1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * (7) Threads are created with a reduced stack size, for sanity checking. 69 * Therefore, it's important not to allocate huge buffers on the stack. 70 * 71 * When run with no arguments, ztest runs for about five minutes and 72 * produces no output if successful. To get a little bit of information, 73 * specify -V. To get more information, specify -VV, and so on. 74 * 75 * To turn this into an overnight stress test, use -T to specify run time. 76 * 77 * You can ask more vdevs [-v], datasets [-d], or threads [-t] 78 * to increase the pool capacity, fanout, and overall stress level. 79 * 80 * Use the -k option to set the desired frequency of kills. 81 * 82 * When ztest invokes itself it passes all relevant information through a 83 * temporary file which is mmap-ed in the child process. This allows shared 84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 85 * stored at offset 0 of this file and contains information on the size and 86 * number of shared structures in the file. The information stored in this file 87 * must remain backwards compatible with older versions of ztest so that 88 * ztest can invoke them during backwards compatibility testing (-B). 89 */ 90 91 #include <sys/zfs_context.h> 92 #include <sys/spa.h> 93 #include <sys/dmu.h> 94 #include <sys/txg.h> 95 #include <sys/dbuf.h> 96 #include <sys/zap.h> 97 #include <sys/dmu_objset.h> 98 #include <sys/poll.h> 99 #include <sys/stat.h> 100 #include <sys/time.h> 101 #include <sys/wait.h> 102 #include <sys/mman.h> 103 #include <sys/resource.h> 104 #include <sys/zio.h> 105 #include <sys/zil.h> 106 #include <sys/zil_impl.h> 107 #include <sys/vdev_draid.h> 108 #include <sys/vdev_impl.h> 109 #include <sys/vdev_file.h> 110 #include <sys/vdev_initialize.h> 111 #include <sys/vdev_raidz.h> 112 #include <sys/vdev_trim.h> 113 #include <sys/spa_impl.h> 114 #include <sys/metaslab_impl.h> 115 #include <sys/dsl_prop.h> 116 #include <sys/dsl_dataset.h> 117 #include <sys/dsl_destroy.h> 118 #include <sys/dsl_scan.h> 119 #include <sys/zio_checksum.h> 120 #include <sys/zfs_refcount.h> 121 #include <sys/zfeature.h> 122 #include <sys/dsl_userhold.h> 123 #include <sys/abd.h> 124 #include <sys/blake3.h> 125 #include <stdio.h> 126 #include <stdlib.h> 127 #include <unistd.h> 128 #include <getopt.h> 129 #include <signal.h> 130 #include <umem.h> 131 #include <ctype.h> 132 #include <math.h> 133 #include <sys/fs/zfs.h> 134 #include <zfs_fletcher.h> 135 #include <libnvpair.h> 136 #include <libzutil.h> 137 #include <sys/crypto/icp.h> 138 #if (__GLIBC__ && !__UCLIBC__) 139 #include <execinfo.h> /* for backtrace() */ 140 #endif 141 142 static int ztest_fd_data = -1; 143 static int ztest_fd_rand = -1; 144 145 typedef struct ztest_shared_hdr { 146 uint64_t zh_hdr_size; 147 uint64_t zh_opts_size; 148 uint64_t zh_size; 149 uint64_t zh_stats_size; 150 uint64_t zh_stats_count; 151 uint64_t zh_ds_size; 152 uint64_t zh_ds_count; 153 } ztest_shared_hdr_t; 154 155 static ztest_shared_hdr_t *ztest_shared_hdr; 156 157 enum ztest_class_state { 158 ZTEST_VDEV_CLASS_OFF, 159 ZTEST_VDEV_CLASS_ON, 160 ZTEST_VDEV_CLASS_RND 161 }; 162 163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64) 164 #define ZO_GVARS_MAX_COUNT ((size_t)10) 165 166 typedef struct ztest_shared_opts { 167 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 168 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 169 char zo_alt_ztest[MAXNAMELEN]; 170 char zo_alt_libpath[MAXNAMELEN]; 171 uint64_t zo_vdevs; 172 uint64_t zo_vdevtime; 173 size_t zo_vdev_size; 174 int zo_ashift; 175 int zo_mirrors; 176 int zo_raid_children; 177 int zo_raid_parity; 178 char zo_raid_type[8]; 179 int zo_draid_data; 180 int zo_draid_spares; 181 int zo_datasets; 182 int zo_threads; 183 uint64_t zo_passtime; 184 uint64_t zo_killrate; 185 int zo_verbose; 186 int zo_init; 187 uint64_t zo_time; 188 uint64_t zo_maxloops; 189 uint64_t zo_metaslab_force_ganging; 190 int zo_mmp_test; 191 int zo_special_vdevs; 192 int zo_dump_dbgmsg; 193 int zo_gvars_count; 194 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN]; 195 } ztest_shared_opts_t; 196 197 /* Default values for command line options. */ 198 #define DEFAULT_POOL "ztest" 199 #define DEFAULT_VDEV_DIR "/tmp" 200 #define DEFAULT_VDEV_COUNT 5 201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */ 202 #define DEFAULT_VDEV_SIZE_STR "256M" 203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT 204 #define DEFAULT_MIRRORS 2 205 #define DEFAULT_RAID_CHILDREN 4 206 #define DEFAULT_RAID_PARITY 1 207 #define DEFAULT_DRAID_DATA 4 208 #define DEFAULT_DRAID_SPARES 1 209 #define DEFAULT_DATASETS_COUNT 7 210 #define DEFAULT_THREADS 23 211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */ 212 #define DEFAULT_RUN_TIME_STR "300 sec" 213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */ 214 #define DEFAULT_PASS_TIME_STR "60 sec" 215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */ 216 #define DEFAULT_KILLRATE_STR "70%" 217 #define DEFAULT_INITS 1 218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */ 219 #define DEFAULT_FORCE_GANGING (64 << 10) 220 #define DEFAULT_FORCE_GANGING_STR "64K" 221 222 /* Simplifying assumption: -1 is not a valid default. */ 223 #define NO_DEFAULT -1 224 225 static const ztest_shared_opts_t ztest_opts_defaults = { 226 .zo_pool = DEFAULT_POOL, 227 .zo_dir = DEFAULT_VDEV_DIR, 228 .zo_alt_ztest = { '\0' }, 229 .zo_alt_libpath = { '\0' }, 230 .zo_vdevs = DEFAULT_VDEV_COUNT, 231 .zo_ashift = DEFAULT_ASHIFT, 232 .zo_mirrors = DEFAULT_MIRRORS, 233 .zo_raid_children = DEFAULT_RAID_CHILDREN, 234 .zo_raid_parity = DEFAULT_RAID_PARITY, 235 .zo_raid_type = VDEV_TYPE_RAIDZ, 236 .zo_vdev_size = DEFAULT_VDEV_SIZE, 237 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */ 238 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */ 239 .zo_datasets = DEFAULT_DATASETS_COUNT, 240 .zo_threads = DEFAULT_THREADS, 241 .zo_passtime = DEFAULT_PASS_TIME, 242 .zo_killrate = DEFAULT_KILL_RATE, 243 .zo_verbose = 0, 244 .zo_mmp_test = 0, 245 .zo_init = DEFAULT_INITS, 246 .zo_time = DEFAULT_RUN_TIME, 247 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */ 248 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING, 249 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, 250 .zo_gvars_count = 0, 251 }; 252 253 extern uint64_t metaslab_force_ganging; 254 extern uint64_t metaslab_df_alloc_threshold; 255 extern unsigned long zfs_deadman_synctime_ms; 256 extern uint_t metaslab_preload_limit; 257 extern int zfs_compressed_arc_enabled; 258 extern int zfs_abd_scatter_enabled; 259 extern uint_t dmu_object_alloc_chunk_shift; 260 extern boolean_t zfs_force_some_double_word_sm_entries; 261 extern unsigned long zio_decompress_fail_fraction; 262 extern unsigned long zfs_reconstruct_indirect_damage_fraction; 263 264 265 static ztest_shared_opts_t *ztest_shared_opts; 266 static ztest_shared_opts_t ztest_opts; 267 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; 268 269 typedef struct ztest_shared_ds { 270 uint64_t zd_seq; 271 } ztest_shared_ds_t; 272 273 static ztest_shared_ds_t *ztest_shared_ds; 274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 275 276 #define BT_MAGIC 0x123456789abcdefULL 277 #define MAXFAULTS(zs) \ 278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1) 279 280 enum ztest_io_type { 281 ZTEST_IO_WRITE_TAG, 282 ZTEST_IO_WRITE_PATTERN, 283 ZTEST_IO_WRITE_ZEROES, 284 ZTEST_IO_TRUNCATE, 285 ZTEST_IO_SETATTR, 286 ZTEST_IO_REWRITE, 287 ZTEST_IO_TYPES 288 }; 289 290 typedef struct ztest_block_tag { 291 uint64_t bt_magic; 292 uint64_t bt_objset; 293 uint64_t bt_object; 294 uint64_t bt_dnodesize; 295 uint64_t bt_offset; 296 uint64_t bt_gen; 297 uint64_t bt_txg; 298 uint64_t bt_crtxg; 299 } ztest_block_tag_t; 300 301 typedef struct bufwad { 302 uint64_t bw_index; 303 uint64_t bw_txg; 304 uint64_t bw_data; 305 } bufwad_t; 306 307 /* 308 * It would be better to use a rangelock_t per object. Unfortunately 309 * the rangelock_t is not a drop-in replacement for rl_t, because we 310 * still need to map from object ID to rangelock_t. 311 */ 312 typedef enum { 313 RL_READER, 314 RL_WRITER, 315 RL_APPEND 316 } rl_type_t; 317 318 typedef struct rll { 319 void *rll_writer; 320 int rll_readers; 321 kmutex_t rll_lock; 322 kcondvar_t rll_cv; 323 } rll_t; 324 325 typedef struct rl { 326 uint64_t rl_object; 327 uint64_t rl_offset; 328 uint64_t rl_size; 329 rll_t *rl_lock; 330 } rl_t; 331 332 #define ZTEST_RANGE_LOCKS 64 333 #define ZTEST_OBJECT_LOCKS 64 334 335 /* 336 * Object descriptor. Used as a template for object lookup/create/remove. 337 */ 338 typedef struct ztest_od { 339 uint64_t od_dir; 340 uint64_t od_object; 341 dmu_object_type_t od_type; 342 dmu_object_type_t od_crtype; 343 uint64_t od_blocksize; 344 uint64_t od_crblocksize; 345 uint64_t od_crdnodesize; 346 uint64_t od_gen; 347 uint64_t od_crgen; 348 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 349 } ztest_od_t; 350 351 /* 352 * Per-dataset state. 353 */ 354 typedef struct ztest_ds { 355 ztest_shared_ds_t *zd_shared; 356 objset_t *zd_os; 357 pthread_rwlock_t zd_zilog_lock; 358 zilog_t *zd_zilog; 359 ztest_od_t *zd_od; /* debugging aid */ 360 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 361 kmutex_t zd_dirobj_lock; 362 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 363 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 364 } ztest_ds_t; 365 366 /* 367 * Per-iteration state. 368 */ 369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 370 371 typedef struct ztest_info { 372 ztest_func_t *zi_func; /* test function */ 373 uint64_t zi_iters; /* iterations per execution */ 374 uint64_t *zi_interval; /* execute every <interval> seconds */ 375 const char *zi_funcname; /* name of test function */ 376 } ztest_info_t; 377 378 typedef struct ztest_shared_callstate { 379 uint64_t zc_count; /* per-pass count */ 380 uint64_t zc_time; /* per-pass time */ 381 uint64_t zc_next; /* next time to call this function */ 382 } ztest_shared_callstate_t; 383 384 static ztest_shared_callstate_t *ztest_shared_callstate; 385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 386 387 ztest_func_t ztest_dmu_read_write; 388 ztest_func_t ztest_dmu_write_parallel; 389 ztest_func_t ztest_dmu_object_alloc_free; 390 ztest_func_t ztest_dmu_object_next_chunk; 391 ztest_func_t ztest_dmu_commit_callbacks; 392 ztest_func_t ztest_zap; 393 ztest_func_t ztest_zap_parallel; 394 ztest_func_t ztest_zil_commit; 395 ztest_func_t ztest_zil_remount; 396 ztest_func_t ztest_dmu_read_write_zcopy; 397 ztest_func_t ztest_dmu_objset_create_destroy; 398 ztest_func_t ztest_dmu_prealloc; 399 ztest_func_t ztest_fzap; 400 ztest_func_t ztest_dmu_snapshot_create_destroy; 401 ztest_func_t ztest_dsl_prop_get_set; 402 ztest_func_t ztest_spa_prop_get_set; 403 ztest_func_t ztest_spa_create_destroy; 404 ztest_func_t ztest_fault_inject; 405 ztest_func_t ztest_dmu_snapshot_hold; 406 ztest_func_t ztest_mmp_enable_disable; 407 ztest_func_t ztest_scrub; 408 ztest_func_t ztest_dsl_dataset_promote_busy; 409 ztest_func_t ztest_vdev_attach_detach; 410 ztest_func_t ztest_vdev_LUN_growth; 411 ztest_func_t ztest_vdev_add_remove; 412 ztest_func_t ztest_vdev_class_add; 413 ztest_func_t ztest_vdev_aux_add_remove; 414 ztest_func_t ztest_split_pool; 415 ztest_func_t ztest_reguid; 416 ztest_func_t ztest_spa_upgrade; 417 ztest_func_t ztest_device_removal; 418 ztest_func_t ztest_spa_checkpoint_create_discard; 419 ztest_func_t ztest_initialize; 420 ztest_func_t ztest_trim; 421 ztest_func_t ztest_blake3; 422 ztest_func_t ztest_fletcher; 423 ztest_func_t ztest_fletcher_incr; 424 ztest_func_t ztest_verify_dnode_bt; 425 426 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 427 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 428 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 429 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 430 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 431 432 #define ZTI_INIT(func, iters, interval) \ 433 { .zi_func = (func), \ 434 .zi_iters = (iters), \ 435 .zi_interval = (interval), \ 436 .zi_funcname = # func } 437 438 ztest_info_t ztest_info[] = { 439 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always), 440 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always), 441 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always), 442 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes), 443 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always), 444 ZTI_INIT(ztest_zap, 30, &zopt_always), 445 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always), 446 ZTI_INIT(ztest_split_pool, 1, &zopt_always), 447 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant), 448 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes), 449 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often), 450 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often), 451 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often), 452 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes), 453 #if 0 454 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes), 455 #endif 456 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes), 457 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes), 458 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes), 459 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes), 460 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes), 461 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes), 462 ZTI_INIT(ztest_reguid, 1, &zopt_rarely), 463 ZTI_INIT(ztest_scrub, 1, &zopt_rarely), 464 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely), 465 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely), 466 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes), 467 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely), 468 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime), 469 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime), 470 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime), 471 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes), 472 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely), 473 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes), 474 ZTI_INIT(ztest_trim, 1, &zopt_sometimes), 475 ZTI_INIT(ztest_blake3, 1, &zopt_rarely), 476 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely), 477 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely), 478 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes), 479 }; 480 481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 482 483 /* 484 * The following struct is used to hold a list of uncalled commit callbacks. 485 * The callbacks are ordered by txg number. 486 */ 487 typedef struct ztest_cb_list { 488 kmutex_t zcl_callbacks_lock; 489 list_t zcl_callbacks; 490 } ztest_cb_list_t; 491 492 /* 493 * Stuff we need to share writably between parent and child. 494 */ 495 typedef struct ztest_shared { 496 boolean_t zs_do_init; 497 hrtime_t zs_proc_start; 498 hrtime_t zs_proc_stop; 499 hrtime_t zs_thread_start; 500 hrtime_t zs_thread_stop; 501 hrtime_t zs_thread_kill; 502 uint64_t zs_enospc_count; 503 uint64_t zs_vdev_next_leaf; 504 uint64_t zs_vdev_aux; 505 uint64_t zs_alloc; 506 uint64_t zs_space; 507 uint64_t zs_splits; 508 uint64_t zs_mirrors; 509 uint64_t zs_metaslab_sz; 510 uint64_t zs_metaslab_df_alloc_threshold; 511 uint64_t zs_guid; 512 } ztest_shared_t; 513 514 #define ID_PARALLEL -1ULL 515 516 static char ztest_dev_template[] = "%s/%s.%llua"; 517 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 518 ztest_shared_t *ztest_shared; 519 520 static spa_t *ztest_spa = NULL; 521 static ztest_ds_t *ztest_ds; 522 523 static kmutex_t ztest_vdev_lock; 524 static boolean_t ztest_device_removal_active = B_FALSE; 525 static boolean_t ztest_pool_scrubbed = B_FALSE; 526 static kmutex_t ztest_checkpoint_lock; 527 528 /* 529 * The ztest_name_lock protects the pool and dataset namespace used by 530 * the individual tests. To modify the namespace, consumers must grab 531 * this lock as writer. Grabbing the lock as reader will ensure that the 532 * namespace does not change while the lock is held. 533 */ 534 static pthread_rwlock_t ztest_name_lock; 535 536 static boolean_t ztest_dump_core = B_TRUE; 537 static boolean_t ztest_exiting; 538 539 /* Global commit callback list */ 540 static ztest_cb_list_t zcl; 541 /* Commit cb delay */ 542 static uint64_t zc_min_txg_delay = UINT64_MAX; 543 static int zc_cb_counter = 0; 544 545 /* 546 * Minimum number of commit callbacks that need to be registered for us to check 547 * whether the minimum txg delay is acceptable. 548 */ 549 #define ZTEST_COMMIT_CB_MIN_REG 100 550 551 /* 552 * If a number of txgs equal to this threshold have been created after a commit 553 * callback has been registered but not called, then we assume there is an 554 * implementation bug. 555 */ 556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000) 557 558 enum ztest_object { 559 ZTEST_META_DNODE = 0, 560 ZTEST_DIROBJ, 561 ZTEST_OBJECTS 562 }; 563 564 static __attribute__((noreturn)) void usage(boolean_t requested); 565 static int ztest_scrub_impl(spa_t *spa); 566 567 /* 568 * These libumem hooks provide a reasonable set of defaults for the allocator's 569 * debugging facilities. 570 */ 571 const char * 572 _umem_debug_init(void) 573 { 574 return ("default,verbose"); /* $UMEM_DEBUG setting */ 575 } 576 577 const char * 578 _umem_logging_init(void) 579 { 580 return ("fail,contents"); /* $UMEM_LOGGING setting */ 581 } 582 583 static void 584 dump_debug_buffer(void) 585 { 586 ssize_t ret __attribute__((unused)); 587 588 if (!ztest_opts.zo_dump_dbgmsg) 589 return; 590 591 /* 592 * We use write() instead of printf() so that this function 593 * is safe to call from a signal handler. 594 */ 595 ret = write(STDOUT_FILENO, "\n", 1); 596 zfs_dbgmsg_print("ztest"); 597 } 598 599 #define BACKTRACE_SZ 100 600 601 static void sig_handler(int signo) 602 { 603 struct sigaction action; 604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */ 605 int nptrs; 606 void *buffer[BACKTRACE_SZ]; 607 608 nptrs = backtrace(buffer, BACKTRACE_SZ); 609 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO); 610 #endif 611 dump_debug_buffer(); 612 613 /* 614 * Restore default action and re-raise signal so SIGSEGV and 615 * SIGABRT can trigger a core dump. 616 */ 617 action.sa_handler = SIG_DFL; 618 sigemptyset(&action.sa_mask); 619 action.sa_flags = 0; 620 (void) sigaction(signo, &action, NULL); 621 raise(signo); 622 } 623 624 #define FATAL_MSG_SZ 1024 625 626 static const char *fatal_msg; 627 628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void 629 fatal(int do_perror, const char *message, ...) 630 { 631 va_list args; 632 int save_errno = errno; 633 char *buf; 634 635 (void) fflush(stdout); 636 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL); 637 if (buf == NULL) 638 goto out; 639 640 va_start(args, message); 641 (void) sprintf(buf, "ztest: "); 642 /* LINTED */ 643 (void) vsprintf(buf + strlen(buf), message, args); 644 va_end(args); 645 if (do_perror) { 646 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 647 ": %s", strerror(save_errno)); 648 } 649 (void) fprintf(stderr, "%s\n", buf); 650 fatal_msg = buf; /* to ease debugging */ 651 652 out: 653 if (ztest_dump_core) 654 abort(); 655 else 656 dump_debug_buffer(); 657 658 exit(3); 659 } 660 661 static int 662 str2shift(const char *buf) 663 { 664 const char *ends = "BKMGTPEZ"; 665 int i; 666 667 if (buf[0] == '\0') 668 return (0); 669 for (i = 0; i < strlen(ends); i++) { 670 if (toupper(buf[0]) == ends[i]) 671 break; 672 } 673 if (i == strlen(ends)) { 674 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 675 buf); 676 usage(B_FALSE); 677 } 678 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 679 return (10*i); 680 } 681 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 682 usage(B_FALSE); 683 } 684 685 static uint64_t 686 nicenumtoull(const char *buf) 687 { 688 char *end; 689 uint64_t val; 690 691 val = strtoull(buf, &end, 0); 692 if (end == buf) { 693 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 694 usage(B_FALSE); 695 } else if (end[0] == '.') { 696 double fval = strtod(buf, &end); 697 fval *= pow(2, str2shift(end)); 698 /* 699 * UINT64_MAX is not exactly representable as a double. 700 * The closest representation is UINT64_MAX + 1, so we 701 * use a >= comparison instead of > for the bounds check. 702 */ 703 if (fval >= (double)UINT64_MAX) { 704 (void) fprintf(stderr, "ztest: value too large: %s\n", 705 buf); 706 usage(B_FALSE); 707 } 708 val = (uint64_t)fval; 709 } else { 710 int shift = str2shift(end); 711 if (shift >= 64 || (val << shift) >> shift != val) { 712 (void) fprintf(stderr, "ztest: value too large: %s\n", 713 buf); 714 usage(B_FALSE); 715 } 716 val <<= shift; 717 } 718 return (val); 719 } 720 721 typedef struct ztest_option { 722 const char short_opt; 723 const char *long_opt; 724 const char *long_opt_param; 725 const char *comment; 726 unsigned int default_int; 727 const char *default_str; 728 } ztest_option_t; 729 730 /* 731 * The following option_table is used for generating the usage info as well as 732 * the long and short option information for calling getopt_long(). 733 */ 734 static ztest_option_t option_table[] = { 735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT, 736 NULL}, 737 { 's', "vdev-size", "INTEGER", "Size of each vdev", 738 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR}, 739 { 'a', "alignment-shift", "INTEGER", 740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL}, 741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies", 742 DEFAULT_MIRRORS, NULL}, 743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks", 744 DEFAULT_RAID_CHILDREN, NULL}, 745 { 'R', "raid-parity", "INTEGER", "Raid parity", 746 DEFAULT_RAID_PARITY, NULL}, 747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind", 748 NO_DEFAULT, "random"}, 749 { 'D', "draid-data", "INTEGER", "Number of draid data drives", 750 DEFAULT_DRAID_DATA, NULL}, 751 { 'S', "draid-spares", "INTEGER", "Number of draid spares", 752 DEFAULT_DRAID_SPARES, NULL}, 753 { 'd', "datasets", "INTEGER", "Number of datasets", 754 DEFAULT_DATASETS_COUNT, NULL}, 755 { 't', "threads", "INTEGER", "Number of ztest threads", 756 DEFAULT_THREADS, NULL}, 757 { 'g', "gang-block-threshold", "INTEGER", 758 "Metaslab gang block threshold", 759 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR}, 760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool", 761 DEFAULT_INITS, NULL}, 762 { 'k', "kill-percentage", "INTEGER", "Kill percentage", 763 NO_DEFAULT, DEFAULT_KILLRATE_STR}, 764 { 'p', "pool-name", "STRING", "Pool name", 765 NO_DEFAULT, DEFAULT_POOL}, 766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files", 767 NO_DEFAULT, DEFAULT_VDEV_DIR}, 768 { 'M', "multi-host", NULL, 769 "Multi-host; simulate pool imported on remote host", 770 NO_DEFAULT, NULL}, 771 { 'E', "use-existing-pool", NULL, 772 "Use existing pool instead of creating new one", NO_DEFAULT, NULL}, 773 { 'T', "run-time", "INTEGER", "Total run time", 774 NO_DEFAULT, DEFAULT_RUN_TIME_STR}, 775 { 'P', "pass-time", "INTEGER", "Time per pass", 776 NO_DEFAULT, DEFAULT_PASS_TIME_STR}, 777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()", 778 DEFAULT_MAX_LOOPS, NULL}, 779 { 'B', "alt-ztest", "PATH", "Alternate ztest path", 780 NO_DEFAULT, NULL}, 781 { 'C', "vdev-class-state", "on|off|random", "vdev class state", 782 NO_DEFAULT, "random"}, 783 { 'o', "option", "\"OPTION=INTEGER\"", 784 "Set global variable to an unsigned 32-bit integer value", 785 NO_DEFAULT, NULL}, 786 { 'G', "dump-debug-msg", NULL, 787 "Dump zfs_dbgmsg buffer before exiting due to an error", 788 NO_DEFAULT, NULL}, 789 { 'V', "verbose", NULL, 790 "Verbose (use multiple times for ever more verbosity)", 791 NO_DEFAULT, NULL}, 792 { 'h', "help", NULL, "Show this help", 793 NO_DEFAULT, NULL}, 794 {0, 0, 0, 0, 0, 0} 795 }; 796 797 static struct option *long_opts = NULL; 798 static char *short_opts = NULL; 799 800 static void 801 init_options(void) 802 { 803 ASSERT3P(long_opts, ==, NULL); 804 ASSERT3P(short_opts, ==, NULL); 805 806 int count = sizeof (option_table) / sizeof (option_table[0]); 807 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL); 808 809 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL); 810 int short_opt_index = 0; 811 812 for (int i = 0; i < count; i++) { 813 long_opts[i].val = option_table[i].short_opt; 814 long_opts[i].name = option_table[i].long_opt; 815 long_opts[i].has_arg = option_table[i].long_opt_param != NULL 816 ? required_argument : no_argument; 817 long_opts[i].flag = NULL; 818 short_opts[short_opt_index++] = option_table[i].short_opt; 819 if (option_table[i].long_opt_param != NULL) { 820 short_opts[short_opt_index++] = ':'; 821 } 822 } 823 } 824 825 static void 826 fini_options(void) 827 { 828 int count = sizeof (option_table) / sizeof (option_table[0]); 829 830 umem_free(long_opts, sizeof (struct option) * count); 831 umem_free(short_opts, sizeof (char) * 2 * count); 832 833 long_opts = NULL; 834 short_opts = NULL; 835 } 836 837 static __attribute__((noreturn)) void 838 usage(boolean_t requested) 839 { 840 char option[80]; 841 FILE *fp = requested ? stdout : stderr; 842 843 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL); 844 for (int i = 0; option_table[i].short_opt != 0; i++) { 845 if (option_table[i].long_opt_param != NULL) { 846 (void) sprintf(option, " -%c --%s=%s", 847 option_table[i].short_opt, 848 option_table[i].long_opt, 849 option_table[i].long_opt_param); 850 } else { 851 (void) sprintf(option, " -%c --%s", 852 option_table[i].short_opt, 853 option_table[i].long_opt); 854 } 855 (void) fprintf(fp, " %-40s%s", option, 856 option_table[i].comment); 857 858 if (option_table[i].long_opt_param != NULL) { 859 if (option_table[i].default_str != NULL) { 860 (void) fprintf(fp, " (default: %s)", 861 option_table[i].default_str); 862 } else if (option_table[i].default_int != NO_DEFAULT) { 863 (void) fprintf(fp, " (default: %u)", 864 option_table[i].default_int); 865 } 866 } 867 (void) fprintf(fp, "\n"); 868 } 869 exit(requested ? 0 : 1); 870 } 871 872 static uint64_t 873 ztest_random(uint64_t range) 874 { 875 uint64_t r; 876 877 ASSERT3S(ztest_fd_rand, >=, 0); 878 879 if (range == 0) 880 return (0); 881 882 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 883 fatal(B_TRUE, "short read from /dev/urandom"); 884 885 return (r % range); 886 } 887 888 static void 889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) 890 { 891 char name[32]; 892 char *value; 893 int state = ZTEST_VDEV_CLASS_RND; 894 895 (void) strlcpy(name, input, sizeof (name)); 896 897 value = strchr(name, '='); 898 if (value == NULL) { 899 (void) fprintf(stderr, "missing value in property=value " 900 "'-C' argument (%s)\n", input); 901 usage(B_FALSE); 902 } 903 *(value) = '\0'; 904 value++; 905 906 if (strcmp(value, "on") == 0) { 907 state = ZTEST_VDEV_CLASS_ON; 908 } else if (strcmp(value, "off") == 0) { 909 state = ZTEST_VDEV_CLASS_OFF; 910 } else if (strcmp(value, "random") == 0) { 911 state = ZTEST_VDEV_CLASS_RND; 912 } else { 913 (void) fprintf(stderr, "invalid property value '%s'\n", value); 914 usage(B_FALSE); 915 } 916 917 if (strcmp(name, "special") == 0) { 918 zo->zo_special_vdevs = state; 919 } else { 920 (void) fprintf(stderr, "invalid property name '%s'\n", name); 921 usage(B_FALSE); 922 } 923 if (zo->zo_verbose >= 3) 924 (void) printf("%s vdev state is '%s'\n", name, value); 925 } 926 927 static void 928 process_options(int argc, char **argv) 929 { 930 char *path; 931 ztest_shared_opts_t *zo = &ztest_opts; 932 933 int opt; 934 uint64_t value; 935 const char *raid_kind = "random"; 936 937 memcpy(zo, &ztest_opts_defaults, sizeof (*zo)); 938 939 init_options(); 940 941 while ((opt = getopt_long(argc, argv, short_opts, long_opts, 942 NULL)) != EOF) { 943 value = 0; 944 switch (opt) { 945 case 'v': 946 case 's': 947 case 'a': 948 case 'm': 949 case 'r': 950 case 'R': 951 case 'D': 952 case 'S': 953 case 'd': 954 case 't': 955 case 'g': 956 case 'i': 957 case 'k': 958 case 'T': 959 case 'P': 960 case 'F': 961 value = nicenumtoull(optarg); 962 } 963 switch (opt) { 964 case 'v': 965 zo->zo_vdevs = value; 966 break; 967 case 's': 968 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 969 break; 970 case 'a': 971 zo->zo_ashift = value; 972 break; 973 case 'm': 974 zo->zo_mirrors = value; 975 break; 976 case 'r': 977 zo->zo_raid_children = MAX(1, value); 978 break; 979 case 'R': 980 zo->zo_raid_parity = MIN(MAX(value, 1), 3); 981 break; 982 case 'K': 983 raid_kind = optarg; 984 break; 985 case 'D': 986 zo->zo_draid_data = MAX(1, value); 987 break; 988 case 'S': 989 zo->zo_draid_spares = MAX(1, value); 990 break; 991 case 'd': 992 zo->zo_datasets = MAX(1, value); 993 break; 994 case 't': 995 zo->zo_threads = MAX(1, value); 996 break; 997 case 'g': 998 zo->zo_metaslab_force_ganging = 999 MAX(SPA_MINBLOCKSIZE << 1, value); 1000 break; 1001 case 'i': 1002 zo->zo_init = value; 1003 break; 1004 case 'k': 1005 zo->zo_killrate = value; 1006 break; 1007 case 'p': 1008 (void) strlcpy(zo->zo_pool, optarg, 1009 sizeof (zo->zo_pool)); 1010 break; 1011 case 'f': 1012 path = realpath(optarg, NULL); 1013 if (path == NULL) { 1014 (void) fprintf(stderr, "error: %s: %s\n", 1015 optarg, strerror(errno)); 1016 usage(B_FALSE); 1017 } else { 1018 (void) strlcpy(zo->zo_dir, path, 1019 sizeof (zo->zo_dir)); 1020 free(path); 1021 } 1022 break; 1023 case 'M': 1024 zo->zo_mmp_test = 1; 1025 break; 1026 case 'V': 1027 zo->zo_verbose++; 1028 break; 1029 case 'E': 1030 zo->zo_init = 0; 1031 break; 1032 case 'T': 1033 zo->zo_time = value; 1034 break; 1035 case 'P': 1036 zo->zo_passtime = MAX(1, value); 1037 break; 1038 case 'F': 1039 zo->zo_maxloops = MAX(1, value); 1040 break; 1041 case 'B': 1042 (void) strlcpy(zo->zo_alt_ztest, optarg, 1043 sizeof (zo->zo_alt_ztest)); 1044 break; 1045 case 'C': 1046 ztest_parse_name_value(optarg, zo); 1047 break; 1048 case 'o': 1049 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) { 1050 (void) fprintf(stderr, 1051 "max global var count (%zu) exceeded\n", 1052 ZO_GVARS_MAX_COUNT); 1053 usage(B_FALSE); 1054 } 1055 char *v = zo->zo_gvars[zo->zo_gvars_count]; 1056 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >= 1057 ZO_GVARS_MAX_ARGLEN) { 1058 (void) fprintf(stderr, 1059 "global var option '%s' is too long\n", 1060 optarg); 1061 usage(B_FALSE); 1062 } 1063 zo->zo_gvars_count++; 1064 break; 1065 case 'G': 1066 zo->zo_dump_dbgmsg = 1; 1067 break; 1068 case 'h': 1069 usage(B_TRUE); 1070 break; 1071 case '?': 1072 default: 1073 usage(B_FALSE); 1074 break; 1075 } 1076 } 1077 1078 fini_options(); 1079 1080 /* When raid choice is 'random' add a draid pool 50% of the time */ 1081 if (strcmp(raid_kind, "random") == 0) { 1082 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz"; 1083 1084 if (ztest_opts.zo_verbose >= 3) 1085 (void) printf("choosing RAID type '%s'\n", raid_kind); 1086 } 1087 1088 if (strcmp(raid_kind, "draid") == 0) { 1089 uint64_t min_devsize; 1090 1091 /* With fewer disk use 256M, otherwise 128M is OK */ 1092 min_devsize = (ztest_opts.zo_raid_children < 16) ? 