xref: /freebsd/sys/contrib/openzfs/cmd/ztest.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2023, Klara, Inc.
30  */
31 
32 /*
33  * The objective of this program is to provide a DMU/ZAP/SPA stress test
34  * that runs entirely in userland, is easy to use, and easy to extend.
35  *
36  * The overall design of the ztest program is as follows:
37  *
38  * (1) For each major functional area (e.g. adding vdevs to a pool,
39  *     creating and destroying datasets, reading and writing objects, etc)
40  *     we have a simple routine to test that functionality.  These
41  *     individual routines do not have to do anything "stressful".
42  *
43  * (2) We turn these simple functionality tests into a stress test by
44  *     running them all in parallel, with as many threads as desired,
45  *     and spread across as many datasets, objects, and vdevs as desired.
46  *
47  * (3) While all this is happening, we inject faults into the pool to
48  *     verify that self-healing data really works.
49  *
50  * (4) Every time we open a dataset, we change its checksum and compression
51  *     functions.  Thus even individual objects vary from block to block
52  *     in which checksum they use and whether they're compressed.
53  *
54  * (5) To verify that we never lose on-disk consistency after a crash,
55  *     we run the entire test in a child of the main process.
56  *     At random times, the child self-immolates with a SIGKILL.
57  *     This is the software equivalent of pulling the power cord.
58  *     The parent then runs the test again, using the existing
59  *     storage pool, as many times as desired. If backwards compatibility
60  *     testing is enabled ztest will sometimes run the "older" version
61  *     of ztest after a SIGKILL.
62  *
63  * (6) To verify that we don't have future leaks or temporal incursions,
64  *     many of the functional tests record the transaction group number
65  *     as part of their data.  When reading old data, they verify that
66  *     the transaction group number is less than the current, open txg.
67  *     If you add a new test, please do this if applicable.
68  *
69  * (7) Threads are created with a reduced stack size, for sanity checking.
70  *     Therefore, it's important not to allocate huge buffers on the stack.
71  *
72  * When run with no arguments, ztest runs for about five minutes and
73  * produces no output if successful.  To get a little bit of information,
74  * specify -V.  To get more information, specify -VV, and so on.
75  *
76  * To turn this into an overnight stress test, use -T to specify run time.
77  *
78  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
79  * to increase the pool capacity, fanout, and overall stress level.
80  *
81  * Use the -k option to set the desired frequency of kills.
82  *
83  * When ztest invokes itself it passes all relevant information through a
84  * temporary file which is mmap-ed in the child process. This allows shared
85  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
86  * stored at offset 0 of this file and contains information on the size and
87  * number of shared structures in the file. The information stored in this file
88  * must remain backwards compatible with older versions of ztest so that
89  * ztest can invoke them during backwards compatibility testing (-B).
90  */
91 
92 #include <sys/zfs_context.h>
93 #include <sys/spa.h>
94 #include <sys/dmu.h>
95 #include <sys/txg.h>
96 #include <sys/dbuf.h>
97 #include <sys/zap.h>
98 #include <sys/dmu_objset.h>
99 #include <sys/poll.h>
100 #include <sys/stat.h>
101 #include <sys/time.h>
102 #include <sys/wait.h>
103 #include <sys/mman.h>
104 #include <sys/resource.h>
105 #include <sys/zio.h>
106 #include <sys/zil.h>
107 #include <sys/zil_impl.h>
108 #include <sys/vdev_draid.h>
109 #include <sys/vdev_impl.h>
110 #include <sys/vdev_file.h>
111 #include <sys/vdev_initialize.h>
112 #include <sys/vdev_raidz.h>
113 #include <sys/vdev_trim.h>
114 #include <sys/spa_impl.h>
115 #include <sys/metaslab_impl.h>
116 #include <sys/dsl_prop.h>
117 #include <sys/dsl_dataset.h>
118 #include <sys/dsl_destroy.h>
119 #include <sys/dsl_scan.h>
120 #include <sys/zio_checksum.h>
121 #include <sys/zfs_refcount.h>
122 #include <sys/zfeature.h>
123 #include <sys/dsl_userhold.h>
124 #include <sys/abd.h>
125 #include <sys/blake3.h>
126 #include <stdio.h>
127 #include <stdlib.h>
128 #include <unistd.h>
129 #include <getopt.h>
130 #include <signal.h>
131 #include <umem.h>
132 #include <ctype.h>
133 #include <math.h>
134 #include <sys/fs/zfs.h>
135 #include <zfs_fletcher.h>
136 #include <libnvpair.h>
137 #include <libzutil.h>
138 #include <sys/crypto/icp.h>
139 #include <sys/zfs_impl.h>
140 #include <sys/backtrace.h>
141 
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
144 
145 typedef struct ztest_shared_hdr {
146 	uint64_t	zh_hdr_size;
147 	uint64_t	zh_opts_size;
148 	uint64_t	zh_size;
149 	uint64_t	zh_stats_size;
150 	uint64_t	zh_stats_count;
151 	uint64_t	zh_ds_size;
152 	uint64_t	zh_ds_count;
153 	uint64_t	zh_scratch_state_size;
154 } ztest_shared_hdr_t;
155 
156 static ztest_shared_hdr_t *ztest_shared_hdr;
157 
158 enum ztest_class_state {
159 	ZTEST_VDEV_CLASS_OFF,
160 	ZTEST_VDEV_CLASS_ON,
161 	ZTEST_VDEV_CLASS_RND
162 };
163 
164 /* Dedicated RAIDZ Expansion test states */
165 typedef enum {
166 	RAIDZ_EXPAND_NONE,		/* Default is none, must opt-in	*/
167 	RAIDZ_EXPAND_REQUESTED,		/* The '-X' option was used	*/
168 	RAIDZ_EXPAND_STARTED,		/* Testing has commenced	*/
169 	RAIDZ_EXPAND_KILLED,		/* Reached the proccess kill	*/
170 	RAIDZ_EXPAND_CHECKED,		/* Pool scrub verification done	*/
171 } raidz_expand_test_state_t;
172 
173 
174 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
175 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
176 
177 typedef struct ztest_shared_opts {
178 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
179 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
180 	char zo_alt_ztest[MAXNAMELEN];
181 	char zo_alt_libpath[MAXNAMELEN];
182 	uint64_t zo_vdevs;
183 	uint64_t zo_vdevtime;
184 	size_t zo_vdev_size;
185 	int zo_ashift;
186 	int zo_mirrors;
187 	int zo_raid_do_expand;
188 	int zo_raid_children;
189 	int zo_raid_parity;
190 	char zo_raid_type[8];
191 	int zo_draid_data;
192 	int zo_draid_spares;
193 	int zo_datasets;
194 	int zo_threads;
195 	uint64_t zo_passtime;
196 	uint64_t zo_killrate;
197 	int zo_verbose;
198 	int zo_init;
199 	uint64_t zo_time;
200 	uint64_t zo_maxloops;
201 	uint64_t zo_metaslab_force_ganging;
202 	raidz_expand_test_state_t zo_raidz_expand_test;
203 	int zo_mmp_test;
204 	int zo_special_vdevs;
205 	int zo_dump_dbgmsg;
206 	int zo_gvars_count;
207 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
208 } ztest_shared_opts_t;
209 
210 /* Default values for command line options. */
211 #define	DEFAULT_POOL "ztest"
212 #define	DEFAULT_VDEV_DIR "/tmp"
213 #define	DEFAULT_VDEV_COUNT 5
214 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
215 #define	DEFAULT_VDEV_SIZE_STR "256M"
216 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
217 #define	DEFAULT_MIRRORS 2
218 #define	DEFAULT_RAID_CHILDREN 4
219 #define	DEFAULT_RAID_PARITY 1
220 #define	DEFAULT_DRAID_DATA 4
221 #define	DEFAULT_DRAID_SPARES 1
222 #define	DEFAULT_DATASETS_COUNT 7
223 #define	DEFAULT_THREADS 23
224 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
225 #define	DEFAULT_RUN_TIME_STR "300 sec"
226 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
227 #define	DEFAULT_PASS_TIME_STR "60 sec"
228 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
229 #define	DEFAULT_KILLRATE_STR "70%"
230 #define	DEFAULT_INITS 1
231 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
232 #define	DEFAULT_FORCE_GANGING (64 << 10)
233 #define	DEFAULT_FORCE_GANGING_STR "64K"
234 
235 /* Simplifying assumption: -1 is not a valid default. */
236 #define	NO_DEFAULT -1
237 
238 static const ztest_shared_opts_t ztest_opts_defaults = {
239 	.zo_pool = DEFAULT_POOL,
240 	.zo_dir = DEFAULT_VDEV_DIR,
241 	.zo_alt_ztest = { '\0' },
242 	.zo_alt_libpath = { '\0' },
243 	.zo_vdevs = DEFAULT_VDEV_COUNT,
244 	.zo_ashift = DEFAULT_ASHIFT,
245 	.zo_mirrors = DEFAULT_MIRRORS,
246 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
247 	.zo_raid_parity = DEFAULT_RAID_PARITY,
248 	.zo_raid_type = VDEV_TYPE_RAIDZ,
249 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
250 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
251 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
252 	.zo_datasets = DEFAULT_DATASETS_COUNT,
253 	.zo_threads = DEFAULT_THREADS,
254 	.zo_passtime = DEFAULT_PASS_TIME,
255 	.zo_killrate = DEFAULT_KILL_RATE,
256 	.zo_verbose = 0,
257 	.zo_mmp_test = 0,
258 	.zo_init = DEFAULT_INITS,
259 	.zo_time = DEFAULT_RUN_TIME,
260 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
261 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
262 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
263 	.zo_gvars_count = 0,
264 	.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
265 };
266 
267 extern uint64_t metaslab_force_ganging;
268 extern uint64_t metaslab_df_alloc_threshold;
269 extern uint64_t zfs_deadman_synctime_ms;
270 extern uint_t metaslab_preload_limit;
271 extern int zfs_compressed_arc_enabled;
272 extern int zfs_abd_scatter_enabled;
273 extern uint_t dmu_object_alloc_chunk_shift;
274 extern boolean_t zfs_force_some_double_word_sm_entries;
275 extern unsigned long zio_decompress_fail_fraction;
276 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
277 extern uint64_t raidz_expand_max_reflow_bytes;
278 extern uint_t raidz_expand_pause_point;
279 extern boolean_t ddt_prune_artificial_age;
280 extern boolean_t ddt_dump_prune_histogram;
281 
282 
283 static ztest_shared_opts_t *ztest_shared_opts;
284 static ztest_shared_opts_t ztest_opts;
285 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
286 
287 typedef struct ztest_shared_ds {
288 	uint64_t	zd_seq;
289 } ztest_shared_ds_t;
290 
291 static ztest_shared_ds_t *ztest_shared_ds;
292 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
293 
294 typedef struct ztest_scratch_state {
295 	uint64_t	zs_raidz_scratch_verify_pause;
296 } ztest_shared_scratch_state_t;
297 
298 static ztest_shared_scratch_state_t *ztest_scratch_state;
299 
300 #define	BT_MAGIC	0x123456789abcdefULL
301 #define	MAXFAULTS(zs) \
302 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
303 
304 enum ztest_io_type {
305 	ZTEST_IO_WRITE_TAG,
306 	ZTEST_IO_WRITE_PATTERN,
307 	ZTEST_IO_WRITE_ZEROES,
308 	ZTEST_IO_TRUNCATE,
309 	ZTEST_IO_SETATTR,
310 	ZTEST_IO_REWRITE,
311 	ZTEST_IO_TYPES
312 };
313 
314 typedef struct ztest_block_tag {
315 	uint64_t	bt_magic;
316 	uint64_t	bt_objset;
317 	uint64_t	bt_object;
318 	uint64_t	bt_dnodesize;
319 	uint64_t	bt_offset;
320 	uint64_t	bt_gen;
321 	uint64_t	bt_txg;
322 	uint64_t	bt_crtxg;
323 } ztest_block_tag_t;
324 
325 typedef struct bufwad {
326 	uint64_t	bw_index;
327 	uint64_t	bw_txg;
328 	uint64_t	bw_data;
329 } bufwad_t;
330 
331 /*
332  * It would be better to use a rangelock_t per object.  Unfortunately
333  * the rangelock_t is not a drop-in replacement for rl_t, because we
334  * still need to map from object ID to rangelock_t.
