
6626 		 * Additionally, we will always have both an even and an
6627 		 * odd label, so that we can handle crashes in the
6628 		 * middle of vdev_config_sync().
6629 		 */
6630 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6631 			continue;
6632 
6633 		/*
6634 		 * The two end labels are stored at the "end" of the disk, but
6635 		 * the end of the disk (vdev_psize) is aligned to
6636 		 * sizeof (vdev_label_t).
6637 		 */
6638 		uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6639 		    uint64_t);
6640 		if ((leaf & 1) == 1 &&
6641 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6642 			continue;
6643 
6644 		if (mirror_save != zs->zs_mirrors) {
6645 			(void) close(fd);
6646 			goto out;
6647 		}
6648 
6649 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6650 			fatal(B_TRUE,
6651 			    "can't inject bad word at 0x%"PRIx64" in %s",
6652 			    offset, pathrand);
6653 
6654 		if (ztest_opts.zo_verbose >= 7)
6655 			(void) printf("injected bad word into %s,"
6656 			    " offset 0x%"PRIx64"\n", pathrand, offset);
6657 
6658 		injected = B_TRUE;
6659 	}
6660 
6661 	(void) close(fd);
6662 out:
6663 	mutex_exit(&ztest_vdev_lock);
6664 
6665 	if (injected && ztest_opts.zo_raid_do_expand) {
6666 		int error = spa_scan(spa, POOL_SCAN_SCRUB);
6667 		if (error == 0) {
6668 			while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6669 				txg_wait_synced(spa_get_dsl(spa), 0);
6670 		}
6671 	}
6672 
6673 	umem_free(path0, MAXPATHLEN);
6674 	umem_free(pathrand, MAXPATHLEN);
6675 }
6676 
6677 /*
6678  * By design ztest will never inject uncorrectable damage in to the pool.
6679  * Issue a scrub, wait for it to complete, and verify there is never any
6680  * persistent damage.
6681  *
6682  * Only after a full scrub has been completed is it safe to start injecting
6683  * data corruption.  See the comment in zfs_fault_inject().
6684  */
6685 static int
6686 ztest_scrub_impl(spa_t *spa)
6687 {
6688 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6689 	if (error)
6690 		return (error);
6691 
6692 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6693 		txg_wait_synced(spa_get_dsl(spa), 0);
6694 
6695 	if (spa_approx_errlog_size(spa) > 0)
6696 		return (ECKSUM);
6697 
6698 	ztest_pool_scrubbed = B_TRUE;
6699 
6700 	return (0);
6701 }
6702 
6703 /*
6704  * Scrub the pool.
6705  */
6706 void
6707 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6708 {
6709 	(void) zd, (void) id;
6710 	spa_t *spa = ztest_spa;
6711 	int error;
6712 
6713 	/*
6714 	 * Scrub in progress by device removal.
6715 	 */
6716 	if (ztest_device_removal_active)
6717 		return;
6718 
6719 	/*
6720 	 * Start a scrub, wait a moment, then force a restart.
6721 	 */
6722 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6723 	(void) poll(NULL, 0, 100);
6724 
6725 	error = ztest_scrub_impl(spa);
6726 	if (error == EBUSY)
6727 		error = 0;
6728 	ASSERT0(error);
6729 }
6730 
6731 /*
6732  * Change the guid for the pool.
6733  */
6734 void
6735 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6736 {
6737 	(void) zd, (void) id;
6738 	spa_t *spa = ztest_spa;
6739 	uint64_t orig, load;
6740 	int error;
6741 	ztest_shared_t *zs = ztest_shared;
6742 
6743 	if (ztest_opts.zo_mmp_test)
6744 		return;
6745 
6746 	orig = spa_guid(spa);
6747 	load = spa_load_guid(spa);
6748 
6749 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6750 	error = spa_change_guid(spa);
6751 	zs->zs_guid = spa_guid(spa);
6752 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6753 
6754 	if (error != 0)
6755 		return;
6756 
6757 	if (ztest_opts.zo_verbose >= 4) {
6758 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6759 		    orig, spa_guid(spa));
6760 	}
6761 
6762 	VERIFY3U(orig, !=, spa_guid(spa));
6763 	VERIFY3U(load, ==, spa_load_guid(spa));
6764 }
6765 
6766 void
6767 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6768 {
6769 	(void) zd, (void) id;
6770 	hrtime_t end = gethrtime() + NANOSEC;
6771 	zio_cksum_salt_t salt;
6772 	void *salt_ptr = &salt.zcs_bytes;
6773 	struct abd *abd_data, *abd_meta;
6774 	void *buf, *templ;
6775 	int i, *ptr;
6776 	uint32_t size;
6777 	BLAKE3_CTX ctx;
6778 	const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6779 
6780 	size = ztest_random_blocksize();
6781 	buf = umem_alloc(size, UMEM_NOFAIL);
6782 	abd_data = abd_alloc(size, B_FALSE);
6783 	abd_meta = abd_alloc(size, B_TRUE);
6784 
6785 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6786 		*ptr = ztest_random(UINT_MAX);
6787 	memset(salt_ptr, 'A', 32);
6788 
6789 	abd_copy_from_buf_off(abd_data, buf, 0, size);
6790 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6791 
6792 	while (gethrtime() <= end) {
6793 		int run_count = 100;
6794 		zio_cksum_t zc_ref1, zc_ref2;
6795 		zio_cksum_t zc_res1, zc_res2;
6796 
6797 		void *ref1 = &zc_ref1;
6798 		void *ref2 = &zc_ref2;
6799 		void *res1 = &zc_res1;
6800 		void *res2 = &zc_res2;
6801 
6802 		/* BLAKE3_KEY_LEN = 32 */
6803 		VERIFY0(blake3->setname("generic"));
6804 		templ = abd_checksum_blake3_tmpl_init(&salt);
6805 		Blake3_InitKeyed(&ctx, salt_ptr);
6806 		Blake3_Update(&ctx, buf, size);
6807 		Blake3_Final(&ctx, ref1);
6808 		zc_ref2 = zc_ref1;
6809 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6810 		abd_checksum_blake3_tmpl_free(templ);
6811 
6812 		VERIFY0(blake3->setname("cycle"));
6813 		while (run_count-- > 0) {
6814 
6815 			/* Test current implementation */
6816 			Blake3_InitKeyed(&ctx, salt_ptr);
6817 			Blake3_Update(&ctx, buf, size);
6818 			Blake3_Final(&ctx, res1);
6819 			zc_res2 = zc_res1;
6820 			ZIO_CHECKSUM_BSWAP(&zc_res2);
6821 
6822 			VERIFY0(memcmp(ref1, res1, 32));
6823 			VERIFY0(memcmp(ref2, res2, 32));
6824 
6825 			/* Test ABD - data */
6826 			templ = abd_checksum_blake3_tmpl_init(&salt);
6827 			abd_checksum_blake3_native(abd_data, size,
6828 			    templ, &zc_res1);
6829 			abd_checksum_blake3_byteswap(abd_data, size,
6830 			    templ, &zc_res2);
6831 
6832 			VERIFY0(memcmp(ref1, res1, 32));
6833 			VERIFY0(memcmp(ref2, res2, 32));
6834 
6835 			/* Test ABD - metadata */
6836 			abd_checksum_blake3_native(abd_meta, size,
6837 			    templ, &zc_res1);
6838 			abd_checksum_blake3_byteswap(abd_meta, size,
6839 			    templ, &zc_res2);
6840 			abd_checksum_blake3_tmpl_free(templ);
6841 
6842 			VERIFY0(memcmp(ref1, res1, 32));
6843 			VERIFY0(memcmp(ref2, res2, 32));
6844 
6845 		}
6846 	}
6847 
6848 	abd_free(abd_data);
6849 	abd_free(abd_meta);
6850 	umem_free(buf, size);
6851 }
6852 
6853 void
6854 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6855 {
6856 	(void) zd, (void) id;
6857 	hrtime_t end = gethrtime() + NANOSEC;
6858 
6859 	while (gethrtime() <= end) {
6860 		int run_count = 100;
6861 		void *buf;
6862 		struct abd *abd_data, *abd_meta;
6863 		uint32_t size;
6864 		int *ptr;
6865 		int i;
6866 		zio_cksum_t zc_ref;
6867 		zio_cksum_t zc_ref_byteswap;
6868 
6869 		size = ztest_random_blocksize();
6870 
6871 		buf = umem_alloc(size, UMEM_NOFAIL);
6872 		abd_data = abd_alloc(size, B_FALSE);
6873 		abd_meta = abd_alloc(size, B_TRUE);
6874 
6875 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6876 			*ptr = ztest_random(UINT_MAX);
6877 
6878 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6879 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6880 
6881 		VERIFY0(fletcher_4_impl_set("scalar"));
6882 		fletcher_4_native(buf, size, NULL, &zc_ref);
6883 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6884 
6885 		VERIFY0(fletcher_4_impl_set("cycle"));
6886 		while (run_count-- > 0) {
6887 			zio_cksum_t zc;
6888 			zio_cksum_t zc_byteswap;
6889 
6890 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6891 			fletcher_4_native(buf, size, NULL, &zc);
6892 
6893 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6894 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6895 			    sizeof (zc_byteswap)));
6896 
6897 			/* Test ABD - data */
6898 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6899 			    &zc_byteswap);
6900 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6901 
6902 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6903 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6904 			    sizeof (zc_byteswap)));
6905 
6906 			/* Test ABD - metadata */
6907 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6908 			    &zc_byteswap);
6909 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6910 
6911 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6912 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6913 			    sizeof (zc_byteswap)));
6914 
6915 		}
6916 
6917 		umem_free(buf, size);
6918 		abd_free(abd_data);
6919 		abd_free(abd_meta);
6920 	}
6921 }
6922 
6923 void
6924 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6925 {
6926 	(void) zd, (void) id;
6927 	void *buf;
6928 	size_t size;
6929 	int *ptr;
6930 	int i;
6931 	zio_cksum_t zc_ref;
6932 	zio_cksum_t zc_ref_bswap;