1093 (256ULL << 20) : (128ULL << 20); 1094 1095 /* No top-level mirrors with dRAID for now */ 1096 zo->zo_mirrors = 0; 1097 1098 /* Use more appropriate defaults for dRAID */ 1099 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs) 1100 zo->zo_vdevs = 1; 1101 if (zo->zo_raid_children == 1102 ztest_opts_defaults.zo_raid_children) 1103 zo->zo_raid_children = 16; 1104 if (zo->zo_ashift < 12) 1105 zo->zo_ashift = 12; 1106 if (zo->zo_vdev_size < min_devsize) 1107 zo->zo_vdev_size = min_devsize; 1108 1109 if (zo->zo_draid_data + zo->zo_raid_parity > 1110 zo->zo_raid_children - zo->zo_draid_spares) { 1111 (void) fprintf(stderr, "error: too few draid " 1112 "children (%d) for stripe width (%d)\n", 1113 zo->zo_raid_children, 1114 zo->zo_draid_data + zo->zo_raid_parity); 1115 usage(B_FALSE); 1116 } 1117 1118 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID, 1119 sizeof (zo->zo_raid_type)); 1120 1121 } else /* using raidz */ { 1122 ASSERT0(strcmp(raid_kind, "raidz")); 1123 1124 zo->zo_raid_parity = MIN(zo->zo_raid_parity, 1125 zo->zo_raid_children - 1); 1126 } 1127 1128 zo->zo_vdevtime = 1129 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 1130 UINT64_MAX >> 2); 1131 1132 if (*zo->zo_alt_ztest) { 1133 const char *invalid_what = "ztest"; 1134 char *val = zo->zo_alt_ztest; 1135 if (0 != access(val, X_OK) || 1136 (strrchr(val, '/') == NULL && (errno = EINVAL))) 1137 goto invalid; 1138 1139 int dirlen = strrchr(val, '/') - val; 1140 strlcpy(zo->zo_alt_libpath, val, 1141 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1)); 1142 invalid_what = "library path", val = zo->zo_alt_libpath; 1143 if (strrchr(val, '/') == NULL && (errno = EINVAL)) 1144 goto invalid; 1145 *strrchr(val, '/') = '\0'; 1146 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath)); 1147 1148 if (0 != access(zo->zo_alt_libpath, X_OK)) 1149 goto invalid; 1150 return; 1151 1152 invalid: 1153 ztest_dump_core = B_FALSE; 1154 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val); 1155 } 1156 } 1157 1158 static void 1159 ztest_kill(ztest_shared_t *zs) 1160 { 1161 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 1162 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 1163 1164 /* 1165 * Before we kill ourselves, make sure that the config is updated. 1166 * See comment above spa_write_cachefile(). 1167 */ 1168 mutex_enter(&spa_namespace_lock); 1169 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE); 1170 mutex_exit(&spa_namespace_lock); 1171 1172 (void) raise(SIGKILL); 1173 } 1174 1175 static void 1176 ztest_record_enospc(const char *s) 1177 { 1178 (void) s; 1179 ztest_shared->zs_enospc_count++; 1180 } 1181 1182 static uint64_t 1183 ztest_get_ashift(void) 1184 { 1185 if (ztest_opts.zo_ashift == 0) 1186 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 1187 return (ztest_opts.zo_ashift); 1188 } 1189 1190 static boolean_t 1191 ztest_is_draid_spare(const char *name) 1192 { 1193 uint64_t spare_id = 0, parity = 0, vdev_id = 0; 1194 1195 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"", 1196 &parity, &vdev_id, &spare_id) == 3) { 1197 return (B_TRUE); 1198 } 1199 1200 return (B_FALSE); 1201 } 1202 1203 static nvlist_t * 1204 make_vdev_file(const char *path, const char *aux, const char *pool, 1205 size_t size, uint64_t ashift) 1206 { 1207 char *pathbuf = NULL; 1208 uint64_t vdev; 1209 nvlist_t *file; 1210 boolean_t draid_spare = B_FALSE; 1211 1212 1213 if (ashift == 0) 1214 ashift = ztest_get_ashift(); 1215 1216 if (path == NULL) { 1217 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 1218 path = pathbuf; 1219 1220 if (aux != NULL) { 1221 vdev = ztest_shared->zs_vdev_aux; 1222 (void) snprintf(pathbuf, MAXPATHLEN, 1223 ztest_aux_template, ztest_opts.zo_dir, 1224 pool == NULL ? ztest_opts.zo_pool : pool, 1225 aux, vdev); 1226 } else { 1227 vdev = ztest_shared->zs_vdev_next_leaf++; 1228 (void) snprintf(pathbuf, MAXPATHLEN, 1229 ztest_dev_template, ztest_opts.zo_dir, 1230 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 1231 } 1232 } else { 1233 draid_spare = ztest_is_draid_spare(path); 1234 } 1235 1236 if (size != 0 && !draid_spare) { 1237 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 1238 if (fd == -1) 1239 fatal(B_TRUE, "can't open %s", path); 1240 if (ftruncate(fd, size) != 0) 1241 fatal(B_TRUE, "can't ftruncate %s", path); 1242 (void) close(fd); 1243 } 1244 1245 file = fnvlist_alloc(); 1246 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE, 1247 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE); 1248 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path); 1249 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift); 1250 umem_free(pathbuf, MAXPATHLEN); 1251 1252 return (file); 1253 } 1254 1255 static nvlist_t * 1256 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size, 1257 uint64_t ashift, int r) 1258 { 1259 nvlist_t *raid, **child; 1260 int c; 1261 1262 if (r < 2) 1263 return (make_vdev_file(path, aux, pool, size, ashift)); 1264 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 1265 1266 for (c = 0; c < r; c++) 1267 child[c] = make_vdev_file(path, aux, pool, size, ashift); 1268 1269 raid = fnvlist_alloc(); 1270 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE, 1271 ztest_opts.zo_raid_type); 1272 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY, 1273 ztest_opts.zo_raid_parity); 1274 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, 1275 (const nvlist_t **)child, r); 1276 1277 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) { 1278 uint64_t ndata = ztest_opts.zo_draid_data; 1279 uint64_t nparity = ztest_opts.zo_raid_parity; 1280 uint64_t nspares = ztest_opts.zo_draid_spares; 1281 uint64_t children = ztest_opts.zo_raid_children; 1282 uint64_t ngroups = 1; 1283 1284 /* 1285 * Calculate the minimum number of groups required to fill a 1286 * slice. This is the LCM of the stripe width (data + parity) 1287 * and the number of data drives (children - spares). 1288 */ 1289 while (ngroups * (ndata + nparity) % (children - nspares) != 0) 1290 ngroups++; 1291 1292 /* Store the basic dRAID configuration. */ 1293 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata); 1294 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares); 1295 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups); 1296 } 1297 1298 for (c = 0; c < r; c++) 1299 fnvlist_free(child[c]); 1300 1301 umem_free(child, r * sizeof (nvlist_t *)); 1302 1303 return (raid); 1304 } 1305 1306 static nvlist_t * 1307 make_vdev_mirror(const char *path, const char *aux, const char *pool, 1308 size_t size, uint64_t ashift, int r, int m) 1309 { 1310 nvlist_t *mirror, **child; 1311 int c; 1312 1313 if (m < 1) 1314 return (make_vdev_raid(path, aux, pool, size, ashift, r)); 1315 1316 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 1317 1318 for (c = 0; c < m; c++) 1319 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r); 1320 1321 mirror = fnvlist_alloc(); 1322 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR); 1323 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 1324 (const nvlist_t **)child, m); 1325 1326 for (c = 0; c < m; c++) 1327 fnvlist_free(child[c]); 1328 1329 umem_free(child, m * sizeof (nvlist_t *)); 1330 1331 return (mirror); 1332 } 1333 1334 static nvlist_t * 1335 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size, 1336 uint64_t ashift, const char *class, int r, int m, int t) 1337 { 1338 nvlist_t *root, **child; 1339 int c; 1340 boolean_t log; 1341 1342 ASSERT3S(t, >, 0); 1343 1344 log = (class != NULL && strcmp(class, "log") == 0); 1345 1346 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 1347 1348 for (c = 0; c < t; c++) { 1349 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 1350 r, m); 1351 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log); 1352 1353 if (class != NULL && class[0] != '\0') { 1354 ASSERT(m > 1 || log); /* expecting a mirror */ 1355 fnvlist_add_string(child[c], 1356 ZPOOL_CONFIG_ALLOCATION_BIAS, class); 1357 } 1358 } 1359 1360 root = fnvlist_alloc(); 1361 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); 1362 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 1363 (const nvlist_t **)child, t); 1364 1365 for (c = 0; c < t; c++) 1366 fnvlist_free(child[c]); 1367 1368 umem_free(child, t * sizeof (nvlist_t *)); 1369 1370 return (root); 1371 } 1372 1373 /* 1374 * Find a random spa version. Returns back a random spa version in the 1375 * range [initial_version, SPA_VERSION_FEATURES]. 1376 */ 1377 static uint64_t 1378 ztest_random_spa_version(uint64_t initial_version) 1379 { 1380 uint64_t version = initial_version; 1381 1382 if (version <= SPA_VERSION_BEFORE_FEATURES) { 1383 version = version + 1384 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 1385 } 1386 1387 if (version > SPA_VERSION_BEFORE_FEATURES) 1388 version = SPA_VERSION_FEATURES; 1389 1390 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 1391 return (version); 1392 } 1393 1394 static int 1395 ztest_random_blocksize(void) 1396 { 1397 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0); 1398 1399 /* 1400 * Choose a block size >= the ashift. 1401 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1402 */ 1403 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1404 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1405 maxbs = 20; 1406 uint64_t block_shift = 1407 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1408 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1409 } 1410 1411 static int 1412 ztest_random_dnodesize(void) 1413 { 1414 int slots; 1415 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; 1416 1417 if (max_slots == DNODE_MIN_SLOTS) 1418 return (DNODE_MIN_SIZE); 1419 1420 /* 1421 * Weight the random distribution more heavily toward smaller 1422 * dnode sizes since that is more likely to reflect real-world 1423 * usage. 1424 */ 1425 ASSERT3U(max_slots, >, 4); 1426 switch (ztest_random(10)) { 1427 case 0: 1428 slots = 5 + ztest_random(max_slots - 4); 1429 break; 1430 case 1 ... 4: 1431 slots = 2 + ztest_random(3); 1432 break; 1433 default: 1434 slots = 1; 1435 break; 1436 } 1437 1438 return (slots << DNODE_SHIFT); 1439 } 1440 1441 static int 1442 ztest_random_ibshift(void) 1443 { 1444 return (DN_MIN_INDBLKSHIFT + 1445 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1446 } 1447 1448 static uint64_t 1449 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1450 { 1451 uint64_t top; 1452 vdev_t *rvd = spa->spa_root_vdev; 1453 vdev_t *tvd; 1454 1455 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 1456 1457 do { 1458 top = ztest_random(rvd->vdev_children); 1459 tvd = rvd->vdev_child[top]; 1460 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1461 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1462 1463 return (top); 1464 } 1465 1466 static uint64_t 1467 ztest_random_dsl_prop(zfs_prop_t prop) 1468 { 1469 uint64_t value; 1470 1471 do { 1472 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1473 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1474 1475 return (value); 1476 } 1477 1478 static int 1479 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1480 boolean_t inherit) 1481 { 1482 const char *propname = zfs_prop_to_name(prop); 1483 const char *valname; 1484 char *setpoint; 1485 uint64_t curval; 1486 int error; 1487 1488 error = dsl_prop_set_int(osname, propname, 1489 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1490 1491 if (error == ENOSPC) { 1492 ztest_record_enospc(FTAG); 1493 return (error); 1494 } 1495 ASSERT0(error); 1496 1497 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 1498 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1499 1500 if (ztest_opts.zo_verbose >= 6) { 1501 int err; 1502 1503 err = zfs_prop_index_to_string(prop, curval, &valname); 1504 if (err) 1505 (void) printf("%s %s = %llu at '%s'\n", osname, 1506 propname, (unsigned long long)curval, setpoint); 1507 else 1508 (void) printf("%s %s = %s at '%s'\n", 1509 osname, propname, valname, setpoint); 1510 } 1511 umem_free(setpoint, MAXPATHLEN); 1512 1513 return (error); 1514 } 1515 1516 static int 1517 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1518 { 1519 spa_t *spa = ztest_spa; 1520 nvlist_t *props = NULL; 1521 int error; 1522 1523 props = fnvlist_alloc(); 1524 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value); 1525 1526 error = spa_prop_set(spa, props); 1527 1528 fnvlist_free(props); 1529 1530 if (error == ENOSPC) { 1531 ztest_record_enospc(FTAG); 1532 return (error); 1533 } 1534 ASSERT0(error); 1535 1536 return (error); 1537 } 1538 1539 static int 1540 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, 1541 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp) 1542 { 1543 int err; 1544 char *cp = NULL; 1545 char ddname[ZFS_MAX_DATASET_NAME_LEN]; 1546 1547 strlcpy(ddname, name, sizeof (ddname)); 1548 cp = strchr(ddname, '@'); 1549 if (cp != NULL) 1550 *cp = '\0'; 1551 1552 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1553 while (decrypt && err == EACCES) { 1554 dsl_crypto_params_t *dcp; 1555 nvlist_t *crypto_args = fnvlist_alloc(); 1556 1557 fnvlist_add_uint8_array(crypto_args, "wkeydata", 1558 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 1559 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 1560 crypto_args, &dcp)); 1561 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); 1562 /* 1563 * Note: if there was an error loading, the wkey was not 1564 * consumed, and needs to be freed. 1565 */ 1566 dsl_crypto_params_free(dcp, (err != 0)); 1567 fnvlist_free(crypto_args); 1568 1569 if (err == EINVAL) { 1570 /* 1571 * We couldn't load a key for this dataset so try 1572 * the parent. This loop will eventually hit the 1573 * encryption root since ztest only makes clones 1574 * as children of their origin datasets. 1575 */ 1576 cp = strrchr(ddname, '/'); 1577 if (cp == NULL) 1578 return (err); 1579 1580 *cp = '\0'; 1581 err = EACCES; 1582 continue; 1583 } else if (err != 0) { 1584 break; 1585 } 1586 1587 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1588 break; 1589 } 1590 1591 return (err); 1592 } 1593 1594 static void 1595 ztest_rll_init(rll_t *rll) 1596 { 1597 rll->rll_writer = NULL; 1598 rll->rll_readers = 0; 1599 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL); 1600 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL); 1601 } 1602 1603 static void 1604 ztest_rll_destroy(rll_t *rll) 1605 { 1606 ASSERT3P(rll->rll_writer, ==, NULL); 1607 ASSERT0(rll->rll_readers); 1608 mutex_destroy(&rll->rll_lock); 1609 cv_destroy(&rll->rll_cv); 1610 } 1611 1612 static void 1613 ztest_rll_lock(rll_t *rll, rl_type_t type) 1614 { 1615 mutex_enter(&rll->rll_lock); 1616 1617 if (type == RL_READER) { 1618 while (rll->rll_writer != NULL) 1619 (void) cv_wait(&rll->rll_cv, &rll->rll_lock); 1620 rll->rll_readers++; 1621 } else { 1622 while (rll->rll_writer != NULL || rll->rll_readers) 1623 (void) cv_wait(&rll->rll_cv, &rll->rll_lock); 1624 rll->rll_writer = curthread; 1625 } 1626 1627 mutex_exit(&rll->rll_lock); 1628 } 1629 1630 static void 1631 ztest_rll_unlock(rll_t *rll) 1632 { 1633 mutex_enter(&rll->rll_lock); 1634 1635 if (rll->rll_writer) { 1636 ASSERT0(rll->rll_readers); 1637 rll->rll_writer = NULL; 1638 } else { 1639 ASSERT3S(rll->rll_readers, >, 0); 1640 ASSERT3P(rll->rll_writer, ==, NULL); 1641 rll->rll_readers--; 1642 } 1643 1644 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1645 cv_broadcast(&rll->rll_cv); 1646 1647 mutex_exit(&rll->rll_lock); 1648 } 1649 1650 static void 1651 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1652 { 1653 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1654 1655 ztest_rll_lock(rll, type); 1656 } 1657 1658 static void 1659 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1660 { 1661 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1662 1663 ztest_rll_unlock(rll); 1664 } 1665 1666 static rl_t * 1667 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1668 uint64_t size, rl_type_t type) 1669 { 1670 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1671 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1672 rl_t *rl; 1673 1674 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1675 rl->rl_object = object; 1676 rl->rl_offset = offset; 1677 rl->rl_size = size; 1678 rl->rl_lock = rll; 1679 1680 ztest_rll_lock(rll, type); 1681 1682 return (rl); 1683 } 1684 1685 static void 1686 ztest_range_unlock(rl_t *rl) 1687 { 1688 rll_t *rll = rl->rl_lock; 1689 1690 ztest_rll_unlock(rll); 1691 1692 umem_free(rl, sizeof (*rl)); 1693 } 1694 1695 static void 1696 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1697 { 1698 zd->zd_os = os; 1699 zd->zd_zilog = dmu_objset_zil(os); 1700 zd->zd_shared = szd; 1701 dmu_objset_name(os, zd->zd_name); 1702 int l; 1703 1704 if (zd->zd_shared != NULL) 1705 zd->zd_shared->zd_seq = 0; 1706 1707 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL)); 1708 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL); 1709 1710 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1711 ztest_rll_init(&zd->zd_object_lock[l]); 1712 1713 for (l = 0; l < ZTEST_RANGE_LOCKS; l++) 1714 ztest_rll_init(&zd->zd_range_lock[l]); 1715 } 1716 1717 static void 1718 ztest_zd_fini(ztest_ds_t *zd) 1719 { 1720 int l; 1721 1722 mutex_destroy(&zd->zd_dirobj_lock); 1723 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock); 1724 1725 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1726 ztest_rll_destroy(&zd->zd_object_lock[l]); 1727 1728 for (l = 0; l < ZTEST_RANGE_LOCKS; l++) 1729 ztest_rll_destroy(&zd->zd_range_lock[l]); 1730 } 1731 1732 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1733 1734 static uint64_t 1735 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1736 { 1737 uint64_t txg; 1738 int error; 1739 1740 /* 1741 * Attempt to assign tx to some transaction group. 1742 */ 1743 error = dmu_tx_assign(tx, txg_how); 1744 if (error) { 1745 if (error == ERESTART) { 1746 ASSERT3U(txg_how, ==, TXG_NOWAIT); 1747 dmu_tx_wait(tx); 1748 } else { 1749 ASSERT3U(error, ==, ENOSPC); 1750 ztest_record_enospc(tag); 1751 } 1752 dmu_tx_abort(tx); 1753 return (0); 1754 } 1755 txg = dmu_tx_get_txg(tx); 1756 ASSERT3U(txg, !=, 0); 1757 return (txg); 1758 } 1759 1760 static void 1761 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1762 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1763 uint64_t crtxg) 1764 { 1765 bt->bt_magic = BT_MAGIC; 1766 bt->bt_objset = dmu_objset_id(os); 1767 bt->bt_object = object; 1768 bt->bt_dnodesize = dnodesize; 1769 bt->bt_offset = offset; 1770 bt->bt_gen = gen; 1771 bt->bt_txg = txg; 1772 bt->bt_crtxg = crtxg; 1773 } 1774 1775 static void 1776 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1777 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1778 uint64_t crtxg) 1779 { 1780 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1781 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1782 ASSERT3U(bt->bt_object, ==, object); 1783 ASSERT3U(bt->bt_dnodesize, ==, dnodesize); 1784 ASSERT3U(bt->bt_offset, ==, offset); 1785 ASSERT3U(bt->bt_gen, <=, gen); 1786 ASSERT3U(bt->bt_txg, <=, txg); 1787 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1788 } 1789 1790 static ztest_block_tag_t * 1791 ztest_bt_bonus(dmu_buf_t *db) 1792 { 1793 dmu_object_info_t doi; 1794 ztest_block_tag_t *bt; 1795 1796 dmu_object_info_from_db(db, &doi); 1797 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1798 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1799 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1800 1801 return (bt); 1802 } 1803 1804 /* 1805 * Generate a token to fill up unused bonus buffer space. Try to make 1806 * it unique to the object, generation, and offset to verify that data 1807 * is not getting overwritten by data from other dnodes. 1808 */ 1809 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ 1810 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) 1811 1812 /* 1813 * Fill up the unused bonus buffer region before the block tag with a 1814 * verifiable pattern. Filling the whole bonus area with non-zero data 1815 * helps ensure that all dnode traversal code properly skips the 1816 * interior regions of large dnodes. 1817 */ 1818 static void 1819 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1820 objset_t *os, uint64_t gen) 1821 { 1822 uint64_t *bonusp; 1823 1824 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); 1825 1826 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1827 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1828 gen, bonusp - (uint64_t *)db->db_data); 1829 *bonusp = token; 1830 } 1831 } 1832 1833 /* 1834 * Verify that the unused area of a bonus buffer is filled with the 1835 * expected tokens. 1836 */ 1837 static void 1838 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1839 objset_t *os, uint64_t gen) 1840 { 1841 uint64_t *bonusp; 1842 1843 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1844 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1845 gen, bonusp - (uint64_t *)db->db_data); 1846 VERIFY3U(*bonusp, ==, token); 1847 } 1848 } 1849 1850 /* 1851 * ZIL logging ops 1852 */ 1853 1854 #define lrz_type lr_mode 1855 #define lrz_blocksize lr_uid 1856 #define lrz_ibshift lr_gid 1857 #define lrz_bonustype lr_rdev 1858 #define lrz_dnodesize lr_crtime[1] 1859 1860 static void 1861 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1862 { 1863 char *name = (void *)(lr + 1); /* name follows lr */ 1864 size_t namesize = strlen(name) + 1; 1865 itx_t *itx; 1866 1867 if (zil_replaying(zd->zd_zilog, tx)) 1868 return; 1869 1870 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1871 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1872 sizeof (*lr) + namesize - sizeof (lr_t)); 1873 1874 zil_itx_assign(zd->zd_zilog, itx, tx); 1875 } 1876 1877 static void 1878 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1879 { 1880 char *name = (void *)(lr + 1); /* name follows lr */ 1881 size_t namesize = strlen(name) + 1; 1882 itx_t *itx; 1883 1884 if (zil_replaying(zd->zd_zilog, tx)) 1885 return; 1886 1887 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1888 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1889 sizeof (*lr) + namesize - sizeof (lr_t)); 1890 1891 itx->itx_oid = object; 1892 zil_itx_assign(zd->zd_zilog, itx, tx); 1893 } 1894 1895 static void 1896 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1897 { 1898 itx_t *itx; 1899 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1900 1901 if (zil_replaying(zd->zd_zilog, tx)) 1902 return; 1903 1904 if (lr->lr_length > zil_max_log_data(zd->zd_zilog)) 1905 write_state = WR_INDIRECT; 1906 1907 itx = zil_itx_create(TX_WRITE, 1908 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1909 1910 if (write_state == WR_COPIED && 1911 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1912 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1913 zil_itx_destroy(itx); 1914 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1915 write_state = WR_NEED_COPY; 1916 } 1917 itx->itx_private = zd; 1918 itx->itx_wr_state = write_state; 1919 itx->itx_sync = (ztest_random(8) == 0); 1920 1921 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1922 sizeof (*lr) - sizeof (lr_t)); 1923 1924 zil_itx_assign(zd->zd_zilog, itx, tx); 1925 } 1926 1927 static void 1928 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1929 { 1930 itx_t *itx; 1931 1932 if (zil_replaying(zd->zd_zilog, tx)) 1933 return; 1934 1935 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1936 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1937 sizeof (*lr) - sizeof (lr_t)); 1938 1939 itx->itx_sync = B_FALSE; 1940 zil_itx_assign(zd->zd_zilog, itx, tx); 1941 } 1942 1943 static void 1944 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1945 { 1946 itx_t *itx; 1947 1948 if (zil_replaying(zd->zd_zilog, tx)) 1949 return; 1950 1951 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1952 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1953 sizeof (*lr) - sizeof (lr_t)); 1954 1955 itx->itx_sync = B_FALSE; 1956 zil_itx_assign(zd->zd_zilog, itx, tx); 1957 } 1958 1959 /* 1960 * ZIL replay ops 1961 */ 1962 static int 1963 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1964 { 1965 ztest_ds_t *zd = arg1; 1966 lr_create_t *lr = arg2; 1967 char *name = (void *)(lr + 1); /* name follows lr */ 1968 objset_t *os = zd->zd_os; 1969 ztest_block_tag_t *bbt; 1970 dmu_buf_t *db; 1971 dmu_tx_t *tx; 1972 uint64_t txg; 1973 int error = 0; 1974 int bonuslen; 1975 1976 if (byteswap) 1977 byteswap_uint64_array(lr, sizeof (*lr)); 1978 1979 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); 1980 ASSERT3S(name[0], !=, '\0'); 1981 1982 tx = dmu_tx_create(os); 1983 1984 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1985 1986 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1987 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1988 } else { 1989 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1990 } 1991 1992 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1993 if (txg == 0) 1994 return (ENOSPC); 1995 1996 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid); 1997 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); 1998 1999 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 2000 if (lr->lr_foid == 0) { 2001 lr->lr_foid = zap_create_dnsize(os, 2002 lr->lrz_type, lr->lrz_bonustype, 2003 bonuslen, lr->lrz_dnodesize, tx); 2004 } else { 2005 error = zap_create_claim_dnsize(os, lr->lr_foid, 2006 lr->lrz_type, lr->lrz_bonustype, 2007 bonuslen, lr->lrz_dnodesize, tx); 2008 } 2009 } else { 2010 if (lr->lr_foid == 0) { 2011 lr->lr_foid = dmu_object_alloc_dnsize(os, 2012 lr->lrz_type, 0, lr->lrz_bonustype, 2013 bonuslen, lr->lrz_dnodesize, tx); 2014 } else { 2015 error = dmu_object_claim_dnsize(os, lr->lr_foid, 2016 lr->lrz_type, 0, lr->lrz_bonustype, 2017 bonuslen, lr->lrz_dnodesize, tx); 2018 } 2019 } 2020 2021 if (error) { 2022 ASSERT3U(error, ==, EEXIST); 2023 ASSERT(zd->zd_zilog->zl_replay); 2024 dmu_tx_commit(tx); 2025 return (error); 2026 } 2027 2028 ASSERT3U(lr->lr_foid, !=, 0); 2029 2030 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 2031 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid, 2032 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 2033 2034 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2035 bbt = ztest_bt_bonus(db); 2036 dmu_buf_will_dirty(db, tx); 2037 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, 2038 lr->lr_gen, txg, txg); 2039 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); 2040 dmu_buf_rele(db, FTAG); 2041 2042 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 2043 &lr->lr_foid, tx)); 2044 2045 (void) ztest_log_create(zd, tx, lr); 2046 2047 dmu_tx_commit(tx); 2048 2049 return (0); 2050 } 2051 2052 static int 2053 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 2054 { 2055 ztest_ds_t *zd = arg1; 2056 lr_remove_t *lr = arg2; 2057 char *name = (void *)(lr + 1); /* name follows lr */ 2058 objset_t *os = zd->zd_os; 2059 dmu_object_info_t doi; 2060 dmu_tx_t *tx; 2061 uint64_t object, txg; 2062 2063 if (byteswap) 2064 byteswap_uint64_array(lr, sizeof (*lr)); 2065 2066 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); 2067 ASSERT3S(name[0], !=, '\0'); 2068 2069 VERIFY0( 2070 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 2071 ASSERT3U(object, !=, 0); 2072 2073 ztest_object_lock(zd, object, RL_WRITER); 2074 2075 VERIFY0(dmu_object_info(os, object, &doi)); 2076 2077 tx = dmu_tx_create(os); 2078 2079 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 2080 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2081 2082 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2083 if (txg == 0) { 2084 ztest_object_unlock(zd, object); 2085 return (ENOSPC); 2086 } 2087 2088 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 2089 VERIFY0(zap_destroy(os, object, tx)); 2090 } else { 2091 VERIFY0(dmu_object_free(os, object, tx)); 2092 } 2093 2094 VERIFY0(zap_remove(os, lr->lr_doid, name, tx)); 2095 2096 (void) ztest_log_remove(zd, tx, lr, object); 2097 2098 dmu_tx_commit(tx); 2099 2100 ztest_object_unlock(zd, object); 2101 2102 return (0); 2103 } 2104 2105 static int 2106 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 2107 { 2108 ztest_ds_t *zd = arg1; 2109 lr_write_t *lr = arg2; 2110 objset_t *os = zd->zd_os; 2111 void *data = lr + 1; /* data follows lr */ 2112 uint64_t offset, length; 2113 ztest_block_tag_t *bt = data; 2114 ztest_block_tag_t *bbt; 2115 uint64_t gen, txg, lrtxg, crtxg; 2116 dmu_object_info_t doi; 2117 dmu_tx_t *tx; 2118 dmu_buf_t *db; 2119 arc_buf_t *abuf = NULL; 2120 rl_t *rl; 2121 2122 if (byteswap) 2123 byteswap_uint64_array(lr, sizeof (*lr)); 2124 2125 offset = lr->lr_offset; 2126 length = lr->lr_length; 2127 2128 /* If it's a dmu_sync() block, write the whole block */ 2129 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 2130 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 2131 if (length < blocksize) { 2132 offset -= offset % blocksize; 2133 length = blocksize; 2134 } 2135 } 2136 2137 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 2138 byteswap_uint64_array(bt, sizeof (*bt)); 2139 2140 if (bt->bt_magic != BT_MAGIC) 2141 bt = NULL; 2142 2143 ztest_object_lock(zd, lr->lr_foid, RL_READER); 2144 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 2145 2146 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2147 2148 dmu_object_info_from_db(db, &doi); 2149 2150 bbt = ztest_bt_bonus(db); 2151 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2152 gen = bbt->bt_gen; 2153 crtxg = bbt->bt_crtxg; 2154 lrtxg = lr->lr_common.lrc_txg; 2155 2156 tx = dmu_tx_create(os); 2157 2158 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 2159 2160 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 2161 P2PHASE(offset, length) == 0) 2162 abuf = dmu_request_arcbuf(db, length); 2163 2164 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2165 if (txg == 0) { 2166 if (abuf != NULL) 2167 dmu_return_arcbuf(abuf); 2168 dmu_buf_rele(db, FTAG); 2169 ztest_range_unlock(rl); 2170 ztest_object_unlock(zd, lr->lr_foid); 2171 return (ENOSPC); 2172 } 2173 2174 if (bt != NULL) { 2175 /* 2176 * Usually, verify the old data before writing new data -- 2177 * but not always, because we also want to verify correct 2178 * behavior when the data was not recently read into cache. 