335  */
336 typedef enum {
337 	ZTRL_READER,
338 	ZTRL_WRITER,
339 	ZTRL_APPEND
340 } rl_type_t;
341 
342 typedef struct rll {
343 	void		*rll_writer;
344 	int		rll_readers;
345 	kmutex_t	rll_lock;
346 	kcondvar_t	rll_cv;
347 } rll_t;
348 
349 typedef struct rl {
350 	uint64_t	rl_object;
351 	uint64_t	rl_offset;
352 	uint64_t	rl_size;
353 	rll_t		*rl_lock;
354 } rl_t;
355 
356 #define	ZTEST_RANGE_LOCKS	64
357 #define	ZTEST_OBJECT_LOCKS	64
358 
359 /*
360  * Object descriptor.  Used as a template for object lookup/create/remove.
361  */
362 typedef struct ztest_od {
363 	uint64_t	od_dir;
364 	uint64_t	od_object;
365 	dmu_object_type_t od_type;
366 	dmu_object_type_t od_crtype;
367 	uint64_t	od_blocksize;
368 	uint64_t	od_crblocksize;
369 	uint64_t	od_crdnodesize;
370 	uint64_t	od_gen;
371 	uint64_t	od_crgen;
372 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
373 } ztest_od_t;
374 
375 /*
376  * Per-dataset state.
377  */
378 typedef struct ztest_ds {
379 	ztest_shared_ds_t *zd_shared;
380 	objset_t	*zd_os;
381 	pthread_rwlock_t zd_zilog_lock;
382 	zilog_t		*zd_zilog;
383 	ztest_od_t	*zd_od;		/* debugging aid */
384 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
385 	kmutex_t	zd_dirobj_lock;
386 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
387 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
388 } ztest_ds_t;
389 
390 /*
391  * Per-iteration state.
392  */
393 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
394 
395 typedef struct ztest_info {
396 	ztest_func_t	*zi_func;	/* test function */
397 	uint64_t	zi_iters;	/* iterations per execution */
398 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
399 	const char	*zi_funcname;	/* name of test function */
400 } ztest_info_t;
401 
402 typedef struct ztest_shared_callstate {
403 	uint64_t	zc_count;	/* per-pass count */
404 	uint64_t	zc_time;	/* per-pass time */
405 	uint64_t	zc_next;	/* next time to call this function */
406 } ztest_shared_callstate_t;
407 
408 static ztest_shared_callstate_t *ztest_shared_callstate;
409 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
410 
411 ztest_func_t ztest_dmu_read_write;
412 ztest_func_t ztest_dmu_write_parallel;
413 ztest_func_t ztest_dmu_object_alloc_free;
414 ztest_func_t ztest_dmu_object_next_chunk;
415 ztest_func_t ztest_dmu_commit_callbacks;
416 ztest_func_t ztest_zap;
417 ztest_func_t ztest_zap_parallel;
418 ztest_func_t ztest_zil_commit;
419 ztest_func_t ztest_zil_remount;
420 ztest_func_t ztest_dmu_read_write_zcopy;
421 ztest_func_t ztest_dmu_objset_create_destroy;
422 ztest_func_t ztest_dmu_prealloc;
423 ztest_func_t ztest_fzap;
424 ztest_func_t ztest_dmu_snapshot_create_destroy;
425 ztest_func_t ztest_dsl_prop_get_set;
426 ztest_func_t ztest_spa_prop_get_set;
427 ztest_func_t ztest_spa_create_destroy;
428 ztest_func_t ztest_fault_inject;
429 ztest_func_t ztest_dmu_snapshot_hold;
430 ztest_func_t ztest_mmp_enable_disable;
431 ztest_func_t ztest_scrub;
432 ztest_func_t ztest_dsl_dataset_promote_busy;
433 ztest_func_t ztest_vdev_attach_detach;
434 ztest_func_t ztest_vdev_raidz_attach;
435 ztest_func_t ztest_vdev_LUN_growth;
436 ztest_func_t ztest_vdev_add_remove;
437 ztest_func_t ztest_vdev_class_add;
438 ztest_func_t ztest_vdev_aux_add_remove;
439 ztest_func_t ztest_split_pool;
440 ztest_func_t ztest_reguid;
441 ztest_func_t ztest_spa_upgrade;
442 ztest_func_t ztest_device_removal;
443 ztest_func_t ztest_spa_checkpoint_create_discard;
444 ztest_func_t ztest_initialize;
445 ztest_func_t ztest_trim;
446 ztest_func_t ztest_blake3;
447 ztest_func_t ztest_fletcher;
448 ztest_func_t ztest_fletcher_incr;
449 ztest_func_t ztest_verify_dnode_bt;
450 ztest_func_t ztest_pool_prefetch_ddt;
451 ztest_func_t ztest_ddt_prune;
452 
453 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
454 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
455 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
456 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
457 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
458 
459 #define	ZTI_INIT(func, iters, interval) \
460 	{   .zi_func = (func), \
461 	    .zi_iters = (iters), \
462 	    .zi_interval = (interval), \
463 	    .zi_funcname = # func }
464 
465 static ztest_info_t ztest_info[] = {
466 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
467 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
468 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
469 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
470 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
471 	ZTI_INIT(ztest_zap, 30, &zopt_always),
472 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
473 	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
474 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
475 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
476 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
477 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
478 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
479 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
480 #if 0
481 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
482 #endif
483 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
484 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
485 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
486 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
487 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
488 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
489 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
490 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
491 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
492 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
493 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
494 	ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
495 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
496 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
497 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
498 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
499 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
500 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
501 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
502 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
503 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
504 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
505 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
506 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
507 	ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
508 	ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
509 };
510 
511 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
512 
513 /*
514  * The following struct is used to hold a list of uncalled commit callbacks.
515  * The callbacks are ordered by txg number.
516  */
517 typedef struct ztest_cb_list {
518 	kmutex_t	zcl_callbacks_lock;
519 	list_t		zcl_callbacks;
520 } ztest_cb_list_t;
521 
522 /*
523  * Stuff we need to share writably between parent and child.
524  */
525 typedef struct ztest_shared {
526 	boolean_t	zs_do_init;
527 	hrtime_t	zs_proc_start;
528 	hrtime_t	zs_proc_stop;
529 	hrtime_t	zs_thread_start;
530 	hrtime_t	zs_thread_stop;
531 	hrtime_t	zs_thread_kill;
532 	uint64_t	zs_enospc_count;
533 	uint64_t	zs_vdev_next_leaf;
534 	uint64_t	zs_vdev_aux;
535 	uint64_t	zs_alloc;
536 	uint64_t	zs_space;
537 	uint64_t	zs_splits;
538 	uint64_t	zs_mirrors;
539 	uint64_t	zs_metaslab_sz;
540 	uint64_t	zs_metaslab_df_alloc_threshold;
541 	uint64_t	zs_guid;
542 } ztest_shared_t;
543 
544 #define	ID_PARALLEL	-1ULL
545 
546 static char ztest_dev_template[] = "%s/%s.%llua";
547 static char ztest_aux_template[] = "%s/%s.%s.%llu";
548 static ztest_shared_t *ztest_shared;
549 
550 static spa_t *ztest_spa = NULL;
551 static ztest_ds_t *ztest_ds;
552 
553 static kmutex_t ztest_vdev_lock;
554 static boolean_t ztest_device_removal_active = B_FALSE;
555 static boolean_t ztest_pool_scrubbed = B_FALSE;
556 static kmutex_t ztest_checkpoint_lock;
557 
558 /*
559  * The ztest_name_lock protects the pool and dataset namespace used by
560  * the individual tests. To modify the namespace, consumers must grab
561  * this lock as writer. Grabbing the lock as reader will ensure that the
562  * namespace does not change while the lock is held.