6933 
6934 	hrtime_t end = gethrtime() + NANOSEC;
6935 
6936 	while (gethrtime() <= end) {
6937 		int run_count = 100;
6938 
6939 		size = ztest_random_blocksize();
6940 		buf = umem_alloc(size, UMEM_NOFAIL);
6941 
6942 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6943 			*ptr = ztest_random(UINT_MAX);
6944 
6945 		VERIFY0(fletcher_4_impl_set("scalar"));
6946 		fletcher_4_native(buf, size, NULL, &zc_ref);
6947 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6948 
6949 		VERIFY0(fletcher_4_impl_set("cycle"));
6950 
6951 		while (run_count-- > 0) {
6952 			zio_cksum_t zc;
6953 			zio_cksum_t zc_bswap;
6954 			size_t pos = 0;
6955 
6956 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6957 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6958 
6959 			while (pos < size) {
6960 				size_t inc = 64 * ztest_random(size / 67);
6961 				/* sometimes add few bytes to test non-simd */
6962 				if (ztest_random(100) < 10)
6963 					inc += P2ALIGN_TYPED(ztest_random(64),
6964 					    sizeof (uint32_t), uint64_t);
6965 
6966 				if (inc > (size - pos))
6967 					inc = size - pos;
6968 
6969 				fletcher_4_incremental_native(buf + pos, inc,
6970 				    &zc);
6971 				fletcher_4_incremental_byteswap(buf + pos, inc,
6972 				    &zc_bswap);
6973 
6974 				pos += inc;
6975 			}
6976 
6977 			VERIFY3U(pos, ==, size);
6978 
6979 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6980 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6981 
6982 			/*
6983 			 * verify if incremental on the whole buffer is
6984 			 * equivalent to non-incremental version
6985 			 */
6986 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6987 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6988 
6989 			fletcher_4_incremental_native(buf, size, &zc);
6990 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6991 
6992 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6993 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6994 		}
6995 
6996 		umem_free(buf, size);
6997 	}
6998 }
6999 
7000 void
7001 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7002 {
7003 	(void) zd, (void) id;
7004 	spa_t *spa;
7005 
7006 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7007 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7008 
7009 	ddt_prefetch_all(spa);
7010 
7011 	spa_close(spa, FTAG);
7012 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7013 }
7014 
7015 static int
7016 ztest_set_global_vars(void)
7017 {
7018 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7019 		char *kv = ztest_opts.zo_gvars[i];
7020 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7021 		VERIFY3U(strlen(kv), >, 0);
7022 		int err = set_global_var(kv);
7023 		if (ztest_opts.zo_verbose > 0) {
7024 			(void) printf("setting global var %s ... %s\n", kv,
7025 			    err ? "failed" : "ok");
7026 		}
7027 		if (err != 0) {
7028 			(void) fprintf(stderr,
7029 			    "failed to set global var '%s'\n", kv);
7030 			return (err);
7031 		}
7032 	}
7033 	return (0);
7034 }
7035 
7036 static char **
7037 ztest_global_vars_to_zdb_args(void)
7038 {
7039 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7040 	char **cur = args;
7041 	if (args == NULL)
7042 		return (NULL);
7043 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7044 		*cur++ = (char *)"-o";
7045 		*cur++ = ztest_opts.zo_gvars[i];
7046 	}
7047 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7048 	*cur = NULL;
7049 	return (args);
7050 }
7051 
7052 /* The end of strings is indicated by a NULL element */
7053 static char *
7054 join_strings(char **strings, const char *sep)
7055 {
7056 	size_t totallen = 0;
7057 	for (char **sp = strings; *sp != NULL; sp++) {
7058 		totallen += strlen(*sp);
7059 		totallen += strlen(sep);
7060 	}
7061 	if (totallen > 0) {
7062 		ASSERT(totallen >= strlen(sep));
7063 		totallen -= strlen(sep);
7064 	}
7065 
7066 	size_t buflen = totallen + 1;
7067 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7068 	o[0] = '\0';
7069 	for (char **sp = strings; *sp != NULL; sp++) {
7070 		size_t would;
7071 		would = strlcat(o, *sp, buflen);
7072 		VERIFY3U(would, <, buflen);
7073 		if (*(sp+1) == NULL) {
7074 			break;
7075 		}
7076 		would = strlcat(o, sep, buflen);
7077 		VERIFY3U(would, <, buflen);
7078 	}
7079 	ASSERT3S(strlen(o), ==, totallen);
7080 	return (o);
7081 }
7082 
7083 static int
7084 ztest_check_path(char *path)
7085 {
7086 	struct stat s;
7087 	/* return true on success */
7088 	return (!stat(path, &s));
7089 }
7090 
7091 static void
7092 ztest_get_zdb_bin(char *bin, int len)
7093 {
7094 	char *zdb_path;
7095 	/*
7096 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
7097 	 * let popen to search through PATH.
7098 	 */
7099 	if ((zdb_path = getenv("ZDB"))) {
7100 		strlcpy(bin, zdb_path, len); /* In env */
7101 		if (!ztest_check_path(bin)) {
7102 			ztest_dump_core = 0;
7103 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
7104 		}
7105 		return;
7106 	}
7107 
7108 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7109 	if (strstr(bin, ".libs/ztest")) {
7110 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7111 		strcat(bin, "zdb");
7112 		if (ztest_check_path(bin))
7113 			return;
7114 	}
7115 	strcpy(bin, "zdb");
7116 }
7117 
7118 static vdev_t *
7119 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7120 {
7121 	if (vd == NULL)
7122 		return (NULL);
7123 
7124 	if (vd->vdev_children == 0)
7125 		return (vd);
7126 
7127 	vdev_t *eligible[vd->vdev_children];
7128 	int eligible_idx = 0, i;
7129 	for (i = 0; i < vd->vdev_children; i++) {
7130 		vdev_t *cvd = vd->vdev_child[i];
7131 		if (cvd->vdev_top->vdev_removing)
7132 			continue;
7133 		if (cvd->vdev_children > 0 ||
7134 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7135 			eligible[eligible_idx++] = cvd;
7136 		}
7137 	}
7138 	VERIFY3S(eligible_idx, >, 0);
7139 
7140 	uint64_t child_no = ztest_random(eligible_idx);
7141 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7142 }
7143 
7144 void
7145 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7146 {
7147 	(void) zd, (void) id;
7148 	spa_t *spa = ztest_spa;
7149 	int error = 0;
7150 
7151 	mutex_enter(&ztest_vdev_lock);
7152 
7153 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7154 
7155 	/* Random leaf vdev */
7156 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7157 	if (rand_vd == NULL) {
7158 		spa_config_exit(spa, SCL_VDEV, FTAG);
7159 		mutex_exit(&ztest_vdev_lock);
7160 		return;
7161 	}
7162 
7163 	/*
7164 	 * The random vdev we've selected may change as soon as we
7165 	 * drop the spa_config_lock. We create local copies of things
7166 	 * we're interested in.
7167 	 */
7168 	uint64_t guid = rand_vd->vdev_guid;
7169 	char *path = strdup(rand_vd->vdev_path);
7170 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7171 
7172 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7173 	spa_config_exit(spa, SCL_VDEV, FTAG);
7174 
7175 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7176 
7177 	nvlist_t *vdev_guids = fnvlist_alloc();
7178 	nvlist_t *vdev_errlist = fnvlist_alloc();
7179 	fnvlist_add_uint64(vdev_guids, path, guid);
7180 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7181 	fnvlist_free(vdev_guids);
7182 	fnvlist_free(vdev_errlist);
7183 
7184 	switch (cmd) {
7185 	case POOL_INITIALIZE_CANCEL:
7186 		if (ztest_opts.zo_verbose >= 4) {
7187 			(void) printf("Cancel initialize %s", path);
7188 			if (!active)
7189 				(void) printf(" failed (no initialize active)");
7190 			(void) printf("\n");
7191 		}
7192 		break;
7193 	case POOL_INITIALIZE_START:
7194 		if (ztest_opts.zo_verbose >= 4) {
7195 			(void) printf("Start initialize %s", path);
7196 			if (active && error == 0)
7197 				(void) printf(" failed (already active)");
7198 			else if (error != 0)
7199 				(void) printf(" failed (error %d)", error);
7200 			(void) printf("\n");
7201 		}
7202 		break;
7203 	case POOL_INITIALIZE_SUSPEND:
7204 		if (ztest_opts.zo_verbose >= 4) {
7205 			(void) printf("Suspend initialize %s", path);
7206 			if (!active)
7207 				(void) printf(" failed (no initialize active)");
7208 			(void) printf("\n");
7209 		}
7210 		break;
7211 	}
7212 	free(path);
7213 	mutex_exit(&ztest_vdev_lock);
7214 }
7215 
7216 void
7217 ztest_trim(ztest_ds_t *zd, uint64_t id)
7218 {
7219 	(void) zd, (void) id;
7220 	spa_t *spa = ztest_spa;
7221 	int error = 0;
7222 
7223 	mutex_enter(&ztest_vdev_lock);
7224 
7225 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7226 
7227 	/* Random leaf vdev */
7228 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7229 	if (rand_vd == NULL) {
7230 		spa_config_exit(spa, SCL_VDEV, FTAG);
7231 		mutex_exit(&ztest_vdev_lock);
7232 		return;
7233 	}
7234 
7235 	/*
7236 	 * The random vdev we've selected may change as soon as we
7237 	 * drop the spa_config_lock. We create local copies of things
7238 	 * we're interested in.