2179 */ 2180 ASSERT0(offset % doi.doi_data_block_size); 2181 if (ztest_random(4) != 0) { 2182 int prefetch = ztest_random(2) ? 2183 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 2184 ztest_block_tag_t rbt; 2185 2186 VERIFY(dmu_read(os, lr->lr_foid, offset, 2187 sizeof (rbt), &rbt, prefetch) == 0); 2188 if (rbt.bt_magic == BT_MAGIC) { 2189 ztest_bt_verify(&rbt, os, lr->lr_foid, 0, 2190 offset, gen, txg, crtxg); 2191 } 2192 } 2193 2194 /* 2195 * Writes can appear to be newer than the bonus buffer because 2196 * the ztest_get_data() callback does a dmu_read() of the 2197 * open-context data, which may be different than the data 2198 * as it was when the write was generated. 2199 */ 2200 if (zd->zd_zilog->zl_replay) { 2201 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, 2202 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 2203 bt->bt_crtxg); 2204 } 2205 2206 /* 2207 * Set the bt's gen/txg to the bonus buffer's gen/txg 2208 * so that all of the usual ASSERTs will work. 2209 */ 2210 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, 2211 crtxg); 2212 } 2213 2214 if (abuf == NULL) { 2215 dmu_write(os, lr->lr_foid, offset, length, data, tx); 2216 } else { 2217 memcpy(abuf->b_data, data, length); 2218 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx)); 2219 } 2220 2221 (void) ztest_log_write(zd, tx, lr); 2222 2223 dmu_buf_rele(db, FTAG); 2224 2225 dmu_tx_commit(tx); 2226 2227 ztest_range_unlock(rl); 2228 ztest_object_unlock(zd, lr->lr_foid); 2229 2230 return (0); 2231 } 2232 2233 static int 2234 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 2235 { 2236 ztest_ds_t *zd = arg1; 2237 lr_truncate_t *lr = arg2; 2238 objset_t *os = zd->zd_os; 2239 dmu_tx_t *tx; 2240 uint64_t txg; 2241 rl_t *rl; 2242 2243 if (byteswap) 2244 byteswap_uint64_array(lr, sizeof (*lr)); 2245 2246 ztest_object_lock(zd, lr->lr_foid, RL_READER); 2247 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 2248 RL_WRITER); 2249 2250 tx = dmu_tx_create(os); 2251 2252 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 2253 2254 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2255 if (txg == 0) { 2256 ztest_range_unlock(rl); 2257 ztest_object_unlock(zd, lr->lr_foid); 2258 return (ENOSPC); 2259 } 2260 2261 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 2262 lr->lr_length, tx)); 2263 2264 (void) ztest_log_truncate(zd, tx, lr); 2265 2266 dmu_tx_commit(tx); 2267 2268 ztest_range_unlock(rl); 2269 ztest_object_unlock(zd, lr->lr_foid); 2270 2271 return (0); 2272 } 2273 2274 static int 2275 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 2276 { 2277 ztest_ds_t *zd = arg1; 2278 lr_setattr_t *lr = arg2; 2279 objset_t *os = zd->zd_os; 2280 dmu_tx_t *tx; 2281 dmu_buf_t *db; 2282 ztest_block_tag_t *bbt; 2283 uint64_t txg, lrtxg, crtxg, dnodesize; 2284 2285 if (byteswap) 2286 byteswap_uint64_array(lr, sizeof (*lr)); 2287 2288 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 2289 2290 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2291 2292 tx = dmu_tx_create(os); 2293 dmu_tx_hold_bonus(tx, lr->lr_foid); 2294 2295 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2296 if (txg == 0) { 2297 dmu_buf_rele(db, FTAG); 2298 ztest_object_unlock(zd, lr->lr_foid); 2299 return (ENOSPC); 2300 } 2301 2302 bbt = ztest_bt_bonus(db); 2303 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2304 crtxg = bbt->bt_crtxg; 2305 lrtxg = lr->lr_common.lrc_txg; 2306 dnodesize = bbt->bt_dnodesize; 2307 2308 if (zd->zd_zilog->zl_replay) { 2309 ASSERT3U(lr->lr_size, !=, 0); 2310 ASSERT3U(lr->lr_mode, !=, 0); 2311 ASSERT3U(lrtxg, !=, 0); 2312 } else { 2313 /* 2314 * Randomly change the size and increment the generation. 2315 */ 2316 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 2317 sizeof (*bbt); 2318 lr->lr_mode = bbt->bt_gen + 1; 2319 ASSERT0(lrtxg); 2320 } 2321 2322 /* 2323 * Verify that the current bonus buffer is not newer than our txg. 2324 */ 2325 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2326 MAX(txg, lrtxg), crtxg); 2327 2328 dmu_buf_will_dirty(db, tx); 2329 2330 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 2331 ASSERT3U(lr->lr_size, <=, db->db_size); 2332 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 2333 bbt = ztest_bt_bonus(db); 2334 2335 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2336 txg, crtxg); 2337 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); 2338 dmu_buf_rele(db, FTAG); 2339 2340 (void) ztest_log_setattr(zd, tx, lr); 2341 2342 dmu_tx_commit(tx); 2343 2344 ztest_object_unlock(zd, lr->lr_foid); 2345 2346 return (0); 2347 } 2348 2349 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 2350 NULL, /* 0 no such transaction type */ 2351 ztest_replay_create, /* TX_CREATE */ 2352 NULL, /* TX_MKDIR */ 2353 NULL, /* TX_MKXATTR */ 2354 NULL, /* TX_SYMLINK */ 2355 ztest_replay_remove, /* TX_REMOVE */ 2356 NULL, /* TX_RMDIR */ 2357 NULL, /* TX_LINK */ 2358 NULL, /* TX_RENAME */ 2359 ztest_replay_write, /* TX_WRITE */ 2360 ztest_replay_truncate, /* TX_TRUNCATE */ 2361 ztest_replay_setattr, /* TX_SETATTR */ 2362 NULL, /* TX_ACL */ 2363 NULL, /* TX_CREATE_ACL */ 2364 NULL, /* TX_CREATE_ATTR */ 2365 NULL, /* TX_CREATE_ACL_ATTR */ 2366 NULL, /* TX_MKDIR_ACL */ 2367 NULL, /* TX_MKDIR_ATTR */ 2368 NULL, /* TX_MKDIR_ACL_ATTR */ 2369 NULL, /* TX_WRITE2 */ 2370 NULL, /* TX_SETSAXATTR */ 2371 }; 2372 2373 /* 2374 * ZIL get_data callbacks 2375 */ 2376 2377 static void 2378 ztest_get_done(zgd_t *zgd, int error) 2379 { 2380 (void) error; 2381 ztest_ds_t *zd = zgd->zgd_private; 2382 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; 2383 2384 if (zgd->zgd_db) 2385 dmu_buf_rele(zgd->zgd_db, zgd); 2386 2387 ztest_range_unlock((rl_t *)zgd->zgd_lr); 2388 ztest_object_unlock(zd, object); 2389 2390 umem_free(zgd, sizeof (*zgd)); 2391 } 2392 2393 static int 2394 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 2395 struct lwb *lwb, zio_t *zio) 2396 { 2397 (void) arg2; 2398 ztest_ds_t *zd = arg; 2399 objset_t *os = zd->zd_os; 2400 uint64_t object = lr->lr_foid; 2401 uint64_t offset = lr->lr_offset; 2402 uint64_t size = lr->lr_length; 2403 uint64_t txg = lr->lr_common.lrc_txg; 2404 uint64_t crtxg; 2405 dmu_object_info_t doi; 2406 dmu_buf_t *db; 2407 zgd_t *zgd; 2408 int error; 2409 2410 ASSERT3P(lwb, !=, NULL); 2411 ASSERT3P(zio, !=, NULL); 2412 ASSERT3U(size, !=, 0); 2413 2414 ztest_object_lock(zd, object, RL_READER); 2415 error = dmu_bonus_hold(os, object, FTAG, &db); 2416 if (error) { 2417 ztest_object_unlock(zd, object); 2418 return (error); 2419 } 2420 2421 crtxg = ztest_bt_bonus(db)->bt_crtxg; 2422 2423 if (crtxg == 0 || crtxg > txg) { 2424 dmu_buf_rele(db, FTAG); 2425 ztest_object_unlock(zd, object); 2426 return (ENOENT); 2427 } 2428 2429 dmu_object_info_from_db(db, &doi); 2430 dmu_buf_rele(db, FTAG); 2431 db = NULL; 2432 2433 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 2434 zgd->zgd_lwb = lwb; 2435 zgd->zgd_private = zd; 2436 2437 if (buf != NULL) { /* immediate write */ 2438 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, 2439 object, offset, size, RL_READER); 2440 2441 error = dmu_read(os, object, offset, size, buf, 2442 DMU_READ_NO_PREFETCH); 2443 ASSERT0(error); 2444 } else { 2445 size = doi.doi_data_block_size; 2446 if (ISP2(size)) { 2447 offset = P2ALIGN(offset, size); 2448 } else { 2449 ASSERT3U(offset, <, size); 2450 offset = 0; 2451 } 2452 2453 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, 2454 object, offset, size, RL_READER); 2455 2456 error = dmu_buf_hold(os, object, offset, zgd, &db, 2457 DMU_READ_NO_PREFETCH); 2458 2459 if (error == 0) { 2460 blkptr_t *bp = &lr->lr_blkptr; 2461 2462 zgd->zgd_db = db; 2463 zgd->zgd_bp = bp; 2464 2465 ASSERT3U(db->db_offset, ==, offset); 2466 ASSERT3U(db->db_size, ==, size); 2467 2468 error = dmu_sync(zio, lr->lr_common.lrc_txg, 2469 ztest_get_done, zgd); 2470 2471 if (error == 0) 2472 return (0); 2473 } 2474 } 2475 2476 ztest_get_done(zgd, error); 2477 2478 return (error); 2479 } 2480 2481 static void * 2482 ztest_lr_alloc(size_t lrsize, char *name) 2483 { 2484 char *lr; 2485 size_t namesize = name ? strlen(name) + 1 : 0; 2486 2487 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 2488 2489 if (name) 2490 memcpy(lr + lrsize, name, namesize); 2491 2492 return (lr); 2493 } 2494 2495 static void 2496 ztest_lr_free(void *lr, size_t lrsize, char *name) 2497 { 2498 size_t namesize = name ? strlen(name) + 1 : 0; 2499 2500 umem_free(lr, lrsize + namesize); 2501 } 2502 2503 /* 2504 * Lookup a bunch of objects. Returns the number of objects not found. 2505 */ 2506 static int 2507 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 2508 { 2509 int missing = 0; 2510 int error; 2511 int i; 2512 2513 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2514 2515 for (i = 0; i < count; i++, od++) { 2516 od->od_object = 0; 2517 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 2518 sizeof (uint64_t), 1, &od->od_object); 2519 if (error) { 2520 ASSERT3S(error, ==, ENOENT); 2521 ASSERT0(od->od_object); 2522 missing++; 2523 } else { 2524 dmu_buf_t *db; 2525 ztest_block_tag_t *bbt; 2526 dmu_object_info_t doi; 2527 2528 ASSERT3U(od->od_object, !=, 0); 2529 ASSERT0(missing); /* there should be no gaps */ 2530 2531 ztest_object_lock(zd, od->od_object, RL_READER); 2532 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object, 2533 FTAG, &db)); 2534 dmu_object_info_from_db(db, &doi); 2535 bbt = ztest_bt_bonus(db); 2536 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2537 od->od_type = doi.doi_type; 2538 od->od_blocksize = doi.doi_data_block_size; 2539 od->od_gen = bbt->bt_gen; 2540 dmu_buf_rele(db, FTAG); 2541 ztest_object_unlock(zd, od->od_object); 2542 } 2543 } 2544 2545 return (missing); 2546 } 2547 2548 static int 2549 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2550 { 2551 int missing = 0; 2552 int i; 2553 2554 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2555 2556 for (i = 0; i < count; i++, od++) { 2557 if (missing) { 2558 od->od_object = 0; 2559 missing++; 2560 continue; 2561 } 2562 2563 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2564 2565 lr->lr_doid = od->od_dir; 2566 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2567 lr->lrz_type = od->od_crtype; 2568 lr->lrz_blocksize = od->od_crblocksize; 2569 lr->lrz_ibshift = ztest_random_ibshift(); 2570 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2571 lr->lrz_dnodesize = od->od_crdnodesize; 2572 lr->lr_gen = od->od_crgen; 2573 lr->lr_crtime[0] = time(NULL); 2574 2575 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2576 ASSERT0(missing); 2577 od->od_object = 0; 2578 missing++; 2579 } else { 2580 od->od_object = lr->lr_foid; 2581 od->od_type = od->od_crtype; 2582 od->od_blocksize = od->od_crblocksize; 2583 od->od_gen = od->od_crgen; 2584 ASSERT3U(od->od_object, !=, 0); 2585 } 2586 2587 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2588 } 2589 2590 return (missing); 2591 } 2592 2593 static int 2594 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2595 { 2596 int missing = 0; 2597 int error; 2598 int i; 2599 2600 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2601 2602 od += count - 1; 2603 2604 for (i = count - 1; i >= 0; i--, od--) { 2605 if (missing) { 2606 missing++; 2607 continue; 2608 } 2609 2610 /* 2611 * No object was found. 2612 */ 2613 if (od->od_object == 0) 2614 continue; 2615 2616 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2617 2618 lr->lr_doid = od->od_dir; 2619 2620 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2621 ASSERT3U(error, ==, ENOSPC); 2622 missing++; 2623 } else { 2624 od->od_object = 0; 2625 } 2626 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2627 } 2628 2629 return (missing); 2630 } 2631 2632 static int 2633 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2634 void *data) 2635 { 2636 lr_write_t *lr; 2637 int error; 2638 2639 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2640 2641 lr->lr_foid = object; 2642 lr->lr_offset = offset; 2643 lr->lr_length = size; 2644 lr->lr_blkoff = 0; 2645 BP_ZERO(&lr->lr_blkptr); 2646 2647 memcpy(lr + 1, data, size); 2648 2649 error = ztest_replay_write(zd, lr, B_FALSE); 2650 2651 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2652 2653 return (error); 2654 } 2655 2656 static int 2657 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2658 { 2659 lr_truncate_t *lr; 2660 int error; 2661 2662 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2663 2664 lr->lr_foid = object; 2665 lr->lr_offset = offset; 2666 lr->lr_length = size; 2667 2668 error = ztest_replay_truncate(zd, lr, B_FALSE); 2669 2670 ztest_lr_free(lr, sizeof (*lr), NULL); 2671 2672 return (error); 2673 } 2674 2675 static int 2676 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2677 { 2678 lr_setattr_t *lr; 2679 int error; 2680 2681 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2682 2683 lr->lr_foid = object; 2684 lr->lr_size = 0; 2685 lr->lr_mode = 0; 2686 2687 error = ztest_replay_setattr(zd, lr, B_FALSE); 2688 2689 ztest_lr_free(lr, sizeof (*lr), NULL); 2690 2691 return (error); 2692 } 2693 2694 static void 2695 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2696 { 2697 objset_t *os = zd->zd_os; 2698 dmu_tx_t *tx; 2699 uint64_t txg; 2700 rl_t *rl; 2701 2702 txg_wait_synced(dmu_objset_pool(os), 0); 2703 2704 ztest_object_lock(zd, object, RL_READER); 2705 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2706 2707 tx = dmu_tx_create(os); 2708 2709 dmu_tx_hold_write(tx, object, offset, size); 2710 2711 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2712 2713 if (txg != 0) { 2714 dmu_prealloc(os, object, offset, size, tx); 2715 dmu_tx_commit(tx); 2716 txg_wait_synced(dmu_objset_pool(os), txg); 2717 } else { 2718 (void) dmu_free_long_range(os, object, offset, size); 2719 } 2720 2721 ztest_range_unlock(rl); 2722 ztest_object_unlock(zd, object); 2723 } 2724 2725 static void 2726 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2727 { 2728 int err; 2729 ztest_block_tag_t wbt; 2730 dmu_object_info_t doi; 2731 enum ztest_io_type io_type; 2732 uint64_t blocksize; 2733 void *data; 2734 2735 VERIFY0(dmu_object_info(zd->zd_os, object, &doi)); 2736 blocksize = doi.doi_data_block_size; 2737 data = umem_alloc(blocksize, UMEM_NOFAIL); 2738 2739 /* 2740 * Pick an i/o type at random, biased toward writing block tags. 2741 */ 2742 io_type = ztest_random(ZTEST_IO_TYPES); 2743 if (ztest_random(2) == 0) 2744 io_type = ZTEST_IO_WRITE_TAG; 2745 2746 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); 2747 2748 switch (io_type) { 2749 2750 case ZTEST_IO_WRITE_TAG: 2751 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, 2752 offset, 0, 0, 0); 2753 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2754 break; 2755 2756 case ZTEST_IO_WRITE_PATTERN: 2757 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2758 if (ztest_random(2) == 0) { 2759 /* 2760 * Induce fletcher2 collisions to ensure that 2761 * zio_ddt_collision() detects and resolves them 2762 * when using fletcher2-verify for deduplication. 2763 */ 2764 ((uint64_t *)data)[0] ^= 1ULL << 63; 2765 ((uint64_t *)data)[4] ^= 1ULL << 63; 2766 } 2767 (void) ztest_write(zd, object, offset, blocksize, data); 2768 break; 2769 2770 case ZTEST_IO_WRITE_ZEROES: 2771 memset(data, 0, blocksize); 2772 (void) ztest_write(zd, object, offset, blocksize, data); 2773 break; 2774 2775 case ZTEST_IO_TRUNCATE: 2776 (void) ztest_truncate(zd, object, offset, blocksize); 2777 break; 2778 2779 case ZTEST_IO_SETATTR: 2780 (void) ztest_setattr(zd, object); 2781 break; 2782 default: 2783 break; 2784 2785 case ZTEST_IO_REWRITE: 2786 (void) pthread_rwlock_rdlock(&ztest_name_lock); 2787 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2788 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2789 B_FALSE); 2790 VERIFY(err == 0 || err == ENOSPC); 2791 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2792 ZFS_PROP_COMPRESSION, 2793 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2794 B_FALSE); 2795 VERIFY(err == 0 || err == ENOSPC); 2796 (void) pthread_rwlock_unlock(&ztest_name_lock); 2797 2798 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2799 DMU_READ_NO_PREFETCH)); 2800 2801 (void) ztest_write(zd, object, offset, blocksize, data); 2802 break; 2803 } 2804 2805 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2806 2807 umem_free(data, blocksize); 2808 } 2809 2810 /* 2811 * Initialize an object description template. 2812 */ 2813 static void 2814 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index, 2815 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, 2816 uint64_t gen) 2817 { 2818 od->od_dir = ZTEST_DIROBJ; 2819 od->od_object = 0; 2820 2821 od->od_crtype = type; 2822 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2823 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); 2824 od->od_crgen = gen; 2825 2826 od->od_type = DMU_OT_NONE; 2827 od->od_blocksize = 0; 2828 od->od_gen = 0; 2829 2830 (void) snprintf(od->od_name, sizeof (od->od_name), 2831 "%s(%"PRId64")[%"PRIu64"]", 2832 tag, id, index); 2833 } 2834 2835 /* 2836 * Lookup or create the objects for a test using the od template. 2837 * If the objects do not all exist, or if 'remove' is specified, 2838 * remove any existing objects and create new ones. Otherwise, 2839 * use the existing objects. 2840 */ 2841 static int 2842 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2843 { 2844 int count = size / sizeof (*od); 2845 int rv = 0; 2846 2847 mutex_enter(&zd->zd_dirobj_lock); 2848 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2849 (ztest_remove(zd, od, count) != 0 || 2850 ztest_create(zd, od, count) != 0)) 2851 rv = -1; 2852 zd->zd_od = od; 2853 mutex_exit(&zd->zd_dirobj_lock); 2854 2855 return (rv); 2856 } 2857 2858 void 2859 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2860 { 2861 (void) id; 2862 zilog_t *zilog = zd->zd_zilog; 2863 2864 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); 2865 2866 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2867 2868 /* 2869 * Remember the committed values in zd, which is in parent/child 2870 * shared memory. If we die, the next iteration of ztest_run() 2871 * will verify that the log really does contain this record. 2872 */ 2873 mutex_enter(&zilog->zl_lock); 2874 ASSERT3P(zd->zd_shared, !=, NULL); 2875 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2876 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2877 mutex_exit(&zilog->zl_lock); 2878 2879 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2880 } 2881 2882 /* 2883 * This function is designed to simulate the operations that occur during a 2884 * mount/unmount operation. We hold the dataset across these operations in an 2885 * attempt to expose any implicit assumptions about ZIL management. 2886 */ 2887 void 2888 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2889 { 2890 (void) id; 2891 objset_t *os = zd->zd_os; 2892 2893 /* 2894 * We hold the ztest_vdev_lock so we don't cause problems with 2895 * other threads that wish to remove a log device, such as 2896 * ztest_device_removal(). 2897 */ 2898 mutex_enter(&ztest_vdev_lock); 2899 2900 /* 2901 * We grab the zd_dirobj_lock to ensure that no other thread is 2902 * updating the zil (i.e. adding in-memory log records) and the 2903 * zd_zilog_lock to block any I/O. 2904 */ 2905 mutex_enter(&zd->zd_dirobj_lock); 2906 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock); 2907 2908 /* zfsvfs_teardown() */ 2909 zil_close(zd->zd_zilog); 2910 2911 /* zfsvfs_setup() */ 2912 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog); 2913 zil_replay(os, zd, ztest_replay_vector); 2914 2915 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2916 mutex_exit(&zd->zd_dirobj_lock); 2917 mutex_exit(&ztest_vdev_lock); 2918 } 2919 2920 /* 2921 * Verify that we can't destroy an active pool, create an existing pool, 2922 * or create a pool with a bad vdev spec. 2923 */ 2924 void 2925 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2926 { 2927 (void) zd, (void) id; 2928 ztest_shared_opts_t *zo = &ztest_opts; 2929 spa_t *spa; 2930 nvlist_t *nvroot; 2931 2932 if (zo->zo_mmp_test) 2933 return; 2934 2935 /* 2936 * Attempt to create using a bad file. 2937 */ 2938 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2939 VERIFY3U(ENOENT, ==, 2940 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2941 fnvlist_free(nvroot); 2942 2943 /* 2944 * Attempt to create using a bad mirror. 2945 */ 2946 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); 2947 VERIFY3U(ENOENT, ==, 2948 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2949 fnvlist_free(nvroot); 2950 2951 /* 2952 * Attempt to create an existing pool. It shouldn't matter 2953 * what's in the nvroot; we should fail with EEXIST. 2954 */ 2955 (void) pthread_rwlock_rdlock(&ztest_name_lock); 2956 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2957 VERIFY3U(EEXIST, ==, 2958 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); 2959 fnvlist_free(nvroot); 2960 2961 /* 2962 * We open a reference to the spa and then we try to export it 2963 * expecting one of the following errors: 2964 * 2965 * EBUSY 2966 * Because of the reference we just opened. 2967 * 2968 * ZFS_ERR_EXPORT_IN_PROGRESS 2969 * For the case that there is another ztest thread doing 2970 * an export concurrently. 2971 */ 2972 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG)); 2973 int error = spa_destroy(zo->zo_pool); 2974 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) { 2975 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d", 2976 spa->spa_name, error); 2977 } 2978 spa_close(spa, FTAG); 2979 2980 (void) pthread_rwlock_unlock(&ztest_name_lock); 2981 } 2982 2983 /* 2984 * Start and then stop the MMP threads to ensure the startup and shutdown code 2985 * works properly. Actual protection and property-related code tested via ZTS. 2986 */ 2987 void 2988 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) 2989 { 2990 (void) zd, (void) id; 2991 ztest_shared_opts_t *zo = &ztest_opts; 2992 spa_t *spa = ztest_spa; 2993 2994 if (zo->zo_mmp_test) 2995 return; 2996 2997 /* 2998 * Since enabling MMP involves setting a property, it could not be done 2999 * while the pool is suspended. 3000 */ 3001 if (spa_suspended(spa)) 3002 return; 3003 3004 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3005 mutex_enter(&spa->spa_props_lock); 3006 3007 zfs_multihost_fail_intervals = 0; 3008 3009 if (!spa_multihost(spa)) { 3010 spa->spa_multihost = B_TRUE; 3011 mmp_thread_start(spa); 3012 } 3013 3014 mutex_exit(&spa->spa_props_lock); 3015 spa_config_exit(spa, SCL_CONFIG, FTAG); 3016 3017 txg_wait_synced(spa_get_dsl(spa), 0); 3018 mmp_signal_all_threads(); 3019 txg_wait_synced(spa_get_dsl(spa), 0); 3020 3021 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3022 mutex_enter(&spa->spa_props_lock); 3023 3024 if (spa_multihost(spa)) { 3025 mmp_thread_stop(spa); 3026 spa->spa_multihost = B_FALSE; 3027 } 3028 3029 mutex_exit(&spa->spa_props_lock); 3030 spa_config_exit(spa, SCL_CONFIG, FTAG); 3031 } 3032 3033 void 3034 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 3035 { 3036 (void) zd, (void) id; 3037 spa_t *spa; 3038 uint64_t initial_version = SPA_VERSION_INITIAL; 3039 uint64_t version, newversion; 3040 nvlist_t *nvroot, *props; 3041 char *name; 3042 3043 if (ztest_opts.zo_mmp_test) 3044 return; 3045 3046 /* dRAID added after feature flags, skip upgrade test. */ 3047 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) 3048 return; 3049 3050 mutex_enter(&ztest_vdev_lock); 3051 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 3052 3053 /* 3054 * Clean up from previous runs. 3055 */ 3056 (void) spa_destroy(name); 3057 3058 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 3059 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1); 3060 3061 /* 3062 * If we're configuring a RAIDZ device then make sure that the 3063 * initial version is capable of supporting that feature. 3064 */ 3065 switch (ztest_opts.zo_raid_parity) { 3066 case 0: 3067 case 1: 3068 initial_version = SPA_VERSION_INITIAL; 3069 break; 3070 case 2: 3071 initial_version = SPA_VERSION_RAIDZ2; 3072 break; 3073 case 3: 3074 initial_version = SPA_VERSION_RAIDZ3; 3075 break; 3076 } 3077 3078 /* 3079 * Create a pool with a spa version that can be upgraded. Pick 3080 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 3081 */ 3082 do { 3083 version = ztest_random_spa_version(initial_version); 3084 } while (version > SPA_VERSION_BEFORE_FEATURES); 3085 3086 props = fnvlist_alloc(); 3087 fnvlist_add_uint64(props, 3088 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 3089 VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); 3090 fnvlist_free(nvroot); 3091 fnvlist_free(props); 3092 3093 VERIFY0(spa_open(name, &spa, FTAG)); 3094 VERIFY3U(spa_version(spa), ==, version); 3095 newversion = ztest_random_spa_version(version + 1); 3096 3097 if (ztest_opts.zo_verbose >= 4) { 3098 (void) printf("upgrading spa version from " 3099 "%"PRIu64" to %"PRIu64"\n", 3100 version, newversion); 3101 } 3102 3103 spa_upgrade(spa, newversion); 3104 VERIFY3U(spa_version(spa), >, version); 3105 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 3106 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 3107 spa_close(spa, FTAG); 3108 3109 kmem_strfree(name); 3110 mutex_exit(&ztest_vdev_lock); 3111 } 3112 3113 static void 3114 ztest_spa_checkpoint(spa_t *spa) 3115 { 3116 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 3117 3118 int error = spa_checkpoint(spa->spa_name); 3119 3120 switch (error) { 3121 case 0: 3122 case ZFS_ERR_DEVRM_IN_PROGRESS: 3123 case ZFS_ERR_DISCARDING_CHECKPOINT: 3124 case ZFS_ERR_CHECKPOINT_EXISTS: 3125 break; 3126 case ENOSPC: 3127 ztest_record_enospc(FTAG); 3128 break; 3129 default: 3130 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error); 3131 } 3132 } 3133 3134 static void 3135 ztest_spa_discard_checkpoint(spa_t *spa) 3136 { 3137 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 3138 3139 int error = spa_checkpoint_discard(spa->spa_name); 3140 3141 switch (error) { 3142 case 0: 3143 case ZFS_ERR_DISCARDING_CHECKPOINT: 3144 case ZFS_ERR_NO_CHECKPOINT: 3145 break; 3146 default: 3147 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d", 3148 spa->spa_name, error); 3149 } 3150 3151 } 3152 3153 void 3154 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 3155 { 3156 (void) zd, (void) id; 3157 spa_t *spa = ztest_spa; 3158 3159 mutex_enter(&ztest_checkpoint_lock); 3160 if (ztest_random(2) == 0) { 3161 ztest_spa_checkpoint(spa); 3162 } else { 3163 ztest_spa_discard_checkpoint(spa); 3164 } 3165 mutex_exit(&ztest_checkpoint_lock); 3166 } 3167 3168 3169 static vdev_t * 3170 vdev_lookup_by_path(vdev_t *vd, const char *path) 3171 { 3172 vdev_t *mvd; 3173 int c; 3174 3175 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 3176 return (vd); 3177 3178 for (c = 0; c < vd->vdev_children; c++) 3179 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 3180 NULL) 3181 return (mvd); 3182 3183 return (NULL); 3184 } 3185 3186 static int 3187 spa_num_top_vdevs(spa_t *spa) 3188 { 3189 vdev_t *rvd = spa->spa_root_vdev; 3190 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV); 3191 return (rvd->vdev_children); 3192 } 3193 3194 /* 3195 * Verify that vdev_add() works as expected. 3196 */ 3197 void 3198 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 3199 { 3200 (void) zd, (void) id; 3201 ztest_shared_t *zs = ztest_shared; 3202 spa_t *spa = ztest_spa; 3203 uint64_t leaves; 3204 uint64_t guid; 3205 nvlist_t *nvroot; 3206 int error; 3207 3208 if (ztest_opts.zo_mmp_test) 3209 return; 3210 3211 mutex_enter(&ztest_vdev_lock); 3212 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * 3213 ztest_opts.zo_raid_children; 3214 3215 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3216 3217 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; 3218 3219 /* 3220 * If we have slogs then remove them 1/4 of the time. 3221 */ 3222 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 3223 metaslab_group_t *mg; 3224 3225 /* 3226 * find the first real slog in log allocation class 3227 */ 3228 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor; 3229 while (!mg->mg_vd->vdev_islog) 3230 mg = mg->mg_next; 3231 3232 guid = mg->mg_vd->vdev_guid; 3233 3234 spa_config_exit(spa, SCL_VDEV, FTAG); 3235 3236 /* 3237 * We have to grab the zs_name_lock as writer to 3238 * prevent a race between removing a slog (dmu_objset_find) 3239 * and destroying a dataset. Removing the slog will 3240 * grab a reference on the dataset which may cause 3241 * dsl_destroy_head() to fail with EBUSY thus 3242 * leaving the dataset in an inconsistent state. 