563  */
564 static pthread_rwlock_t ztest_name_lock;
565 
566 static boolean_t ztest_dump_core = B_TRUE;
567 static boolean_t ztest_exiting;
568 
569 /* Global commit callback list */
570 static ztest_cb_list_t zcl;
571 /* Commit cb delay */
572 static uint64_t zc_min_txg_delay = UINT64_MAX;
573 static int zc_cb_counter = 0;
574 
575 /*
576  * Minimum number of commit callbacks that need to be registered for us to check
577  * whether the minimum txg delay is acceptable.
578  */
579 #define	ZTEST_COMMIT_CB_MIN_REG	100
580 
581 /*
582  * If a number of txgs equal to this threshold have been created after a commit
583  * callback has been registered but not called, then we assume there is an
584  * implementation bug.
585  */
586 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
587 
588 enum ztest_object {
589 	ZTEST_META_DNODE = 0,
590 	ZTEST_DIROBJ,
591 	ZTEST_OBJECTS
592 };
593 
594 static __attribute__((noreturn)) void usage(boolean_t requested);
595 static int ztest_scrub_impl(spa_t *spa);
596 
597 /*
598  * These libumem hooks provide a reasonable set of defaults for the allocator's
599  * debugging facilities.
600  */
601 const char *
602 _umem_debug_init(void)
603 {
604 	return ("default,verbose"); /* $UMEM_DEBUG setting */
605 }
606 
607 const char *
608 _umem_logging_init(void)
609 {
610 	return ("fail,contents"); /* $UMEM_LOGGING setting */
611 }
612 
613 static void
614 dump_debug_buffer(void)
615 {
616 	ssize_t ret __attribute__((unused));
617 
618 	if (!ztest_opts.zo_dump_dbgmsg)
619 		return;
620 
621 	/*
622 	 * We use write() instead of printf() so that this function
623 	 * is safe to call from a signal handler.
624 	 */
625 	ret = write(STDERR_FILENO, "\n", 1);
626 	zfs_dbgmsg_print(STDERR_FILENO, "ztest");
627 }
628 
629 static void sig_handler(int signo)
630 {
631 	struct sigaction action;
632 
633 	libspl_backtrace(STDERR_FILENO);
634 	dump_debug_buffer();
635 
636 	/*
637 	 * Restore default action and re-raise signal so SIGSEGV and
638 	 * SIGABRT can trigger a core dump.
639 	 */
640 	action.sa_handler = SIG_DFL;
641 	sigemptyset(&action.sa_mask);
642 	action.sa_flags = 0;
643 	(void) sigaction(signo, &action, NULL);
644 	raise(signo);
645 }
646 
647 #define	FATAL_MSG_SZ	1024
648 
649 static const char *fatal_msg;
650 
651 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
652 fatal(int do_perror, const char *message, ...)
653 {
654 	va_list args;
655 	int save_errno = errno;
656 	char *buf;
657 
658 	(void) fflush(stdout);
659 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
660 	if (buf == NULL)
661 		goto out;
662 
663 	va_start(args, message);
664 	(void) sprintf(buf, "ztest: ");
665 	/* LINTED */
666 	(void) vsprintf(buf + strlen(buf), message, args);
667 	va_end(args);
668 	if (do_perror) {
669 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
670 		    ": %s", strerror(save_errno));
671 	}
672 	(void) fprintf(stderr, "%s\n", buf);
673 	fatal_msg = buf;			/* to ease debugging */
674 
675 out:
676 	if (ztest_dump_core)
677 		abort();
678 	else
679 		dump_debug_buffer();
680 
681 	exit(3);
682 }
683 
684 static int
685 str2shift(const char *buf)
686 {
687 	const char *ends = "BKMGTPEZ";
688 	int i, len;
689 
690 	if (buf[0] == '\0')
691 		return (0);
692 
693 	len = strlen(ends);
694 	for (i = 0; i < len; i++) {
695 		if (toupper(buf[0]) == ends[i])
696 			break;
697 	}
698 	if (i == len) {
699 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
700 		    buf);
701 		usage(B_FALSE);
702 	}
703 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
704 		return (10*i);
705 	}
706 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
707 	usage(B_FALSE);
708 }
709 
710 static uint64_t
711 nicenumtoull(const char *buf)
712 {
713 	char *end;
714 	uint64_t val;
715 
716 	val = strtoull(buf, &end, 0);
717 	if (end == buf) {
718 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
719 		usage(B_FALSE);
720 	} else if (end[0] == '.') {
721 		double fval = strtod(buf, &end);
722 		fval *= pow(2, str2shift(end));
723 		/*
724 		 * UINT64_MAX is not exactly representable as a double.
725 		 * The closest representation is UINT64_MAX + 1, so we
726 		 * use a >= comparison instead of > for the bounds check.
727 		 */
728 		if (fval >= (double)UINT64_MAX) {
729 			(void) fprintf(stderr, "ztest: value too large: %s\n",
730 			    buf);
731 			usage(B_FALSE);
732 		}
733 		val = (uint64_t)fval;
734 	} else {
735 		int shift = str2shift(end);
736 		if (shift >= 64 || (val << shift) >> shift != val) {
737 			(void) fprintf(stderr, "ztest: value too large: %s\n",
738 			    buf);
739 			usage(B_FALSE);
740 		}
741 		val <<= shift;
742 	}
743 	return (val);
744 }
745 
746 typedef struct ztest_option {
747 	const char	short_opt;
748 	const char	*long_opt;
749 	const char	*long_opt_param;
750 	const char	*comment;
751 	unsigned int	default_int;
752 	const char	*default_str;
753 } ztest_option_t;
754 
755 /*
756  * The following option_table is used for generating the usage info as well as
757  * the long and short option information for calling getopt_long().
758  */
759 static ztest_option_t option_table[] = {
760 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
761 	    NULL},
762 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
763 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
764 	{ 'a',	"alignment-shift", "INTEGER",
765 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
766 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
767 	    DEFAULT_MIRRORS, NULL},
768 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
769 	    DEFAULT_RAID_CHILDREN, NULL},
770 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
771 	    DEFAULT_RAID_PARITY, NULL},
772 	{ 'K',  "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
773 	    NO_DEFAULT, "random"},
774 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
775 	    DEFAULT_DRAID_DATA, NULL},
776 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
777 	    DEFAULT_DRAID_SPARES, NULL},
778 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
779 	    DEFAULT_DATASETS_COUNT, NULL},
780 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
781 	    DEFAULT_THREADS, NULL},
782 	{ 'g',	"gang-block-threshold", "INTEGER",
783 	    "Metaslab gang block threshold",
784 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
785 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
786 	    DEFAULT_INITS, NULL},
787 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
788 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
789 	{ 'p',	"pool-name", "STRING", "Pool name",
790 	    NO_DEFAULT, DEFAULT_POOL},
791 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
792 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
793 	{ 'M',	"multi-host", NULL,
794 	    "Multi-host; simulate pool imported on remote host",
795 	    NO_DEFAULT, NULL},
796 	{ 'E',	"use-existing-pool", NULL,
797 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
798 	{ 'T',	"run-time", "INTEGER", "Total run time",
799 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
800 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
801 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
802 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
803 	    DEFAULT_MAX_LOOPS, NULL},
804 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
805 	    NO_DEFAULT, NULL},
806 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
807 	    NO_DEFAULT, "random"},
808 	{ 'X', "raidz-expansion", NULL,
809 	    "Perform a dedicated raidz expansion test",
810 	    NO_DEFAULT, NULL},
811 	{ 'o',	"option", "\"OPTION=INTEGER\"",
812 	    "Set global variable to an unsigned 32-bit integer value",
813 	    NO_DEFAULT, NULL},
814 	{ 'G',	"dump-debug-msg", NULL,
815 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
816 	    NO_DEFAULT, NULL},
817 	{ 'V',	"verbose", NULL,
818 	    "Verbose (use multiple times for ever more verbosity)",
819 	    NO_DEFAULT, NULL},
820 	{ 'h',	"help",	NULL, "Show this help",
821 	    NO_DEFAULT, NULL},
822 	{0, 0, 0, 0, 0, 0}
823 };
824 
825 static struct option *long_opts = NULL;
826 static char *short_opts = NULL;
827 
828 static void
829 init_options(void)
830 {
831 	ASSERT3P(long_opts, ==, NULL);
832 	ASSERT3P(short_opts, ==, NULL);
833 
834 	int count = sizeof (option_table) / sizeof (option_table[0]);
835 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
836 
837 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
838 	int short_opt_index = 0;
839 
840 	for (int i = 0; i < count; i++) {
841 		long_opts[i].val = option_table[i].short_opt;
842 		long_opts[i].name = option_table[i].long_opt;
843 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
844 		    ? required_argument : no_argument;
845 		long_opts[i].flag = NULL;
846 		short_opts[short_opt_index++] = option_table[i].short_opt;
847 		if (option_table[i].long_opt_param != NULL) {
848 			short_opts[short_opt_index++] = ':';
849 		}
850 	}
851 }
852 
853 static void
854 fini_options(void)
855 {
856 	int count = sizeof (option_table) / sizeof (option_table[0]);
857 
858 	umem_free(long_opts, sizeof (struct option) * count);
859 	umem_free(short_opts, sizeof (char) * 2 * count);
860 
861 	long_opts = NULL;
862 	short_opts = NULL;
863 }
864 
865 static __attribute__((noreturn)) void
866 usage(boolean_t requested)
867 {
868 	char option[80];
869 	FILE *fp = requested ? stdout : stderr;
870 
871 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
872 	for (int i = 0; option_table[i].short_opt != 0; i++) {
873 		if (option_table[i].long_opt_param != NULL) {
874 			(void) sprintf(option, "  -%c --%s=%s",