7239 	 */
7240 	uint64_t guid = rand_vd->vdev_guid;
7241 	char *path = strdup(rand_vd->vdev_path);
7242 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
7243 
7244 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7245 	spa_config_exit(spa, SCL_VDEV, FTAG);
7246 
7247 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7248 	uint64_t rate = 1 << ztest_random(30);
7249 	boolean_t partial = (ztest_random(5) > 0);
7250 	boolean_t secure = (ztest_random(5) > 0);
7251 
7252 	nvlist_t *vdev_guids = fnvlist_alloc();
7253 	nvlist_t *vdev_errlist = fnvlist_alloc();
7254 	fnvlist_add_uint64(vdev_guids, path, guid);
7255 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7256 	    secure, vdev_errlist);
7257 	fnvlist_free(vdev_guids);
7258 	fnvlist_free(vdev_errlist);
7259 
7260 	switch (cmd) {
7261 	case POOL_TRIM_CANCEL:
7262 		if (ztest_opts.zo_verbose >= 4) {
7263 			(void) printf("Cancel TRIM %s", path);
7264 			if (!active)
7265 				(void) printf(" failed (no TRIM active)");
7266 			(void) printf("\n");
7267 		}
7268 		break;
7269 	case POOL_TRIM_START:
7270 		if (ztest_opts.zo_verbose >= 4) {
7271 			(void) printf("Start TRIM %s", path);
7272 			if (active && error == 0)
7273 				(void) printf(" failed (already active)");
7274 			else if (error != 0)
7275 				(void) printf(" failed (error %d)", error);
7276 			(void) printf("\n");
7277 		}
7278 		break;
7279 	case POOL_TRIM_SUSPEND:
7280 		if (ztest_opts.zo_verbose >= 4) {
7281 			(void) printf("Suspend TRIM %s", path);
7282 			if (!active)
7283 				(void) printf(" failed (no TRIM active)");
7284 			(void) printf("\n");
7285 		}
7286 		break;
7287 	}
7288 	free(path);
7289 	mutex_exit(&ztest_vdev_lock);
7290 }
7291 
7292 /*
7293  * Verify pool integrity by running zdb.
7294  */
7295 static void
7296 ztest_run_zdb(uint64_t guid)
7297 {
7298 	int status;
7299 	char *bin;
7300 	char *zdb;
7301 	char *zbuf;
7302 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
7303 	FILE *fp;
7304 
7305 	bin = umem_alloc(len, UMEM_NOFAIL);
7306 	zdb = umem_alloc(len, UMEM_NOFAIL);
7307 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
7308 
7309 	ztest_get_zdb_bin(bin, len);
7310 
7311 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
7312 	if (set_gvars_args == NULL) {
7313 		fatal(B_FALSE, "Failed to allocate memory in "
7314 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7315 	}
7316 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7317 	free(set_gvars_args);
7318 
7319 	size_t would = snprintf(zdb, len,
7320 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7321 	    bin,
7322 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
7323 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
7324 	    set_gvars_args_joined,
7325 	    ztest_opts.zo_dir,
7326 	    guid);
7327 	ASSERT3U(would, <, len);
7328 
7329 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7330 
7331 	if (ztest_opts.zo_verbose >= 5)
7332 		(void) printf("Executing %s\n", zdb);
7333 
7334 	fp = popen(zdb, "r");
7335 
7336 	while (fgets(zbuf, 1024, fp) != NULL)
7337 		if (ztest_opts.zo_verbose >= 3)
7338 			(void) printf("%s", zbuf);
7339 
7340 	status = pclose(fp);
7341 
7342 	if (status == 0)
7343 		goto out;
7344 
7345 	ztest_dump_core = 0;
7346 	if (WIFEXITED(status))
7347 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7348 	else
7349 		fatal(B_FALSE, "'%s' died with signal %d",
7350 		    zdb, WTERMSIG(status));
7351 out:
7352 	umem_free(bin, len);
7353 	umem_free(zdb, len);
7354 	umem_free(zbuf, 1024);
7355 }
7356 
7357 static void
7358 ztest_walk_pool_directory(const char *header)
7359 {
7360 	spa_t *spa = NULL;
7361 
7362 	if (ztest_opts.zo_verbose >= 6)
7363 		(void) puts(header);
7364 
7365 	mutex_enter(&spa_namespace_lock);
7366 	while ((spa = spa_next(spa)) != NULL)
7367 		if (ztest_opts.zo_verbose >= 6)
7368 			(void) printf("\t%s\n", spa_name(spa));
7369 	mutex_exit(&spa_namespace_lock);
7370 }
7371 
7372 static void
7373 ztest_spa_import_export(char *oldname, char *newname)
7374 {
7375 	nvlist_t *config, *newconfig;
7376 	uint64_t pool_guid;
7377 	spa_t *spa;
7378 	int error;
7379 
7380 	if (ztest_opts.zo_verbose >= 4) {
7381 		(void) printf("import/export: old = %s, new = %s\n",
7382 		    oldname, newname);
7383 	}
7384 
7385 	/*
7386 	 * Clean up from previous runs.
7387 	 */
7388 	(void) spa_destroy(newname);
7389 
7390 	/*
7391 	 * Get the pool's configuration and guid.
7392 	 */
7393 	VERIFY0(spa_open(oldname, &spa, FTAG));
7394 
7395 	/*
7396 	 * Kick off a scrub to tickle scrub/export races.
7397 	 */
7398 	if (ztest_random(2) == 0)
7399 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7400 
7401 	pool_guid = spa_guid(spa);
7402 	spa_close(spa, FTAG);
7403 
7404 	ztest_walk_pool_directory("pools before export");
7405 
7406 	/*
7407 	 * Export it.
7408 	 */
7409 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7410 
7411 	ztest_walk_pool_directory("pools after export");
7412 
7413 	/*
7414 	 * Try to import it.
7415 	 */
7416 	newconfig = spa_tryimport(config);
7417 	ASSERT3P(newconfig, !=, NULL);
7418 	fnvlist_free(newconfig);
7419 
7420 	/*
7421 	 * Import it under the new name.
7422 	 */
7423 	error = spa_import(newname, config, NULL, 0);
7424 	if (error != 0) {
7425 		dump_nvlist(config, 0);
7426 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7427 		    oldname, newname, error);
7428 	}
7429 
7430 	ztest_walk_pool_directory("pools after import");
7431 
7432 	/*
7433 	 * Try to import it again -- should fail with EEXIST.
7434 	 */
7435 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7436 
7437 	/*
7438 	 * Try to import it under a different name -- should fail with EEXIST.
7439 	 */
7440 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7441 
7442 	/*
7443 	 * Verify that the pool is no longer visible under the old name.
7444 	 */
7445 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7446 
7447 	/*
7448 	 * Verify that we can open and close the pool using the new name.
7449 	 */
7450 	VERIFY0(spa_open(newname, &spa, FTAG));
7451 	ASSERT3U(pool_guid, ==, spa_guid(spa));
7452 	spa_close(spa, FTAG);
7453 
7454 	fnvlist_free(config);
7455 }
7456 
7457 static void
7458 ztest_resume(spa_t *spa)
7459 {
7460 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7461 		(void) printf("resuming from suspended state\n");
7462 	spa_vdev_state_enter(spa, SCL_NONE);
7463 	vdev_clear(spa, NULL);
7464 	(void) spa_vdev_state_exit(spa, NULL, 0);
7465 	(void) zio_resume(spa);
7466 }
7467 
7468 static __attribute__((noreturn)) void
7469 ztest_resume_thread(void *arg)
7470 {
7471 	spa_t *spa = arg;
7472 
7473 	while (!ztest_exiting) {
7474 		if (spa_suspended(spa))
7475 			ztest_resume(spa);
7476 		(void) poll(NULL, 0, 100);
7477 
7478 		/*
7479 		 * Periodically change the zfs_compressed_arc_enabled setting.
7480 		 */
7481 		if (ztest_random(10) == 0)
7482 			zfs_compressed_arc_enabled = ztest_random(2);
7483 
7484 		/*
7485 		 * Periodically change the zfs_abd_scatter_enabled setting.
7486 		 */
7487 		if (ztest_random(10) == 0)
7488 			zfs_abd_scatter_enabled = ztest_random(2);
7489 	}
7490 
7491 	thread_exit();
7492 }
7493 
7494 static __attribute__((noreturn)) void
7495 ztest_deadman_thread(void *arg)
7496 {
7497 	ztest_shared_t *zs = arg;
7498 	spa_t *spa = ztest_spa;
7499 	hrtime_t delay, overdue, last_run = gethrtime();
7500 
7501 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7502 	    MSEC2NSEC(zfs_deadman_synctime_ms);
7503 
7504 	while (!ztest_exiting) {
7505 		/*
7506 		 * Wait for the delay timer while checking occasionally
7507 		 * if we should stop.
7508 		 */
7509 		if (gethrtime() < last_run + delay) {
7510 			(void) poll(NULL, 0, 1000);
7511 			continue;
7512 		}
7513 
7514 		/*
7515 		 * If the pool is suspended then fail immediately. Otherwise,
7516 		 * check to see if the pool is making any progress. If
7517 		 * vdev_deadman() discovers that there hasn't been any recent
7518 		 * I/Os then it will end up aborting the tests.
7519 		 */
7520 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7521 			fatal(B_FALSE,
7522 			    "aborting test after %llu seconds because "
7523 			    "pool has transitioned to a suspended state.",
7524 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7525 		}
7526 		vdev_deadman(spa->spa_root_vdev, FTAG);
7527 
7528 		/*
7529 		 * If the process doesn't complete within a grace period of
7530 		 * zfs_deadman_synctime_ms over the expected finish time,
7531 		 * then it may be hung and is terminated.