3243 */ 3244 pthread_rwlock_wrlock(&ztest_name_lock); 3245 error = spa_vdev_remove(spa, guid, B_FALSE); 3246 pthread_rwlock_unlock(&ztest_name_lock); 3247 3248 switch (error) { 3249 case 0: 3250 case EEXIST: /* Generic zil_reset() error */ 3251 case EBUSY: /* Replay required */ 3252 case EACCES: /* Crypto key not loaded */ 3253 case ZFS_ERR_CHECKPOINT_EXISTS: 3254 case ZFS_ERR_DISCARDING_CHECKPOINT: 3255 break; 3256 default: 3257 fatal(B_FALSE, "spa_vdev_remove() = %d", error); 3258 } 3259 } else { 3260 spa_config_exit(spa, SCL_VDEV, FTAG); 3261 3262 /* 3263 * Make 1/4 of the devices be log devices 3264 */ 3265 nvroot = make_vdev_root(NULL, NULL, NULL, 3266 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? 3267 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 3268 1); 3269 3270 error = spa_vdev_add(spa, nvroot); 3271 fnvlist_free(nvroot); 3272 3273 switch (error) { 3274 case 0: 3275 break; 3276 case ENOSPC: 3277 ztest_record_enospc("spa_vdev_add"); 3278 break; 3279 default: 3280 fatal(B_FALSE, "spa_vdev_add() = %d", error); 3281 } 3282 } 3283 3284 mutex_exit(&ztest_vdev_lock); 3285 } 3286 3287 void 3288 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) 3289 { 3290 (void) zd, (void) id; 3291 ztest_shared_t *zs = ztest_shared; 3292 spa_t *spa = ztest_spa; 3293 uint64_t leaves; 3294 nvlist_t *nvroot; 3295 const char *class = (ztest_random(2) == 0) ? 3296 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; 3297 int error; 3298 3299 /* 3300 * By default add a special vdev 50% of the time 3301 */ 3302 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || 3303 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && 3304 ztest_random(2) == 0)) { 3305 return; 3306 } 3307 3308 mutex_enter(&ztest_vdev_lock); 3309 3310 /* Only test with mirrors */ 3311 if (zs->zs_mirrors < 2) { 3312 mutex_exit(&ztest_vdev_lock); 3313 return; 3314 } 3315 3316 /* requires feature@allocation_classes */ 3317 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { 3318 mutex_exit(&ztest_vdev_lock); 3319 return; 3320 } 3321 3322 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * 3323 ztest_opts.zo_raid_children; 3324 3325 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3326 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; 3327 spa_config_exit(spa, SCL_VDEV, FTAG); 3328 3329 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 3330 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); 3331 3332 error = spa_vdev_add(spa, nvroot); 3333 fnvlist_free(nvroot); 3334 3335 if (error == ENOSPC) 3336 ztest_record_enospc("spa_vdev_add"); 3337 else if (error != 0) 3338 fatal(B_FALSE, "spa_vdev_add() = %d", error); 3339 3340 /* 3341 * 50% of the time allow small blocks in the special class 3342 */ 3343 if (error == 0 && 3344 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { 3345 if (ztest_opts.zo_verbose >= 3) 3346 (void) printf("Enabling special VDEV small blocks\n"); 3347 (void) ztest_dsl_prop_set_uint64(zd->zd_name, 3348 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); 3349 } 3350 3351 mutex_exit(&ztest_vdev_lock); 3352 3353 if (ztest_opts.zo_verbose >= 3) { 3354 metaslab_class_t *mc; 3355 3356 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) 3357 mc = spa_special_class(spa); 3358 else 3359 mc = spa_dedup_class(spa); 3360 (void) printf("Added a %s mirrored vdev (of %d)\n", 3361 class, (int)mc->mc_groups); 3362 } 3363 } 3364 3365 /* 3366 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 3367 */ 3368 void 3369 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 3370 { 3371 (void) zd, (void) id; 3372 ztest_shared_t *zs = ztest_shared; 3373 spa_t *spa = ztest_spa; 3374 vdev_t *rvd = spa->spa_root_vdev; 3375 spa_aux_vdev_t *sav; 3376 const char *aux; 3377 char *path; 3378 uint64_t guid = 0; 3379 int error, ignore_err = 0; 3380 3381 if (ztest_opts.zo_mmp_test) 3382 return; 3383 3384 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3385 3386 if (ztest_random(2) == 0) { 3387 sav = &spa->spa_spares; 3388 aux = ZPOOL_CONFIG_SPARES; 3389 } else { 3390 sav = &spa->spa_l2cache; 3391 aux = ZPOOL_CONFIG_L2CACHE; 3392 } 3393 3394 mutex_enter(&ztest_vdev_lock); 3395 3396 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3397 3398 if (sav->sav_count != 0 && ztest_random(4) == 0) { 3399 /* 3400 * Pick a random device to remove. 3401 */ 3402 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3403 3404 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */ 3405 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL) 3406 ignore_err = ENOTSUP; 3407 3408 guid = svd->vdev_guid; 3409 } else { 3410 /* 3411 * Find an unused device we can add. 3412 */ 3413 zs->zs_vdev_aux = 0; 3414 for (;;) { 3415 int c; 3416 (void) snprintf(path, MAXPATHLEN, ztest_aux_template, 3417 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 3418 zs->zs_vdev_aux); 3419 for (c = 0; c < sav->sav_count; c++) 3420 if (strcmp(sav->sav_vdevs[c]->vdev_path, 3421 path) == 0) 3422 break; 3423 if (c == sav->sav_count && 3424 vdev_lookup_by_path(rvd, path) == NULL) 3425 break; 3426 zs->zs_vdev_aux++; 3427 } 3428 } 3429 3430 spa_config_exit(spa, SCL_VDEV, FTAG); 3431 3432 if (guid == 0) { 3433 /* 3434 * Add a new device. 3435 */ 3436 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 3437 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); 3438 error = spa_vdev_add(spa, nvroot); 3439 3440 switch (error) { 3441 case 0: 3442 break; 3443 default: 3444 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error); 3445 } 3446 fnvlist_free(nvroot); 3447 } else { 3448 /* 3449 * Remove an existing device. Sometimes, dirty its 3450 * vdev state first to make sure we handle removal 3451 * of devices that have pending state changes. 3452 */ 3453 if (ztest_random(2) == 0) 3454 (void) vdev_online(spa, guid, 0, NULL); 3455 3456 error = spa_vdev_remove(spa, guid, B_FALSE); 3457 3458 switch (error) { 3459 case 0: 3460 case EBUSY: 3461 case ZFS_ERR_CHECKPOINT_EXISTS: 3462 case ZFS_ERR_DISCARDING_CHECKPOINT: 3463 break; 3464 default: 3465 if (error != ignore_err) 3466 fatal(B_FALSE, 3467 "spa_vdev_remove(%"PRIu64") = %d", 3468 guid, error); 3469 } 3470 } 3471 3472 mutex_exit(&ztest_vdev_lock); 3473 3474 umem_free(path, MAXPATHLEN); 3475 } 3476 3477 /* 3478 * split a pool if it has mirror tlvdevs 3479 */ 3480 void 3481 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 3482 { 3483 (void) zd, (void) id; 3484 ztest_shared_t *zs = ztest_shared; 3485 spa_t *spa = ztest_spa; 3486 vdev_t *rvd = spa->spa_root_vdev; 3487 nvlist_t *tree, **child, *config, *split, **schild; 3488 uint_t c, children, schildren = 0, lastlogid = 0; 3489 int error = 0; 3490 3491 if (ztest_opts.zo_mmp_test) 3492 return; 3493 3494 mutex_enter(&ztest_vdev_lock); 3495 3496 /* ensure we have a usable config; mirrors of raidz aren't supported */ 3497 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) { 3498 mutex_exit(&ztest_vdev_lock); 3499 return; 3500 } 3501 3502 /* clean up the old pool, if any */ 3503 (void) spa_destroy("splitp"); 3504 3505 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3506 3507 /* generate a config from the existing config */ 3508 mutex_enter(&spa->spa_props_lock); 3509 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE); 3510 mutex_exit(&spa->spa_props_lock); 3511 3512 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, 3513 &child, &children)); 3514 3515 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 3516 for (c = 0; c < children; c++) { 3517 vdev_t *tvd = rvd->vdev_child[c]; 3518 nvlist_t **mchild; 3519 uint_t mchildren; 3520 3521 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 3522 schild[schildren] = fnvlist_alloc(); 3523 fnvlist_add_string(schild[schildren], 3524 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE); 3525 fnvlist_add_uint64(schild[schildren], 3526 ZPOOL_CONFIG_IS_HOLE, 1); 3527 if (lastlogid == 0) 3528 lastlogid = schildren; 3529 ++schildren; 3530 continue; 3531 } 3532 lastlogid = 0; 3533 VERIFY0(nvlist_lookup_nvlist_array(child[c], 3534 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren)); 3535 schild[schildren++] = fnvlist_dup(mchild[0]); 3536 } 3537 3538 /* OK, create a config that can be used to split */ 3539 split = fnvlist_alloc(); 3540 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); 3541 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, 3542 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren); 3543 3544 config = fnvlist_alloc(); 3545 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split); 3546 3547 for (c = 0; c < schildren; c++) 3548 fnvlist_free(schild[c]); 3549 free(schild); 3550 fnvlist_free(split); 3551 3552 spa_config_exit(spa, SCL_VDEV, FTAG); 3553 3554 (void) pthread_rwlock_wrlock(&ztest_name_lock); 3555 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 3556 (void) pthread_rwlock_unlock(&ztest_name_lock); 3557 3558 fnvlist_free(config); 3559 3560 if (error == 0) { 3561 (void) printf("successful split - results:\n"); 3562 mutex_enter(&spa_namespace_lock); 3563 show_pool_stats(spa); 3564 show_pool_stats(spa_lookup("splitp")); 3565 mutex_exit(&spa_namespace_lock); 3566 ++zs->zs_splits; 3567 --zs->zs_mirrors; 3568 } 3569 mutex_exit(&ztest_vdev_lock); 3570 } 3571 3572 /* 3573 * Verify that we can attach and detach devices. 3574 */ 3575 void 3576 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 3577 { 3578 (void) zd, (void) id; 3579 ztest_shared_t *zs = ztest_shared; 3580 spa_t *spa = ztest_spa; 3581 spa_aux_vdev_t *sav = &spa->spa_spares; 3582 vdev_t *rvd = spa->spa_root_vdev; 3583 vdev_t *oldvd, *newvd, *pvd; 3584 nvlist_t *root; 3585 uint64_t leaves; 3586 uint64_t leaf, top; 3587 uint64_t ashift = ztest_get_ashift(); 3588 uint64_t oldguid, pguid; 3589 uint64_t oldsize, newsize; 3590 char *oldpath, *newpath; 3591 int replacing; 3592 int oldvd_has_siblings = B_FALSE; 3593 int newvd_is_spare = B_FALSE; 3594 int newvd_is_dspare = B_FALSE; 3595 int oldvd_is_log; 3596 int error, expected_error; 3597 3598 if (ztest_opts.zo_mmp_test) 3599 return; 3600 3601 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3602 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3603 3604 mutex_enter(&ztest_vdev_lock); 3605 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; 3606 3607 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3608 3609 /* 3610 * If a vdev is in the process of being removed, its removal may 3611 * finish while we are in progress, leading to an unexpected error 3612 * value. Don't bother trying to attach while we are in the middle 3613 * of removal. 3614 */ 3615 if (ztest_device_removal_active) { 3616 spa_config_exit(spa, SCL_ALL, FTAG); 3617 goto out; 3618 } 3619 3620 /* 3621 * Decide whether to do an attach or a replace. 3622 */ 3623 replacing = ztest_random(2); 3624 3625 /* 3626 * Pick a random top-level vdev. 3627 */ 3628 top = ztest_random_vdev_top(spa, B_TRUE); 3629 3630 /* 3631 * Pick a random leaf within it. 3632 */ 3633 leaf = ztest_random(leaves); 3634 3635 /* 3636 * Locate this vdev. 3637 */ 3638 oldvd = rvd->vdev_child[top]; 3639 3640 /* pick a child from the mirror */ 3641 if (zs->zs_mirrors >= 1) { 3642 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops); 3643 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors); 3644 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children]; 3645 } 3646 3647 /* pick a child out of the raidz group */ 3648 if (ztest_opts.zo_raid_children > 1) { 3649 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0) 3650 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops); 3651 else 3652 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops); 3653 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children); 3654 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children]; 3655 } 3656 3657 /* 3658 * If we're already doing an attach or replace, oldvd may be a 3659 * mirror vdev -- in which case, pick a random child. 3660 */ 3661 while (oldvd->vdev_children != 0) { 3662 oldvd_has_siblings = B_TRUE; 3663 ASSERT3U(oldvd->vdev_children, >=, 2); 3664 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 3665 } 3666 3667 oldguid = oldvd->vdev_guid; 3668 oldsize = vdev_get_min_asize(oldvd); 3669 oldvd_is_log = oldvd->vdev_top->vdev_islog; 3670 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN); 3671 pvd = oldvd->vdev_parent; 3672 pguid = pvd->vdev_guid; 3673 3674 /* 3675 * If oldvd has siblings, then half of the time, detach it. Prior 3676 * to the detach the pool is scrubbed in order to prevent creating 3677 * unrepairable blocks as a result of the data corruption injection. 3678 */ 3679 if (oldvd_has_siblings && ztest_random(2) == 0) { 3680 spa_config_exit(spa, SCL_ALL, FTAG); 3681 3682 error = ztest_scrub_impl(spa); 3683 if (error) 3684 goto out; 3685 3686 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 3687 if (error != 0 && error != ENODEV && error != EBUSY && 3688 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 3689 error != ZFS_ERR_DISCARDING_CHECKPOINT) 3690 fatal(B_FALSE, "detach (%s) returned %d", 3691 oldpath, error); 3692 goto out; 3693 } 3694 3695 /* 3696 * For the new vdev, choose with equal probability between the two 3697 * standard paths (ending in either 'a' or 'b') or a random hot spare. 3698 */ 3699 if (sav->sav_count != 0 && ztest_random(3) == 0) { 3700 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3701 newvd_is_spare = B_TRUE; 3702 3703 if (newvd->vdev_ops == &vdev_draid_spare_ops) 3704 newvd_is_dspare = B_TRUE; 3705 3706 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN); 3707 } else { 3708 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template, 3709 ztest_opts.zo_dir, ztest_opts.zo_pool, 3710 top * leaves + leaf); 3711 if (ztest_random(2) == 0) 3712 newpath[strlen(newpath) - 1] = 'b'; 3713 newvd = vdev_lookup_by_path(rvd, newpath); 3714 } 3715 3716 if (newvd) { 3717 /* 3718 * Reopen to ensure the vdev's asize field isn't stale. 3719 */ 3720 vdev_reopen(newvd); 3721 newsize = vdev_get_min_asize(newvd); 3722 } else { 3723 /* 3724 * Make newsize a little bigger or smaller than oldsize. 3725 * If it's smaller, the attach should fail. 3726 * If it's larger, and we're doing a replace, 3727 * we should get dynamic LUN growth when we're done. 3728 */ 3729 newsize = 10 * oldsize / (9 + ztest_random(3)); 3730 } 3731 3732 /* 3733 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 3734 * unless it's a replace; in that case any non-replacing parent is OK. 3735 * 3736 * If newvd is already part of the pool, it should fail with EBUSY. 3737 * 3738 * If newvd is too small, it should fail with EOVERFLOW. 3739 * 3740 * If newvd is a distributed spare and it's being attached to a 3741 * dRAID which is not its parent it should fail with EINVAL. 3742 */ 3743 if (pvd->vdev_ops != &vdev_mirror_ops && 3744 pvd->vdev_ops != &vdev_root_ops && (!replacing || 3745 pvd->vdev_ops == &vdev_replacing_ops || 3746 pvd->vdev_ops == &vdev_spare_ops)) 3747 expected_error = ENOTSUP; 3748 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 3749 expected_error = ENOTSUP; 3750 else if (newvd == oldvd) 3751 expected_error = replacing ? 0 : EBUSY; 3752 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3753 expected_error = EBUSY; 3754 else if (!newvd_is_dspare && newsize < oldsize) 3755 expected_error = EOVERFLOW; 3756 else if (ashift > oldvd->vdev_top->vdev_ashift) 3757 expected_error = EDOM; 3758 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd)) 3759 expected_error = ENOTSUP; 3760 else 3761 expected_error = 0; 3762 3763 spa_config_exit(spa, SCL_ALL, FTAG); 3764 3765 /* 3766 * Build the nvlist describing newpath. 3767 */ 3768 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3769 ashift, NULL, 0, 0, 1); 3770 3771 /* 3772 * When supported select either a healing or sequential resilver. 3773 */ 3774 boolean_t rebuilding = B_FALSE; 3775 if (pvd->vdev_ops == &vdev_mirror_ops || 3776 pvd->vdev_ops == &vdev_root_ops) { 3777 rebuilding = !!ztest_random(2); 3778 } 3779 3780 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding); 3781 3782 fnvlist_free(root); 3783 3784 /* 3785 * If our parent was the replacing vdev, but the replace completed, 3786 * then instead of failing with ENOTSUP we may either succeed, 3787 * fail with ENODEV, or fail with EOVERFLOW. 3788 */ 3789 if (expected_error == ENOTSUP && 3790 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3791 expected_error = error; 3792 3793 /* 3794 * If someone grew the LUN, the replacement may be too small. 3795 */ 3796 if (error == EOVERFLOW || error == EBUSY) 3797 expected_error = error; 3798 3799 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3800 error == ZFS_ERR_DISCARDING_CHECKPOINT || 3801 error == ZFS_ERR_RESILVER_IN_PROGRESS || 3802 error == ZFS_ERR_REBUILD_IN_PROGRESS) 3803 expected_error = error; 3804 3805 if (error != expected_error && expected_error != EBUSY) { 3806 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) " 3807 "returned %d, expected %d", 3808 oldpath, oldsize, newpath, 3809 newsize, replacing, error, expected_error); 3810 } 3811 out: 3812 mutex_exit(&ztest_vdev_lock); 3813 3814 umem_free(oldpath, MAXPATHLEN); 3815 umem_free(newpath, MAXPATHLEN); 3816 } 3817 3818 void 3819 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3820 { 3821 (void) zd, (void) id; 3822 spa_t *spa = ztest_spa; 3823 vdev_t *vd; 3824 uint64_t guid; 3825 int error; 3826 3827 mutex_enter(&ztest_vdev_lock); 3828 3829 if (ztest_device_removal_active) { 3830 mutex_exit(&ztest_vdev_lock); 3831 return; 3832 } 3833 3834 /* 3835 * Remove a random top-level vdev and wait for removal to finish. 3836 */ 3837 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3838 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3839 guid = vd->vdev_guid; 3840 spa_config_exit(spa, SCL_VDEV, FTAG); 3841 3842 error = spa_vdev_remove(spa, guid, B_FALSE); 3843 if (error == 0) { 3844 ztest_device_removal_active = B_TRUE; 3845 mutex_exit(&ztest_vdev_lock); 3846 3847 /* 3848 * spa->spa_vdev_removal is created in a sync task that 3849 * is initiated via dsl_sync_task_nowait(). Since the 3850 * task may not run before spa_vdev_remove() returns, we 3851 * must wait at least 1 txg to ensure that the removal 3852 * struct has been created. 3853 */ 3854 txg_wait_synced(spa_get_dsl(spa), 0); 3855 3856 while (spa->spa_removing_phys.sr_state == DSS_SCANNING) 3857 txg_wait_synced(spa_get_dsl(spa), 0); 3858 } else { 3859 mutex_exit(&ztest_vdev_lock); 3860 return; 3861 } 3862 3863 /* 3864 * The pool needs to be scrubbed after completing device removal. 3865 * Failure to do so may result in checksum errors due to the 3866 * strategy employed by ztest_fault_inject() when selecting which 3867 * offset are redundant and can be damaged. 3868 */ 3869 error = spa_scan(spa, POOL_SCAN_SCRUB); 3870 if (error == 0) { 3871 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3872 txg_wait_synced(spa_get_dsl(spa), 0); 3873 } 3874 3875 mutex_enter(&ztest_vdev_lock); 3876 ztest_device_removal_active = B_FALSE; 3877 mutex_exit(&ztest_vdev_lock); 3878 } 3879 3880 /* 3881 * Callback function which expands the physical size of the vdev. 3882 */ 3883 static vdev_t * 3884 grow_vdev(vdev_t *vd, void *arg) 3885 { 3886 spa_t *spa __maybe_unused = vd->vdev_spa; 3887 size_t *newsize = arg; 3888 size_t fsize; 3889 int fd; 3890 3891 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); 3892 ASSERT(vd->vdev_ops->vdev_op_leaf); 3893 3894 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3895 return (vd); 3896 3897 fsize = lseek(fd, 0, SEEK_END); 3898 VERIFY0(ftruncate(fd, *newsize)); 3899 3900 if (ztest_opts.zo_verbose >= 6) { 3901 (void) printf("%s grew from %lu to %lu bytes\n", 3902 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3903 } 3904 (void) close(fd); 3905 return (NULL); 3906 } 3907 3908 /* 3909 * Callback function which expands a given vdev by calling vdev_online(). 3910 */ 3911 static vdev_t * 3912 online_vdev(vdev_t *vd, void *arg) 3913 { 3914 (void) arg; 3915 spa_t *spa = vd->vdev_spa; 3916 vdev_t *tvd = vd->vdev_top; 3917 uint64_t guid = vd->vdev_guid; 3918 uint64_t generation = spa->spa_config_generation + 1; 3919 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3920 int error; 3921 3922 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); 3923 ASSERT(vd->vdev_ops->vdev_op_leaf); 3924 3925 /* Calling vdev_online will initialize the new metaslabs */ 3926 spa_config_exit(spa, SCL_STATE, spa); 3927 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3928 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3929 3930 /* 3931 * If vdev_online returned an error or the underlying vdev_open 3932 * failed then we abort the expand. The only way to know that 3933 * vdev_open fails is by checking the returned newstate. 3934 */ 3935 if (error || newstate != VDEV_STATE_HEALTHY) { 3936 if (ztest_opts.zo_verbose >= 5) { 3937 (void) printf("Unable to expand vdev, state %u, " 3938 "error %d\n", newstate, error); 3939 } 3940 return (vd); 3941 } 3942 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3943 3944 /* 3945 * Since we dropped the lock we need to ensure that we're 3946 * still talking to the original vdev. It's possible this 3947 * vdev may have been detached/replaced while we were 3948 * trying to online it. 3949 */ 3950 if (generation != spa->spa_config_generation) { 3951 if (ztest_opts.zo_verbose >= 5) { 3952 (void) printf("vdev configuration has changed, " 3953 "guid %"PRIu64", state %"PRIu64", " 3954 "expected gen %"PRIu64", got gen %"PRIu64"\n", 3955 guid, 3956 tvd->vdev_state, 3957 generation, 3958 spa->spa_config_generation); 3959 } 3960 return (vd); 3961 } 3962 return (NULL); 3963 } 3964 3965 /* 3966 * Traverse the vdev tree calling the supplied function. 3967 * We continue to walk the tree until we either have walked all 3968 * children or we receive a non-NULL return from the callback. 3969 * If a NULL callback is passed, then we just return back the first 3970 * leaf vdev we encounter. 3971 */ 3972 static vdev_t * 3973 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3974 { 3975 uint_t c; 3976 3977 if (vd->vdev_ops->vdev_op_leaf) { 3978 if (func == NULL) 3979 return (vd); 3980 else 3981 return (func(vd, arg)); 3982 } 3983 3984 for (c = 0; c < vd->vdev_children; c++) { 3985 vdev_t *cvd = vd->vdev_child[c]; 3986 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3987 return (cvd); 3988 } 3989 return (NULL); 3990 } 3991 3992 /* 3993 * Verify that dynamic LUN growth works as expected. 3994 */ 3995 void 3996 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3997 { 3998 (void) zd, (void) id; 3999 spa_t *spa = ztest_spa; 4000 vdev_t *vd, *tvd; 4001 metaslab_class_t *mc; 4002 metaslab_group_t *mg; 4003 size_t psize, newsize; 4004 uint64_t top; 4005 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 4006 4007 mutex_enter(&ztest_checkpoint_lock); 4008 mutex_enter(&ztest_vdev_lock); 4009 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 4010 4011 /* 4012 * If there is a vdev removal in progress, it could complete while 4013 * we are running, in which case we would not be able to verify 4014 * that the metaslab_class space increased (because it decreases 4015 * when the device removal completes). 4016 */ 4017 if (ztest_device_removal_active) { 4018 spa_config_exit(spa, SCL_STATE, spa); 4019 mutex_exit(&ztest_vdev_lock); 4020 mutex_exit(&ztest_checkpoint_lock); 4021 return; 4022 } 4023 4024 top = ztest_random_vdev_top(spa, B_TRUE); 4025 4026 tvd = spa->spa_root_vdev->vdev_child[top]; 4027 mg = tvd->vdev_mg; 4028 mc = mg->mg_class; 4029 old_ms_count = tvd->vdev_ms_count; 4030 old_class_space = metaslab_class_get_space(mc); 4031 4032 /* 4033 * Determine the size of the first leaf vdev associated with 4034 * our top-level device. 4035 */ 4036 vd = vdev_walk_tree(tvd, NULL, NULL); 4037 ASSERT3P(vd, !=, NULL); 4038 ASSERT(vd->vdev_ops->vdev_op_leaf); 4039 4040 psize = vd->vdev_psize; 4041 4042 /* 4043 * We only try to expand the vdev if it's healthy, less than 4x its 4044 * original size, and it has a valid psize. 4045 */ 4046 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 4047 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 4048 spa_config_exit(spa, SCL_STATE, spa); 4049 mutex_exit(&ztest_vdev_lock); 4050 mutex_exit(&ztest_checkpoint_lock); 4051 return; 4052 } 4053 ASSERT3U(psize, >, 0); 4054 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); 4055 ASSERT3U(newsize, >, psize); 4056 4057 if (ztest_opts.zo_verbose >= 6) { 4058 (void) printf("Expanding LUN %s from %lu to %lu\n", 4059 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 4060 } 4061 4062 /* 4063 * Growing the vdev is a two step process: 4064 * 1). expand the physical size (i.e. relabel) 4065 * 2). online the vdev to create the new metaslabs 4066 */ 4067 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 4068 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 4069 tvd->vdev_state != VDEV_STATE_HEALTHY) { 4070 if (ztest_opts.zo_verbose >= 5) { 4071 (void) printf("Could not expand LUN because " 4072 "the vdev configuration changed.\n"); 4073 } 4074 spa_config_exit(spa, SCL_STATE, spa); 4075 mutex_exit(&ztest_vdev_lock); 4076 mutex_exit(&ztest_checkpoint_lock); 4077 return; 4078 } 4079 4080 spa_config_exit(spa, SCL_STATE, spa); 4081 4082 /* 4083 * Expanding the LUN will update the config asynchronously, 4084 * thus we must wait for the async thread to complete any 4085 * pending tasks before proceeding. 4086 */ 4087 for (;;) { 4088 boolean_t done; 4089 mutex_enter(&spa->spa_async_lock); 4090 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 4091 mutex_exit(&spa->spa_async_lock); 4092 if (done) 4093 break; 4094 txg_wait_synced(spa_get_dsl(spa), 0); 4095 (void) poll(NULL, 0, 100); 4096 } 4097 4098 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 4099 4100 tvd = spa->spa_root_vdev->vdev_child[top]; 4101 new_ms_count = tvd->vdev_ms_count; 4102 new_class_space = metaslab_class_get_space(mc); 4103 4104 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 4105 if (ztest_opts.zo_verbose >= 5) { 4106 (void) printf("Could not verify LUN expansion due to " 4107 "intervening vdev offline or remove.\n"); 4108 } 4109 spa_config_exit(spa, SCL_STATE, spa); 4110 mutex_exit(&ztest_vdev_lock); 4111 mutex_exit(&ztest_checkpoint_lock); 4112 return; 4113 } 4114 4115 /* 4116 * Make sure we were able to grow the vdev. 4117 */ 4118 if (new_ms_count <= old_ms_count) { 4119 fatal(B_FALSE, 4120 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n", 4121 old_ms_count, new_ms_count); 4122 } 4123 4124 /* 4125 * Make sure we were able to grow the pool. 4126 */ 4127 if (new_class_space <= old_class_space) { 4128 fatal(B_FALSE, 4129 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n", 4130 old_class_space, new_class_space); 4131 } 4132 4133 if (ztest_opts.zo_verbose >= 5) { 4134 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 4135 4136 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 4137 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 4138 (void) printf("%s grew from %s to %s\n", 4139 spa->spa_name, oldnumbuf, newnumbuf); 4140 } 4141 4142 spa_config_exit(spa, SCL_STATE, spa); 4143 mutex_exit(&ztest_vdev_lock); 4144 mutex_exit(&ztest_checkpoint_lock); 4145 } 4146 4147 /* 4148 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 4149 */ 4150 static void 4151 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 4152 { 4153 (void) arg, (void) cr; 4154 4155 /* 4156 * Create the objects common to all ztest datasets. 4157 */ 4158 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ, 4159 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx)); 4160 } 4161 4162 static int 4163 ztest_dataset_create(char *dsname) 4164 { 4165 int err; 4166 uint64_t rand; 4167 dsl_crypto_params_t *dcp = NULL; 4168 4169 /* 4170 * 50% of the time, we create encrypted datasets 4171 * using a random cipher suite and a hard-coded 4172 * wrapping key. 4173 */ 4174 rand = ztest_random(2); 4175 if (rand != 0) { 4176 nvlist_t *crypto_args = fnvlist_alloc(); 4177 nvlist_t *props = fnvlist_alloc(); 4178 4179 /* slight bias towards the default cipher suite */ 4180 rand = ztest_random(ZIO_CRYPT_FUNCTIONS); 4181 if (rand < ZIO_CRYPT_AES_128_CCM) 4182 rand = ZIO_CRYPT_ON; 4183 4184 fnvlist_add_uint64(props, 4185 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); 4186 fnvlist_add_uint8_array(crypto_args, "wkeydata", 4187 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 4188 4189 /* 4190 * These parameters aren't really used by the kernel. They 4191 * are simply stored so that userspace knows how to load 4192 * the wrapping key. 4193 */ 4194 fnvlist_add_uint64(props, 4195 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); 4196 fnvlist_add_string(props, 4197 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); 4198 fnvlist_add_uint64(props, 4199 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); 4200 fnvlist_add_uint64(props, 4201 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); 4202 4203 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, 4204 crypto_args, &dcp)); 4205 4206 /* 4207 * Cycle through all available encryption implementations 4208 * to verify interoperability. 4209 */ 4210 VERIFY0(gcm_impl_set("cycle")); 4211 VERIFY0(aes_impl_set("cycle")); 4212 4213 fnvlist_free(crypto_args); 4214 fnvlist_free(props); 4215 } 4216 4217 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, 4218 ztest_objset_create_cb, NULL); 4219 dsl_crypto_params_free(dcp, !!err); 4220 4221 rand = ztest_random(100); 4222 if (err || rand < 80) 4223 return (err); 4224 4225 if (ztest_opts.zo_verbose >= 5) 4226 (void) printf("Setting dataset %s to sync always\n", dsname); 4227 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 4228 ZFS_SYNC_ALWAYS, B_FALSE)); 4229 } 4230 4231 static int 4232 ztest_objset_destroy_cb(const char *name, void *arg) 4233 { 4234 (void) arg; 4235 objset_t *os; 4236 dmu_object_info_t doi; 4237 int error; 4238 4239 /* 4240 * Verify that the dataset contains a directory object. 