875 			    option_table[i].short_opt,
876 			    option_table[i].long_opt,
877 			    option_table[i].long_opt_param);
878 		} else {
879 			(void) sprintf(option, "  -%c --%s",
880 			    option_table[i].short_opt,
881 			    option_table[i].long_opt);
882 		}
883 		(void) fprintf(fp, "  %-43s%s", option,
884 		    option_table[i].comment);
885 
886 		if (option_table[i].long_opt_param != NULL) {
887 			if (option_table[i].default_str != NULL) {
888 				(void) fprintf(fp, " (default: %s)",
889 				    option_table[i].default_str);
890 			} else if (option_table[i].default_int != NO_DEFAULT) {
891 				(void) fprintf(fp, " (default: %u)",
892 				    option_table[i].default_int);
893 			}
894 		}
895 		(void) fprintf(fp, "\n");
896 	}
897 	exit(requested ? 0 : 1);
898 }
899 
900 static uint64_t
901 ztest_random(uint64_t range)
902 {
903 	uint64_t r;
904 
905 	ASSERT3S(ztest_fd_rand, >=, 0);
906 
907 	if (range == 0)
908 		return (0);
909 
910 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
911 		fatal(B_TRUE, "short read from /dev/urandom");
912 
913 	return (r % range);
914 }
915 
916 static void
917 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
918 {
919 	char name[32];
920 	char *value;
921 	int state = ZTEST_VDEV_CLASS_RND;
922 
923 	(void) strlcpy(name, input, sizeof (name));
924 
925 	value = strchr(name, '=');
926 	if (value == NULL) {
927 		(void) fprintf(stderr, "missing value in property=value "
928 		    "'-C' argument (%s)\n", input);
929 		usage(B_FALSE);
930 	}
931 	*(value) = '\0';
932 	value++;
933 
934 	if (strcmp(value, "on") == 0) {
935 		state = ZTEST_VDEV_CLASS_ON;
936 	} else if (strcmp(value, "off") == 0) {
937 		state = ZTEST_VDEV_CLASS_OFF;
938 	} else if (strcmp(value, "random") == 0) {
939 		state = ZTEST_VDEV_CLASS_RND;
940 	} else {
941 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
942 		usage(B_FALSE);
943 	}
944 
945 	if (strcmp(name, "special") == 0) {
946 		zo->zo_special_vdevs = state;
947 	} else {
948 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
949 		usage(B_FALSE);
950 	}
951 	if (zo->zo_verbose >= 3)
952 		(void) printf("%s vdev state is '%s'\n", name, value);
953 }
954 
955 static void
956 process_options(int argc, char **argv)
957 {
958 	char *path;
959 	ztest_shared_opts_t *zo = &ztest_opts;
960 
961 	int opt;
962 	uint64_t value;
963 	const char *raid_kind = "random";
964 
965 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
966 
967 	init_options();
968 
969 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
970 	    NULL)) != EOF) {
971 		value = 0;
972 		switch (opt) {
973 		case 'v':
974 		case 's':
975 		case 'a':
976 		case 'm':
977 		case 'r':
978 		case 'R':
979 		case 'D':
980 		case 'S':
981 		case 'd':
982 		case 't':
983 		case 'g':
984 		case 'i':
985 		case 'k':
986 		case 'T':
987 		case 'P':
988 		case 'F':
989 			value = nicenumtoull(optarg);
990 		}
991 		switch (opt) {
992 		case 'v':
993 			zo->zo_vdevs = value;
994 			break;
995 		case 's':
996 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
997 			break;
998 		case 'a':
999 			zo->zo_ashift = value;
1000 			break;
1001 		case 'm':
1002 			zo->zo_mirrors = value;
1003 			break;
1004 		case 'r':
1005 			zo->zo_raid_children = MAX(1, value);
1006 			break;
1007 		case 'R':
1008 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1009 			break;
1010 		case 'K':
1011 			raid_kind = optarg;
1012 			break;
1013 		case 'D':
1014 			zo->zo_draid_data = MAX(1, value);
1015 			break;
1016 		case 'S':
1017 			zo->zo_draid_spares = MAX(1, value);
1018 			break;
1019 		case 'd':
1020 			zo->zo_datasets = MAX(1, value);
1021 			break;
1022 		case 't':
1023 			zo->zo_threads = MAX(1, value);
1024 			break;
1025 		case 'g':
1026 			zo->zo_metaslab_force_ganging =
1027 			    MAX(SPA_MINBLOCKSIZE << 1, value);
1028 			break;
1029 		case 'i':
1030 			zo->zo_init = value;
1031 			break;
1032 		case 'k':
1033 			zo->zo_killrate = value;
1034 			break;
1035 		case 'p':
1036 			(void) strlcpy(zo->zo_pool, optarg,
1037 			    sizeof (zo->zo_pool));
1038 			break;
1039 		case 'f':
1040 			path = realpath(optarg, NULL);
1041 			if (path == NULL) {
1042 				(void) fprintf(stderr, "error: %s: %s\n",
1043 				    optarg, strerror(errno));
1044 				usage(B_FALSE);
1045 			} else {
1046 				(void) strlcpy(zo->zo_dir, path,
1047 				    sizeof (zo->zo_dir));
1048 				free(path);
1049 			}
1050 			break;
1051 		case 'M':
1052 			zo->zo_mmp_test = 1;
1053 			break;
1054 		case 'V':
1055 			zo->zo_verbose++;
1056 			break;
1057 		case 'X':
1058 			zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1059 			break;
1060 		case 'E':
1061 			zo->zo_init = 0;
1062 			break;
1063 		case 'T':
1064 			zo->zo_time = value;
1065 			break;
1066 		case 'P':
1067 			zo->zo_passtime = MAX(1, value);
1068 			break;
1069 		case 'F':
1070 			zo->zo_maxloops = MAX(1, value);
1071 			break;
1072 		case 'B':
1073 			(void) strlcpy(zo->zo_alt_ztest, optarg,
1074 			    sizeof (zo->zo_alt_ztest));
1075 			break;
1076 		case 'C':
1077 			ztest_parse_name_value(optarg, zo);
1078 			break;
1079 		case 'o':
1080 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1081 				(void) fprintf(stderr,
1082 				    "max global var count (%zu) exceeded\n",
1083 				    ZO_GVARS_MAX_COUNT);
1084 				usage(B_FALSE);
1085 			}
1086 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1087 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1088 			    ZO_GVARS_MAX_ARGLEN) {
1089 				(void) fprintf(stderr,
1090 				    "global var option '%s' is too long\n",
1091 				    optarg);
1092 				usage(B_FALSE);
1093 			}
1094 			zo->zo_gvars_count++;
1095 			break;
1096 		case 'G':
1097 			zo->zo_dump_dbgmsg = 1;
1098 			break;
1099 		case 'h':
1100 			usage(B_TRUE);
1101 			break;
1102 		case '?':
1103 		default:
1104 			usage(B_FALSE);
1105 			break;
1106 		}
1107 	}
1108 
1109 	fini_options();
1110 
1111 	/* Force compatible options for raidz expansion run */
1112 	if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1113 		zo->zo_mmp_test = 0;
1114 		zo->zo_mirrors = 0;
1115 		zo->zo_vdevs = 1;
1116 		zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1117 		zo->zo_raid_do_expand = B_FALSE;
1118 		raid_kind = "raidz";
1119 	}
1120 
1121 	if (strcmp(raid_kind, "random") == 0) {
1122 		switch (ztest_random(3)) {
1123 		case 0:
1124 			raid_kind = "raidz";
1125 			break;
1126 		case 1:
1127 			raid_kind = "eraidz";
1128 			break;
1129 		case 2:
1130 			raid_kind = "draid";
1131 			break;
1132 		}
1133 
1134 		if (ztest_opts.zo_verbose >= 3)
1135 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1136 	}
1137 
1138 	if (strcmp(raid_kind, "draid") == 0) {
1139 		uint64_t min_devsize;
1140 
1141 		/* With fewer disk use 256M, otherwise 128M is OK */
1142 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1143 		    (256ULL << 20) : (128ULL << 20);
1144 
1145 		/* No top-level mirrors with dRAID for now */
1146 		zo->zo_mirrors = 0;
1147 
1148 		/* Use more appropriate defaults for dRAID */
1149 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1150 			zo->zo_vdevs = 1;
1151 		if (zo->zo_raid_children ==
1152 		    ztest_opts_defaults.zo_raid_children)
1153 			zo->zo_raid_children = 16;
1154 		if (zo->zo_ashift < 12)
1155 			zo->zo_ashift = 12;
1156 		if (zo->zo_vdev_size < min_devsize)
1157 			zo->zo_vdev_size = min_devsize;
1158 
1159 		if (zo->zo_draid_data + zo->zo_raid_parity >
1160 		    zo->zo_raid_children - zo->zo_draid_spares) {
1161 			(void) fprintf(stderr, "error: too few draid "
1162 			    "children (%d) for stripe width (%d)\n",
1163 			    zo->zo_raid_children,
1164 			    zo->zo_draid_data + zo->zo_raid_parity);
1165 			usage(B_FALSE);
1166 		}
1167 
1168 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1169 		    sizeof (zo->zo_raid_type));
1170 
1171 	} else if (strcmp(raid_kind, "eraidz") == 0) {
1172 		/* using eraidz (expandable raidz) */
1173 		zo->zo_raid_do_expand = B_TRUE;
1174 
1175 		/* tests expect top-level to be raidz */
1176 		zo->zo_mirrors = 0;
1177 		zo->zo_vdevs = 1;
1178 
1179 		/* Make sure parity is less than data columns */
1180 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1181 		    zo->zo_raid_children - 1);
1182 
1183 	} else /* using raidz */ {
1184 		ASSERT0(strcmp(raid_kind, "raidz"));
1185 
1186 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1187 		    zo->zo_raid_children - 1);
1188 	}
1189 
1190 	zo->zo_vdevtime =
1191 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1192 	    UINT64_MAX >> 2);
1193 
1194 	if (*zo->zo_alt_ztest) {
1195 		const char *invalid_what = "ztest";
1196 		char *val = zo->zo_alt_ztest;
1197 		if (0 != access(val, X_OK) ||
1198 		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
1199 			goto invalid;
1200 
1201 		int dirlen = strrchr(val, '/') - val;
1202 		strlcpy(zo->zo_alt_libpath, val,
1203 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1204 		invalid_what = "library path", val = zo->zo_alt_libpath;
1205 		if (strrchr(val, '/') == NULL && (errno == EINVAL))
1206 			goto invalid;
1207 		*strrchr(val, '/') = '\0';
1208 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1209 
1210 		if (0 != access(zo->zo_alt_libpath, X_OK))
1211 			goto invalid;
1212 		return;
1213 
1214 invalid:
1215 		ztest_dump_core = B_FALSE;
1216 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1217 	}
1218 }
1219 
1220 static void
1221 ztest_kill(ztest_shared_t *zs)
1222 {
1223 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1224 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1225 
1226 	/*
1227 	 * Before we kill ourselves, make sure that the config is updated.