7532 		 */
7533 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7534 		if (gethrtime() > overdue) {
7535 			fatal(B_FALSE,
7536 			    "aborting test after %llu seconds because "
7537 			    "the process is overdue for termination.",
7538 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7539 		}
7540 
7541 		(void) printf("ztest has been running for %lld seconds\n",
7542 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7543 
7544 		last_run = gethrtime();
7545 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7546 	}
7547 
7548 	thread_exit();
7549 }
7550 
7551 static void
7552 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7553 {
7554 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7555 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7556 	hrtime_t functime = gethrtime();
7557 	int i;
7558 
7559 	for (i = 0; i < zi->zi_iters; i++)
7560 		zi->zi_func(zd, id);
7561 
7562 	functime = gethrtime() - functime;
7563 
7564 	atomic_add_64(&zc->zc_count, 1);
7565 	atomic_add_64(&zc->zc_time, functime);
7566 
7567 	if (ztest_opts.zo_verbose >= 4)
7568 		(void) printf("%6.2f sec in %s\n",
7569 		    (double)functime / NANOSEC, zi->zi_funcname);
7570 }
7571 
7572 typedef struct ztest_raidz_expand_io {
7573 	uint64_t	rzx_id;
7574 	uint64_t	rzx_amount;
7575 	uint64_t	rzx_bufsize;
7576 	const void	*rzx_buffer;
7577 	uint64_t	rzx_alloc_max;
7578 	spa_t		*rzx_spa;
7579 } ztest_expand_io_t;
7580 
7581 #undef OD_ARRAY_SIZE
7582 #define	OD_ARRAY_SIZE	10
7583 
7584 /*
7585  * Write a request amount of data to some dataset objects.
7586  * There will be ztest_opts.zo_threads count of these running in parallel.
7587  */
7588 static __attribute__((noreturn)) void
7589 ztest_rzx_thread(void *arg)
7590 {
7591 	ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7592 	ztest_od_t *od;
7593 	int batchsize;
7594 	int od_size;
7595 	ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7596 	spa_t *spa = info->rzx_spa;
7597 
7598 	od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7599 	od = umem_alloc(od_size, UMEM_NOFAIL);
7600 	batchsize = OD_ARRAY_SIZE;
7601 
7602 	/* Create objects to write to */
7603 	for (int b = 0; b < batchsize; b++) {
7604 		ztest_od_init(od + b, info->rzx_id, FTAG, b,
7605 		    DMU_OT_UINT64_OTHER, 0, 0, 0);
7606 	}
7607 	if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7608 		umem_free(od, od_size);
7609 		thread_exit();
7610 	}
7611 
7612 	for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7613 	    offset += info->rzx_bufsize) {
7614 		/* write to 10 objects */
7615 		for (int i = 0; i < batchsize && written < info->rzx_amount;
7616 		    i++) {
7617 			(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7618 			ztest_write(zd, od[i].od_object, offset,
7619 			    info->rzx_bufsize, info->rzx_buffer);
7620 			(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7621 			written += info->rzx_bufsize;
7622 		}
7623 		txg_wait_synced(spa_get_dsl(spa), 0);
7624 		/* due to inflation, we'll typically bail here */
7625 		if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7626 		    info->rzx_alloc_max) {
7627 			break;
7628 		}
7629 	}
7630 
7631 	/* Remove a few objects to leave some holes in allocation space */
7632 	mutex_enter(&zd->zd_dirobj_lock);
7633 	(void) ztest_remove(zd, od, 2);
7634 	mutex_exit(&zd->zd_dirobj_lock);
7635 
7636 	umem_free(od, od_size);
7637 
7638 	thread_exit();
7639 }
7640 
7641 static __attribute__((noreturn)) void
7642 ztest_thread(void *arg)
7643 {
7644 	int rand;
7645 	uint64_t id = (uintptr_t)arg;
7646 	ztest_shared_t *zs = ztest_shared;
7647 	uint64_t call_next;
7648 	hrtime_t now;
7649 	ztest_info_t *zi;
7650 	ztest_shared_callstate_t *zc;
7651 
7652 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7653 		/*
7654 		 * See if it's time to force a crash.
7655 		 */
7656 		if (now > zs->zs_thread_kill &&
7657 		    raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7658 			ztest_kill(zs);
7659 		}
7660 
7661 		/*
7662 		 * If we're getting ENOSPC with some regularity, stop.
7663 		 */
7664 		if (zs->zs_enospc_count > 10)
7665 			break;
7666 
7667 		/*
7668 		 * Pick a random function to execute.
7669 		 */
7670 		rand = ztest_random(ZTEST_FUNCS);
7671 		zi = &ztest_info[rand];
7672 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7673 		call_next = zc->zc_next;
7674 
7675 		if (now >= call_next &&
7676 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7677 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7678 			ztest_execute(rand, zi, id);
7679 		}
7680 	}
7681 
7682 	thread_exit();
7683 }
7684 
7685 static void
7686 ztest_dataset_name(char *dsname, const char *pool, int d)
7687 {
7688 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7689 }
7690 
7691 static void
7692 ztest_dataset_destroy(int d)
7693 {
7694 	char name[ZFS_MAX_DATASET_NAME_LEN];
7695 	int t;
7696 
7697 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7698 
7699 	if (ztest_opts.zo_verbose >= 3)
7700 		(void) printf("Destroying %s to free up space\n", name);
7701 
7702 	/*
7703 	 * Cleanup any non-standard clones and snapshots.  In general,
7704 	 * ztest thread t operates on dataset (t % zopt_datasets),
7705 	 * so there may be more than one thing to clean up.
7706 	 */
7707 	for (t = d; t < ztest_opts.zo_threads;
7708 	    t += ztest_opts.zo_datasets)
7709 		ztest_dsl_dataset_cleanup(name, t);
7710 
7711 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7712 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7713 }
7714 
7715 static void
7716 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7717 {
7718 	uint64_t usedobjs, dirobjs, scratch;
7719 
7720 	/*
7721 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7722 	 * Therefore, the number of objects in use should equal the
7723 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7724 	 * If not, we have an object leak.
7725 	 *
7726 	 * Note that we can only check this in ztest_dataset_open(),
7727 	 * when the open-context and syncing-context values agree.
7728 	 * That's because zap_count() returns the open-context value,
7729 	 * while dmu_objset_space() returns the rootbp fill count.
7730 	 */
7731 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7732 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7733 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7734 }
7735 
7736 static int
7737 ztest_dataset_open(int d)
7738 {
7739 	ztest_ds_t *zd = &ztest_ds[d];
7740 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7741 	objset_t *os;
7742 	zilog_t *zilog;
7743 	char name[ZFS_MAX_DATASET_NAME_LEN];
7744 	int error;
7745 
7746 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7747 
7748 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7749 
7750 	error = ztest_dataset_create(name);
7751 	if (error == ENOSPC) {
7752 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7753 		ztest_record_enospc(FTAG);
7754 		return (error);
7755 	}
7756 	ASSERT(error == 0 || error == EEXIST);
7757 
7758 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7759 	    B_TRUE, zd, &os));
7760 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7761 
7762 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7763 
7764 	zilog = zd->zd_zilog;
7765 
7766 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7767 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7768 		fatal(B_FALSE, "missing log records: "
7769 		    "claimed %"PRIu64" < committed %"PRIu64"",
7770 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7771 
7772 	ztest_dataset_dirobj_verify(zd);
7773 
7774 	zil_replay(os, zd, ztest_replay_vector);
7775 
7776 	ztest_dataset_dirobj_verify(zd);
7777 
7778 	if (ztest_opts.zo_verbose >= 6)
7779 		(void) printf("%s replay %"PRIu64" blocks, "
7780 		    "%"PRIu64" records, seq %"PRIu64"\n",
7781 		    zd->zd_name,
7782 		    zilog->zl_parse_blk_count,
7783 		    zilog->zl_parse_lr_count,
7784 		    zilog->zl_replaying_seq);
7785 
7786 	zilog = zil_open(os, ztest_get_data, NULL);
7787 
7788 	if (zilog->zl_replaying_seq != 0 &&
7789 	    zilog->zl_replaying_seq < committed_seq)
7790 		fatal(B_FALSE, "missing log records: "
7791 		    "replayed %"PRIu64" < committed %"PRIu64"",
7792 		    zilog->zl_replaying_seq, committed_seq);
7793 
7794 	return (0);
7795 }
7796 
7797 static void
7798 ztest_dataset_close(int d)
7799 {
7800 	ztest_ds_t *zd = &ztest_ds[d];
7801 
7802 	zil_close(zd->zd_zilog);
7803 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7804 
7805 	ztest_zd_fini(zd);
7806 }
7807 
7808 static int
7809 ztest_replay_zil_cb(const char *name, void *arg)
7810 {
7811 	(void) arg;
7812 	objset_t *os;
7813 	ztest_ds_t *zdtmp;
7814 
7815 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7816 	    B_TRUE, FTAG, &os));
7817 
7818 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7819 
7820 	ztest_zd_init(zdtmp, NULL, os);
7821 	zil_replay(os, zdtmp, ztest_replay_vector);
7822 	ztest_zd_fini(zdtmp);
7823 
7824 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7825 	    ztest_opts.zo_verbose >= 6) {
7826 		zilog_t *zilog = dmu_objset_zil(os);
7827 
7828 		(void) printf("%s replay %"PRIu64" blocks, "
7829 		    "%"PRIu64" records, seq %"PRIu64"\n",
7830 		    name,
7831 		    zilog->zl_parse_blk_count,
7832 		    zilog->zl_parse_lr_count,
7833 		    zilog->zl_replaying_seq);
7834 	}
7835 
7836 	umem_free(zdtmp, sizeof (ztest_ds_t));
7837 
7838 	dmu_objset_disown(os, B_TRUE, FTAG);
7839 	return (0);
7840 }
7841 
7842 static void
7843 ztest_freeze(void)
7844 {
7845 	ztest_ds_t *zd = &ztest_ds[0];
7846 	spa_t *spa;
7847 	int numloops = 0;
7848 
7849 	/* freeze not supported during RAIDZ expansion */
7850 	if (ztest_opts.zo_raid_do_expand)
7851 		return;
7852 
7853 	if (ztest_opts.zo_verbose >= 3)
7854 		(void) printf("testing spa_freeze()...\n");
7855 
7856 	raidz_scratch_verify();
7857 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7858 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7859 	VERIFY0(ztest_dataset_open(0));
7860 	ztest_spa = spa;
7861 
7862 	/*
7863 	 * Force the first log block to be transactionally allocated.