4241 */ 4242 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 4243 B_TRUE, FTAG, &os)); 4244 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 4245 if (error != ENOENT) { 4246 /* We could have crashed in the middle of destroying it */ 4247 ASSERT0(error); 4248 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 4249 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 4250 } 4251 dmu_objset_disown(os, B_TRUE, FTAG); 4252 4253 /* 4254 * Destroy the dataset. 4255 */ 4256 if (strchr(name, '@') != NULL) { 4257 error = dsl_destroy_snapshot(name, B_TRUE); 4258 if (error != ECHRNG) { 4259 /* 4260 * The program was executed, but encountered a runtime 4261 * error, such as insufficient slop, or a hold on the 4262 * dataset. 4263 */ 4264 ASSERT0(error); 4265 } 4266 } else { 4267 error = dsl_destroy_head(name); 4268 if (error == ENOSPC) { 4269 /* There could be checkpoint or insufficient slop */ 4270 ztest_record_enospc(FTAG); 4271 } else if (error != EBUSY) { 4272 /* There could be a hold on this dataset */ 4273 ASSERT0(error); 4274 } 4275 } 4276 return (0); 4277 } 4278 4279 static boolean_t 4280 ztest_snapshot_create(char *osname, uint64_t id) 4281 { 4282 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 4283 int error; 4284 4285 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id); 4286 4287 error = dmu_objset_snapshot_one(osname, snapname); 4288 if (error == ENOSPC) { 4289 ztest_record_enospc(FTAG); 4290 return (B_FALSE); 4291 } 4292 if (error != 0 && error != EEXIST) { 4293 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname, 4294 snapname, error); 4295 } 4296 return (B_TRUE); 4297 } 4298 4299 static boolean_t 4300 ztest_snapshot_destroy(char *osname, uint64_t id) 4301 { 4302 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 4303 int error; 4304 4305 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"", 4306 osname, id); 4307 4308 error = dsl_destroy_snapshot(snapname, B_FALSE); 4309 if (error != 0 && error != ENOENT) 4310 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d", 4311 snapname, error); 4312 return (B_TRUE); 4313 } 4314 4315 void 4316 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 4317 { 4318 (void) zd; 4319 ztest_ds_t *zdtmp; 4320 int iters; 4321 int error; 4322 objset_t *os, *os2; 4323 char name[ZFS_MAX_DATASET_NAME_LEN]; 4324 zilog_t *zilog; 4325 int i; 4326 4327 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); 4328 4329 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4330 4331 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"", 4332 ztest_opts.zo_pool, id); 4333 4334 /* 4335 * If this dataset exists from a previous run, process its replay log 4336 * half of the time. If we don't replay it, then dsl_destroy_head() 4337 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 4338 */ 4339 if (ztest_random(2) == 0 && 4340 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 4341 B_TRUE, FTAG, &os) == 0) { 4342 ztest_zd_init(zdtmp, NULL, os); 4343 zil_replay(os, zdtmp, ztest_replay_vector); 4344 ztest_zd_fini(zdtmp); 4345 dmu_objset_disown(os, B_TRUE, FTAG); 4346 } 4347 4348 /* 4349 * There may be an old instance of the dataset we're about to 4350 * create lying around from a previous run. If so, destroy it 4351 * and all of its snapshots. 4352 */ 4353 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4354 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 4355 4356 /* 4357 * Verify that the destroyed dataset is no longer in the namespace. 4358 */ 4359 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 4360 B_TRUE, FTAG, &os)); 4361 4362 /* 4363 * Verify that we can create a new dataset. 4364 */ 4365 error = ztest_dataset_create(name); 4366 if (error) { 4367 if (error == ENOSPC) { 4368 ztest_record_enospc(FTAG); 4369 goto out; 4370 } 4371 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error); 4372 } 4373 4374 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, 4375 FTAG, &os)); 4376 4377 ztest_zd_init(zdtmp, NULL, os); 4378 4379 /* 4380 * Open the intent log for it. 4381 */ 4382 zilog = zil_open(os, ztest_get_data, NULL); 4383 4384 /* 4385 * Put some objects in there, do a little I/O to them, 4386 * and randomly take a couple of snapshots along the way. 4387 */ 4388 iters = ztest_random(5); 4389 for (i = 0; i < iters; i++) { 4390 ztest_dmu_object_alloc_free(zdtmp, id); 4391 if (ztest_random(iters) == 0) 4392 (void) ztest_snapshot_create(name, i); 4393 } 4394 4395 /* 4396 * Verify that we cannot create an existing dataset. 4397 */ 4398 VERIFY3U(EEXIST, ==, 4399 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); 4400 4401 /* 4402 * Verify that we can hold an objset that is also owned. 4403 */ 4404 VERIFY0(dmu_objset_hold(name, FTAG, &os2)); 4405 dmu_objset_rele(os2, FTAG); 4406 4407 /* 4408 * Verify that we cannot own an objset that is already owned. 4409 */ 4410 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, 4411 B_FALSE, B_TRUE, FTAG, &os2)); 4412 4413 zil_close(zilog); 4414 dmu_objset_disown(os, B_TRUE, FTAG); 4415 ztest_zd_fini(zdtmp); 4416 out: 4417 (void) pthread_rwlock_unlock(&ztest_name_lock); 4418 4419 umem_free(zdtmp, sizeof (ztest_ds_t)); 4420 } 4421 4422 /* 4423 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 4424 */ 4425 void 4426 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 4427 { 4428 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4429 (void) ztest_snapshot_destroy(zd->zd_name, id); 4430 (void) ztest_snapshot_create(zd->zd_name, id); 4431 (void) pthread_rwlock_unlock(&ztest_name_lock); 4432 } 4433 4434 /* 4435 * Cleanup non-standard snapshots and clones. 4436 */ 4437 static void 4438 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 4439 { 4440 char *snap1name; 4441 char *clone1name; 4442 char *snap2name; 4443 char *clone2name; 4444 char *snap3name; 4445 int error; 4446 4447 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4448 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4449 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4450 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4451 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4452 4453 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", 4454 osname, id); 4455 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", 4456 osname, id); 4457 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", 4458 clone1name, id); 4459 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", 4460 osname, id); 4461 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", 4462 clone1name, id); 4463 4464 error = dsl_destroy_head(clone2name); 4465 if (error && error != ENOENT) 4466 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error); 4467 error = dsl_destroy_snapshot(snap3name, B_FALSE); 4468 if (error && error != ENOENT) 4469 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4470 snap3name, error); 4471 error = dsl_destroy_snapshot(snap2name, B_FALSE); 4472 if (error && error != ENOENT) 4473 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4474 snap2name, error); 4475 error = dsl_destroy_head(clone1name); 4476 if (error && error != ENOENT) 4477 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error); 4478 error = dsl_destroy_snapshot(snap1name, B_FALSE); 4479 if (error && error != ENOENT) 4480 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4481 snap1name, error); 4482 4483 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); 4484 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); 4485 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); 4486 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); 4487 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); 4488 } 4489 4490 /* 4491 * Verify dsl_dataset_promote handles EBUSY 4492 */ 4493 void 4494 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 4495 { 4496 objset_t *os; 4497 char *snap1name; 4498 char *clone1name; 4499 char *snap2name; 4500 char *clone2name; 4501 char *snap3name; 4502 char *osname = zd->zd_name; 4503 int error; 4504 4505 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4506 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4507 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4508 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4509 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4510 4511 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4512 4513 ztest_dsl_dataset_cleanup(osname, id); 4514 4515 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", 4516 osname, id); 4517 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", 4518 osname, id); 4519 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", 4520 clone1name, id); 4521 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", 4522 osname, id); 4523 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", 4524 clone1name, id); 4525 4526 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 4527 if (error && error != EEXIST) { 4528 if (error == ENOSPC) { 4529 ztest_record_enospc(FTAG); 4530 goto out; 4531 } 4532 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error); 4533 } 4534 4535 error = dmu_objset_clone(clone1name, snap1name); 4536 if (error) { 4537 if (error == ENOSPC) { 4538 ztest_record_enospc(FTAG); 4539 goto out; 4540 } 4541 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error); 4542 } 4543 4544 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 4545 if (error && error != EEXIST) { 4546 if (error == ENOSPC) { 4547 ztest_record_enospc(FTAG); 4548 goto out; 4549 } 4550 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error); 4551 } 4552 4553 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 4554 if (error && error != EEXIST) { 4555 if (error == ENOSPC) { 4556 ztest_record_enospc(FTAG); 4557 goto out; 4558 } 4559 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error); 4560 } 4561 4562 error = dmu_objset_clone(clone2name, snap3name); 4563 if (error) { 4564 if (error == ENOSPC) { 4565 ztest_record_enospc(FTAG); 4566 goto out; 4567 } 4568 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error); 4569 } 4570 4571 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, 4572 FTAG, &os); 4573 if (error) 4574 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error); 4575 error = dsl_dataset_promote(clone2name, NULL); 4576 if (error == ENOSPC) { 4577 dmu_objset_disown(os, B_TRUE, FTAG); 4578 ztest_record_enospc(FTAG); 4579 goto out; 4580 } 4581 if (error != EBUSY) 4582 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY", 4583 clone2name, error); 4584 dmu_objset_disown(os, B_TRUE, FTAG); 4585 4586 out: 4587 ztest_dsl_dataset_cleanup(osname, id); 4588 4589 (void) pthread_rwlock_unlock(&ztest_name_lock); 4590 4591 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); 4592 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); 4593 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); 4594 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); 4595 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); 4596 } 4597 4598 #undef OD_ARRAY_SIZE 4599 #define OD_ARRAY_SIZE 4 4600 4601 /* 4602 * Verify that dmu_object_{alloc,free} work as expected. 4603 */ 4604 void 4605 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 4606 { 4607 ztest_od_t *od; 4608 int batchsize; 4609 int size; 4610 int b; 4611 4612 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4613 od = umem_alloc(size, UMEM_NOFAIL); 4614 batchsize = OD_ARRAY_SIZE; 4615 4616 for (b = 0; b < batchsize; b++) 4617 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 4618 0, 0, 0); 4619 4620 /* 4621 * Destroy the previous batch of objects, create a new batch, 4622 * and do some I/O on the new objects. 4623 */ 4624 if (ztest_object_init(zd, od, size, B_TRUE) != 0) 4625 return; 4626 4627 while (ztest_random(4 * batchsize) != 0) 4628 ztest_io(zd, od[ztest_random(batchsize)].od_object, 4629 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4630 4631 umem_free(od, size); 4632 } 4633 4634 /* 4635 * Rewind the global allocator to verify object allocation backfilling. 4636 */ 4637 void 4638 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) 4639 { 4640 (void) id; 4641 objset_t *os = zd->zd_os; 4642 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; 4643 uint64_t object; 4644 4645 /* 4646 * Rewind the global allocator randomly back to a lower object number 4647 * to force backfilling and reclamation of recently freed dnodes. 4648 */ 4649 mutex_enter(&os->os_obj_lock); 4650 object = ztest_random(os->os_obj_next_chunk); 4651 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); 4652 mutex_exit(&os->os_obj_lock); 4653 } 4654 4655 #undef OD_ARRAY_SIZE 4656 #define OD_ARRAY_SIZE 2 4657 4658 /* 4659 * Verify that dmu_{read,write} work as expected. 4660 */ 4661 void 4662 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 4663 { 4664 int size; 4665 ztest_od_t *od; 4666 4667 objset_t *os = zd->zd_os; 4668 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4669 od = umem_alloc(size, UMEM_NOFAIL); 4670 dmu_tx_t *tx; 4671 int freeit, error; 4672 uint64_t i, n, s, txg; 4673 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 4674 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4675 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 4676 uint64_t regions = 997; 4677 uint64_t stride = 123456789ULL; 4678 uint64_t width = 40; 4679 int free_percent = 5; 4680 4681 /* 4682 * This test uses two objects, packobj and bigobj, that are always 4683 * updated together (i.e. in the same tx) so that their contents are 4684 * in sync and can be compared. Their contents relate to each other 4685 * in a simple way: packobj is a dense array of 'bufwad' structures, 4686 * while bigobj is a sparse array of the same bufwads. Specifically, 4687 * for any index n, there are three bufwads that should be identical: 4688 * 4689 * packobj, at offset n * sizeof (bufwad_t) 4690 * bigobj, at the head of the nth chunk 4691 * bigobj, at the tail of the nth chunk 4692 * 4693 * The chunk size is arbitrary. It doesn't have to be a power of two, 4694 * and it doesn't have any relation to the object blocksize. 4695 * The only requirement is that it can hold at least two bufwads. 4696 * 4697 * Normally, we write the bufwad to each of these locations. 4698 * However, free_percent of the time we instead write zeroes to 4699 * packobj and perform a dmu_free_range() on bigobj. By comparing 4700 * bigobj to packobj, we can verify that the DMU is correctly 4701 * tracking which parts of an object are allocated and free, 4702 * and that the contents of the allocated blocks are correct. 4703 */ 4704 4705 /* 4706 * Read the directory info. If it's the first time, set things up. 4707 */ 4708 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize); 4709 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4710 chunksize); 4711 4712 if (ztest_object_init(zd, od, size, B_FALSE) != 0) { 4713 umem_free(od, size); 4714 return; 4715 } 4716 4717 bigobj = od[0].od_object; 4718 packobj = od[1].od_object; 4719 chunksize = od[0].od_gen; 4720 ASSERT3U(chunksize, ==, od[1].od_gen); 4721 4722 /* 4723 * Prefetch a random chunk of the big object. 4724 * Our aim here is to get some async reads in flight 4725 * for blocks that we may free below; the DMU should 4726 * handle this race correctly. 4727 */ 4728 n = ztest_random(regions) * stride + ztest_random(width); 4729 s = 1 + ztest_random(2 * width - 1); 4730 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 4731 ZIO_PRIORITY_SYNC_READ); 4732 4733 /* 4734 * Pick a random index and compute the offsets into packobj and bigobj. 4735 */ 4736 n = ztest_random(regions) * stride + ztest_random(width); 4737 s = 1 + ztest_random(width - 1); 4738 4739 packoff = n * sizeof (bufwad_t); 4740 packsize = s * sizeof (bufwad_t); 4741 4742 bigoff = n * chunksize; 4743 bigsize = s * chunksize; 4744 4745 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 4746 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 4747 4748 /* 4749 * free_percent of the time, free a range of bigobj rather than 4750 * overwriting it. 4751 */ 4752 freeit = (ztest_random(100) < free_percent); 4753 4754 /* 4755 * Read the current contents of our objects. 4756 */ 4757 error = dmu_read(os, packobj, packoff, packsize, packbuf, 4758 DMU_READ_PREFETCH); 4759 ASSERT0(error); 4760 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 4761 DMU_READ_PREFETCH); 4762 ASSERT0(error); 4763 4764 /* 4765 * Get a tx for the mods to both packobj and bigobj. 4766 */ 4767 tx = dmu_tx_create(os); 4768 4769 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4770 4771 if (freeit) 4772 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 4773 else 4774 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4775 4776 /* This accounts for setting the checksum/compression. */ 4777 dmu_tx_hold_bonus(tx, bigobj); 4778 4779 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4780 if (txg == 0) { 4781 umem_free(packbuf, packsize); 4782 umem_free(bigbuf, bigsize); 4783 umem_free(od, size); 4784 return; 4785 } 4786 4787 enum zio_checksum cksum; 4788 do { 4789 cksum = (enum zio_checksum) 4790 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 4791 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 4792 dmu_object_set_checksum(os, bigobj, cksum, tx); 4793 4794 enum zio_compress comp; 4795 do { 4796 comp = (enum zio_compress) 4797 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 4798 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 4799 dmu_object_set_compress(os, bigobj, comp, tx); 4800 4801 /* 4802 * For each index from n to n + s, verify that the existing bufwad 4803 * in packobj matches the bufwads at the head and tail of the 4804 * corresponding chunk in bigobj. Then update all three bufwads 4805 * with the new values we want to write out. 4806 */ 4807 for (i = 0; i < s; i++) { 4808 /* LINTED */ 4809 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4810 /* LINTED */ 4811 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4812 /* LINTED */ 4813 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4814 4815 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); 4816 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); 4817 4818 if (pack->bw_txg > txg) 4819 fatal(B_FALSE, 4820 "future leak: got %"PRIx64", open txg is %"PRIx64"", 4821 pack->bw_txg, txg); 4822 4823 if (pack->bw_data != 0 && pack->bw_index != n + i) 4824 fatal(B_FALSE, "wrong index: " 4825 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", 4826 pack->bw_index, n, i); 4827 4828 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4829 fatal(B_FALSE, "pack/bigH mismatch in %p/%p", 4830 pack, bigH); 4831 4832 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4833 fatal(B_FALSE, "pack/bigT mismatch in %p/%p", 4834 pack, bigT); 4835 4836 if (freeit) { 4837 memset(pack, 0, sizeof (bufwad_t)); 4838 } else { 4839 pack->bw_index = n + i; 4840 pack->bw_txg = txg; 4841 pack->bw_data = 1 + ztest_random(-2ULL); 4842 } 4843 *bigH = *pack; 4844 *bigT = *pack; 4845 } 4846 4847 /* 4848 * We've verified all the old bufwads, and made new ones. 4849 * Now write them out. 4850 */ 4851 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4852 4853 if (freeit) { 4854 if (ztest_opts.zo_verbose >= 7) { 4855 (void) printf("freeing offset %"PRIx64" size %"PRIx64"" 4856 " txg %"PRIx64"\n", 4857 bigoff, bigsize, txg); 4858 } 4859 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 4860 } else { 4861 if (ztest_opts.zo_verbose >= 7) { 4862 (void) printf("writing offset %"PRIx64" size %"PRIx64"" 4863 " txg %"PRIx64"\n", 4864 bigoff, bigsize, txg); 4865 } 4866 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 4867 } 4868 4869 dmu_tx_commit(tx); 4870 4871 /* 4872 * Sanity check the stuff we just wrote. 4873 */ 4874 { 4875 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4876 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4877 4878 VERIFY0(dmu_read(os, packobj, packoff, 4879 packsize, packcheck, DMU_READ_PREFETCH)); 4880 VERIFY0(dmu_read(os, bigobj, bigoff, 4881 bigsize, bigcheck, DMU_READ_PREFETCH)); 4882 4883 ASSERT0(memcmp(packbuf, packcheck, packsize)); 4884 ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); 4885 4886 umem_free(packcheck, packsize); 4887 umem_free(bigcheck, bigsize); 4888 } 4889 4890 umem_free(packbuf, packsize); 4891 umem_free(bigbuf, bigsize); 4892 umem_free(od, size); 4893 } 4894 4895 static void 4896 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 4897 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 4898 { 4899 uint64_t i; 4900 bufwad_t *pack; 4901 bufwad_t *bigH; 4902 bufwad_t *bigT; 4903 4904 /* 4905 * For each index from n to n + s, verify that the existing bufwad 4906 * in packobj matches the bufwads at the head and tail of the 4907 * corresponding chunk in bigobj. Then update all three bufwads 4908 * with the new values we want to write out. 4909 */ 4910 for (i = 0; i < s; i++) { 4911 /* LINTED */ 4912 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4913 /* LINTED */ 4914 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4915 /* LINTED */ 4916 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4917 4918 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); 4919 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); 4920 4921 if (pack->bw_txg > txg) 4922 fatal(B_FALSE, 4923 "future leak: got %"PRIx64", open txg is %"PRIx64"", 4924 pack->bw_txg, txg); 4925 4926 if (pack->bw_data != 0 && pack->bw_index != n + i) 4927 fatal(B_FALSE, "wrong index: " 4928 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", 4929 pack->bw_index, n, i); 4930 4931 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4932 fatal(B_FALSE, "pack/bigH mismatch in %p/%p", 4933 pack, bigH); 4934 4935 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4936 fatal(B_FALSE, "pack/bigT mismatch in %p/%p", 4937 pack, bigT); 4938 4939 pack->bw_index = n + i; 4940 pack->bw_txg = txg; 4941 pack->bw_data = 1 + ztest_random(-2ULL); 4942 4943 *bigH = *pack; 4944 *bigT = *pack; 4945 } 4946 } 4947 4948 #undef OD_ARRAY_SIZE 4949 #define OD_ARRAY_SIZE 2 4950 4951 void 4952 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4953 { 4954 objset_t *os = zd->zd_os; 4955 ztest_od_t *od; 4956 dmu_tx_t *tx; 4957 uint64_t i; 4958 int error; 4959 int size; 4960 uint64_t n, s, txg; 4961 bufwad_t *packbuf, *bigbuf; 4962 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4963 uint64_t blocksize = ztest_random_blocksize(); 4964 uint64_t chunksize = blocksize; 4965 uint64_t regions = 997; 4966 uint64_t stride = 123456789ULL; 4967 uint64_t width = 9; 4968 dmu_buf_t *bonus_db; 4969 arc_buf_t **bigbuf_arcbufs; 4970 dmu_object_info_t doi; 4971 4972 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4973 od = umem_alloc(size, UMEM_NOFAIL); 4974 4975 /* 4976 * This test uses two objects, packobj and bigobj, that are always 4977 * updated together (i.e. in the same tx) so that their contents are 4978 * in sync and can be compared. Their contents relate to each other 4979 * in a simple way: packobj is a dense array of 'bufwad' structures, 4980 * while bigobj is a sparse array of the same bufwads. Specifically, 4981 * for any index n, there are three bufwads that should be identical: 4982 * 4983 * packobj, at offset n * sizeof (bufwad_t) 4984 * bigobj, at the head of the nth chunk 4985 * bigobj, at the tail of the nth chunk 4986 * 4987 * The chunk size is set equal to bigobj block size so that 4988 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. 4989 */ 4990 4991 /* 4992 * Read the directory info. If it's the first time, set things up. 4993 */ 4994 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); 4995 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4996 chunksize); 4997 4998 4999 if (ztest_object_init(zd, od, size, B_FALSE) != 0) { 5000 umem_free(od, size); 5001 return; 5002 } 5003 5004 bigobj = od[0].od_object; 5005 packobj = od[1].od_object; 5006 blocksize = od[0].od_blocksize; 5007 chunksize = blocksize; 5008 ASSERT3U(chunksize, ==, od[1].od_gen); 5009 5010 VERIFY0(dmu_object_info(os, bigobj, &doi)); 5011 VERIFY(ISP2(doi.doi_data_block_size)); 5012 VERIFY3U(chunksize, ==, doi.doi_data_block_size); 5013 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t)); 5014 5015 /* 5016 * Pick a random index and compute the offsets into packobj and bigobj. 5017 */ 5018 n = ztest_random(regions) * stride + ztest_random(width); 5019 s = 1 + ztest_random(width - 1); 5020 5021 packoff = n * sizeof (bufwad_t); 5022 packsize = s * sizeof (bufwad_t); 5023 5024 bigoff = n * chunksize; 5025 bigsize = s * chunksize; 5026 5027 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 5028 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 5029 5030 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 5031 5032 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 5033 5034 /* 5035 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 5036 * Iteration 1 test zcopy to already referenced dbufs. 5037 * Iteration 2 test zcopy to dirty dbuf in the same txg. 5038 * Iteration 3 test zcopy to dbuf dirty in previous txg. 5039 * Iteration 4 test zcopy when dbuf is no longer dirty. 5040 * Iteration 5 test zcopy when it can't be done. 5041 * Iteration 6 one more zcopy write. 5042 */ 5043 for (i = 0; i < 7; i++) { 5044 uint64_t j; 5045 uint64_t off; 5046 5047 /* 5048 * In iteration 5 (i == 5) use arcbufs 5049 * that don't match bigobj blksz to test 5050 * dmu_assign_arcbuf_by_dbuf() when it can't directly 5051 * assign an arcbuf to a dbuf. 5052 */ 5053 for (j = 0; j < s; j++) { 5054 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5055 bigbuf_arcbufs[j] = 5056 dmu_request_arcbuf(bonus_db, chunksize); 5057 } else { 5058 bigbuf_arcbufs[2 * j] = 5059 dmu_request_arcbuf(bonus_db, chunksize / 2); 5060 bigbuf_arcbufs[2 * j + 1] = 5061 dmu_request_arcbuf(bonus_db, chunksize / 2); 5062 } 5063 } 5064 5065 /* 5066 * Get a tx for the mods to both packobj and bigobj. 5067 */ 5068 tx = dmu_tx_create(os); 5069 5070 dmu_tx_hold_write(tx, packobj, packoff, packsize); 5071 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 5072 5073 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5074 if (txg == 0) { 5075 umem_free(packbuf, packsize); 5076 umem_free(bigbuf, bigsize); 5077 for (j = 0; j < s; j++) { 5078 if (i != 5 || 5079 chunksize < (SPA_MINBLOCKSIZE * 2)) { 5080 dmu_return_arcbuf(bigbuf_arcbufs[j]); 5081 } else { 5082 dmu_return_arcbuf( 5083 bigbuf_arcbufs[2 * j]); 5084 dmu_return_arcbuf( 5085 bigbuf_arcbufs[2 * j + 1]); 5086 } 5087 } 5088 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 5089 umem_free(od, size); 5090 dmu_buf_rele(bonus_db, FTAG); 5091 return; 5092 } 5093 5094 /* 5095 * 50% of the time don't read objects in the 1st iteration to 5096 * test dmu_assign_arcbuf_by_dbuf() for the case when there are 5097 * no existing dbufs for the specified offsets. 5098 */ 5099 if (i != 0 || ztest_random(2) != 0) { 5100 error = dmu_read(os, packobj, packoff, 5101 packsize, packbuf, DMU_READ_PREFETCH); 5102 ASSERT0(error); 5103 error = dmu_read(os, bigobj, bigoff, bigsize, 5104 bigbuf, DMU_READ_PREFETCH); 5105 ASSERT0(error); 5106 } 5107 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 5108 n, chunksize, txg); 5109 5110 /* 5111 * We've verified all the old bufwads, and made new ones. 5112 * Now write them out. 5113 */ 5114 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 5115 if (ztest_opts.zo_verbose >= 7) { 5116 (void) printf("writing offset %"PRIx64" size %"PRIx64"" 5117 " txg %"PRIx64"\n", 5118 bigoff, bigsize, txg); 5119 } 5120 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 5121 dmu_buf_t *dbt; 5122 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5123 memcpy(bigbuf_arcbufs[j]->b_data, 5124 (caddr_t)bigbuf + (off - bigoff), 5125 chunksize); 5126 } else { 5127 memcpy(bigbuf_arcbufs[2 * j]->b_data, 5128 (caddr_t)bigbuf + (off - bigoff), 5129 chunksize / 2); 5130 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data, 5131 (caddr_t)bigbuf + (off - bigoff) + 5132 chunksize / 2, 5133 chunksize / 2); 5134 } 5135 5136 if (i == 1) { 5137 VERIFY(dmu_buf_hold(os, bigobj, off, 5138 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 5139 } 5140 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5141 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5142 off, bigbuf_arcbufs[j], tx)); 5143 } else { 5144 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5145 off, bigbuf_arcbufs[2 * j], tx)); 5146 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5147 off + chunksize / 2, 5148 bigbuf_arcbufs[2 * j + 1], tx)); 5149 } 5150 if (i == 1) { 5151 dmu_buf_rele(dbt, FTAG); 5152 } 5153 } 5154 dmu_tx_commit(tx); 5155 5156 /* 5157 * Sanity check the stuff we just wrote. 5158 */ 5159 { 5160 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 5161 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 5162 5163 VERIFY0(dmu_read(os, packobj, packoff, 5164 packsize, packcheck, DMU_READ_PREFETCH)); 5165 VERIFY0(dmu_read(os, bigobj, bigoff, 5166 bigsize, bigcheck, DMU_READ_PREFETCH)); 5167 5168 ASSERT0(memcmp(packbuf, packcheck, packsize)); 5169 ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); 5170 5171 umem_free(packcheck, packsize); 5172 umem_free(bigcheck, bigsize); 5173 } 5174 if (i == 2) { 5175 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE); 5176 } else if (i == 3) { 5177 txg_wait_synced(dmu_objset_pool(os), 0); 5178 } 5179 } 5180 5181 dmu_buf_rele(bonus_db, FTAG); 5182 umem_free(packbuf, packsize); 5183 umem_free(bigbuf, bigsize); 5184 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 5185 umem_free(od, size); 5186 } 5187 5188 void 5189 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 5190 { 5191 (void) id; 5192 ztest_od_t *od; 5193 5194 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5195 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 5196 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5197 5198 /* 5199 * Have multiple threads write to large offsets in an object 5200 * to verify that parallel writes to an object -- even to the 5201 * same blocks within the object -- doesn't cause any trouble. 