1228 	 * See comment above spa_write_cachefile().
1229 	 */
1230 	if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1231 		if (mutex_tryenter(&spa_namespace_lock)) {
1232 			spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1233 			    B_FALSE);
1234 			mutex_exit(&spa_namespace_lock);
1235 
1236 			ztest_scratch_state->zs_raidz_scratch_verify_pause =
1237 			    raidz_expand_pause_point;
1238 		} else {
1239 			/*
1240 			 * Do not verify scratch object in case if
1241 			 * spa_namespace_lock cannot be acquired,
1242 			 * it can cause deadlock in spa_config_update().
1243 			 */
1244 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1245 
1246 			return;
1247 		}
1248 	} else {
1249 		mutex_enter(&spa_namespace_lock);
1250 		spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1251 		mutex_exit(&spa_namespace_lock);
1252 	}
1253 
1254 	(void) raise(SIGKILL);
1255 }
1256 
1257 static void
1258 ztest_record_enospc(const char *s)
1259 {
1260 	(void) s;
1261 	ztest_shared->zs_enospc_count++;
1262 }
1263 
1264 static uint64_t
1265 ztest_get_ashift(void)
1266 {
1267 	if (ztest_opts.zo_ashift == 0)
1268 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1269 	return (ztest_opts.zo_ashift);
1270 }
1271 
1272 static boolean_t
1273 ztest_is_draid_spare(const char *name)
1274 {
1275 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1276 
1277 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1278 	    &parity, &vdev_id, &spare_id) == 3) {
1279 		return (B_TRUE);
1280 	}
1281 
1282 	return (B_FALSE);
1283 }
1284 
1285 static nvlist_t *
1286 make_vdev_file(const char *path, const char *aux, const char *pool,
1287     size_t size, uint64_t ashift)
1288 {
1289 	char *pathbuf = NULL;
1290 	uint64_t vdev;
1291 	nvlist_t *file;
1292 	boolean_t draid_spare = B_FALSE;
1293 
1294 
1295 	if (ashift == 0)
1296 		ashift = ztest_get_ashift();
1297 
1298 	if (path == NULL) {
1299 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1300 		path = pathbuf;
1301 
1302 		if (aux != NULL) {
1303 			vdev = ztest_shared->zs_vdev_aux;
1304 			(void) snprintf(pathbuf, MAXPATHLEN,
1305 			    ztest_aux_template, ztest_opts.zo_dir,
1306 			    pool == NULL ? ztest_opts.zo_pool : pool,
1307 			    aux, vdev);
1308 		} else {
1309 			vdev = ztest_shared->zs_vdev_next_leaf++;
1310 			(void) snprintf(pathbuf, MAXPATHLEN,
1311 			    ztest_dev_template, ztest_opts.zo_dir,
1312 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1313 		}
1314 	} else {
1315 		draid_spare = ztest_is_draid_spare(path);
1316 	}
1317 
1318 	if (size != 0 && !draid_spare) {
1319 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1320 		if (fd == -1)
1321 			fatal(B_TRUE, "can't open %s", path);
1322 		if (ftruncate(fd, size) != 0)
1323 			fatal(B_TRUE, "can't ftruncate %s", path);
1324 		(void) close(fd);
1325 	}
1326 
1327 	file = fnvlist_alloc();
1328 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1329 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1330 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1331 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1332 	umem_free(pathbuf, MAXPATHLEN);
1333 
1334 	return (file);
1335 }
1336 
1337 static nvlist_t *
1338 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1339     uint64_t ashift, int r)
1340 {
1341 	nvlist_t *raid, **child;
1342 	int c;
1343 
1344 	if (r < 2)
1345 		return (make_vdev_file(path, aux, pool, size, ashift));
1346 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1347 
1348 	for (c = 0; c < r; c++)
1349 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1350 
1351 	raid = fnvlist_alloc();
1352 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1353 	    ztest_opts.zo_raid_type);
1354 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1355 	    ztest_opts.zo_raid_parity);
1356 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1357 	    (const nvlist_t **)child, r);
1358 
1359 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1360 		uint64_t ndata = ztest_opts.zo_draid_data;
1361 		uint64_t nparity = ztest_opts.zo_raid_parity;
1362 		uint64_t nspares = ztest_opts.zo_draid_spares;
1363 		uint64_t children = ztest_opts.zo_raid_children;
1364 		uint64_t ngroups = 1;
1365 
1366 		/*
1367 		 * Calculate the minimum number of groups required to fill a
1368 		 * slice. This is the LCM of the stripe width (data + parity)
1369 		 * and the number of data drives (children - spares).
1370 		 */
1371 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1372 			ngroups++;
1373 
1374 		/* Store the basic dRAID configuration. */
1375 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1376 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1377 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1378 	}
1379 
1380 	for (c = 0; c < r; c++)
1381 		fnvlist_free(child[c]);
1382 
1383 	umem_free(child, r * sizeof (nvlist_t *));
1384 
1385 	return (raid);
1386 }
1387 
1388 static nvlist_t *
1389 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1390     size_t size, uint64_t ashift, int r, int m)
1391 {
1392 	nvlist_t *mirror, **child;
1393 	int c;
1394 
1395 	if (m < 1)
1396 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1397 
1398 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1399 
1400 	for (c = 0; c < m; c++)
1401 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1402 
1403 	mirror = fnvlist_alloc();
1404 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1405 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1406 	    (const nvlist_t **)child, m);
1407 
1408 	for (c = 0; c < m; c++)
1409 		fnvlist_free(child[c]);
1410 
1411 	umem_free(child, m * sizeof (nvlist_t *));
1412 
1413 	return (mirror);
1414 }
1415 
1416 static nvlist_t *
1417 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1418     uint64_t ashift, const char *class, int r, int m, int t)
1419 {
1420 	nvlist_t *root, **child;
1421 	int c;
1422 	boolean_t log;
1423 
1424 	ASSERT3S(t, >, 0);
1425 
1426 	log = (class != NULL && strcmp(class, "log") == 0);
1427 
1428 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1429 
1430 	for (c = 0; c < t; c++) {
1431 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1432 		    r, m);
1433 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1434 
1435 		if (class != NULL && class[0] != '\0') {
1436 			ASSERT(m > 1 || log);   /* expecting a mirror */
1437 			fnvlist_add_string(child[c],
1438 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1439 		}
1440 	}
1441 
1442 	root = fnvlist_alloc();
1443 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1444 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1445 	    (const nvlist_t **)child, t);
1446 
1447 	for (c = 0; c < t; c++)
1448 		fnvlist_free(child[c]);
1449 
1450 	umem_free(child, t * sizeof (nvlist_t *));
1451 
1452 	return (root);
1453 }
1454 
1455 /*
1456  * Find a random spa version. Returns back a random spa version in the
1457  * range [initial_version, SPA_VERSION_FEATURES].
1458  */
1459 static uint64_t
1460 ztest_random_spa_version(uint64_t initial_version)
1461 {
1462 	uint64_t version = initial_version;
1463 
1464 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1465 		version = version +
1466 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1467 	}
1468 
1469 	if (version > SPA_VERSION_BEFORE_FEATURES)
1470 		version = SPA_VERSION_FEATURES;
1471 
1472 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1473 	return (version);
1474 }
1475 
1476 static int
1477 ztest_random_blocksize(void)
1478 {
1479 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1480 
1481 	/*
1482 	 * Choose a block size >= the ashift.
1483 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1484 	 */
1485 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1486 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1487 		maxbs = 20;
1488 	uint64_t block_shift =
1489 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1490 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1491 }
1492 
1493 static int
1494 ztest_random_dnodesize(void)
1495 {
1496 	int slots;
1497 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1498 
1499 	if (max_slots == DNODE_MIN_SLOTS)
1500 		return (DNODE_MIN_SIZE);
1501 
1502 	/*
1503 	 * Weight the random distribution more heavily toward smaller
1504 	 * dnode sizes since that is more likely to reflect real-world
1505 	 * usage.