7864 	 * We have to do this before we freeze the pool -- otherwise
7865 	 * the log chain won't be anchored.
7866 	 */
7867 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7868 		ztest_dmu_object_alloc_free(zd, 0);
7869 		zil_commit(zd->zd_zilog, 0);
7870 	}
7871 
7872 	txg_wait_synced(spa_get_dsl(spa), 0);
7873 
7874 	/*
7875 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7876 	 * so that the only way to record changes from now on is the ZIL.
7877 	 */
7878 	spa_freeze(spa);
7879 
7880 	/*
7881 	 * Because it is hard to predict how much space a write will actually
7882 	 * require beforehand, we leave ourselves some fudge space to write over
7883 	 * capacity.
7884 	 */
7885 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7886 
7887 	/*
7888 	 * Run tests that generate log records but don't alter the pool config
7889 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7890 	 * We do a txg_wait_synced() after each iteration to force the txg
7891 	 * to increase well beyond the last synced value in the uberblock.
7892 	 * The ZIL should be OK with that.
7893 	 *
7894 	 * Run a random number of times less than zo_maxloops and ensure we do
7895 	 * not run out of space on the pool.
7896 	 */
7897 	while (ztest_random(10) != 0 &&
7898 	    numloops++ < ztest_opts.zo_maxloops &&
7899 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7900 		ztest_od_t od;
7901 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7902 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7903 		ztest_io(zd, od.od_object,
7904 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7905 		txg_wait_synced(spa_get_dsl(spa), 0);
7906 	}
7907 
7908 	/*
7909 	 * Commit all of the changes we just generated.
7910 	 */
7911 	zil_commit(zd->zd_zilog, 0);
7912 	txg_wait_synced(spa_get_dsl(spa), 0);
7913 
7914 	/*
7915 	 * Close our dataset and close the pool.
7916 	 */
7917 	ztest_dataset_close(0);
7918 	spa_close(spa, FTAG);
7919 	kernel_fini();
7920 
7921 	/*
7922 	 * Open and close the pool and dataset to induce log replay.
7923 	 */
7924 	raidz_scratch_verify();
7925 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7926 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7927 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7928 	VERIFY0(ztest_dataset_open(0));
7929 	ztest_spa = spa;
7930 	txg_wait_synced(spa_get_dsl(spa), 0);
7931 	ztest_dataset_close(0);
7932 	ztest_reguid(NULL, 0);
7933 
7934 	spa_close(spa, FTAG);
7935 	kernel_fini();
7936 }
7937 
7938 static void
7939 ztest_import_impl(void)
7940 {
7941 	importargs_t args = { 0 };
7942 	nvlist_t *cfg = NULL;
7943 	int nsearch = 1;
7944 	char *searchdirs[nsearch];
7945 	int flags = ZFS_IMPORT_MISSING_LOG;
7946 
7947 	searchdirs[0] = ztest_opts.zo_dir;
7948 	args.paths = nsearch;
7949 	args.path = searchdirs;
7950 	args.can_be_active = B_FALSE;
7951 
7952 	libpc_handle_t lpch = {
7953 		.lpc_lib_handle = NULL,
7954 		.lpc_ops = &libzpool_config_ops,
7955 		.lpc_printerr = B_TRUE
7956 	};
7957 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
7958 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7959 	fnvlist_free(cfg);
7960 }
7961 
7962 /*
7963  * Import a storage pool with the given name.
7964  */
7965 static void
7966 ztest_import(ztest_shared_t *zs)
7967 {
7968 	spa_t *spa;
7969 
7970 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7971 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7972 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7973 
7974 	raidz_scratch_verify();
7975 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7976 
7977 	ztest_import_impl();
7978 
7979 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7980 	zs->zs_metaslab_sz =
7981 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7982 	zs->zs_guid = spa_guid(spa);
7983 	spa_close(spa, FTAG);
7984 
7985 	kernel_fini();
7986 
7987 	if (!ztest_opts.zo_mmp_test) {
7988 		ztest_run_zdb(zs->zs_guid);
7989 		ztest_freeze();
7990 		ztest_run_zdb(zs->zs_guid);
7991 	}
7992 
7993 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7994 	mutex_destroy(&ztest_vdev_lock);
7995 	mutex_destroy(&ztest_checkpoint_lock);
7996 }
7997 
7998 /*
7999  * After the expansion was killed, check that the pool is healthy
8000  */
8001 static void
8002 ztest_raidz_expand_check(spa_t *spa)
8003 {
8004 	ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8005 	/*
8006 	 * Set pool check done flag, main program will run a zdb check
8007 	 * of the pool when we exit.
8008 	 */
8009 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8010 
8011 	/* Wait for reflow to finish */
8012 	if (ztest_opts.zo_verbose >= 1) {
8013 		(void) printf("\nwaiting for reflow to finish ...\n");
8014 	}
8015 	pool_raidz_expand_stat_t rzx_stats;
8016 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8017 	do {
8018 		txg_wait_synced(spa_get_dsl(spa), 0);
8019 		(void) poll(NULL, 0, 500); /* wait 1/2 second */
8020 
8021 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8022 		(void) spa_raidz_expand_get_stats(spa, pres);
8023 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8024 	} while (pres->pres_state != DSS_FINISHED &&
8025 	    pres->pres_reflowed < pres->pres_to_reflow);
8026 
8027 	if (ztest_opts.zo_verbose >= 1) {
8028 		(void) printf("verifying an interrupted raidz "
8029 		    "expansion using a pool scrub ...\n");
8030 	}
8031 	/* Will fail here if there is non-recoverable corruption detected */
8032 	VERIFY0(ztest_scrub_impl(spa));
8033 	if (ztest_opts.zo_verbose >= 1) {
8034 		(void) printf("raidz expansion scrub check complete\n");
8035 	}
8036 }
8037 
8038 /*
8039  * Start a raidz expansion test.  We run some I/O on the pool for a while
8040  * to get some data in the pool.  Then we grow the raidz and
8041  * kill the test at the requested offset into the reflow, verifying that
8042  * doing such does not lead to pool corruption.
8043  */
8044 static void
8045 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8046 {
8047 	nvlist_t *root;
8048 	pool_raidz_expand_stat_t rzx_stats;
8049 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8050 	kthread_t **run_threads;
8051 	vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8052 	int total_disks = rzvd->vdev_children;
8053 	int data_disks = total_disks - vdev_get_nparity(rzvd);
8054 	uint64_t alloc_goal;
8055 	uint64_t csize;
8056 	int error, t;
8057 	int threads = ztest_opts.zo_threads;
8058 	ztest_expand_io_t *thread_args;
8059 
8060 	ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8061 	ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8062 	ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8063 
8064 	/* Setup a 1 MiB buffer of random data */
8065 	uint64_t bufsize = 1024 * 1024;
8066 	void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8067 
8068 	if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8069 		fatal(B_TRUE, "short read from /dev/urandom");
8070 	}
8071 	/*
8072 	 * Put some data in the pool and then attach a vdev to initiate
8073 	 * reflow.
8074 	 */
8075 	run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8076 	thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8077 	    UMEM_NOFAIL);
8078 	/* Aim for roughly 25% of allocatable space up to 1GB */
8079 	alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8080 	alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8081 	if (ztest_opts.zo_verbose >= 1) {
8082 		(void) printf("adding data to pool '%s', goal %llu bytes\n",
8083 		    ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8084 	}
8085 
8086 	/*
8087 	 * Kick off all the I/O generators that run in parallel.
8088 	 */
8089 	for (t = 0; t < threads; t++) {
8090 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8091 			umem_free(run_threads, threads * sizeof (kthread_t *));
8092 			umem_free(buffer, bufsize);
8093 			return;
8094 		}
8095 		thread_args[t].rzx_id = t;
8096 		thread_args[t].rzx_amount = alloc_goal / threads;
8097 		thread_args[t].rzx_bufsize = bufsize;
8098 		thread_args[t].rzx_buffer = buffer;
8099 		thread_args[t].rzx_alloc_max = alloc_goal;
8100 		thread_args[t].rzx_spa = spa;
8101 		run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8102 		    &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8103 		    defclsyspri);
8104 	}
8105 
8106 	/*
8107 	 * Wait for all of the writers to complete.
8108 	 */
8109 	for (t = 0; t < threads; t++)
8110 		VERIFY0(thread_join(run_threads[t]));
8111 
8112 	/*
8113 	 * Close all datasets. This must be done after all the threads
8114 	 * are joined so we can be sure none of the datasets are in-use
8115 	 * by any of the threads.
8116 	 */
8117 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8118 		if (t < ztest_opts.zo_datasets)
8119 			ztest_dataset_close(t);
8120 	}
8121 
8122 	txg_wait_synced(spa_get_dsl(spa), 0);
8123 
8124 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8125 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8126 
8127 	umem_free(buffer, bufsize);
8128 	umem_free(run_threads, threads * sizeof (kthread_t *));
8129 	umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8130 
8131 	/* Set our reflow target to 25%, 50% or 75% of allocated size */
8132 	uint_t multiple = ztest_random(3) + 1;
8133 	uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8134 	raidz_expand_max_reflow_bytes = reflow_max;
8135 
8136 	if (ztest_opts.zo_verbose >= 1) {
8137 		(void) printf("running raidz expansion test, killing when "
8138 		    "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8139 		    (u_longlong_t)reflow_max, multiple);
8140 	}
8141 
8142 	/* XXX - do we want some I/O load during the reflow? */
8143 
8144 	/*
8145 	 * Use a disk size that is larger than existing ones
8146 	 */
8147 	cvd = rzvd->vdev_child[0];
8148 	csize = vdev_get_min_asize(cvd);
8149 	csize += csize / 10;
8150 	/*
8151 	 * Path to vdev to be attached
8152 	 */
8153 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8154 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8155 	    ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8156 	/*
8157 	 * Build the nvlist describing newpath.