5202 */ 5203 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5204 5205 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) 5206 return; 5207 5208 while (ztest_random(10) != 0) 5209 ztest_io(zd, od->od_object, offset); 5210 5211 umem_free(od, sizeof (ztest_od_t)); 5212 } 5213 5214 void 5215 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 5216 { 5217 ztest_od_t *od; 5218 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 5219 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5220 uint64_t count = ztest_random(20) + 1; 5221 uint64_t blocksize = ztest_random_blocksize(); 5222 void *data; 5223 5224 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5225 5226 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); 5227 5228 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5229 !ztest_random(2)) != 0) { 5230 umem_free(od, sizeof (ztest_od_t)); 5231 return; 5232 } 5233 5234 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) { 5235 umem_free(od, sizeof (ztest_od_t)); 5236 return; 5237 } 5238 5239 ztest_prealloc(zd, od->od_object, offset, count * blocksize); 5240 5241 data = umem_zalloc(blocksize, UMEM_NOFAIL); 5242 5243 while (ztest_random(count) != 0) { 5244 uint64_t randoff = offset + (ztest_random(count) * blocksize); 5245 if (ztest_write(zd, od->od_object, randoff, blocksize, 5246 data) != 0) 5247 break; 5248 while (ztest_random(4) != 0) 5249 ztest_io(zd, od->od_object, randoff); 5250 } 5251 5252 umem_free(data, blocksize); 5253 umem_free(od, sizeof (ztest_od_t)); 5254 } 5255 5256 /* 5257 * Verify that zap_{create,destroy,add,remove,update} work as expected. 5258 */ 5259 #define ZTEST_ZAP_MIN_INTS 1 5260 #define ZTEST_ZAP_MAX_INTS 4 5261 #define ZTEST_ZAP_MAX_PROPS 1000 5262 5263 void 5264 ztest_zap(ztest_ds_t *zd, uint64_t id) 5265 { 5266 objset_t *os = zd->zd_os; 5267 ztest_od_t *od; 5268 uint64_t object; 5269 uint64_t txg, last_txg; 5270 uint64_t value[ZTEST_ZAP_MAX_INTS]; 5271 uint64_t zl_ints, zl_intsize, prop; 5272 int i, ints; 5273 dmu_tx_t *tx; 5274 char propname[100], txgname[100]; 5275 int error; 5276 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 5277 5278 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5279 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 5280 5281 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5282 !ztest_random(2)) != 0) 5283 goto out; 5284 5285 object = od->od_object; 5286 5287 /* 5288 * Generate a known hash collision, and verify that 5289 * we can lookup and remove both entries. 5290 */ 5291 tx = dmu_tx_create(os); 5292 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5293 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5294 if (txg == 0) 5295 goto out; 5296 for (i = 0; i < 2; i++) { 5297 value[i] = i; 5298 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t), 5299 1, &value[i], tx)); 5300 } 5301 for (i = 0; i < 2; i++) { 5302 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 5303 sizeof (uint64_t), 1, &value[i], tx)); 5304 VERIFY0( 5305 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 5306 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5307 ASSERT3U(zl_ints, ==, 1); 5308 } 5309 for (i = 0; i < 2; i++) { 5310 VERIFY0(zap_remove(os, object, hc[i], tx)); 5311 } 5312 dmu_tx_commit(tx); 5313 5314 /* 5315 * Generate a bunch of random entries. 5316 */ 5317 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 5318 5319 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 5320 (void) sprintf(propname, "prop_%"PRIu64"", prop); 5321 (void) sprintf(txgname, "txg_%"PRIu64"", prop); 5322 memset(value, 0, sizeof (value)); 5323 last_txg = 0; 5324 5325 /* 5326 * If these zap entries already exist, validate their contents. 5327 */ 5328 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 5329 if (error == 0) { 5330 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5331 ASSERT3U(zl_ints, ==, 1); 5332 5333 VERIFY0(zap_lookup(os, object, txgname, zl_intsize, 5334 zl_ints, &last_txg)); 5335 5336 VERIFY0(zap_length(os, object, propname, &zl_intsize, 5337 &zl_ints)); 5338 5339 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5340 ASSERT3U(zl_ints, ==, ints); 5341 5342 VERIFY0(zap_lookup(os, object, propname, zl_intsize, 5343 zl_ints, value)); 5344 5345 for (i = 0; i < ints; i++) { 5346 ASSERT3U(value[i], ==, last_txg + object + i); 5347 } 5348 } else { 5349 ASSERT3U(error, ==, ENOENT); 5350 } 5351 5352 /* 5353 * Atomically update two entries in our zap object. 5354 * The first is named txg_%llu, and contains the txg 5355 * in which the property was last updated. The second 5356 * is named prop_%llu, and the nth element of its value 5357 * should be txg + object + n. 5358 */ 5359 tx = dmu_tx_create(os); 5360 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5361 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5362 if (txg == 0) 5363 goto out; 5364 5365 if (last_txg > txg) 5366 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"", 5367 last_txg, txg); 5368 5369 for (i = 0; i < ints; i++) 5370 value[i] = txg + object + i; 5371 5372 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t), 5373 1, &txg, tx)); 5374 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t), 5375 ints, value, tx)); 5376 5377 dmu_tx_commit(tx); 5378 5379 /* 5380 * Remove a random pair of entries. 5381 */ 5382 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 5383 (void) sprintf(propname, "prop_%"PRIu64"", prop); 5384 (void) sprintf(txgname, "txg_%"PRIu64"", prop); 5385 5386 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 5387 5388 if (error == ENOENT) 5389 goto out; 5390 5391 ASSERT0(error); 5392 5393 tx = dmu_tx_create(os); 5394 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5395 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5396 if (txg == 0) 5397 goto out; 5398 VERIFY0(zap_remove(os, object, txgname, tx)); 5399 VERIFY0(zap_remove(os, object, propname, tx)); 5400 dmu_tx_commit(tx); 5401 out: 5402 umem_free(od, sizeof (ztest_od_t)); 5403 } 5404 5405 /* 5406 * Test case to test the upgrading of a microzap to fatzap. 5407 */ 5408 void 5409 ztest_fzap(ztest_ds_t *zd, uint64_t id) 5410 { 5411 objset_t *os = zd->zd_os; 5412 ztest_od_t *od; 5413 uint64_t object, txg, value; 5414 5415 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5416 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 5417 5418 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5419 !ztest_random(2)) != 0) 5420 goto out; 5421 object = od->od_object; 5422 5423 /* 5424 * Add entries to this ZAP and make sure it spills over 5425 * and gets upgraded to a fatzap. Also, since we are adding 5426 * 2050 entries we should see ptrtbl growth and leaf-block split. 5427 */ 5428 for (value = 0; value < 2050; value++) { 5429 char name[ZFS_MAX_DATASET_NAME_LEN]; 5430 dmu_tx_t *tx; 5431 int error; 5432 5433 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"", 5434 id, value); 5435 5436 tx = dmu_tx_create(os); 5437 dmu_tx_hold_zap(tx, object, B_TRUE, name); 5438 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5439 if (txg == 0) 5440 goto out; 5441 error = zap_add(os, object, name, sizeof (uint64_t), 1, 5442 &value, tx); 5443 ASSERT(error == 0 || error == EEXIST); 5444 dmu_tx_commit(tx); 5445 } 5446 out: 5447 umem_free(od, sizeof (ztest_od_t)); 5448 } 5449 5450 void 5451 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 5452 { 5453 (void) id; 5454 objset_t *os = zd->zd_os; 5455 ztest_od_t *od; 5456 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 5457 dmu_tx_t *tx; 5458 int i, namelen, error; 5459 int micro = ztest_random(2); 5460 char name[20], string_value[20]; 5461 void *data; 5462 5463 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5464 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0); 5465 5466 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { 5467 umem_free(od, sizeof (ztest_od_t)); 5468 return; 5469 } 5470 5471 object = od->od_object; 5472 5473 /* 5474 * Generate a random name of the form 'xxx.....' where each 5475 * x is a random printable character and the dots are dots. 5476 * There are 94 such characters, and the name length goes from 5477 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 5478 */ 5479 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 5480 5481 for (i = 0; i < 3; i++) 5482 name[i] = '!' + ztest_random('~' - '!' + 1); 5483 for (; i < namelen - 1; i++) 5484 name[i] = '.'; 5485 name[i] = '\0'; 5486 5487 if ((namelen & 1) || micro) { 5488 wsize = sizeof (txg); 5489 wc = 1; 5490 data = &txg; 5491 } else { 5492 wsize = 1; 5493 wc = namelen; 5494 data = string_value; 5495 } 5496 5497 count = -1ULL; 5498 VERIFY0(zap_count(os, object, &count)); 5499 ASSERT3S(count, !=, -1ULL); 5500 5501 /* 5502 * Select an operation: length, lookup, add, update, remove. 5503 */ 5504 i = ztest_random(5); 5505 5506 if (i >= 2) { 5507 tx = dmu_tx_create(os); 5508 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5509 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5510 if (txg == 0) { 5511 umem_free(od, sizeof (ztest_od_t)); 5512 return; 5513 } 5514 memcpy(string_value, name, namelen); 5515 } else { 5516 tx = NULL; 5517 txg = 0; 5518 memset(string_value, 0, namelen); 5519 } 5520 5521 switch (i) { 5522 5523 case 0: 5524 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 5525 if (error == 0) { 5526 ASSERT3U(wsize, ==, zl_wsize); 5527 ASSERT3U(wc, ==, zl_wc); 5528 } else { 5529 ASSERT3U(error, ==, ENOENT); 5530 } 5531 break; 5532 5533 case 1: 5534 error = zap_lookup(os, object, name, wsize, wc, data); 5535 if (error == 0) { 5536 if (data == string_value && 5537 memcmp(name, data, namelen) != 0) 5538 fatal(B_FALSE, "name '%s' != val '%s' len %d", 5539 name, (char *)data, namelen); 5540 } else { 5541 ASSERT3U(error, ==, ENOENT); 5542 } 5543 break; 5544 5545 case 2: 5546 error = zap_add(os, object, name, wsize, wc, data, tx); 5547 ASSERT(error == 0 || error == EEXIST); 5548 break; 5549 5550 case 3: 5551 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx)); 5552 break; 5553 5554 case 4: 5555 error = zap_remove(os, object, name, tx); 5556 ASSERT(error == 0 || error == ENOENT); 5557 break; 5558 } 5559 5560 if (tx != NULL) 5561 dmu_tx_commit(tx); 5562 5563 umem_free(od, sizeof (ztest_od_t)); 5564 } 5565 5566 /* 5567 * Commit callback data. 5568 */ 5569 typedef struct ztest_cb_data { 5570 list_node_t zcd_node; 5571 uint64_t zcd_txg; 5572 int zcd_expected_err; 5573 boolean_t zcd_added; 5574 boolean_t zcd_called; 5575 spa_t *zcd_spa; 5576 } ztest_cb_data_t; 5577 5578 /* This is the actual commit callback function */ 5579 static void 5580 ztest_commit_callback(void *arg, int error) 5581 { 5582 ztest_cb_data_t *data = arg; 5583 uint64_t synced_txg; 5584 5585 VERIFY3P(data, !=, NULL); 5586 VERIFY3S(data->zcd_expected_err, ==, error); 5587 VERIFY(!data->zcd_called); 5588 5589 synced_txg = spa_last_synced_txg(data->zcd_spa); 5590 if (data->zcd_txg > synced_txg) 5591 fatal(B_FALSE, 5592 "commit callback of txg %"PRIu64" called prematurely, " 5593 "last synced txg = %"PRIu64"\n", 5594 data->zcd_txg, synced_txg); 5595 5596 data->zcd_called = B_TRUE; 5597 5598 if (error == ECANCELED) { 5599 ASSERT0(data->zcd_txg); 5600 ASSERT(!data->zcd_added); 5601 5602 /* 5603 * The private callback data should be destroyed here, but 5604 * since we are going to check the zcd_called field after 5605 * dmu_tx_abort(), we will destroy it there. 5606 */ 5607 return; 5608 } 5609 5610 ASSERT(data->zcd_added); 5611 ASSERT3U(data->zcd_txg, !=, 0); 5612 5613 (void) mutex_enter(&zcl.zcl_callbacks_lock); 5614 5615 /* See if this cb was called more quickly */ 5616 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay) 5617 zc_min_txg_delay = synced_txg - data->zcd_txg; 5618 5619 /* Remove our callback from the list */ 5620 list_remove(&zcl.zcl_callbacks, data); 5621 5622 (void) mutex_exit(&zcl.zcl_callbacks_lock); 5623 5624 umem_free(data, sizeof (ztest_cb_data_t)); 5625 } 5626 5627 /* Allocate and initialize callback data structure */ 5628 static ztest_cb_data_t * 5629 ztest_create_cb_data(objset_t *os, uint64_t txg) 5630 { 5631 ztest_cb_data_t *cb_data; 5632 5633 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 5634 5635 cb_data->zcd_txg = txg; 5636 cb_data->zcd_spa = dmu_objset_spa(os); 5637 list_link_init(&cb_data->zcd_node); 5638 5639 return (cb_data); 5640 } 5641 5642 /* 5643 * Commit callback test. 5644 */ 5645 void 5646 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 5647 { 5648 objset_t *os = zd->zd_os; 5649 ztest_od_t *od; 5650 dmu_tx_t *tx; 5651 ztest_cb_data_t *cb_data[3], *tmp_cb; 5652 uint64_t old_txg, txg; 5653 int i, error = 0; 5654 5655 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5656 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5657 5658 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { 5659 umem_free(od, sizeof (ztest_od_t)); 5660 return; 5661 } 5662 5663 tx = dmu_tx_create(os); 5664 5665 cb_data[0] = ztest_create_cb_data(os, 0); 5666 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 5667 5668 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t)); 5669 5670 /* Every once in a while, abort the transaction on purpose */ 5671 if (ztest_random(100) == 0) 5672 error = -1; 5673 5674 if (!error) 5675 error = dmu_tx_assign(tx, TXG_NOWAIT); 5676 5677 txg = error ? 0 : dmu_tx_get_txg(tx); 5678 5679 cb_data[0]->zcd_txg = txg; 5680 cb_data[1] = ztest_create_cb_data(os, txg); 5681 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 5682 5683 if (error) { 5684 /* 5685 * It's not a strict requirement to call the registered 5686 * callbacks from inside dmu_tx_abort(), but that's what 5687 * it's supposed to happen in the current implementation 5688 * so we will check for that. 5689 */ 5690 for (i = 0; i < 2; i++) { 5691 cb_data[i]->zcd_expected_err = ECANCELED; 5692 VERIFY(!cb_data[i]->zcd_called); 5693 } 5694 5695 dmu_tx_abort(tx); 5696 5697 for (i = 0; i < 2; i++) { 5698 VERIFY(cb_data[i]->zcd_called); 5699 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 5700 } 5701 5702 umem_free(od, sizeof (ztest_od_t)); 5703 return; 5704 } 5705 5706 cb_data[2] = ztest_create_cb_data(os, txg); 5707 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 5708 5709 /* 5710 * Read existing data to make sure there isn't a future leak. 5711 */ 5712 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t), 5713 &old_txg, DMU_READ_PREFETCH)); 5714 5715 if (old_txg > txg) 5716 fatal(B_FALSE, 5717 "future leak: got %"PRIu64", open txg is %"PRIu64"", 5718 old_txg, txg); 5719 5720 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx); 5721 5722 (void) mutex_enter(&zcl.zcl_callbacks_lock); 5723 5724 /* 5725 * Since commit callbacks don't have any ordering requirement and since 5726 * it is theoretically possible for a commit callback to be called 5727 * after an arbitrary amount of time has elapsed since its txg has been 5728 * synced, it is difficult to reliably determine whether a commit 5729 * callback hasn't been called due to high load or due to a flawed 5730 * implementation. 5731 * 5732 * In practice, we will assume that if after a certain number of txgs a 5733 * commit callback hasn't been called, then most likely there's an 5734 * implementation bug.. 5735 */ 5736 tmp_cb = list_head(&zcl.zcl_callbacks); 5737 if (tmp_cb != NULL && 5738 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) { 5739 fatal(B_FALSE, 5740 "Commit callback threshold exceeded, " 5741 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n", 5742 tmp_cb->zcd_txg, txg); 5743 } 5744 5745 /* 5746 * Let's find the place to insert our callbacks. 5747 * 5748 * Even though the list is ordered by txg, it is possible for the 5749 * insertion point to not be the end because our txg may already be 5750 * quiescing at this point and other callbacks in the open txg 5751 * (from other objsets) may have sneaked in. 5752 */ 5753 tmp_cb = list_tail(&zcl.zcl_callbacks); 5754 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 5755 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 5756 5757 /* Add the 3 callbacks to the list */ 5758 for (i = 0; i < 3; i++) { 5759 if (tmp_cb == NULL) 5760 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 5761 else 5762 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 5763 cb_data[i]); 5764 5765 cb_data[i]->zcd_added = B_TRUE; 5766 VERIFY(!cb_data[i]->zcd_called); 5767 5768 tmp_cb = cb_data[i]; 5769 } 5770 5771 zc_cb_counter += 3; 5772 5773 (void) mutex_exit(&zcl.zcl_callbacks_lock); 5774 5775 dmu_tx_commit(tx); 5776 5777 umem_free(od, sizeof (ztest_od_t)); 5778 } 5779 5780 /* 5781 * Visit each object in the dataset. Verify that its properties 5782 * are consistent what was stored in the block tag when it was created, 5783 * and that its unused bonus buffer space has not been overwritten. 5784 */ 5785 void 5786 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) 5787 { 5788 (void) id; 5789 objset_t *os = zd->zd_os; 5790 uint64_t obj; 5791 int err = 0; 5792 5793 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { 5794 ztest_block_tag_t *bt = NULL; 5795 dmu_object_info_t doi; 5796 dmu_buf_t *db; 5797 5798 ztest_object_lock(zd, obj, RL_READER); 5799 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) { 5800 ztest_object_unlock(zd, obj); 5801 continue; 5802 } 5803 5804 dmu_object_info_from_db(db, &doi); 5805 if (doi.doi_bonus_size >= sizeof (*bt)) 5806 bt = ztest_bt_bonus(db); 5807 5808 if (bt && bt->bt_magic == BT_MAGIC) { 5809 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, 5810 bt->bt_offset, bt->bt_gen, bt->bt_txg, 5811 bt->bt_crtxg); 5812 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); 5813 } 5814 5815 dmu_buf_rele(db, FTAG); 5816 ztest_object_unlock(zd, obj); 5817 } 5818 } 5819 5820 void 5821 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 5822 { 5823 (void) id; 5824 zfs_prop_t proplist[] = { 5825 ZFS_PROP_CHECKSUM, 5826 ZFS_PROP_COMPRESSION, 5827 ZFS_PROP_COPIES, 5828 ZFS_PROP_DEDUP 5829 }; 5830 5831 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5832 5833 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 5834 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 5835 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 5836 5837 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE, 5838 ztest_random_blocksize(), (int)ztest_random(2))); 5839 5840 (void) pthread_rwlock_unlock(&ztest_name_lock); 5841 } 5842 5843 void 5844 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 5845 { 5846 (void) zd, (void) id; 5847 nvlist_t *props = NULL; 5848 5849 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5850 5851 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2)); 5852 5853 VERIFY0(spa_prop_get(ztest_spa, &props)); 5854 5855 if (ztest_opts.zo_verbose >= 6) 5856 dump_nvlist(props, 4); 5857 5858 fnvlist_free(props); 5859 5860 (void) pthread_rwlock_unlock(&ztest_name_lock); 5861 } 5862 5863 static int 5864 user_release_one(const char *snapname, const char *holdname) 5865 { 5866 nvlist_t *snaps, *holds; 5867 int error; 5868 5869 snaps = fnvlist_alloc(); 5870 holds = fnvlist_alloc(); 5871 fnvlist_add_boolean(holds, holdname); 5872 fnvlist_add_nvlist(snaps, snapname, holds); 5873 fnvlist_free(holds); 5874 error = dsl_dataset_user_release(snaps, NULL); 5875 fnvlist_free(snaps); 5876 return (error); 5877 } 5878 5879 /* 5880 * Test snapshot hold/release and deferred destroy. 5881 */ 5882 void 5883 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 5884 { 5885 int error; 5886 objset_t *os = zd->zd_os; 5887 objset_t *origin; 5888 char snapname[100]; 5889 char fullname[100]; 5890 char clonename[100]; 5891 char tag[100]; 5892 char osname[ZFS_MAX_DATASET_NAME_LEN]; 5893 nvlist_t *holds; 5894 5895 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5896 5897 dmu_objset_name(os, osname); 5898 5899 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id); 5900 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 5901 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"", 5902 osname, id); 5903 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id); 5904 5905 /* 5906 * Clean up from any previous run. 5907 */ 5908 error = dsl_destroy_head(clonename); 5909 if (error != ENOENT) 5910 ASSERT0(error); 5911 error = user_release_one(fullname, tag); 5912 if (error != ESRCH && error != ENOENT) 5913 ASSERT0(error); 5914 error = dsl_destroy_snapshot(fullname, B_FALSE); 5915 if (error != ENOENT) 5916 ASSERT0(error); 5917 5918 /* 5919 * Create snapshot, clone it, mark snap for deferred destroy, 5920 * destroy clone, verify snap was also destroyed. 5921 */ 5922 error = dmu_objset_snapshot_one(osname, snapname); 5923 if (error) { 5924 if (error == ENOSPC) { 5925 ztest_record_enospc("dmu_objset_snapshot"); 5926 goto out; 5927 } 5928 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); 5929 } 5930 5931 error = dmu_objset_clone(clonename, fullname); 5932 if (error) { 5933 if (error == ENOSPC) { 5934 ztest_record_enospc("dmu_objset_clone"); 5935 goto out; 5936 } 5937 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error); 5938 } 5939 5940 error = dsl_destroy_snapshot(fullname, B_TRUE); 5941 if (error) { 5942 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5943 fullname, error); 5944 } 5945 5946 error = dsl_destroy_head(clonename); 5947 if (error) 5948 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error); 5949 5950 error = dmu_objset_hold(fullname, FTAG, &origin); 5951 if (error != ENOENT) 5952 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error); 5953 5954 /* 5955 * Create snapshot, add temporary hold, verify that we can't 5956 * destroy a held snapshot, mark for deferred destroy, 5957 * release hold, verify snapshot was destroyed. 5958 */ 5959 error = dmu_objset_snapshot_one(osname, snapname); 5960 if (error) { 5961 if (error == ENOSPC) { 5962 ztest_record_enospc("dmu_objset_snapshot"); 5963 goto out; 5964 } 5965 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); 5966 } 5967 5968 holds = fnvlist_alloc(); 5969 fnvlist_add_string(holds, fullname, tag); 5970 error = dsl_dataset_user_hold(holds, 0, NULL); 5971 fnvlist_free(holds); 5972 5973 if (error == ENOSPC) { 5974 ztest_record_enospc("dsl_dataset_user_hold"); 5975 goto out; 5976 } else if (error) { 5977 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u", 5978 fullname, tag, error); 5979 } 5980 5981 error = dsl_destroy_snapshot(fullname, B_FALSE); 5982 if (error != EBUSY) { 5983 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 5984 fullname, error); 5985 } 5986 5987 error = dsl_destroy_snapshot(fullname, B_TRUE); 5988 if (error) { 5989 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5990 fullname, error); 5991 } 5992 5993 error = user_release_one(fullname, tag); 5994 if (error) 5995 fatal(B_FALSE, "user_release_one(%s, %s) = %d", 5996 fullname, tag, error); 5997 5998 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 5999 6000 out: 6001 (void) pthread_rwlock_unlock(&ztest_name_lock); 6002 } 6003 6004 /* 6005 * Inject random faults into the on-disk data. 6006 */ 6007 void 6008 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 6009 { 6010 (void) zd, (void) id; 6011 ztest_shared_t *zs = ztest_shared; 6012 spa_t *spa = ztest_spa; 6013 int fd; 6014 uint64_t offset; 6015 uint64_t leaves; 6016 uint64_t bad = 0x1990c0ffeedecadeull; 6017 uint64_t top, leaf; 6018 char *path0; 6019 char *pathrand; 6020 size_t fsize; 6021 int bshift = SPA_MAXBLOCKSHIFT + 2; 6022 int iters = 1000; 6023 int maxfaults; 6024 int mirror_save; 6025 vdev_t *vd0 = NULL; 6026 uint64_t guid0 = 0; 6027 boolean_t islog = B_FALSE; 6028 6029 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6030 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6031 6032 mutex_enter(&ztest_vdev_lock); 6033 6034 /* 6035 * Device removal is in progress, fault injection must be disabled 6036 * until it completes and the pool is scrubbed. The fault injection 6037 * strategy for damaging blocks does not take in to account evacuated 6038 * blocks which may have already been damaged. 6039 */ 6040 if (ztest_device_removal_active) { 6041 mutex_exit(&ztest_vdev_lock); 6042 goto out; 6043 } 6044 6045 maxfaults = MAXFAULTS(zs); 6046 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; 6047 mirror_save = zs->zs_mirrors; 6048 mutex_exit(&ztest_vdev_lock); 6049 6050 ASSERT3U(leaves, >=, 1); 6051 6052 /* 6053 * While ztest is running the number of leaves will not change. This 6054 * is critical for the fault injection logic as it determines where 6055 * errors can be safely injected such that they are always repairable. 6056 * 6057 * When restarting ztest a different number of leaves may be requested 6058 * which will shift the regions to be damaged. This is fine as long 6059 * as the pool has been scrubbed prior to using the new mapping. 6060 * Failure to do can result in non-repairable damage being injected. 6061 */ 6062 if (ztest_pool_scrubbed == B_FALSE) 6063 goto out; 6064 6065 /* 6066 * Grab the name lock as reader. There are some operations 6067 * which don't like to have their vdevs changed while 6068 * they are in progress (i.e. spa_change_guid). Those 6069 * operations will have grabbed the name lock as writer. 6070 */ 6071 (void) pthread_rwlock_rdlock(&ztest_name_lock); 6072 6073 /* 6074 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 6075 */ 6076 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6077 6078 if (ztest_random(2) == 0) { 6079 /* 6080 * Inject errors on a normal data device or slog device. 6081 */ 6082 top = ztest_random_vdev_top(spa, B_TRUE); 6083 leaf = ztest_random(leaves) + zs->zs_splits; 6084 6085 /* 6086 * Generate paths to the first leaf in this top-level vdev, 6087 * and to the random leaf we selected. We'll induce transient 6088 * write failures and random online/offline activity on leaf 0, 6089 * and we'll write random garbage to the randomly chosen leaf. 6090 */ 6091 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template, 6092 ztest_opts.zo_dir, ztest_opts.zo_pool, 6093 top * leaves + zs->zs_splits); 6094 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template, 6095 ztest_opts.zo_dir, ztest_opts.zo_pool, 6096 top * leaves + leaf); 6097 6098 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 6099 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 6100 islog = B_TRUE; 6101 6102 /* 6103 * If the top-level vdev needs to be resilvered 6104 * then we only allow faults on the device that is 6105 * resilvering. 6106 */ 6107 if (vd0 != NULL && maxfaults != 1 && 6108 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 6109 vd0->vdev_resilver_txg != 0)) { 6110 /* 6111 * Make vd0 explicitly claim to be unreadable, 6112 * or unwritable, or reach behind its back 6113 * and close the underlying fd. We can do this if 6114 * maxfaults == 0 because we'll fail and reexecute, 6115 * and we can do it if maxfaults >= 2 because we'll 6116 * have enough redundancy. If maxfaults == 1, the 6117 * combination of this with injection of random data 6118 * corruption below exceeds the pool's fault tolerance. 6119 */ 6120 vdev_file_t *vf = vd0->vdev_tsd; 6121 6122 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 6123 (long long)vd0->vdev_id, (int)maxfaults); 6124 6125 if (vf != NULL && ztest_random(3) == 0) { 6126 (void) close(vf->vf_file->f_fd); 6127 vf->vf_file->f_fd = -1; 6128 } else if (ztest_random(2) == 0) { 6129 vd0->vdev_cant_read = B_TRUE; 6130 } else { 6131 vd0->vdev_cant_write = B_TRUE; 6132 } 6133 guid0 = vd0->vdev_guid; 6134 } 6135 } else { 6136 /* 6137 * Inject errors on an l2cache device. 6138 */ 6139 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6140 6141 if (sav->sav_count == 0) { 6142 spa_config_exit(spa, SCL_STATE, FTAG); 6143 (void) pthread_rwlock_unlock(&ztest_name_lock); 6144 goto out; 6145 } 6146 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 6147 guid0 = vd0->vdev_guid; 6148 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN); 6149 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN); 6150 6151 leaf = 0; 6152 leaves = 1; 6153 maxfaults = INT_MAX; /* no limit on cache devices */ 6154 } 6155 6156 spa_config_exit(spa, SCL_STATE, FTAG); 6157 (void) pthread_rwlock_unlock(&ztest_name_lock); 6158 6159 /* 6160 * If we can tolerate two or more faults, or we're dealing 6161 * with a slog, randomly online/offline vd0. 6162 */ 6163 if ((maxfaults >= 2 || islog) && guid0 != 0) { 6164 if (ztest_random(10) < 6) { 6165 int flags = (ztest_random(2) == 0 ? 6166 ZFS_OFFLINE_TEMPORARY : 0); 6167 6168 /* 6169 * We have to grab the zs_name_lock as writer to 6170 * prevent a race between offlining a slog and 6171 * destroying a dataset. Offlining the slog will 6172 * grab a reference on the dataset which may cause 6173 * dsl_destroy_head() to fail with EBUSY thus 6174 * leaving the dataset in an inconsistent state. 6175 */ 6176 if (islog) 6177 (void) pthread_rwlock_wrlock(&ztest_name_lock); 6178 6179 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY); 6180 6181 if (islog) 6182 (void) pthread_rwlock_unlock(&ztest_name_lock); 6183 } else { 6184 /* 6185 * Ideally we would like to be able to randomly 6186 * call vdev_[on|off]line without holding locks 6187 * to force unpredictable failures but the side 6188 * effects of vdev_[on|off]line prevent us from 6189 * doing so. We grab the ztest_vdev_lock here to 6190 * prevent a race between injection testing and 6191 * aux_vdev removal. 6192 */ 6193 mutex_enter(&ztest_vdev_lock); 6194 (void) vdev_online(spa, guid0, 0, NULL); 6195 mutex_exit(&ztest_vdev_lock); 6196 } 6197 } 6198 6199 if (maxfaults == 0) 6200 goto out; 6201 6202 /* 6203 * We have at least single-fault tolerance, so inject data corruption. 6204 */ 6205 fd = open(pathrand, O_RDWR); 6206 6207 if (fd == -1) /* we hit a gap in the device namespace */ 6208 goto out; 6209 6210 fsize = lseek(fd, 0, SEEK_END); 6211 6212 while (--iters != 0) { 6213 /* 6214 * The offset must be chosen carefully to ensure that 6215 * we do not inject a given logical block with errors 6216 * on two different leaf devices, because ZFS can not 6217 * tolerate that (if maxfaults==1). 