1506 	 */
1507 	ASSERT3U(max_slots, >, 4);
1508 	switch (ztest_random(10)) {
1509 	case 0:
1510 		slots = 5 + ztest_random(max_slots - 4);
1511 		break;
1512 	case 1 ... 4:
1513 		slots = 2 + ztest_random(3);
1514 		break;
1515 	default:
1516 		slots = 1;
1517 		break;
1518 	}
1519 
1520 	return (slots << DNODE_SHIFT);
1521 }
1522 
1523 static int
1524 ztest_random_ibshift(void)
1525 {
1526 	return (DN_MIN_INDBLKSHIFT +
1527 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1528 }
1529 
1530 static uint64_t
1531 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1532 {
1533 	uint64_t top;
1534 	vdev_t *rvd = spa->spa_root_vdev;
1535 	vdev_t *tvd;
1536 
1537 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1538 
1539 	do {
1540 		top = ztest_random(rvd->vdev_children);
1541 		tvd = rvd->vdev_child[top];
1542 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1543 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1544 
1545 	return (top);
1546 }
1547 
1548 static uint64_t
1549 ztest_random_dsl_prop(zfs_prop_t prop)
1550 {
1551 	uint64_t value;
1552 
1553 	do {
1554 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1555 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1556 
1557 	return (value);
1558 }
1559 
1560 static int
1561 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1562     boolean_t inherit)
1563 {
1564 	const char *propname = zfs_prop_to_name(prop);
1565 	const char *valname;
1566 	char *setpoint;
1567 	uint64_t curval;
1568 	int error;
1569 
1570 	error = dsl_prop_set_int(osname, propname,
1571 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1572 
1573 	if (error == ENOSPC) {
1574 		ztest_record_enospc(FTAG);
1575 		return (error);
1576 	}
1577 	ASSERT0(error);
1578 
1579 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1580 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1581 
1582 	if (ztest_opts.zo_verbose >= 6) {
1583 		int err;
1584 
1585 		err = zfs_prop_index_to_string(prop, curval, &valname);
1586 		if (err)
1587 			(void) printf("%s %s = %llu at '%s'\n", osname,
1588 			    propname, (unsigned long long)curval, setpoint);
1589 		else
1590 			(void) printf("%s %s = %s at '%s'\n",
1591 			    osname, propname, valname, setpoint);
1592 	}
1593 	umem_free(setpoint, MAXPATHLEN);
1594 
1595 	return (error);
1596 }
1597 
1598 static int
1599 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1600 {
1601 	spa_t *spa = ztest_spa;
1602 	nvlist_t *props = NULL;
1603 	int error;
1604 
1605 	props = fnvlist_alloc();
1606 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1607 
1608 	error = spa_prop_set(spa, props);
1609 
1610 	fnvlist_free(props);
1611 
1612 	if (error == ENOSPC) {
1613 		ztest_record_enospc(FTAG);
1614 		return (error);
1615 	}
1616 	ASSERT0(error);
1617 
1618 	return (error);
1619 }
1620 
1621 static int
1622 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1623     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1624 {
1625 	int err;
1626 	char *cp = NULL;
1627 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1628 
1629 	strlcpy(ddname, name, sizeof (ddname));
1630 	cp = strchr(ddname, '@');
1631 	if (cp != NULL)
1632 		*cp = '\0';
1633 
1634 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1635 	while (decrypt && err == EACCES) {
1636 		dsl_crypto_params_t *dcp;
1637 		nvlist_t *crypto_args = fnvlist_alloc();
1638 
1639 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1640 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1641 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1642 		    crypto_args, &dcp));
1643 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1644 		/*
1645 		 * Note: if there was an error loading, the wkey was not
1646 		 * consumed, and needs to be freed.
1647 		 */
1648 		dsl_crypto_params_free(dcp, (err != 0));
1649 		fnvlist_free(crypto_args);
1650 
1651 		if (err == EINVAL) {
1652 			/*
1653 			 * We couldn't load a key for this dataset so try
1654 			 * the parent. This loop will eventually hit the
1655 			 * encryption root since ztest only makes clones
1656 			 * as children of their origin datasets.
1657 			 */
1658 			cp = strrchr(ddname, '/');
1659 			if (cp == NULL)
1660 				return (err);
1661 
1662 			*cp = '\0';
1663 			err = EACCES;
1664 			continue;
1665 		} else if (err != 0) {
1666 			break;
1667 		}
1668 
1669 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1670 		break;
1671 	}
1672 
1673 	return (err);
1674 }
1675 
1676 static void
1677 ztest_rll_init(rll_t *rll)
1678 {
1679 	rll->rll_writer = NULL;
1680 	rll->rll_readers = 0;
1681 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1682 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1683 }
1684 
1685 static void
1686 ztest_rll_destroy(rll_t *rll)
1687 {
1688 	ASSERT3P(rll->rll_writer, ==, NULL);
1689 	ASSERT0(rll->rll_readers);
1690 	mutex_destroy(&rll->rll_lock);
1691 	cv_destroy(&rll->rll_cv);
1692 }
1693 
1694 static void
1695 ztest_rll_lock(rll_t *rll, rl_type_t type)
1696 {
1697 	mutex_enter(&rll->rll_lock);
1698 
1699 	if (type == ZTRL_READER) {
1700 		while (rll->rll_writer != NULL)
1701 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1702 		rll->rll_readers++;
1703 	} else {
1704 		while (rll->rll_writer != NULL || rll->rll_readers)
1705 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1706 		rll->rll_writer = curthread;
1707 	}
1708 
1709 	mutex_exit(&rll->rll_lock);
1710 }
1711 
1712 static void
1713 ztest_rll_unlock(rll_t *rll)
1714 {
1715 	mutex_enter(&rll->rll_lock);
1716 
1717 	if (rll->rll_writer) {
1718 		ASSERT0(rll->rll_readers);
1719 		rll->rll_writer = NULL;
1720 	} else {
1721 		ASSERT3S(rll->rll_readers, >, 0);
1722 		ASSERT3P(rll->rll_writer, ==, NULL);
1723 		rll->rll_readers--;
1724 	}
1725 
1726 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1727 		cv_broadcast(&rll->rll_cv);
1728 
1729 	mutex_exit(&rll->rll_lock);
1730 }
1731 
1732 static void
1733 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1734 {
1735 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1736 
1737 	ztest_rll_lock(rll, type);
1738 }
1739 
1740 static void
1741 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1742 {
1743 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1744 
1745 	ztest_rll_unlock(rll);
1746 }
1747 
1748 static rl_t *
1749 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1750     uint64_t size, rl_type_t type)
1751 {
1752 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1753 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1754 	rl_t *rl;
1755 
1756 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1757 	rl->rl_object = object;
1758 	rl->rl_offset = offset;
1759 	rl->rl_size = size;
1760 	rl->rl_lock = rll;
1761 
1762 	ztest_rll_lock(rll, type);
1763 
1764 	return (rl);
1765 }
1766 
1767 static void
1768 ztest_range_unlock(rl_t *rl)
1769 {
1770 	rll_t *rll = rl->rl_lock;
1771 
1772 	ztest_rll_unlock(rll);
1773 
1774 	umem_free(rl, sizeof (*rl));
1775 }
1776 
1777 static void
1778 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1779 {
1780 	zd->zd_os = os;
1781 	zd->zd_zilog = dmu_objset_zil(os);
1782 	zd->zd_shared = szd;
1783 	dmu_objset_name(os, zd->zd_name);
1784 	int l;
1785 
1786 	if (zd->zd_shared != NULL)
1787 		zd->zd_shared->zd_seq = 0;
1788 
1789 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1790 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1791 
1792 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1793 		ztest_rll_init(&zd->zd_object_lock[l]);
1794 
1795 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1796 		ztest_rll_init(&zd->zd_range_lock[l]);
1797 }
1798 
1799 static void
1800 ztest_zd_fini(ztest_ds_t *zd)
1801 {
1802 	int l;
1803 
1804 	mutex_destroy(&zd->zd_dirobj_lock);
1805 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1806 
1807 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1808 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1809 
1810 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1811 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1812 }
1813 
1814 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1815 
1816 static uint64_t
1817 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1818 {
1819 	uint64_t txg;
1820 	int error;
1821 
1822 	/*
1823 	 * Attempt to assign tx to some transaction group.
1824 	 */
1825 	error = dmu_tx_assign(tx, txg_how);
1826 	if (error) {
1827 		if (error == ERESTART) {
1828 			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1829 			dmu_tx_wait(tx);
1830 		} else {
1831 			ASSERT3U(error, ==, ENOSPC);
1832 			ztest_record_enospc(tag);
1833 		}
1834 		dmu_tx_abort(tx);
1835 		return (0);
1836 	}
1837 	txg = dmu_tx_get_txg(tx);
1838 	ASSERT3U(txg, !=, 0);
1839 	return (txg);
1840 }
1841 
1842 static void
1843 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845     uint64_t crtxg)
1846 {
1847 	bt->bt_magic = BT_MAGIC;
1848 	bt->bt_objset = dmu_objset_id(os);
1849 	bt->bt_object = object;
1850 	bt->bt_dnodesize = dnodesize;
1851 	bt->bt_offset = offset;
1852 	bt->bt_gen = gen;
1853 	bt->bt_txg = txg;
1854 	bt->bt_crtxg = crtxg;
1855 }
1856 
1857 static void
1858 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860     uint64_t crtxg)
1861 {
1862 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864 	ASSERT3U(bt->bt_object, ==, object);
1865 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866 	ASSERT3U(bt->bt_offset, ==, offset);
1867 	ASSERT3U(bt->bt_gen, <=, gen);
1868 	ASSERT3U(bt->bt_txg, <=, txg);
1869 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1870 }
1871 
1872 static ztest_block_tag_t *
1873 ztest_bt_bonus(dmu_buf_t *db)
1874 {
1875 	dmu_object_info_t doi;
1876 	ztest_block_tag_t *bt;
1877 
1878 	dmu_object_info_from_db(db, &doi);
1879 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1882 
1883 	return (bt);
1884 }
1885 
1886 /*
1887  * Generate a token to fill up unused bonus buffer space.  Try to make
1888  * it unique to the object, generation, and offset to verify that data
1889  * is not getting overwritten by data from other dnodes.