8158 	 */
8159 	root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8160 	    NULL, 0, 0, 1);
8161 	/*
8162 	 * Expand the raidz vdev by attaching the new disk
8163 	 */
8164 	if (ztest_opts.zo_verbose >= 1) {
8165 		(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8166 		    (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8167 		    newpath);
8168 	}
8169 	error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8170 	nvlist_free(root);
8171 	if (error != 0) {
8172 		fatal(0, "raidz expand: attach (%s %llu) returned %d",
8173 		    newpath, (long long)csize, error);
8174 	}
8175 
8176 	/*
8177 	 * Wait for reflow to begin
8178 	 */
8179 	while (spa->spa_raidz_expand == NULL) {
8180 		txg_wait_synced(spa_get_dsl(spa), 0);
8181 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8182 	}
8183 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8184 	(void) spa_raidz_expand_get_stats(spa, pres);
8185 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8186 	while (pres->pres_state != DSS_SCANNING) {
8187 		txg_wait_synced(spa_get_dsl(spa), 0);
8188 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8189 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8190 		(void) spa_raidz_expand_get_stats(spa, pres);
8191 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8192 	}
8193 
8194 	ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8195 	ASSERT3U(pres->pres_to_reflow, !=, 0);
8196 	/*
8197 	 * Set so when we are killed we go to raidz checking rather than
8198 	 * restarting test.
8199 	 */
8200 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8201 	if (ztest_opts.zo_verbose >= 1) {
8202 		(void) printf("raidz expansion reflow started, waiting for "
8203 		    "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8204 	}
8205 
8206 	/*
8207 	 * Wait for reflow maximum to be reached and then kill the test
8208 	 */
8209 	while (pres->pres_reflowed < reflow_max) {
8210 		txg_wait_synced(spa_get_dsl(spa), 0);
8211 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8212 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8213 		(void) spa_raidz_expand_get_stats(spa, pres);
8214 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8215 	}
8216 
8217 	/* Reset the reflow pause before killing */
8218 	raidz_expand_max_reflow_bytes = 0;
8219 
8220 	if (ztest_opts.zo_verbose >= 1) {
8221 		(void) printf("killing raidz expansion test after reflow "
8222 		    "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8223 	}
8224 
8225 	/*
8226 	 * Kill ourself to simulate a panic during a reflow.  Our parent will
8227 	 * restart the test and the changed flag value will drive the test
8228 	 * through the scrub/check code to verify the pool is not corrupted.
8229 	 */
8230 	ztest_kill(zs);
8231 }
8232 
8233 static void
8234 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8235 {
8236 	kthread_t **run_threads;
8237 	int t;
8238 
8239 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8240 	    UMEM_NOFAIL);
8241 
8242 	/*
8243 	 * Kick off all the tests that run in parallel.
8244 	 */
8245 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8246 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8247 			umem_free(run_threads, ztest_opts.zo_threads *
8248 			    sizeof (kthread_t *));
8249 			return;
8250 		}
8251 
8252 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
8253 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8254 		    defclsyspri);
8255 	}
8256 
8257 	/*
8258 	 * Wait for all of the tests to complete.
8259 	 */
8260 	for (t = 0; t < ztest_opts.zo_threads; t++)
8261 		VERIFY0(thread_join(run_threads[t]));
8262 
8263 	/*
8264 	 * Close all datasets. This must be done after all the threads
8265 	 * are joined so we can be sure none of the datasets are in-use
8266 	 * by any of the threads.
8267 	 */
8268 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8269 		if (t < ztest_opts.zo_datasets)
8270 			ztest_dataset_close(t);
8271 	}
8272 
8273 	txg_wait_synced(spa_get_dsl(spa), 0);
8274 
8275 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8276 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8277 
8278 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8279 }
8280 
8281 /*
8282  * Setup our test context and kick off threads to run tests on all datasets
8283  * in parallel.
8284  */
8285 static void
8286 ztest_run(ztest_shared_t *zs)
8287 {
8288 	spa_t *spa;
8289 	objset_t *os;
8290 	kthread_t *resume_thread, *deadman_thread;
8291 	uint64_t object;
8292 	int error;
8293 	int t, d;
8294 
8295 	ztest_exiting = B_FALSE;
8296 
8297 	/*
8298 	 * Initialize parent/child shared state.
8299 	 */
8300 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8301 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8302 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8303 
8304 	zs->zs_thread_start = gethrtime();
8305 	zs->zs_thread_stop =
8306 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8307 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8308 	zs->zs_thread_kill = zs->zs_thread_stop;
8309 	if (ztest_random(100) < ztest_opts.zo_killrate) {
8310 		zs->zs_thread_kill -=
8311 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
8312 	}
8313 
8314 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8315 
8316 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8317 	    offsetof(ztest_cb_data_t, zcd_node));
8318 
8319 	/*
8320 	 * Open our pool.  It may need to be imported first depending on
8321 	 * what tests were running when the previous pass was terminated.
8322 	 */
8323 	raidz_scratch_verify();
8324 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8325 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8326 	if (error) {
8327 		VERIFY3S(error, ==, ENOENT);
8328 		ztest_import_impl();
8329 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8330 		zs->zs_metaslab_sz =
8331 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8332 	}
8333 
8334 	metaslab_preload_limit = ztest_random(20) + 1;
8335 	ztest_spa = spa;
8336 
8337 	/*
8338 	 * XXX - BUGBUG raidz expansion do not run this for generic for now
8339 	 */
8340 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8341 		VERIFY0(vdev_raidz_impl_set("cycle"));
8342 
8343 	dmu_objset_stats_t dds;
8344 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8345 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8346 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8347 	dmu_objset_fast_stat(os, &dds);
8348 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8349 	dmu_objset_disown(os, B_TRUE, FTAG);
8350 
8351 	/* Give the dedicated raidz expansion test more grace time */
8352 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8353 		zfs_deadman_synctime_ms *= 2;
8354 
8355 	/*
8356 	 * Create a thread to periodically resume suspended I/O.
8357 	 */
8358 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8359 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8360 
8361 	/*
8362 	 * Create a deadman thread and set to panic if we hang.
8363 	 */
8364 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8365 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8366 
8367 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8368 
8369 	/*
8370 	 * Verify that we can safely inquire about any object,
8371 	 * whether it's allocated or not.  To make it interesting,
8372 	 * we probe a 5-wide window around each power of two.
8373 	 * This hits all edge cases, including zero and the max.
8374 	 */
8375 	for (t = 0; t < 64; t++) {
8376 		for (d = -5; d <= 5; d++) {
8377 			error = dmu_object_info(spa->spa_meta_objset,
8378 			    (1ULL << t) + d, NULL);
8379 			ASSERT(error == 0 || error == ENOENT ||
8380 			    error == EINVAL);
8381 		}
8382 	}
8383 
8384 	/*
8385 	 * If we got any ENOSPC errors on the previous run, destroy something.
8386 	 */
8387 	if (zs->zs_enospc_count != 0) {
8388 		/* Not expecting ENOSPC errors during raidz expansion tests */
8389 		ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8390 		    RAIDZ_EXPAND_NONE);
8391 
8392 		int d = ztest_random(ztest_opts.zo_datasets);
8393 		ztest_dataset_destroy(d);
8394 	}
8395 	zs->zs_enospc_count = 0;
8396 
8397 	/*
8398 	 * If we were in the middle of ztest_device_removal() and were killed
8399 	 * we need to ensure the removal and scrub complete before running
8400 	 * any tests that check ztest_device_removal_active. The removal will
8401 	 * be restarted automatically when the spa is opened, but we need to
8402 	 * initiate the scrub manually if it is not already in progress. Note
8403 	 * that we always run the scrub whenever an indirect vdev exists
8404 	 * because we have no way of knowing for sure if ztest_device_removal()
8405 	 * fully completed its scrub before the pool was reimported.
8406 	 *
8407 	 * Does not apply for the RAIDZ expansion specific test runs
8408 	 */
8409 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8410 	    (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8411 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8412 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8413 			txg_wait_synced(spa_get_dsl(spa), 0);
8414 
8415 		error = ztest_scrub_impl(spa);
8416 		if (error == EBUSY)
8417 			error = 0;
8418 		ASSERT0(error);
8419 	}
8420 
8421 	if (ztest_opts.zo_verbose >= 4)
8422 		(void) printf("starting main threads...\n");
8423 
8424 	/*
8425 	 * Replay all logs of all datasets in the pool. This is primarily for
8426 	 * temporary datasets which wouldn't otherwise get replayed, which
8427 	 * can trigger failures when attempting to offline a SLOG in
8428 	 * ztest_fault_inject().
8429 	 */
8430 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8431 	    NULL, DS_FIND_CHILDREN);
8432 
8433 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8434 		ztest_raidz_expand_run(zs, spa);
8435 	else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8436 		ztest_raidz_expand_check(spa);
8437 	else
8438 		ztest_generic_run(zs, spa);
8439 
8440 	/* Kill the resume and deadman threads */
8441 	ztest_exiting = B_TRUE;
8442 	VERIFY0(thread_join(resume_thread));
8443 	VERIFY0(thread_join(deadman_thread));
8444 	ztest_resume(spa);
8445 
8446 	/*
8447 	 * Right before closing the pool, kick off a bunch of async I/O;
8448 	 * spa_close() should wait for it to complete.