6218 * 6219 * To achieve this we divide each leaf device into 6220 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4). 6221 * Each chunk is further divided into error-injection 6222 * ranges (can accept errors) and clear ranges (we do 6223 * not inject errors in those). Each error-injection 6224 * range can accept errors only for a single leaf vdev. 6225 * Error-injection ranges are separated by clear ranges. 6226 * 6227 * For example, with 3 leaves, each chunk looks like: 6228 * 0 to 32M: injection range for leaf 0 6229 * 32M to 64M: clear range - no injection allowed 6230 * 64M to 96M: injection range for leaf 1 6231 * 96M to 128M: clear range - no injection allowed 6232 * 128M to 160M: injection range for leaf 2 6233 * 160M to 192M: clear range - no injection allowed 6234 * 6235 * Each clear range must be large enough such that a 6236 * single block cannot straddle it. This way a block 6237 * can't be a target in two different injection ranges 6238 * (on different leaf vdevs). 6239 */ 6240 offset = ztest_random(fsize / (leaves << bshift)) * 6241 (leaves << bshift) + (leaf << bshift) + 6242 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 6243 6244 /* 6245 * Only allow damage to the labels at one end of the vdev. 6246 * 6247 * If all labels are damaged, the device will be totally 6248 * inaccessible, which will result in loss of data, 6249 * because we also damage (parts of) the other side of 6250 * the mirror/raidz. 6251 * 6252 * Additionally, we will always have both an even and an 6253 * odd label, so that we can handle crashes in the 6254 * middle of vdev_config_sync(). 6255 */ 6256 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 6257 continue; 6258 6259 /* 6260 * The two end labels are stored at the "end" of the disk, but 6261 * the end of the disk (vdev_psize) is aligned to 6262 * sizeof (vdev_label_t). 6263 */ 6264 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 6265 if ((leaf & 1) == 1 && 6266 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 6267 continue; 6268 6269 mutex_enter(&ztest_vdev_lock); 6270 if (mirror_save != zs->zs_mirrors) { 6271 mutex_exit(&ztest_vdev_lock); 6272 (void) close(fd); 6273 goto out; 6274 } 6275 6276 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 6277 fatal(B_TRUE, 6278 "can't inject bad word at 0x%"PRIx64" in %s", 6279 offset, pathrand); 6280 6281 mutex_exit(&ztest_vdev_lock); 6282 6283 if (ztest_opts.zo_verbose >= 7) 6284 (void) printf("injected bad word into %s," 6285 " offset 0x%"PRIx64"\n", pathrand, offset); 6286 } 6287 6288 (void) close(fd); 6289 out: 6290 umem_free(path0, MAXPATHLEN); 6291 umem_free(pathrand, MAXPATHLEN); 6292 } 6293 6294 /* 6295 * By design ztest will never inject uncorrectable damage in to the pool. 6296 * Issue a scrub, wait for it to complete, and verify there is never any 6297 * persistent damage. 6298 * 6299 * Only after a full scrub has been completed is it safe to start injecting 6300 * data corruption. See the comment in zfs_fault_inject(). 6301 */ 6302 static int 6303 ztest_scrub_impl(spa_t *spa) 6304 { 6305 int error = spa_scan(spa, POOL_SCAN_SCRUB); 6306 if (error) 6307 return (error); 6308 6309 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 6310 txg_wait_synced(spa_get_dsl(spa), 0); 6311 6312 if (spa_get_errlog_size(spa) > 0) 6313 return (ECKSUM); 6314 6315 ztest_pool_scrubbed = B_TRUE; 6316 6317 return (0); 6318 } 6319 6320 /* 6321 * Scrub the pool. 6322 */ 6323 void 6324 ztest_scrub(ztest_ds_t *zd, uint64_t id) 6325 { 6326 (void) zd, (void) id; 6327 spa_t *spa = ztest_spa; 6328 int error; 6329 6330 /* 6331 * Scrub in progress by device removal. 6332 */ 6333 if (ztest_device_removal_active) 6334 return; 6335 6336 /* 6337 * Start a scrub, wait a moment, then force a restart. 6338 */ 6339 (void) spa_scan(spa, POOL_SCAN_SCRUB); 6340 (void) poll(NULL, 0, 100); 6341 6342 error = ztest_scrub_impl(spa); 6343 if (error == EBUSY) 6344 error = 0; 6345 ASSERT0(error); 6346 } 6347 6348 /* 6349 * Change the guid for the pool. 6350 */ 6351 void 6352 ztest_reguid(ztest_ds_t *zd, uint64_t id) 6353 { 6354 (void) zd, (void) id; 6355 spa_t *spa = ztest_spa; 6356 uint64_t orig, load; 6357 int error; 6358 6359 if (ztest_opts.zo_mmp_test) 6360 return; 6361 6362 orig = spa_guid(spa); 6363 load = spa_load_guid(spa); 6364 6365 (void) pthread_rwlock_wrlock(&ztest_name_lock); 6366 error = spa_change_guid(spa); 6367 (void) pthread_rwlock_unlock(&ztest_name_lock); 6368 6369 if (error != 0) 6370 return; 6371 6372 if (ztest_opts.zo_verbose >= 4) { 6373 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n", 6374 orig, spa_guid(spa)); 6375 } 6376 6377 VERIFY3U(orig, !=, spa_guid(spa)); 6378 VERIFY3U(load, ==, spa_load_guid(spa)); 6379 } 6380 6381 void 6382 ztest_blake3(ztest_ds_t *zd, uint64_t id) 6383 { 6384 (void) zd, (void) id; 6385 hrtime_t end = gethrtime() + NANOSEC; 6386 zio_cksum_salt_t salt; 6387 void *salt_ptr = &salt.zcs_bytes; 6388 struct abd *abd_data, *abd_meta; 6389 void *buf, *templ; 6390 int i, *ptr; 6391 uint32_t size; 6392 BLAKE3_CTX ctx; 6393 6394 size = ztest_random_blocksize(); 6395 buf = umem_alloc(size, UMEM_NOFAIL); 6396 abd_data = abd_alloc(size, B_FALSE); 6397 abd_meta = abd_alloc(size, B_TRUE); 6398 6399 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6400 *ptr = ztest_random(UINT_MAX); 6401 memset(salt_ptr, 'A', 32); 6402 6403 abd_copy_from_buf_off(abd_data, buf, 0, size); 6404 abd_copy_from_buf_off(abd_meta, buf, 0, size); 6405 6406 while (gethrtime() <= end) { 6407 int run_count = 100; 6408 zio_cksum_t zc_ref1, zc_ref2; 6409 zio_cksum_t zc_res1, zc_res2; 6410 6411 void *ref1 = &zc_ref1; 6412 void *ref2 = &zc_ref2; 6413 void *res1 = &zc_res1; 6414 void *res2 = &zc_res2; 6415 6416 /* BLAKE3_KEY_LEN = 32 */ 6417 VERIFY0(blake3_impl_setname("generic")); 6418 templ = abd_checksum_blake3_tmpl_init(&salt); 6419 Blake3_InitKeyed(&ctx, salt_ptr); 6420 Blake3_Update(&ctx, buf, size); 6421 Blake3_Final(&ctx, ref1); 6422 zc_ref2 = zc_ref1; 6423 ZIO_CHECKSUM_BSWAP(&zc_ref2); 6424 abd_checksum_blake3_tmpl_free(templ); 6425 6426 VERIFY0(blake3_impl_setname("cycle")); 6427 while (run_count-- > 0) { 6428 6429 /* Test current implementation */ 6430 Blake3_InitKeyed(&ctx, salt_ptr); 6431 Blake3_Update(&ctx, buf, size); 6432 Blake3_Final(&ctx, res1); 6433 zc_res2 = zc_res1; 6434 ZIO_CHECKSUM_BSWAP(&zc_res2); 6435 6436 VERIFY0(memcmp(ref1, res1, 32)); 6437 VERIFY0(memcmp(ref2, res2, 32)); 6438 6439 /* Test ABD - data */ 6440 templ = abd_checksum_blake3_tmpl_init(&salt); 6441 abd_checksum_blake3_native(abd_data, size, 6442 templ, &zc_res1); 6443 abd_checksum_blake3_byteswap(abd_data, size, 6444 templ, &zc_res2); 6445 6446 VERIFY0(memcmp(ref1, res1, 32)); 6447 VERIFY0(memcmp(ref2, res2, 32)); 6448 6449 /* Test ABD - metadata */ 6450 abd_checksum_blake3_native(abd_meta, size, 6451 templ, &zc_res1); 6452 abd_checksum_blake3_byteswap(abd_meta, size, 6453 templ, &zc_res2); 6454 abd_checksum_blake3_tmpl_free(templ); 6455 6456 VERIFY0(memcmp(ref1, res1, 32)); 6457 VERIFY0(memcmp(ref2, res2, 32)); 6458 6459 } 6460 } 6461 6462 abd_free(abd_data); 6463 abd_free(abd_meta); 6464 umem_free(buf, size); 6465 } 6466 6467 void 6468 ztest_fletcher(ztest_ds_t *zd, uint64_t id) 6469 { 6470 (void) zd, (void) id; 6471 hrtime_t end = gethrtime() + NANOSEC; 6472 6473 while (gethrtime() <= end) { 6474 int run_count = 100; 6475 void *buf; 6476 struct abd *abd_data, *abd_meta; 6477 uint32_t size; 6478 int *ptr; 6479 int i; 6480 zio_cksum_t zc_ref; 6481 zio_cksum_t zc_ref_byteswap; 6482 6483 size = ztest_random_blocksize(); 6484 6485 buf = umem_alloc(size, UMEM_NOFAIL); 6486 abd_data = abd_alloc(size, B_FALSE); 6487 abd_meta = abd_alloc(size, B_TRUE); 6488 6489 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6490 *ptr = ztest_random(UINT_MAX); 6491 6492 abd_copy_from_buf_off(abd_data, buf, 0, size); 6493 abd_copy_from_buf_off(abd_meta, buf, 0, size); 6494 6495 VERIFY0(fletcher_4_impl_set("scalar")); 6496 fletcher_4_native(buf, size, NULL, &zc_ref); 6497 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap); 6498 6499 VERIFY0(fletcher_4_impl_set("cycle")); 6500 while (run_count-- > 0) { 6501 zio_cksum_t zc; 6502 zio_cksum_t zc_byteswap; 6503 6504 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap); 6505 fletcher_4_native(buf, size, NULL, &zc); 6506 6507 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6508 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6509 sizeof (zc_byteswap))); 6510 6511 /* Test ABD - data */ 6512 abd_fletcher_4_byteswap(abd_data, size, NULL, 6513 &zc_byteswap); 6514 abd_fletcher_4_native(abd_data, size, NULL, &zc); 6515 6516 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6517 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6518 sizeof (zc_byteswap))); 6519 6520 /* Test ABD - metadata */ 6521 abd_fletcher_4_byteswap(abd_meta, size, NULL, 6522 &zc_byteswap); 6523 abd_fletcher_4_native(abd_meta, size, NULL, &zc); 6524 6525 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6526 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6527 sizeof (zc_byteswap))); 6528 6529 } 6530 6531 umem_free(buf, size); 6532 abd_free(abd_data); 6533 abd_free(abd_meta); 6534 } 6535 } 6536 6537 void 6538 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id) 6539 { 6540 (void) zd, (void) id; 6541 void *buf; 6542 size_t size; 6543 int *ptr; 6544 int i; 6545 zio_cksum_t zc_ref; 6546 zio_cksum_t zc_ref_bswap; 6547 6548 hrtime_t end = gethrtime() + NANOSEC; 6549 6550 while (gethrtime() <= end) { 6551 int run_count = 100; 6552 6553 size = ztest_random_blocksize(); 6554 buf = umem_alloc(size, UMEM_NOFAIL); 6555 6556 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6557 *ptr = ztest_random(UINT_MAX); 6558 6559 VERIFY0(fletcher_4_impl_set("scalar")); 6560 fletcher_4_native(buf, size, NULL, &zc_ref); 6561 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap); 6562 6563 VERIFY0(fletcher_4_impl_set("cycle")); 6564 6565 while (run_count-- > 0) { 6566 zio_cksum_t zc; 6567 zio_cksum_t zc_bswap; 6568 size_t pos = 0; 6569 6570 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); 6571 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); 6572 6573 while (pos < size) { 6574 size_t inc = 64 * ztest_random(size / 67); 6575 /* sometimes add few bytes to test non-simd */ 6576 if (ztest_random(100) < 10) 6577 inc += P2ALIGN(ztest_random(64), 6578 sizeof (uint32_t)); 6579 6580 if (inc > (size - pos)) 6581 inc = size - pos; 6582 6583 fletcher_4_incremental_native(buf + pos, inc, 6584 &zc); 6585 fletcher_4_incremental_byteswap(buf + pos, inc, 6586 &zc_bswap); 6587 6588 pos += inc; 6589 } 6590 6591 VERIFY3U(pos, ==, size); 6592 6593 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); 6594 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); 6595 6596 /* 6597 * verify if incremental on the whole buffer is 6598 * equivalent to non-incremental version 6599 */ 6600 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); 6601 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); 6602 6603 fletcher_4_incremental_native(buf, size, &zc); 6604 fletcher_4_incremental_byteswap(buf, size, &zc_bswap); 6605 6606 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); 6607 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); 6608 } 6609 6610 umem_free(buf, size); 6611 } 6612 } 6613 6614 static int 6615 ztest_set_global_vars(void) 6616 { 6617 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { 6618 char *kv = ztest_opts.zo_gvars[i]; 6619 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN); 6620 VERIFY3U(strlen(kv), >, 0); 6621 int err = set_global_var(kv); 6622 if (ztest_opts.zo_verbose > 0) { 6623 (void) printf("setting global var %s ... %s\n", kv, 6624 err ? "failed" : "ok"); 6625 } 6626 if (err != 0) { 6627 (void) fprintf(stderr, 6628 "failed to set global var '%s'\n", kv); 6629 return (err); 6630 } 6631 } 6632 return (0); 6633 } 6634 6635 static char ** 6636 ztest_global_vars_to_zdb_args(void) 6637 { 6638 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *)); 6639 char **cur = args; 6640 if (args == NULL) 6641 return (NULL); 6642 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { 6643 *cur++ = (char *)"-o"; 6644 *cur++ = ztest_opts.zo_gvars[i]; 6645 } 6646 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]); 6647 *cur = NULL; 6648 return (args); 6649 } 6650 6651 /* The end of strings is indicated by a NULL element */ 6652 static char * 6653 join_strings(char **strings, const char *sep) 6654 { 6655 size_t totallen = 0; 6656 for (char **sp = strings; *sp != NULL; sp++) { 6657 totallen += strlen(*sp); 6658 totallen += strlen(sep); 6659 } 6660 if (totallen > 0) { 6661 ASSERT(totallen >= strlen(sep)); 6662 totallen -= strlen(sep); 6663 } 6664 6665 size_t buflen = totallen + 1; 6666 char *o = malloc(buflen); /* trailing 0 byte */ 6667 o[0] = '\0'; 6668 for (char **sp = strings; *sp != NULL; sp++) { 6669 size_t would; 6670 would = strlcat(o, *sp, buflen); 6671 VERIFY3U(would, <, buflen); 6672 if (*(sp+1) == NULL) { 6673 break; 6674 } 6675 would = strlcat(o, sep, buflen); 6676 VERIFY3U(would, <, buflen); 6677 } 6678 ASSERT3S(strlen(o), ==, totallen); 6679 return (o); 6680 } 6681 6682 static int 6683 ztest_check_path(char *path) 6684 { 6685 struct stat s; 6686 /* return true on success */ 6687 return (!stat(path, &s)); 6688 } 6689 6690 static void 6691 ztest_get_zdb_bin(char *bin, int len) 6692 { 6693 char *zdb_path; 6694 /* 6695 * Try to use $ZDB and in-tree zdb path. If not successful, just 6696 * let popen to search through PATH. 6697 */ 6698 if ((zdb_path = getenv("ZDB"))) { 6699 strlcpy(bin, zdb_path, len); /* In env */ 6700 if (!ztest_check_path(bin)) { 6701 ztest_dump_core = 0; 6702 fatal(B_TRUE, "invalid ZDB '%s'", bin); 6703 } 6704 return; 6705 } 6706 6707 VERIFY3P(realpath(getexecname(), bin), !=, NULL); 6708 if (strstr(bin, ".libs/ztest")) { 6709 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */ 6710 strcat(bin, "zdb"); 6711 if (ztest_check_path(bin)) 6712 return; 6713 } 6714 strcpy(bin, "zdb"); 6715 } 6716 6717 static vdev_t * 6718 ztest_random_concrete_vdev_leaf(vdev_t *vd) 6719 { 6720 if (vd == NULL) 6721 return (NULL); 6722 6723 if (vd->vdev_children == 0) 6724 return (vd); 6725 6726 vdev_t *eligible[vd->vdev_children]; 6727 int eligible_idx = 0, i; 6728 for (i = 0; i < vd->vdev_children; i++) { 6729 vdev_t *cvd = vd->vdev_child[i]; 6730 if (cvd->vdev_top->vdev_removing) 6731 continue; 6732 if (cvd->vdev_children > 0 || 6733 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 6734 eligible[eligible_idx++] = cvd; 6735 } 6736 } 6737 VERIFY3S(eligible_idx, >, 0); 6738 6739 uint64_t child_no = ztest_random(eligible_idx); 6740 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 6741 } 6742 6743 void 6744 ztest_initialize(ztest_ds_t *zd, uint64_t id) 6745 { 6746 (void) zd, (void) id; 6747 spa_t *spa = ztest_spa; 6748 int error = 0; 6749 6750 mutex_enter(&ztest_vdev_lock); 6751 6752 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6753 6754 /* Random leaf vdev */ 6755 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 6756 if (rand_vd == NULL) { 6757 spa_config_exit(spa, SCL_VDEV, FTAG); 6758 mutex_exit(&ztest_vdev_lock); 6759 return; 6760 } 6761 6762 /* 6763 * The random vdev we've selected may change as soon as we 6764 * drop the spa_config_lock. We create local copies of things 6765 * we're interested in. 6766 */ 6767 uint64_t guid = rand_vd->vdev_guid; 6768 char *path = strdup(rand_vd->vdev_path); 6769 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 6770 6771 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid); 6772 spa_config_exit(spa, SCL_VDEV, FTAG); 6773 6774 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 6775 6776 nvlist_t *vdev_guids = fnvlist_alloc(); 6777 nvlist_t *vdev_errlist = fnvlist_alloc(); 6778 fnvlist_add_uint64(vdev_guids, path, guid); 6779 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist); 6780 fnvlist_free(vdev_guids); 6781 fnvlist_free(vdev_errlist); 6782 6783 switch (cmd) { 6784 case POOL_INITIALIZE_CANCEL: 6785 if (ztest_opts.zo_verbose >= 4) { 6786 (void) printf("Cancel initialize %s", path); 6787 if (!active) 6788 (void) printf(" failed (no initialize active)"); 6789 (void) printf("\n"); 6790 } 6791 break; 6792 case POOL_INITIALIZE_START: 6793 if (ztest_opts.zo_verbose >= 4) { 6794 (void) printf("Start initialize %s", path); 6795 if (active && error == 0) 6796 (void) printf(" failed (already active)"); 6797 else if (error != 0) 6798 (void) printf(" failed (error %d)", error); 6799 (void) printf("\n"); 6800 } 6801 break; 6802 case POOL_INITIALIZE_SUSPEND: 6803 if (ztest_opts.zo_verbose >= 4) { 6804 (void) printf("Suspend initialize %s", path); 6805 if (!active) 6806 (void) printf(" failed (no initialize active)"); 6807 (void) printf("\n"); 6808 } 6809 break; 6810 } 6811 free(path); 6812 mutex_exit(&ztest_vdev_lock); 6813 } 6814 6815 void 6816 ztest_trim(ztest_ds_t *zd, uint64_t id) 6817 { 6818 (void) zd, (void) id; 6819 spa_t *spa = ztest_spa; 6820 int error = 0; 6821 6822 mutex_enter(&ztest_vdev_lock); 6823 6824 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6825 6826 /* Random leaf vdev */ 6827 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 6828 if (rand_vd == NULL) { 6829 spa_config_exit(spa, SCL_VDEV, FTAG); 6830 mutex_exit(&ztest_vdev_lock); 6831 return; 6832 } 6833 6834 /* 6835 * The random vdev we've selected may change as soon as we 6836 * drop the spa_config_lock. We create local copies of things 6837 * we're interested in. 6838 */ 6839 uint64_t guid = rand_vd->vdev_guid; 6840 char *path = strdup(rand_vd->vdev_path); 6841 boolean_t active = rand_vd->vdev_trim_thread != NULL; 6842 6843 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid); 6844 spa_config_exit(spa, SCL_VDEV, FTAG); 6845 6846 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS); 6847 uint64_t rate = 1 << ztest_random(30); 6848 boolean_t partial = (ztest_random(5) > 0); 6849 boolean_t secure = (ztest_random(5) > 0); 6850 6851 nvlist_t *vdev_guids = fnvlist_alloc(); 6852 nvlist_t *vdev_errlist = fnvlist_alloc(); 6853 fnvlist_add_uint64(vdev_guids, path, guid); 6854 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial, 6855 secure, vdev_errlist); 6856 fnvlist_free(vdev_guids); 6857 fnvlist_free(vdev_errlist); 6858 6859 switch (cmd) { 6860 case POOL_TRIM_CANCEL: 6861 if (ztest_opts.zo_verbose >= 4) { 6862 (void) printf("Cancel TRIM %s", path); 6863 if (!active) 6864 (void) printf(" failed (no TRIM active)"); 6865 (void) printf("\n"); 6866 } 6867 break; 6868 case POOL_TRIM_START: 6869 if (ztest_opts.zo_verbose >= 4) { 6870 (void) printf("Start TRIM %s", path); 6871 if (active && error == 0) 6872 (void) printf(" failed (already active)"); 6873 else if (error != 0) 6874 (void) printf(" failed (error %d)", error); 6875 (void) printf("\n"); 6876 } 6877 break; 6878 case POOL_TRIM_SUSPEND: 6879 if (ztest_opts.zo_verbose >= 4) { 6880 (void) printf("Suspend TRIM %s", path); 6881 if (!active) 6882 (void) printf(" failed (no TRIM active)"); 6883 (void) printf("\n"); 6884 } 6885 break; 6886 } 6887 free(path); 6888 mutex_exit(&ztest_vdev_lock); 6889 } 6890 6891 /* 6892 * Verify pool integrity by running zdb. 6893 */ 6894 static void 6895 ztest_run_zdb(const char *pool) 6896 { 6897 int status; 6898 char *bin; 6899 char *zdb; 6900 char *zbuf; 6901 const int len = MAXPATHLEN + MAXNAMELEN + 20; 6902 FILE *fp; 6903 6904 bin = umem_alloc(len, UMEM_NOFAIL); 6905 zdb = umem_alloc(len, UMEM_NOFAIL); 6906 zbuf = umem_alloc(1024, UMEM_NOFAIL); 6907 6908 ztest_get_zdb_bin(bin, len); 6909 6910 char **set_gvars_args = ztest_global_vars_to_zdb_args(); 6911 if (set_gvars_args == NULL) { 6912 fatal(B_FALSE, "Failed to allocate memory in " 6913 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n"); 6914 } 6915 char *set_gvars_args_joined = join_strings(set_gvars_args, " "); 6916 free(set_gvars_args); 6917 6918 size_t would = snprintf(zdb, len, 6919 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s", 6920 bin, 6921 ztest_opts.zo_verbose >= 3 ? "s" : "", 6922 ztest_opts.zo_verbose >= 4 ? "v" : "", 6923 set_gvars_args_joined, 6924 ztest_opts.zo_dir, 6925 pool); 6926 ASSERT3U(would, <, len); 6927 6928 free(set_gvars_args_joined); 6929 6930 if (ztest_opts.zo_verbose >= 5) 6931 (void) printf("Executing %s\n", zdb); 6932 6933 fp = popen(zdb, "r"); 6934 6935 while (fgets(zbuf, 1024, fp) != NULL) 6936 if (ztest_opts.zo_verbose >= 3) 6937 (void) printf("%s", zbuf); 6938 6939 status = pclose(fp); 6940 6941 if (status == 0) 6942 goto out; 6943 6944 ztest_dump_core = 0; 6945 if (WIFEXITED(status)) 6946 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 6947 else 6948 fatal(B_FALSE, "'%s' died with signal %d", 6949 zdb, WTERMSIG(status)); 6950 out: 6951 umem_free(bin, len); 6952 umem_free(zdb, len); 6953 umem_free(zbuf, 1024); 6954 } 6955 6956 static void 6957 ztest_walk_pool_directory(const char *header) 6958 { 6959 spa_t *spa = NULL; 6960 6961 if (ztest_opts.zo_verbose >= 6) 6962 (void) puts(header); 6963 6964 mutex_enter(&spa_namespace_lock); 6965 while ((spa = spa_next(spa)) != NULL) 6966 if (ztest_opts.zo_verbose >= 6) 6967 (void) printf("\t%s\n", spa_name(spa)); 6968 mutex_exit(&spa_namespace_lock); 6969 } 6970 6971 static void 6972 ztest_spa_import_export(char *oldname, char *newname) 6973 { 6974 nvlist_t *config, *newconfig; 6975 uint64_t pool_guid; 6976 spa_t *spa; 6977 int error; 6978 6979 if (ztest_opts.zo_verbose >= 4) { 6980 (void) printf("import/export: old = %s, new = %s\n", 6981 oldname, newname); 6982 } 6983 6984 /* 6985 * Clean up from previous runs. 6986 */ 6987 (void) spa_destroy(newname); 6988 6989 /* 6990 * Get the pool's configuration and guid. 6991 */ 6992 VERIFY0(spa_open(oldname, &spa, FTAG)); 6993 6994 /* 6995 * Kick off a scrub to tickle scrub/export races. 6996 */ 6997 if (ztest_random(2) == 0) 6998 (void) spa_scan(spa, POOL_SCAN_SCRUB); 6999 7000 pool_guid = spa_guid(spa); 7001 spa_close(spa, FTAG); 7002 7003 ztest_walk_pool_directory("pools before export"); 7004 7005 /* 7006 * Export it. 7007 */ 7008 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE)); 7009 7010 ztest_walk_pool_directory("pools after export"); 7011 7012 /* 7013 * Try to import it. 7014 */ 7015 newconfig = spa_tryimport(config); 7016 ASSERT3P(newconfig, !=, NULL); 7017 fnvlist_free(newconfig); 7018 7019 /* 7020 * Import it under the new name. 7021 */ 7022 error = spa_import(newname, config, NULL, 0); 7023 if (error != 0) { 7024 dump_nvlist(config, 0); 7025 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 7026 oldname, newname, error); 7027 } 7028 7029 ztest_walk_pool_directory("pools after import"); 7030 7031 /* 7032 * Try to import it again -- should fail with EEXIST. 7033 */ 7034 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 7035 7036 /* 7037 * Try to import it under a different name -- should fail with EEXIST. 7038 */ 7039 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 7040 7041 /* 7042 * Verify that the pool is no longer visible under the old name. 7043 */ 7044 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 7045 7046 /* 7047 * Verify that we can open and close the pool using the new name. 7048 */ 7049 VERIFY0(spa_open(newname, &spa, FTAG)); 7050 ASSERT3U(pool_guid, ==, spa_guid(spa)); 7051 spa_close(spa, FTAG); 7052 7053 fnvlist_free(config); 7054 } 7055 7056 static void 7057 ztest_resume(spa_t *spa) 7058 { 7059 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 7060 (void) printf("resuming from suspended state\n"); 7061 spa_vdev_state_enter(spa, SCL_NONE); 7062 vdev_clear(spa, NULL); 7063 (void) spa_vdev_state_exit(spa, NULL, 0); 7064 (void) zio_resume(spa); 7065 } 7066 7067 static __attribute__((noreturn)) void 7068 ztest_resume_thread(void *arg) 7069 { 7070 spa_t *spa = arg; 7071 7072 while (!ztest_exiting) { 7073 if (spa_suspended(spa)) 7074 ztest_resume(spa); 7075 (void) poll(NULL, 0, 100); 7076 7077 /* 7078 * Periodically change the zfs_compressed_arc_enabled setting. 7079 */ 7080 if (ztest_random(10) == 0) 7081 zfs_compressed_arc_enabled = ztest_random(2); 7082 7083 /* 7084 * Periodically change the zfs_abd_scatter_enabled setting. 7085 */ 7086 if (ztest_random(10) == 0) 7087 zfs_abd_scatter_enabled = ztest_random(2); 7088 } 7089 7090 thread_exit(); 7091 } 7092 7093 static __attribute__((noreturn)) void 7094 ztest_deadman_thread(void *arg) 7095 { 7096 ztest_shared_t *zs = arg; 7097 spa_t *spa = ztest_spa; 7098 hrtime_t delay, overdue, last_run = gethrtime(); 7099 7100 delay = (zs->zs_thread_stop - zs->zs_thread_start) + 7101 MSEC2NSEC(zfs_deadman_synctime_ms); 7102 7103 while (!ztest_exiting) { 7104 /* 7105 * Wait for the delay timer while checking occasionally 7106 * if we should stop. 7107 */ 7108 if (gethrtime() < last_run + delay) { 7109 (void) poll(NULL, 0, 1000); 7110 continue; 7111 } 7112 7113 /* 7114 * If the pool is suspended then fail immediately. Otherwise, 7115 * check to see if the pool is making any progress. If 7116 * vdev_deadman() discovers that there hasn't been any recent 7117 * I/Os then it will end up aborting the tests. 7118 */ 7119 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 7120 fatal(B_FALSE, 7121 "aborting test after %lu seconds because " 7122 "pool has transitioned to a suspended state.", 7123 zfs_deadman_synctime_ms / 1000); 7124 } 7125 vdev_deadman(spa->spa_root_vdev, FTAG); 7126 7127 /* 7128 * If the process doesn't complete within a grace period of 7129 * zfs_deadman_synctime_ms over the expected finish time, 7130 * then it may be hung and is terminated. 7131 */ 7132 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms); 7133 if (gethrtime() > overdue) { 7134 fatal(B_FALSE, 7135 "aborting test after %llu seconds because " 7136 "the process is overdue for termination.", 7137 (gethrtime() - zs->zs_proc_start) / NANOSEC); 7138 } 7139 7140 (void) printf("ztest has been running for %lld seconds\n", 7141 (gethrtime() - zs->zs_proc_start) / NANOSEC); 7142 7143 last_run = gethrtime(); 7144 delay = MSEC2NSEC(zfs_deadman_checktime_ms); 7145 } 7146 7147 thread_exit(); 7148 } 7149 7150 static void 7151 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 7152 { 7153 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 7154 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 7155 hrtime_t functime = gethrtime(); 7156 int i; 7157 7158 for (i = 0; i < zi->zi_iters; i++) 7159 zi->zi_func(zd, id); 7160 7161 functime = gethrtime() - functime; 7162 7163 atomic_add_64(&zc->zc_count, 1); 7164 atomic_add_64(&zc->zc_time, functime); 7165 7166 if (ztest_opts.zo_verbose >= 4) 7167 (void) printf("%6.2f sec in %s\n", 7168 (double)functime / NANOSEC, zi->zi_funcname); 7169 } 7170 7171 static __attribute__((noreturn)) void 7172 ztest_thread(void *arg) 7173 { 7174 int rand; 7175 uint64_t id = (uintptr_t)arg; 7176 ztest_shared_t *zs = ztest_shared; 7177 uint64_t call_next; 7178 hrtime_t now; 7179 ztest_info_t *zi; 7180 ztest_shared_callstate_t *zc; 7181 7182 while ((now = gethrtime()) < zs->zs_thread_stop) { 7183 /* 7184 * See if it's time to force a crash. 7185 */ 7186 if (now > zs->zs_thread_kill) 7187 ztest_kill(zs); 7188 7189 /* 7190 * If we're getting ENOSPC with some regularity, stop. 7191 */ 7192 if (zs->zs_enospc_count > 10) 7193 break; 7194 7195 /* 7196 * Pick a random function to execute. 7197 */ 7198 rand = ztest_random(ZTEST_FUNCS); 7199 zi = &ztest_info[rand]; 7200 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 7201 call_next = zc->zc_next; 7202 7203 if (now >= call_next && 7204 atomic_cas_64(&zc->zc_next, call_next, call_next + 7205 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 7206 ztest_execute(rand, zi, id); 7207 } 7208 } 7209 7210 thread_exit(); 7211 } 7212 7213 static void 7214 ztest_dataset_name(char *dsname, const char *pool, int d) 7215 { 7216 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 7217 } 7218 7219 static void 7220 ztest_dataset_destroy(int d) 7221 { 7222 char name[ZFS_MAX_DATASET_NAME_LEN]; 7223 int t; 7224 7225 ztest_dataset_name(name, ztest_opts.zo_pool, d); 7226 7227 if (ztest_opts.zo_verbose >= 3) 7228 (void) printf("Destroying %s to free up space\n", name); 7229 7230 /* 7231 * Cleanup any non-standard clones and snapshots. In general, 7232 * ztest thread t operates on dataset (t % zopt_datasets), 7233 * so there may be more than one thing to clean up. 7234 */ 7235 for (t = d; t < ztest_opts.zo_threads; 7236 t += ztest_opts.zo_datasets) 7237 ztest_dsl_dataset_cleanup(name, t); 7238 7239 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 7240 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7241 } 7242 7243 static void 7244 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 7245 { 7246 uint64_t usedobjs, dirobjs, scratch; 7247 7248 /* 7249 * ZTEST_DIROBJ is the object directory for the entire dataset. 7250 * Therefore, the number of objects in use should equal the 7251 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 7252 * If not, we have an object leak. 7253 * 7254 * Note that we can only check this in ztest_dataset_open(), 7255 * when the open-context and syncing-context values agree. 7256 * That's because zap_count() returns the open-context value, 7257 * while dmu_objset_space() returns the rootbp fill count. 