1890  */
1891 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893 
1894 /*
1895  * Fill up the unused bonus buffer region before the block tag with a
1896  * verifiable pattern. Filling the whole bonus area with non-zero data
1897  * helps ensure that all dnode traversal code properly skips the
1898  * interior regions of large dnodes.
1899  */
1900 static void
1901 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902     objset_t *os, uint64_t gen)
1903 {
1904 	uint64_t *bonusp;
1905 
1906 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1907 
1908 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910 		    gen, bonusp - (uint64_t *)db->db_data);
1911 		*bonusp = token;
1912 	}
1913 }
1914 
1915 /*
1916  * Verify that the unused area of a bonus buffer is filled with the
1917  * expected tokens.
1918  */
1919 static void
1920 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921     objset_t *os, uint64_t gen)
1922 {
1923 	uint64_t *bonusp;
1924 
1925 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927 		    gen, bonusp - (uint64_t *)db->db_data);
1928 		VERIFY3U(*bonusp, ==, token);
1929 	}
1930 }
1931 
1932 /*
1933  * ZIL logging ops
1934  */
1935 
1936 #define	lrz_type	lr_mode
1937 #define	lrz_blocksize	lr_uid
1938 #define	lrz_ibshift	lr_gid
1939 #define	lrz_bonustype	lr_rdev
1940 #define	lrz_dnodesize	lr_crtime[1]
1941 
1942 static void
1943 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1944 {
1945 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1946 	size_t namesize = strlen(name) + 1;
1947 	itx_t *itx;
1948 
1949 	if (zil_replaying(zd->zd_zilog, tx))
1950 		return;
1951 
1952 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953 	memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1954 	    sizeof (*lr) + namesize - sizeof (lr_t));
1955 
1956 	zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958 
1959 static void
1960 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1961 {
1962 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1963 	size_t namesize = strlen(name) + 1;
1964 	itx_t *itx;
1965 
1966 	if (zil_replaying(zd->zd_zilog, tx))
1967 		return;
1968 
1969 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971 	    sizeof (*lr) + namesize - sizeof (lr_t));
1972 
1973 	itx->itx_oid = object;
1974 	zil_itx_assign(zd->zd_zilog, itx, tx);
1975 }
1976 
1977 static void
1978 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1979 {
1980 	itx_t *itx;
1981 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1982 
1983 	if (zil_replaying(zd->zd_zilog, tx))
1984 		return;
1985 
1986 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987 		write_state = WR_INDIRECT;
1988 
1989 	itx = zil_itx_create(TX_WRITE,
1990 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1991 
1992 	if (write_state == WR_COPIED &&
1993 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1995 		zil_itx_destroy(itx);
1996 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1997 		write_state = WR_NEED_COPY;
1998 	}
1999 	itx->itx_private = zd;
2000 	itx->itx_wr_state = write_state;
2001 	itx->itx_sync = (ztest_random(8) == 0);
2002 
2003 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2004 	    sizeof (*lr) - sizeof (lr_t));
2005 
2006 	zil_itx_assign(zd->zd_zilog, itx, tx);
2007 }
2008 
2009 static void
2010 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2011 {
2012 	itx_t *itx;
2013 
2014 	if (zil_replaying(zd->zd_zilog, tx))
2015 		return;
2016 
2017 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2018 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2019 	    sizeof (*lr) - sizeof (lr_t));
2020 
2021 	itx->itx_sync = B_FALSE;
2022 	zil_itx_assign(zd->zd_zilog, itx, tx);
2023 }
2024 
2025 static void
2026 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2027 {
2028 	itx_t *itx;
2029 
2030 	if (zil_replaying(zd->zd_zilog, tx))
2031 		return;
2032 
2033 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2034 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2035 	    sizeof (*lr) - sizeof (lr_t));
2036 
2037 	itx->itx_sync = B_FALSE;
2038 	zil_itx_assign(zd->zd_zilog, itx, tx);
2039 }
2040 
2041 /*
2042  * ZIL replay ops
2043  */
2044 static int
2045 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2046 {
2047 	ztest_ds_t *zd = arg1;
2048 	lr_create_t *lrc = arg2;
2049 	_lr_create_t *lr = &lrc->lr_create;
2050 	char *name = (char *)&lrc->lr_data[0];		/* name follows lr */
2051 	objset_t *os = zd->zd_os;
2052 	ztest_block_tag_t *bbt;
2053 	dmu_buf_t *db;
2054 	dmu_tx_t *tx;
2055 	uint64_t txg;
2056 	int error = 0;
2057 	int bonuslen;
2058 
2059 	if (byteswap)
2060 		byteswap_uint64_array(lr, sizeof (*lr));
2061 
2062 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2063 	ASSERT3S(name[0], !=, '\0');
2064 
2065 	tx = dmu_tx_create(os);
2066 
2067 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2068 
2069 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2070 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2071 	} else {
2072 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2073 	}
2074 
2075 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2076 	if (txg == 0)
2077 		return (ENOSPC);
2078 
2079 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2080 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2081 
2082 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2083 		if (lr->lr_foid == 0) {
2084 			lr->lr_foid = zap_create_dnsize(os,
2085 			    lr->lrz_type, lr->lrz_bonustype,
2086 			    bonuslen, lr->lrz_dnodesize, tx);
2087 		} else {
2088 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2089 			    lr->lrz_type, lr->lrz_bonustype,
2090 			    bonuslen, lr->lrz_dnodesize, tx);
2091 		}
2092 	} else {
2093 		if (lr->lr_foid == 0) {
2094 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2095 			    lr->lrz_type, 0, lr->lrz_bonustype,
2096 			    bonuslen, lr->lrz_dnodesize, tx);
2097 		} else {
2098 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2099 			    lr->lrz_type, 0, lr->lrz_bonustype,
2100 			    bonuslen, lr->lrz_dnodesize, tx);
2101 		}
2102 	}
2103 
2104 	if (error) {
2105 		ASSERT3U(error, ==, EEXIST);
2106 		ASSERT(zd->zd_zilog->zl_replay);
2107 		dmu_tx_commit(tx);
2108 		return (error);
2109 	}
2110 
2111 	ASSERT3U(lr->lr_foid, !=, 0);
2112 
2113 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2114 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2115 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2116 
2117 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2118 	bbt = ztest_bt_bonus(db);
2119 	dmu_buf_will_dirty(db, tx);
2120 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2121 	    lr->lr_gen, txg, txg);
2122 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2123 	dmu_buf_rele(db, FTAG);
2124 
2125 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2126 	    &lr->lr_foid, tx));
2127 
2128 	(void) ztest_log_create(zd, tx, lrc);
2129 
2130 	dmu_tx_commit(tx);
2131 
2132 	return (0);
2133 }
2134 
2135 static int
2136 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2137 {
2138 	ztest_ds_t *zd = arg1;
2139 	lr_remove_t *lr = arg2;
2140 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
2141 	objset_t *os = zd->zd_os;
2142 	dmu_object_info_t doi;
2143 	dmu_tx_t *tx;
2144 	uint64_t object, txg;
2145 
2146 	if (byteswap)
2147 		byteswap_uint64_array(lr, sizeof (*lr));
2148 
2149 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2150 	ASSERT3S(name[0], !=, '\0');
2151 
2152 	VERIFY0(
2153 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2154 	ASSERT3U(object, !=, 0);
2155 
2156 	ztest_object_lock(zd, object, ZTRL_WRITER);
2157 
2158 	VERIFY0(dmu_object_info(os, object, &doi));
2159 
2160 	tx = dmu_tx_create(os);
2161 
2162 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2163 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2164 
2165 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2166 	if (txg == 0) {
2167 		ztest_object_unlock(zd, object);
2168 		return (ENOSPC);
2169 	}
2170 
2171 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2172 		VERIFY0(zap_destroy(os, object, tx));
2173 	} else {
2174 		VERIFY0(dmu_object_free(os, object, tx));
2175 	}
2176 
2177 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2178 
2179 	(void) ztest_log_remove(zd, tx, lr, object);
2180 
2181 	dmu_tx_commit(tx);
2182 
2183 	ztest_object_unlock(zd, object);
2184 
2185 	return (0);
2186 }
2187 
2188 static int
2189 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2190 {
2191 	ztest_ds_t *zd = arg1;
2192 	lr_write_t *lr = arg2;
2193 	objset_t *os = zd->zd_os;
2194 	uint8_t *data = &lr->lr_data[0];		/* data follows lr */
2195 	uint64_t offset, length;
2196 	ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2197 	ztest_block_tag_t *bbt;
2198 	uint64_t gen, txg, lrtxg, crtxg;
2199 	dmu_object_info_t doi;
2200 	dmu_tx_t *tx;
2201 	dmu_buf_t *db;
2202 	arc_buf_t *abuf = NULL;
2203 	rl_t *rl;
2204 
2205 	if (byteswap)
2206 		byteswap_uint64_array(lr, sizeof (*lr));
2207 
2208 	offset = lr->lr_offset;
2209 	length = lr->lr_length;
2210 
2211 	/* If it's a dmu_sync() block, write the whole block */
2212 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2213 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2214 		if (length < blocksize) {
2215 			offset -= offset % blocksize;
2216 			length = blocksize;
2217 		}
2218 	}
2219 
2220 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2221 		byteswap_uint64_array(bt, sizeof (*bt));
2222 
2223 	if (bt->bt_magic != BT_MAGIC)
2224 		bt = NULL;
2225 
2226 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2227 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2228 
2229 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2230 
2231 	dmu_object_info_from_db(db, &doi);
2232 
2233 	bbt = ztest_bt_bonus(db);
2234 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2235 	gen = bbt->bt_gen;
2236 	crtxg = bbt->bt_crtxg;
2237 	lrtxg = lr->lr_common.lrc_txg;
2238 
2239 	tx = dmu_tx_create(os);
2240 
2241 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2242 
2243 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2244 	    P2PHASE(offset, length) == 0)
2245 		abuf = dmu_request_arcbuf(db, length);
2246 
2247 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2248 	if (txg == 0) {
2249 		if (abuf != NULL)
2250 			dmu_return_arcbuf(abuf);
2251 		dmu_buf_rele(db, FTAG);
2252 		ztest_range_unlock(rl);
2253 		ztest_object_unlock(zd, lr->lr_foid);
2254 		return (ENOSPC);
2255 	}
2256 
2257 	if (bt != NULL) {
2258 		/*
2259 		 * Usually, verify the old data before writing new data --
2260 		 * but not always, because we also want to verify correct
2261 		 * behavior when the data was not recently read into cache.