8449 	 */
8450 	for (object = 1; object < 50; object++) {
8451 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8452 		    ZIO_PRIORITY_SYNC_READ);
8453 	}
8454 
8455 	/* Verify that at least one commit cb was called in a timely fashion */
8456 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8457 		VERIFY0(zc_min_txg_delay);
8458 
8459 	spa_close(spa, FTAG);
8460 
8461 	/*
8462 	 * Verify that we can loop over all pools.
8463 	 */
8464 	mutex_enter(&spa_namespace_lock);
8465 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8466 		if (ztest_opts.zo_verbose > 3)
8467 			(void) printf("spa_next: found %s\n", spa_name(spa));
8468 	mutex_exit(&spa_namespace_lock);
8469 
8470 	/*
8471 	 * Verify that we can export the pool and reimport it under a
8472 	 * different name.
8473 	 */
8474 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8475 		char name[ZFS_MAX_DATASET_NAME_LEN];
8476 		(void) snprintf(name, sizeof (name), "%s_import",
8477 		    ztest_opts.zo_pool);
8478 		ztest_spa_import_export(ztest_opts.zo_pool, name);
8479 		ztest_spa_import_export(name, ztest_opts.zo_pool);
8480 	}
8481 
8482 	kernel_fini();
8483 
8484 	list_destroy(&zcl.zcl_callbacks);
8485 	mutex_destroy(&zcl.zcl_callbacks_lock);
8486 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8487 	mutex_destroy(&ztest_vdev_lock);
8488 	mutex_destroy(&ztest_checkpoint_lock);
8489 }
8490 
8491 static void
8492 print_time(hrtime_t t, char *timebuf)
8493 {
8494 	hrtime_t s = t / NANOSEC;
8495 	hrtime_t m = s / 60;
8496 	hrtime_t h = m / 60;
8497 	hrtime_t d = h / 24;
8498 
8499 	s -= m * 60;
8500 	m -= h * 60;
8501 	h -= d * 24;
8502 
8503 	timebuf[0] = '\0';
8504 
8505 	if (d)
8506 		(void) sprintf(timebuf,
8507 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
8508 	else if (h)
8509 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8510 	else if (m)
8511 		(void) sprintf(timebuf, "%llum%02llus", m, s);
8512 	else
8513 		(void) sprintf(timebuf, "%llus", s);
8514 }
8515 
8516 static nvlist_t *
8517 make_random_pool_props(void)
8518 {
8519 	nvlist_t *props;
8520 
8521 	props = fnvlist_alloc();
8522 
8523 	/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8524 	if (ztest_random(5) == 0) {
8525 		fnvlist_add_uint64(props,
8526 		    zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8527 		    2 * 1024 * 1024);
8528 	}
8529 
8530 	/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8531 	if (ztest_random(2) == 0) {
8532 		fnvlist_add_uint64(props,
8533 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8534 	}
8535 
8536 	return (props);
8537 }
8538 
8539 /*
8540  * Create a storage pool with the given name and initial vdev size.
8541  * Then test spa_freeze() functionality.
8542  */
8543 static void
8544 ztest_init(ztest_shared_t *zs)
8545 {
8546 	spa_t *spa;
8547 	nvlist_t *nvroot, *props;
8548 	int i;
8549 
8550 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8551 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8552 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8553 
8554 	raidz_scratch_verify();
8555 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8556 
8557 	/*
8558 	 * Create the storage pool.
8559 	 */
8560 	(void) spa_destroy(ztest_opts.zo_pool);
8561 	ztest_shared->zs_vdev_next_leaf = 0;
8562 	zs->zs_splits = 0;
8563 	zs->zs_mirrors = ztest_opts.zo_mirrors;
8564 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8565 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8566 	props = make_random_pool_props();
8567 
8568 	/*
8569 	 * We don't expect the pool to suspend unless maxfaults == 0,
8570 	 * in which case ztest_fault_inject() temporarily takes away
8571 	 * the only valid replica.
8572 	 */
8573 	fnvlist_add_uint64(props,
8574 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8575 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8576 
8577 	for (i = 0; i < SPA_FEATURES; i++) {
8578 		char *buf;
8579 
8580 		if (!spa_feature_table[i].fi_zfs_mod_supported)
8581 			continue;
8582 
8583 		/*
8584 		 * 75% chance of using the log space map feature. We want ztest
8585 		 * to exercise both the code paths that use the log space map
8586 		 * feature and the ones that don't.
8587 		 */
8588 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8589 			continue;
8590 
8591 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8592 		    spa_feature_table[i].fi_uname));
8593 		fnvlist_add_uint64(props, buf, 0);
8594 		free(buf);
8595 	}
8596 
8597 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8598 	fnvlist_free(nvroot);
8599 	fnvlist_free(props);
8600 
8601 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8602 	zs->zs_metaslab_sz =
8603 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8604 	zs->zs_guid = spa_guid(spa);
8605 	spa_close(spa, FTAG);
8606 
8607 	kernel_fini();
8608 
8609 	if (!ztest_opts.zo_mmp_test) {
8610 		ztest_run_zdb(zs->zs_guid);
8611 		ztest_freeze();
8612 		ztest_run_zdb(zs->zs_guid);
8613 	}
8614 
8615 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8616 	mutex_destroy(&ztest_vdev_lock);
8617 	mutex_destroy(&ztest_checkpoint_lock);
8618 }
8619 
8620 static void
8621 setup_data_fd(void)
8622 {
8623 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8624 
8625 	ztest_fd_data = mkstemp(ztest_name_data);
8626 	ASSERT3S(ztest_fd_data, >=, 0);
8627 	(void) unlink(ztest_name_data);
8628 }
8629 
8630 static int
8631 shared_data_size(ztest_shared_hdr_t *hdr)
8632 {
8633 	int size;
8634 
8635 	size = hdr->zh_hdr_size;
8636 	size += hdr->zh_opts_size;
8637 	size += hdr->zh_size;
8638 	size += hdr->zh_stats_size * hdr->zh_stats_count;
8639 	size += hdr->zh_ds_size * hdr->zh_ds_count;
8640 	size += hdr->zh_scratch_state_size;
8641 
8642 	return (size);
8643 }
8644 
8645 static void
8646 setup_hdr(void)
8647 {
8648 	int size;
8649 	ztest_shared_hdr_t *hdr;
8650 
8651 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8652 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8653 	ASSERT3P(hdr, !=, MAP_FAILED);
8654 
8655 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8656 
8657 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8658 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8659 	hdr->zh_size = sizeof (ztest_shared_t);
8660 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8661 	hdr->zh_stats_count = ZTEST_FUNCS;
8662 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8663 	hdr->zh_ds_count = ztest_opts.zo_datasets;
8664 	hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8665 
8666 	size = shared_data_size(hdr);
8667 	VERIFY0(ftruncate(ztest_fd_data, size));
8668 
8669 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8670 }
8671 
8672 static void
8673 setup_data(void)
8674 {
8675 	int size, offset;
8676 	ztest_shared_hdr_t *hdr;
8677 	uint8_t *buf;
8678 
8679 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8680 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8681 	ASSERT3P(hdr, !=, MAP_FAILED);
8682 
8683 	size = shared_data_size(hdr);
8684 
8685 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8686 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8687 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8688 	ASSERT3P(hdr, !=, MAP_FAILED);
8689 	buf = (uint8_t *)hdr;
8690 
8691 	offset = hdr->zh_hdr_size;
8692 	ztest_shared_opts = (void *)&buf[offset];
8693 	offset += hdr->zh_opts_size;
8694 	ztest_shared = (void *)&buf[offset];
8695 	offset += hdr->zh_size;
8696 	ztest_shared_callstate = (void *)&buf[offset];
8697 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
8698 	ztest_shared_ds = (void *)&buf[offset];
8699 	offset += hdr->zh_ds_size * hdr->zh_ds_count;
8700 	ztest_scratch_state = (void *)&buf[offset];
8701 }
8702 
8703 static boolean_t
8704 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8705 {
8706 	pid_t pid;
8707 	int status;
8708 	char *cmdbuf = NULL;
8709 
8710 	pid = fork();
8711 
8712 	if (cmd == NULL) {
8713 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8714 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8715 		cmd = cmdbuf;
8716 	}
8717 
8718 	if (pid == -1)
8719 		fatal(B_TRUE, "fork failed");
8720 
8721 	if (pid == 0) {	/* child */
8722 		char fd_data_str[12];
8723 
8724 		VERIFY3S(11, >=,
8725 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8726 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8727 
8728 		if (libpath != NULL) {
8729 			const char *curlp = getenv("LD_LIBRARY_PATH");
8730 			if (curlp == NULL)
8731 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8732 			else {
8733 				char *newlp = NULL;
8734 				VERIFY3S(-1, !=,
8735 				    asprintf(&newlp, "%s:%s", libpath, curlp));
8736 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8737 				free(newlp);
8738 			}
8739 		}
8740 		(void) execl(cmd, cmd, (char *)NULL);
8741 		ztest_dump_core = B_FALSE;
8742 		fatal(B_TRUE, "exec failed: %s", cmd);
8743 	}
8744 
8745 	if (cmdbuf != NULL) {
8746 		umem_free(cmdbuf, MAXPATHLEN);
8747 		cmd = NULL;
8748 	}
8749 
8750 	while (waitpid(pid, &status, 0) != pid)
8751 		continue;
8752 	if (statusp != NULL)
8753 		*statusp = status;
8754 
8755 	if (WIFEXITED(status)) {
8756 		if (WEXITSTATUS(status) != 0) {
8757 			(void) fprintf(stderr, "child exited with code %d\n",
8758 			    WEXITSTATUS(status));
8759 			exit(2);
8760 		}
8761 		return (B_FALSE);
8762 	} else if (WIFSIGNALED(status)) {
8763 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8764 			(void) fprintf(stderr, "child died with signal %d\n",
8765 			    WTERMSIG(status));
8766 			exit(3);
8767 		}
8768 		return (B_TRUE);
8769 	} else {
8770 		(void) fprintf(stderr, "something strange happened to child\n");
8771 		exit(4);
8772 	}
8773 }
8774 
8775 static void
8776 ztest_run_init(void)
8777 {
8778 	int i;
8779 
8780 	ztest_shared_t *zs = ztest_shared;
8781 
8782 	/*
8783 	 * Blow away any existing copy of zpool.cache
8784 	 */
8785 	(void) remove(spa_config_path);
8786 
8787 	if (ztest_opts.zo_init == 0) {
8788 		if (ztest_opts.zo_verbose >= 1)
8789 			(void) printf("Importing pool %s\n",
8790 			    ztest_opts.zo_pool);
8791 		ztest_import(zs);
8792 		return;
8793 	}
8794 
8795 	/*
8796 	 * Create and initialize our storage pool.