7258 */ 7259 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 7260 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 7261 ASSERT3U(dirobjs + 1, ==, usedobjs); 7262 } 7263 7264 static int 7265 ztest_dataset_open(int d) 7266 { 7267 ztest_ds_t *zd = &ztest_ds[d]; 7268 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 7269 objset_t *os; 7270 zilog_t *zilog; 7271 char name[ZFS_MAX_DATASET_NAME_LEN]; 7272 int error; 7273 7274 ztest_dataset_name(name, ztest_opts.zo_pool, d); 7275 7276 (void) pthread_rwlock_rdlock(&ztest_name_lock); 7277 7278 error = ztest_dataset_create(name); 7279 if (error == ENOSPC) { 7280 (void) pthread_rwlock_unlock(&ztest_name_lock); 7281 ztest_record_enospc(FTAG); 7282 return (error); 7283 } 7284 ASSERT(error == 0 || error == EEXIST); 7285 7286 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 7287 B_TRUE, zd, &os)); 7288 (void) pthread_rwlock_unlock(&ztest_name_lock); 7289 7290 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 7291 7292 zilog = zd->zd_zilog; 7293 7294 if (zilog->zl_header->zh_claim_lr_seq != 0 && 7295 zilog->zl_header->zh_claim_lr_seq < committed_seq) 7296 fatal(B_FALSE, "missing log records: " 7297 "claimed %"PRIu64" < committed %"PRIu64"", 7298 zilog->zl_header->zh_claim_lr_seq, committed_seq); 7299 7300 ztest_dataset_dirobj_verify(zd); 7301 7302 zil_replay(os, zd, ztest_replay_vector); 7303 7304 ztest_dataset_dirobj_verify(zd); 7305 7306 if (ztest_opts.zo_verbose >= 6) 7307 (void) printf("%s replay %"PRIu64" blocks, " 7308 "%"PRIu64" records, seq %"PRIu64"\n", 7309 zd->zd_name, 7310 zilog->zl_parse_blk_count, 7311 zilog->zl_parse_lr_count, 7312 zilog->zl_replaying_seq); 7313 7314 zilog = zil_open(os, ztest_get_data, NULL); 7315 7316 if (zilog->zl_replaying_seq != 0 && 7317 zilog->zl_replaying_seq < committed_seq) 7318 fatal(B_FALSE, "missing log records: " 7319 "replayed %"PRIu64" < committed %"PRIu64"", 7320 zilog->zl_replaying_seq, committed_seq); 7321 7322 return (0); 7323 } 7324 7325 static void 7326 ztest_dataset_close(int d) 7327 { 7328 ztest_ds_t *zd = &ztest_ds[d]; 7329 7330 zil_close(zd->zd_zilog); 7331 dmu_objset_disown(zd->zd_os, B_TRUE, zd); 7332 7333 ztest_zd_fini(zd); 7334 } 7335 7336 static int 7337 ztest_replay_zil_cb(const char *name, void *arg) 7338 { 7339 (void) arg; 7340 objset_t *os; 7341 ztest_ds_t *zdtmp; 7342 7343 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE, 7344 B_TRUE, FTAG, &os)); 7345 7346 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); 7347 7348 ztest_zd_init(zdtmp, NULL, os); 7349 zil_replay(os, zdtmp, ztest_replay_vector); 7350 ztest_zd_fini(zdtmp); 7351 7352 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 && 7353 ztest_opts.zo_verbose >= 6) { 7354 zilog_t *zilog = dmu_objset_zil(os); 7355 7356 (void) printf("%s replay %"PRIu64" blocks, " 7357 "%"PRIu64" records, seq %"PRIu64"\n", 7358 name, 7359 zilog->zl_parse_blk_count, 7360 zilog->zl_parse_lr_count, 7361 zilog->zl_replaying_seq); 7362 } 7363 7364 umem_free(zdtmp, sizeof (ztest_ds_t)); 7365 7366 dmu_objset_disown(os, B_TRUE, FTAG); 7367 return (0); 7368 } 7369 7370 static void 7371 ztest_freeze(void) 7372 { 7373 ztest_ds_t *zd = &ztest_ds[0]; 7374 spa_t *spa; 7375 int numloops = 0; 7376 7377 if (ztest_opts.zo_verbose >= 3) 7378 (void) printf("testing spa_freeze()...\n"); 7379 7380 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7381 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7382 VERIFY0(ztest_dataset_open(0)); 7383 ztest_spa = spa; 7384 7385 /* 7386 * Force the first log block to be transactionally allocated. 7387 * We have to do this before we freeze the pool -- otherwise 7388 * the log chain won't be anchored. 7389 */ 7390 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 7391 ztest_dmu_object_alloc_free(zd, 0); 7392 zil_commit(zd->zd_zilog, 0); 7393 } 7394 7395 txg_wait_synced(spa_get_dsl(spa), 0); 7396 7397 /* 7398 * Freeze the pool. This stops spa_sync() from doing anything, 7399 * so that the only way to record changes from now on is the ZIL. 7400 */ 7401 spa_freeze(spa); 7402 7403 /* 7404 * Because it is hard to predict how much space a write will actually 7405 * require beforehand, we leave ourselves some fudge space to write over 7406 * capacity. 7407 */ 7408 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 7409 7410 /* 7411 * Run tests that generate log records but don't alter the pool config 7412 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 7413 * We do a txg_wait_synced() after each iteration to force the txg 7414 * to increase well beyond the last synced value in the uberblock. 7415 * The ZIL should be OK with that. 7416 * 7417 * Run a random number of times less than zo_maxloops and ensure we do 7418 * not run out of space on the pool. 7419 */ 7420 while (ztest_random(10) != 0 && 7421 numloops++ < ztest_opts.zo_maxloops && 7422 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 7423 ztest_od_t od; 7424 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 7425 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 7426 ztest_io(zd, od.od_object, 7427 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 7428 txg_wait_synced(spa_get_dsl(spa), 0); 7429 } 7430 7431 /* 7432 * Commit all of the changes we just generated. 7433 */ 7434 zil_commit(zd->zd_zilog, 0); 7435 txg_wait_synced(spa_get_dsl(spa), 0); 7436 7437 /* 7438 * Close our dataset and close the pool. 7439 */ 7440 ztest_dataset_close(0); 7441 spa_close(spa, FTAG); 7442 kernel_fini(); 7443 7444 /* 7445 * Open and close the pool and dataset to induce log replay. 7446 */ 7447 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7448 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7449 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX); 7450 VERIFY0(ztest_dataset_open(0)); 7451 ztest_spa = spa; 7452 txg_wait_synced(spa_get_dsl(spa), 0); 7453 ztest_dataset_close(0); 7454 ztest_reguid(NULL, 0); 7455 7456 spa_close(spa, FTAG); 7457 kernel_fini(); 7458 } 7459 7460 static void 7461 ztest_import_impl(void) 7462 { 7463 importargs_t args = { 0 }; 7464 nvlist_t *cfg = NULL; 7465 int nsearch = 1; 7466 char *searchdirs[nsearch]; 7467 int flags = ZFS_IMPORT_MISSING_LOG; 7468 7469 searchdirs[0] = ztest_opts.zo_dir; 7470 args.paths = nsearch; 7471 args.path = searchdirs; 7472 args.can_be_active = B_FALSE; 7473 7474 VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args, 7475 &libzpool_config_ops)); 7476 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags)); 7477 fnvlist_free(cfg); 7478 } 7479 7480 /* 7481 * Import a storage pool with the given name. 7482 */ 7483 static void 7484 ztest_import(ztest_shared_t *zs) 7485 { 7486 spa_t *spa; 7487 7488 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7489 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7490 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7491 7492 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7493 7494 ztest_import_impl(); 7495 7496 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7497 zs->zs_metaslab_sz = 7498 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7499 spa_close(spa, FTAG); 7500 7501 kernel_fini(); 7502 7503 if (!ztest_opts.zo_mmp_test) { 7504 ztest_run_zdb(ztest_opts.zo_pool); 7505 ztest_freeze(); 7506 ztest_run_zdb(ztest_opts.zo_pool); 7507 } 7508 7509 (void) pthread_rwlock_destroy(&ztest_name_lock); 7510 mutex_destroy(&ztest_vdev_lock); 7511 mutex_destroy(&ztest_checkpoint_lock); 7512 } 7513 7514 /* 7515 * Kick off threads to run tests on all datasets in parallel. 7516 */ 7517 static void 7518 ztest_run(ztest_shared_t *zs) 7519 { 7520 spa_t *spa; 7521 objset_t *os; 7522 kthread_t *resume_thread, *deadman_thread; 7523 kthread_t **run_threads; 7524 uint64_t object; 7525 int error; 7526 int t, d; 7527 7528 ztest_exiting = B_FALSE; 7529 7530 /* 7531 * Initialize parent/child shared state. 7532 */ 7533 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7534 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7535 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7536 7537 zs->zs_thread_start = gethrtime(); 7538 zs->zs_thread_stop = 7539 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 7540 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 7541 zs->zs_thread_kill = zs->zs_thread_stop; 7542 if (ztest_random(100) < ztest_opts.zo_killrate) { 7543 zs->zs_thread_kill -= 7544 ztest_random(ztest_opts.zo_passtime * NANOSEC); 7545 } 7546 7547 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL); 7548 7549 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 7550 offsetof(ztest_cb_data_t, zcd_node)); 7551 7552 /* 7553 * Open our pool. It may need to be imported first depending on 7554 * what tests were running when the previous pass was terminated. 7555 */ 7556 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7557 error = spa_open(ztest_opts.zo_pool, &spa, FTAG); 7558 if (error) { 7559 VERIFY3S(error, ==, ENOENT); 7560 ztest_import_impl(); 7561 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7562 zs->zs_metaslab_sz = 7563 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7564 } 7565 7566 metaslab_preload_limit = ztest_random(20) + 1; 7567 ztest_spa = spa; 7568 7569 VERIFY0(vdev_raidz_impl_set("cycle")); 7570 7571 dmu_objset_stats_t dds; 7572 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, 7573 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); 7574 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 7575 dmu_objset_fast_stat(os, &dds); 7576 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 7577 zs->zs_guid = dds.dds_guid; 7578 dmu_objset_disown(os, B_TRUE, FTAG); 7579 7580 /* 7581 * Create a thread to periodically resume suspended I/O. 7582 */ 7583 resume_thread = thread_create(NULL, 0, ztest_resume_thread, 7584 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); 7585 7586 /* 7587 * Create a deadman thread and set to panic if we hang. 7588 */ 7589 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread, 7590 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); 7591 7592 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 7593 7594 /* 7595 * Verify that we can safely inquire about any object, 7596 * whether it's allocated or not. To make it interesting, 7597 * we probe a 5-wide window around each power of two. 7598 * This hits all edge cases, including zero and the max. 7599 */ 7600 for (t = 0; t < 64; t++) { 7601 for (d = -5; d <= 5; d++) { 7602 error = dmu_object_info(spa->spa_meta_objset, 7603 (1ULL << t) + d, NULL); 7604 ASSERT(error == 0 || error == ENOENT || 7605 error == EINVAL); 7606 } 7607 } 7608 7609 /* 7610 * If we got any ENOSPC errors on the previous run, destroy something. 7611 */ 7612 if (zs->zs_enospc_count != 0) { 7613 int d = ztest_random(ztest_opts.zo_datasets); 7614 ztest_dataset_destroy(d); 7615 } 7616 zs->zs_enospc_count = 0; 7617 7618 /* 7619 * If we were in the middle of ztest_device_removal() and were killed 7620 * we need to ensure the removal and scrub complete before running 7621 * any tests that check ztest_device_removal_active. The removal will 7622 * be restarted automatically when the spa is opened, but we need to 7623 * initiate the scrub manually if it is not already in progress. Note 7624 * that we always run the scrub whenever an indirect vdev exists 7625 * because we have no way of knowing for sure if ztest_device_removal() 7626 * fully completed its scrub before the pool was reimported. 7627 */ 7628 if (spa->spa_removing_phys.sr_state == DSS_SCANNING || 7629 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7630 while (spa->spa_removing_phys.sr_state == DSS_SCANNING) 7631 txg_wait_synced(spa_get_dsl(spa), 0); 7632 7633 error = ztest_scrub_impl(spa); 7634 if (error == EBUSY) 7635 error = 0; 7636 ASSERT0(error); 7637 } 7638 7639 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *), 7640 UMEM_NOFAIL); 7641 7642 if (ztest_opts.zo_verbose >= 4) 7643 (void) printf("starting main threads...\n"); 7644 7645 /* 7646 * Replay all logs of all datasets in the pool. This is primarily for 7647 * temporary datasets which wouldn't otherwise get replayed, which 7648 * can trigger failures when attempting to offline a SLOG in 7649 * ztest_fault_inject(). 7650 */ 7651 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb, 7652 NULL, DS_FIND_CHILDREN); 7653 7654 /* 7655 * Kick off all the tests that run in parallel. 7656 */ 7657 for (t = 0; t < ztest_opts.zo_threads; t++) { 7658 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) { 7659 umem_free(run_threads, ztest_opts.zo_threads * 7660 sizeof (kthread_t *)); 7661 return; 7662 } 7663 7664 run_threads[t] = thread_create(NULL, 0, ztest_thread, 7665 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE, 7666 defclsyspri); 7667 } 7668 7669 /* 7670 * Wait for all of the tests to complete. 7671 */ 7672 for (t = 0; t < ztest_opts.zo_threads; t++) 7673 VERIFY0(thread_join(run_threads[t])); 7674 7675 /* 7676 * Close all datasets. This must be done after all the threads 7677 * are joined so we can be sure none of the datasets are in-use 7678 * by any of the threads. 7679 */ 7680 for (t = 0; t < ztest_opts.zo_threads; t++) { 7681 if (t < ztest_opts.zo_datasets) 7682 ztest_dataset_close(t); 7683 } 7684 7685 txg_wait_synced(spa_get_dsl(spa), 0); 7686 7687 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7688 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 7689 7690 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); 7691 7692 /* Kill the resume and deadman threads */ 7693 ztest_exiting = B_TRUE; 7694 VERIFY0(thread_join(resume_thread)); 7695 VERIFY0(thread_join(deadman_thread)); 7696 ztest_resume(spa); 7697 7698 /* 7699 * Right before closing the pool, kick off a bunch of async I/O; 7700 * spa_close() should wait for it to complete. 7701 */ 7702 for (object = 1; object < 50; object++) { 7703 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 7704 ZIO_PRIORITY_SYNC_READ); 7705 } 7706 7707 /* Verify that at least one commit cb was called in a timely fashion */ 7708 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG) 7709 VERIFY0(zc_min_txg_delay); 7710 7711 spa_close(spa, FTAG); 7712 7713 /* 7714 * Verify that we can loop over all pools. 7715 */ 7716 mutex_enter(&spa_namespace_lock); 7717 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 7718 if (ztest_opts.zo_verbose > 3) 7719 (void) printf("spa_next: found %s\n", spa_name(spa)); 7720 mutex_exit(&spa_namespace_lock); 7721 7722 /* 7723 * Verify that we can export the pool and reimport it under a 7724 * different name. 7725 */ 7726 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { 7727 char name[ZFS_MAX_DATASET_NAME_LEN]; 7728 (void) snprintf(name, sizeof (name), "%s_import", 7729 ztest_opts.zo_pool); 7730 ztest_spa_import_export(ztest_opts.zo_pool, name); 7731 ztest_spa_import_export(name, ztest_opts.zo_pool); 7732 } 7733 7734 kernel_fini(); 7735 7736 list_destroy(&zcl.zcl_callbacks); 7737 mutex_destroy(&zcl.zcl_callbacks_lock); 7738 (void) pthread_rwlock_destroy(&ztest_name_lock); 7739 mutex_destroy(&ztest_vdev_lock); 7740 mutex_destroy(&ztest_checkpoint_lock); 7741 } 7742 7743 static void 7744 print_time(hrtime_t t, char *timebuf) 7745 { 7746 hrtime_t s = t / NANOSEC; 7747 hrtime_t m = s / 60; 7748 hrtime_t h = m / 60; 7749 hrtime_t d = h / 24; 7750 7751 s -= m * 60; 7752 m -= h * 60; 7753 h -= d * 24; 7754 7755 timebuf[0] = '\0'; 7756 7757 if (d) 7758 (void) sprintf(timebuf, 7759 "%llud%02lluh%02llum%02llus", d, h, m, s); 7760 else if (h) 7761 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 7762 else if (m) 7763 (void) sprintf(timebuf, "%llum%02llus", m, s); 7764 else 7765 (void) sprintf(timebuf, "%llus", s); 7766 } 7767 7768 static nvlist_t * 7769 make_random_props(void) 7770 { 7771 nvlist_t *props; 7772 7773 props = fnvlist_alloc(); 7774 7775 if (ztest_random(2) == 0) 7776 return (props); 7777 7778 fnvlist_add_uint64(props, 7779 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1); 7780 7781 return (props); 7782 } 7783 7784 /* 7785 * Create a storage pool with the given name and initial vdev size. 7786 * Then test spa_freeze() functionality. 7787 */ 7788 static void 7789 ztest_init(ztest_shared_t *zs) 7790 { 7791 spa_t *spa; 7792 nvlist_t *nvroot, *props; 7793 int i; 7794 7795 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7796 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7797 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7798 7799 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7800 7801 /* 7802 * Create the storage pool. 7803 */ 7804 (void) spa_destroy(ztest_opts.zo_pool); 7805 ztest_shared->zs_vdev_next_leaf = 0; 7806 zs->zs_splits = 0; 7807 zs->zs_mirrors = ztest_opts.zo_mirrors; 7808 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 7809 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); 7810 props = make_random_props(); 7811 7812 /* 7813 * We don't expect the pool to suspend unless maxfaults == 0, 7814 * in which case ztest_fault_inject() temporarily takes away 7815 * the only valid replica. 7816 */ 7817 fnvlist_add_uint64(props, 7818 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 7819 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT); 7820 7821 for (i = 0; i < SPA_FEATURES; i++) { 7822 char *buf; 7823 7824 if (!spa_feature_table[i].fi_zfs_mod_supported) 7825 continue; 7826 7827 /* 7828 * 75% chance of using the log space map feature. We want ztest 7829 * to exercise both the code paths that use the log space map 7830 * feature and the ones that don't. 7831 */ 7832 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0) 7833 continue; 7834 7835 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s", 7836 spa_feature_table[i].fi_uname)); 7837 fnvlist_add_uint64(props, buf, 0); 7838 free(buf); 7839 } 7840 7841 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); 7842 fnvlist_free(nvroot); 7843 fnvlist_free(props); 7844 7845 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7846 zs->zs_metaslab_sz = 7847 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7848 spa_close(spa, FTAG); 7849 7850 kernel_fini(); 7851 7852 if (!ztest_opts.zo_mmp_test) { 7853 ztest_run_zdb(ztest_opts.zo_pool); 7854 ztest_freeze(); 7855 ztest_run_zdb(ztest_opts.zo_pool); 7856 } 7857 7858 (void) pthread_rwlock_destroy(&ztest_name_lock); 7859 mutex_destroy(&ztest_vdev_lock); 7860 mutex_destroy(&ztest_checkpoint_lock); 7861 } 7862 7863 static void 7864 setup_data_fd(void) 7865 { 7866 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 7867 7868 ztest_fd_data = mkstemp(ztest_name_data); 7869 ASSERT3S(ztest_fd_data, >=, 0); 7870 (void) unlink(ztest_name_data); 7871 } 7872 7873 static int 7874 shared_data_size(ztest_shared_hdr_t *hdr) 7875 { 7876 int size; 7877 7878 size = hdr->zh_hdr_size; 7879 size += hdr->zh_opts_size; 7880 size += hdr->zh_size; 7881 size += hdr->zh_stats_size * hdr->zh_stats_count; 7882 size += hdr->zh_ds_size * hdr->zh_ds_count; 7883 7884 return (size); 7885 } 7886 7887 static void 7888 setup_hdr(void) 7889 { 7890 int size; 7891 ztest_shared_hdr_t *hdr; 7892 7893 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 7894 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 7895 ASSERT3P(hdr, !=, MAP_FAILED); 7896 7897 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 7898 7899 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 7900 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 7901 hdr->zh_size = sizeof (ztest_shared_t); 7902 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 7903 hdr->zh_stats_count = ZTEST_FUNCS; 7904 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 7905 hdr->zh_ds_count = ztest_opts.zo_datasets; 7906 7907 size = shared_data_size(hdr); 7908 VERIFY0(ftruncate(ztest_fd_data, size)); 7909 7910 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 7911 } 7912 7913 static void 7914 setup_data(void) 7915 { 7916 int size, offset; 7917 ztest_shared_hdr_t *hdr; 7918 uint8_t *buf; 7919 7920 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 7921 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 7922 ASSERT3P(hdr, !=, MAP_FAILED); 7923 7924 size = shared_data_size(hdr); 7925 7926 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 7927 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 7928 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 7929 ASSERT3P(hdr, !=, MAP_FAILED); 7930 buf = (uint8_t *)hdr; 7931 7932 offset = hdr->zh_hdr_size; 7933 ztest_shared_opts = (void *)&buf[offset]; 7934 offset += hdr->zh_opts_size; 7935 ztest_shared = (void *)&buf[offset]; 7936 offset += hdr->zh_size; 7937 ztest_shared_callstate = (void *)&buf[offset]; 7938 offset += hdr->zh_stats_size * hdr->zh_stats_count; 7939 ztest_shared_ds = (void *)&buf[offset]; 7940 } 7941 7942 static boolean_t 7943 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 7944 { 7945 pid_t pid; 7946 int status; 7947 char *cmdbuf = NULL; 7948 7949 pid = fork(); 7950 7951 if (cmd == NULL) { 7952 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 7953 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 7954 cmd = cmdbuf; 7955 } 7956 7957 if (pid == -1) 7958 fatal(B_TRUE, "fork failed"); 7959 7960 if (pid == 0) { /* child */ 7961 char fd_data_str[12]; 7962 7963 VERIFY3S(11, >=, 7964 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 7965 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 7966 7967 if (libpath != NULL) { 7968 const char *curlp = getenv("LD_LIBRARY_PATH"); 7969 if (curlp == NULL) 7970 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1)); 7971 else { 7972 char *newlp = NULL; 7973 VERIFY3S(-1, !=, 7974 asprintf(&newlp, "%s:%s", libpath, curlp)); 7975 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1)); 7976 free(newlp); 7977 } 7978 } 7979 (void) execl(cmd, cmd, (char *)NULL); 7980 ztest_dump_core = B_FALSE; 7981 fatal(B_TRUE, "exec failed: %s", cmd); 7982 } 7983 7984 if (cmdbuf != NULL) { 7985 umem_free(cmdbuf, MAXPATHLEN); 7986 cmd = NULL; 7987 } 7988 7989 while (waitpid(pid, &status, 0) != pid) 7990 continue; 7991 if (statusp != NULL) 7992 *statusp = status; 7993 7994 if (WIFEXITED(status)) { 7995 if (WEXITSTATUS(status) != 0) { 7996 (void) fprintf(stderr, "child exited with code %d\n", 7997 WEXITSTATUS(status)); 7998 exit(2); 7999 } 8000 return (B_FALSE); 8001 } else if (WIFSIGNALED(status)) { 8002 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 8003 (void) fprintf(stderr, "child died with signal %d\n", 8004 WTERMSIG(status)); 8005 exit(3); 8006 } 8007 return (B_TRUE); 8008 } else { 8009 (void) fprintf(stderr, "something strange happened to child\n"); 8010 exit(4); 8011 } 8012 } 8013 8014 static void 8015 ztest_run_init(void) 8016 { 8017 int i; 8018 8019 ztest_shared_t *zs = ztest_shared; 8020 8021 /* 8022 * Blow away any existing copy of zpool.cache 8023 */ 8024 (void) remove(spa_config_path); 8025 8026 if (ztest_opts.zo_init == 0) { 8027 if (ztest_opts.zo_verbose >= 1) 8028 (void) printf("Importing pool %s\n", 8029 ztest_opts.zo_pool); 8030 ztest_import(zs); 8031 return; 8032 } 8033 8034 /* 8035 * Create and initialize our storage pool. 8036 */ 8037 for (i = 1; i <= ztest_opts.zo_init; i++) { 8038 memset(zs, 0, sizeof (*zs)); 8039 if (ztest_opts.zo_verbose >= 3 && 8040 ztest_opts.zo_init != 1) { 8041 (void) printf("ztest_init(), pass %d\n", i); 8042 } 8043 ztest_init(zs); 8044 } 8045 } 8046 8047 int 8048 main(int argc, char **argv) 8049 { 8050 int kills = 0; 8051 int iters = 0; 8052 int older = 0; 8053 int newer = 0; 8054 ztest_shared_t *zs; 8055 ztest_info_t *zi; 8056 ztest_shared_callstate_t *zc; 8057 char timebuf[100]; 8058 char numbuf[NN_NUMBUF_SZ]; 8059 char *cmd; 8060 boolean_t hasalt; 8061 int f, err; 8062 char *fd_data_str = getenv("ZTEST_FD_DATA"); 8063 struct sigaction action; 8064 8065 (void) setvbuf(stdout, NULL, _IOLBF, 0); 8066 8067 dprintf_setup(&argc, argv); 8068 zfs_deadman_synctime_ms = 300000; 8069 zfs_deadman_checktime_ms = 30000; 8070 /* 8071 * As two-word space map entries may not come up often (especially 8072 * if pool and vdev sizes are small) we want to force at least some 8073 * of them so the feature get tested. 8074 */ 8075 zfs_force_some_double_word_sm_entries = B_TRUE; 8076 8077 /* 8078 * Verify that even extensively damaged split blocks with many 8079 * segments can be reconstructed in a reasonable amount of time 8080 * when reconstruction is known to be possible. 8081 * 8082 * Note: the lower this value is, the more damage we inflict, and 8083 * the more time ztest spends in recovering that damage. We chose 8084 * to induce damage 1/100th of the time so recovery is tested but 8085 * not so frequently that ztest doesn't get to test other code paths. 8086 */ 8087 zfs_reconstruct_indirect_damage_fraction = 100; 8088 8089 action.sa_handler = sig_handler; 8090 sigemptyset(&action.sa_mask); 8091 action.sa_flags = 0; 8092 8093 if (sigaction(SIGSEGV, &action, NULL) < 0) { 8094 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n", 8095 strerror(errno)); 8096 exit(EXIT_FAILURE); 8097 } 8098 8099 if (sigaction(SIGABRT, &action, NULL) < 0) { 8100 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n", 8101 strerror(errno)); 8102 exit(EXIT_FAILURE); 8103 } 8104 8105 /* 8106 * Force random_get_bytes() to use /dev/urandom in order to prevent 8107 * ztest from needlessly depleting the system entropy pool. 8108 */ 8109 random_path = "/dev/urandom"; 8110 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC); 8111 ASSERT3S(ztest_fd_rand, >=, 0); 8112 8113 if (!fd_data_str) { 8114 process_options(argc, argv); 8115 8116 setup_data_fd(); 8117 setup_hdr(); 8118 setup_data(); 8119 memcpy(ztest_shared_opts, &ztest_opts, 8120 sizeof (*ztest_shared_opts)); 8121 } else { 8122 ztest_fd_data = atoi(fd_data_str); 8123 setup_data(); 8124 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts)); 8125 } 8126 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 8127 8128 err = ztest_set_global_vars(); 8129 if (err != 0 && !fd_data_str) { 8130 /* error message done by ztest_set_global_vars */ 8131 exit(EXIT_FAILURE); 8132 } else { 8133 /* children should not be spawned if setting gvars fails */ 8134 VERIFY3S(err, ==, 0); 8135 } 8136 8137 /* Override location of zpool.cache */ 8138 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache", 8139 ztest_opts.zo_dir), !=, -1); 8140 8141 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 8142 UMEM_NOFAIL); 8143 zs = ztest_shared; 8144 8145 if (fd_data_str) { 8146 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 8147 metaslab_df_alloc_threshold = 8148 zs->zs_metaslab_df_alloc_threshold; 8149 8150 if (zs->zs_do_init) 8151 ztest_run_init(); 8152 else 8153 ztest_run(zs); 8154 exit(0); 8155 } 8156 8157 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 8158 8159 if (ztest_opts.zo_verbose >= 1) { 8160 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads," 8161 "%d %s disks, %"PRIu64" seconds...\n\n", 8162 ztest_opts.zo_vdevs, 8163 ztest_opts.zo_datasets, 8164 ztest_opts.zo_threads, 8165 ztest_opts.zo_raid_children, 8166 ztest_opts.zo_raid_type, 8167 ztest_opts.zo_time); 8168 } 8169 8170 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 8171 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 8172 8173 zs->zs_do_init = B_TRUE; 8174 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 8175 if (ztest_opts.zo_verbose >= 1) { 8176 (void) printf("Executing older ztest for " 8177 "initialization: %s\n", ztest_opts.zo_alt_ztest); 8178 } 8179 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 8180 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 8181 } else { 8182 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 8183 } 8184 zs->zs_do_init = B_FALSE; 8185 8186 zs->zs_proc_start = gethrtime(); 8187 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 8188 8189 for (f = 0; f < ZTEST_FUNCS; f++) { 8190 zi = &ztest_info[f]; 8191 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8192 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 8193 zc->zc_next = UINT64_MAX; 8194 else 8195 zc->zc_next = zs->zs_proc_start + 8196 ztest_random(2 * zi->zi_interval[0] + 1); 8197 } 8198 8199 /* 8200 * Run the tests in a loop. These tests include fault injection 8201 * to verify that self-healing data works, and forced crashes 8202 * to verify that we never lose on-disk consistency. 8203 */ 8204 while (gethrtime() < zs->zs_proc_stop) { 8205 int status; 8206 boolean_t killed; 8207 8208 /* 8209 * Initialize the workload counters for each function. 8210 */ 8211 for (f = 0; f < ZTEST_FUNCS; f++) { 8212 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8213 zc->zc_count = 0; 8214 zc->zc_time = 0; 8215 } 8216 8217 /* Set the allocation switch size */ 8218 zs->zs_metaslab_df_alloc_threshold = 8219 ztest_random(zs->zs_metaslab_sz / 4) + 1; 8220 8221 if (!hasalt || ztest_random(2) == 0) { 8222 if (hasalt && ztest_opts.zo_verbose >= 1) { 8223 (void) printf("Executing newer ztest: %s\n", 8224 cmd); 8225 } 8226 newer++; 8227 killed = exec_child(cmd, NULL, B_TRUE, &status); 8228 } else { 8229 if (hasalt && ztest_opts.zo_verbose >= 1) { 8230 (void) printf("Executing older ztest: %s\n", 8231 ztest_opts.zo_alt_ztest); 8232 } 8233 older++; 8234 killed = exec_child(ztest_opts.zo_alt_ztest, 8235 ztest_opts.zo_alt_libpath, B_TRUE, &status); 8236 } 8237 8238 if (killed) 8239 kills++; 8240 iters++; 8241 8242 if (ztest_opts.zo_verbose >= 1) { 8243 hrtime_t now = gethrtime(); 8244 8245 now = MIN(now, zs->zs_proc_stop); 8246 print_time(zs->zs_proc_stop - now, timebuf); 8247 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 8248 8249 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, " 8250 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 8251 iters, 8252 WIFEXITED(status) ? "Complete" : "SIGKILL", 8253 zs->zs_enospc_count, 8254 100.0 * zs->zs_alloc / zs->zs_space, 8255 numbuf, 8256 100.0 * (now - zs->zs_proc_start) / 8257 (ztest_opts.zo_time * NANOSEC), timebuf); 8258 } 8259 8260 if (ztest_opts.zo_verbose >= 2) { 8261 (void) printf("\nWorkload summary:\n\n"); 8262 (void) printf("%7s %9s %s\n", 8263 "Calls", "Time", "Function"); 8264 (void) printf("%7s %9s %s\n", 8265 "-----", "----", "--------"); 8266 for (f = 0; f < ZTEST_FUNCS; f++) { 8267 zi = &ztest_info[f]; 8268 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8269 print_time(zc->zc_time, timebuf); 8270 (void) printf("%7"PRIu64" %9s %s\n", 8271 zc->zc_count, timebuf, 8272 zi->zi_funcname); 8273 } 8274 (void) printf("\n"); 8275 } 8276 8277 if (!ztest_opts.zo_mmp_test) 8278 ztest_run_zdb(ztest_opts.zo_pool); 8279 } 8280 8281 if (ztest_opts.zo_verbose >= 1) { 8282 if (hasalt) { 8283 (void) printf("%d runs of older ztest: %s\n", older, 8284 ztest_opts.zo_alt_ztest); 8285 (void) printf("%d runs of newer ztest: %s\n", newer, 8286 cmd); 8287 } 8288 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 8289 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 8290 } 8291 8292 umem_free(cmd, MAXNAMELEN); 8293 8294 return (0); 8295 } 8296