8797 	 */
8798 	for (i = 1; i <= ztest_opts.zo_init; i++) {
8799 		memset(zs, 0, sizeof (*zs));
8800 		if (ztest_opts.zo_verbose >= 3 &&
8801 		    ztest_opts.zo_init != 1) {
8802 			(void) printf("ztest_init(), pass %d\n", i);
8803 		}
8804 		ztest_init(zs);
8805 	}
8806 }
8807 
8808 int
8809 main(int argc, char **argv)
8810 {
8811 	int kills = 0;
8812 	int iters = 0;
8813 	int older = 0;
8814 	int newer = 0;
8815 	ztest_shared_t *zs;
8816 	ztest_info_t *zi;
8817 	ztest_shared_callstate_t *zc;
8818 	char timebuf[100];
8819 	char numbuf[NN_NUMBUF_SZ];
8820 	char *cmd;
8821 	boolean_t hasalt;
8822 	int f, err;
8823 	char *fd_data_str = getenv("ZTEST_FD_DATA");
8824 	struct sigaction action;
8825 
8826 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8827 
8828 	dprintf_setup(&argc, argv);
8829 	zfs_deadman_synctime_ms = 300000;
8830 	zfs_deadman_checktime_ms = 30000;
8831 	/*
8832 	 * As two-word space map entries may not come up often (especially
8833 	 * if pool and vdev sizes are small) we want to force at least some
8834 	 * of them so the feature get tested.
8835 	 */
8836 	zfs_force_some_double_word_sm_entries = B_TRUE;
8837 
8838 	/*
8839 	 * Verify that even extensively damaged split blocks with many
8840 	 * segments can be reconstructed in a reasonable amount of time
8841 	 * when reconstruction is known to be possible.
8842 	 *
8843 	 * Note: the lower this value is, the more damage we inflict, and
8844 	 * the more time ztest spends in recovering that damage. We chose
8845 	 * to induce damage 1/100th of the time so recovery is tested but
8846 	 * not so frequently that ztest doesn't get to test other code paths.
8847 	 */
8848 	zfs_reconstruct_indirect_damage_fraction = 100;
8849 
8850 	action.sa_handler = sig_handler;
8851 	sigemptyset(&action.sa_mask);
8852 	action.sa_flags = 0;
8853 
8854 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8855 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8856 		    strerror(errno));
8857 		exit(EXIT_FAILURE);
8858 	}
8859 
8860 	if (sigaction(SIGABRT, &action, NULL) < 0) {
8861 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8862 		    strerror(errno));
8863 		exit(EXIT_FAILURE);
8864 	}
8865 
8866 	/*
8867 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8868 	 * ztest from needlessly depleting the system entropy pool.
8869 	 */
8870 	random_path = "/dev/urandom";
8871 	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8872 	ASSERT3S(ztest_fd_rand, >=, 0);
8873 
8874 	if (!fd_data_str) {
8875 		process_options(argc, argv);
8876 
8877 		setup_data_fd();
8878 		setup_hdr();
8879 		setup_data();
8880 		memcpy(ztest_shared_opts, &ztest_opts,
8881 		    sizeof (*ztest_shared_opts));
8882 	} else {
8883 		ztest_fd_data = atoi(fd_data_str);
8884 		setup_data();
8885 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8886 	}
8887 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8888 
8889 	err = ztest_set_global_vars();
8890 	if (err != 0 && !fd_data_str) {
8891 		/* error message done by ztest_set_global_vars */
8892 		exit(EXIT_FAILURE);
8893 	} else {
8894 		/* children should not be spawned if setting gvars fails */
8895 		VERIFY3S(err, ==, 0);
8896 	}
8897 
8898 	/* Override location of zpool.cache */
8899 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8900 	    ztest_opts.zo_dir), !=, -1);
8901 
8902 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8903 	    UMEM_NOFAIL);
8904 	zs = ztest_shared;
8905 
8906 	if (fd_data_str) {
8907 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8908 		metaslab_df_alloc_threshold =
8909 		    zs->zs_metaslab_df_alloc_threshold;
8910 
8911 		if (zs->zs_do_init)
8912 			ztest_run_init();
8913 		else
8914 			ztest_run(zs);
8915 		exit(0);
8916 	}
8917 
8918 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8919 
8920 	if (ztest_opts.zo_verbose >= 1) {
8921 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
8922 		    "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
8923 		    ztest_opts.zo_vdevs,
8924 		    ztest_opts.zo_datasets,
8925 		    ztest_opts.zo_threads,
8926 		    ztest_opts.zo_raid_children,
8927 		    ztest_opts.zo_raid_type,
8928 		    ztest_opts.zo_raid_parity,
8929 		    ztest_opts.zo_time);
8930 	}
8931 
8932 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8933 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8934 
8935 	zs->zs_do_init = B_TRUE;
8936 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8937 		if (ztest_opts.zo_verbose >= 1) {
8938 			(void) printf("Executing older ztest for "
8939 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
8940 		}
8941 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8942 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8943 	} else {
8944 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8945 	}
8946 	zs->zs_do_init = B_FALSE;
8947 
8948 	zs->zs_proc_start = gethrtime();
8949 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8950 
8951 	for (f = 0; f < ZTEST_FUNCS; f++) {
8952 		zi = &ztest_info[f];
8953 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
8954 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8955 			zc->zc_next = UINT64_MAX;
8956 		else
8957 			zc->zc_next = zs->zs_proc_start +
8958 			    ztest_random(2 * zi->zi_interval[0] + 1);
8959 	}
8960 
8961 	/*
8962 	 * Run the tests in a loop.  These tests include fault injection
8963 	 * to verify that self-healing data works, and forced crashes
8964 	 * to verify that we never lose on-disk consistency.
8965 	 */
8966 	while (gethrtime() < zs->zs_proc_stop) {
8967 		int status;
8968 		boolean_t killed;
8969 
8970 		/*
8971 		 * Initialize the workload counters for each function.
8972 		 */
8973 		for (f = 0; f < ZTEST_FUNCS; f++) {
8974 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
8975 			zc->zc_count = 0;
8976 			zc->zc_time = 0;
8977 		}
8978 
8979 		/* Set the allocation switch size */
8980 		zs->zs_metaslab_df_alloc_threshold =
8981 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
8982 
8983 		if (!hasalt || ztest_random(2) == 0) {
8984 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8985 				(void) printf("Executing newer ztest: %s\n",
8986 				    cmd);
8987 			}
8988 			newer++;
8989 			killed = exec_child(cmd, NULL, B_TRUE, &status);
8990 		} else {
8991 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8992 				(void) printf("Executing older ztest: %s\n",
8993 				    ztest_opts.zo_alt_ztest);
8994 			}
8995 			older++;
8996 			killed = exec_child(ztest_opts.zo_alt_ztest,
8997 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
8998 		}
8999 
9000 		if (killed)
9001 			kills++;
9002 		iters++;
9003 
9004 		if (ztest_opts.zo_verbose >= 1) {
9005 			hrtime_t now = gethrtime();
9006 
9007 			now = MIN(now, zs->zs_proc_stop);
9008 			print_time(zs->zs_proc_stop - now, timebuf);
9009 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9010 
9011 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9012 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9013 			    iters,
9014 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
9015 			    zs->zs_enospc_count,
9016 			    100.0 * zs->zs_alloc / zs->zs_space,
9017 			    numbuf,
9018 			    100.0 * (now - zs->zs_proc_start) /
9019 			    (ztest_opts.zo_time * NANOSEC), timebuf);
9020 		}
9021 
9022 		if (ztest_opts.zo_verbose >= 2) {
9023 			(void) printf("\nWorkload summary:\n\n");
9024 			(void) printf("%7s %9s   %s\n",
9025 			    "Calls", "Time", "Function");
9026 			(void) printf("%7s %9s   %s\n",
9027 			    "-----", "----", "--------");
9028 			for (f = 0; f < ZTEST_FUNCS; f++) {
9029 				zi = &ztest_info[f];
9030 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
9031 				print_time(zc->zc_time, timebuf);
9032 				(void) printf("%7"PRIu64" %9s   %s\n",
9033 				    zc->zc_count, timebuf,
9034 				    zi->zi_funcname);
9035 			}
9036 			(void) printf("\n");
9037 		}
9038 
9039 		if (!ztest_opts.zo_mmp_test)
9040 			ztest_run_zdb(zs->zs_guid);
9041 		if (ztest_shared_opts->zo_raidz_expand_test ==
9042 		    RAIDZ_EXPAND_CHECKED)
9043 			break; /* raidz expand test complete */
9044 	}
9045 
9046 	if (ztest_opts.zo_verbose >= 1) {
9047 		if (hasalt) {
9048 			(void) printf("%d runs of older ztest: %s\n", older,
9049 			    ztest_opts.zo_alt_ztest);
9050 			(void) printf("%d runs of newer ztest: %s\n", newer,
9051 			    cmd);
9052 		}
9053 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9054 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9055 	}
9056 
9057 	umem_free(cmd, MAXNAMELEN);
9058 
9059 	return (0);
9060 }
9061