2262 		 */
2263 		ASSERT(doi.doi_data_block_size);
2264 		ASSERT0(offset % doi.doi_data_block_size);
2265 		if (ztest_random(4) != 0) {
2266 			int prefetch = ztest_random(2) ?
2267 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2268 
2269 			/*
2270 			 * We will randomly set when to do O_DIRECT on a read.
2271 			 */
2272 			if (ztest_random(4) == 0)
2273 				prefetch |= DMU_DIRECTIO;
2274 
2275 			ztest_block_tag_t rbt;
2276 
2277 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2278 			    sizeof (rbt), &rbt, prefetch) == 0);
2279 			if (rbt.bt_magic == BT_MAGIC) {
2280 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2281 				    offset, gen, txg, crtxg);
2282 			}
2283 		}
2284 
2285 		/*
2286 		 * Writes can appear to be newer than the bonus buffer because
2287 		 * the ztest_get_data() callback does a dmu_read() of the
2288 		 * open-context data, which may be different than the data
2289 		 * as it was when the write was generated.
2290 		 */
2291 		if (zd->zd_zilog->zl_replay) {
2292 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2293 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2294 			    bt->bt_crtxg);
2295 		}
2296 
2297 		/*
2298 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2299 		 * so that all of the usual ASSERTs will work.
2300 		 */
2301 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2302 		    crtxg);
2303 	}
2304 
2305 	if (abuf == NULL) {
2306 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2307 	} else {
2308 		memcpy(abuf->b_data, data, length);
2309 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2310 	}
2311 
2312 	(void) ztest_log_write(zd, tx, lr);
2313 
2314 	dmu_buf_rele(db, FTAG);
2315 
2316 	dmu_tx_commit(tx);
2317 
2318 	ztest_range_unlock(rl);
2319 	ztest_object_unlock(zd, lr->lr_foid);
2320 
2321 	return (0);
2322 }
2323 
2324 static int
2325 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2326 {
2327 	ztest_ds_t *zd = arg1;
2328 	lr_truncate_t *lr = arg2;
2329 	objset_t *os = zd->zd_os;
2330 	dmu_tx_t *tx;
2331 	uint64_t txg;
2332 	rl_t *rl;
2333 
2334 	if (byteswap)
2335 		byteswap_uint64_array(lr, sizeof (*lr));
2336 
2337 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2338 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2339 	    ZTRL_WRITER);
2340 
2341 	tx = dmu_tx_create(os);
2342 
2343 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2344 
2345 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2346 	if (txg == 0) {
2347 		ztest_range_unlock(rl);
2348 		ztest_object_unlock(zd, lr->lr_foid);
2349 		return (ENOSPC);
2350 	}
2351 
2352 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2353 	    lr->lr_length, tx));
2354 
2355 	(void) ztest_log_truncate(zd, tx, lr);
2356 
2357 	dmu_tx_commit(tx);
2358 
2359 	ztest_range_unlock(rl);
2360 	ztest_object_unlock(zd, lr->lr_foid);
2361 
2362 	return (0);
2363 }
2364 
2365 static int
2366 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2367 {
2368 	ztest_ds_t *zd = arg1;
2369 	lr_setattr_t *lr = arg2;
2370 	objset_t *os = zd->zd_os;
2371 	dmu_tx_t *tx;
2372 	dmu_buf_t *db;
2373 	ztest_block_tag_t *bbt;
2374 	uint64_t txg, lrtxg, crtxg, dnodesize;
2375 
2376 	if (byteswap)
2377 		byteswap_uint64_array(lr, sizeof (*lr));
2378 
2379 	ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2380 
2381 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2382 
2383 	tx = dmu_tx_create(os);
2384 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2385 
2386 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2387 	if (txg == 0) {
2388 		dmu_buf_rele(db, FTAG);
2389 		ztest_object_unlock(zd, lr->lr_foid);
2390 		return (ENOSPC);
2391 	}
2392 
2393 	bbt = ztest_bt_bonus(db);
2394 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2395 	crtxg = bbt->bt_crtxg;
2396 	lrtxg = lr->lr_common.lrc_txg;
2397 	dnodesize = bbt->bt_dnodesize;
2398 
2399 	if (zd->zd_zilog->zl_replay) {
2400 		ASSERT3U(lr->lr_size, !=, 0);
2401 		ASSERT3U(lr->lr_mode, !=, 0);
2402 		ASSERT3U(lrtxg, !=, 0);
2403 	} else {
2404 		/*
2405 		 * Randomly change the size and increment the generation.
2406 		 */
2407 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2408 		    sizeof (*bbt);
2409 		lr->lr_mode = bbt->bt_gen + 1;
2410 		ASSERT0(lrtxg);
2411 	}
2412 
2413 	/*
2414 	 * Verify that the current bonus buffer is not newer than our txg.
2415 	 */
2416 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2417 	    MAX(txg, lrtxg), crtxg);
2418 
2419 	dmu_buf_will_dirty(db, tx);
2420 
2421 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2422 	ASSERT3U(lr->lr_size, <=, db->db_size);
2423 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2424 	bbt = ztest_bt_bonus(db);
2425 
2426 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2427 	    txg, crtxg);
2428 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2429 	dmu_buf_rele(db, FTAG);
2430 
2431 	(void) ztest_log_setattr(zd, tx, lr);
2432 
2433 	dmu_tx_commit(tx);
2434 
2435 	ztest_object_unlock(zd, lr->lr_foid);
2436 
2437 	return (0);
2438 }
2439 
2440 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2441 	NULL,			/* 0 no such transaction type */
2442 	ztest_replay_create,	/* TX_CREATE */
2443 	NULL,			/* TX_MKDIR */
2444 	NULL,			/* TX_MKXATTR */
2445 	NULL,			/* TX_SYMLINK */
2446 	ztest_replay_remove,	/* TX_REMOVE */
2447 	NULL,			/* TX_RMDIR */
2448 	NULL,			/* TX_LINK */
2449 	NULL,			/* TX_RENAME */
2450 	ztest_replay_write,	/* TX_WRITE */
2451 	ztest_replay_truncate,	/* TX_TRUNCATE */
2452 	ztest_replay_setattr,	/* TX_SETATTR */
2453 	NULL,			/* TX_ACL */
2454 	NULL,			/* TX_CREATE_ACL */
2455 	NULL,			/* TX_CREATE_ATTR */
2456 	NULL,			/* TX_CREATE_ACL_ATTR */
2457 	NULL,			/* TX_MKDIR_ACL */
2458 	NULL,			/* TX_MKDIR_ATTR */
2459 	NULL,			/* TX_MKDIR_ACL_ATTR */
2460 	NULL,			/* TX_WRITE2 */
2461 	NULL,			/* TX_SETSAXATTR */
2462 	NULL,			/* TX_RENAME_EXCHANGE */
2463 	NULL,			/* TX_RENAME_WHITEOUT */
2464 };
2465 
2466 /*
2467  * ZIL get_data callbacks
2468  */
2469 
2470 static void
2471 ztest_get_done(zgd_t *zgd, int error)
2472 {
2473 	(void) error;
2474 	ztest_ds_t *zd = zgd->zgd_private;
2475 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2476 
2477 	if (zgd->zgd_db)
2478 		dmu_buf_rele(zgd->zgd_db, zgd);
2479 
2480 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2481 	ztest_object_unlock(zd, object);
2482 
2483 	umem_free(zgd, sizeof (*zgd));
2484 }
2485 
2486 static int
2487 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2488     struct lwb *lwb, zio_t *zio)
2489 {
2490 	(void) arg2;
2491 	ztest_ds_t *zd = arg;
2492 	objset_t *os = zd->zd_os;
2493 	uint64_t object = lr->lr_foid;
2494 	uint64_t offset = lr->lr_offset;
2495 	uint64_t size = lr->lr_length;
2496 	uint64_t txg = lr->lr_common.lrc_txg;
2497 	uint64_t crtxg;
2498 	dmu_object_info_t doi;
2499 	dmu_buf_t *db;
2500 	zgd_t *zgd;
2501 	int error;
2502 
2503 	ASSERT3P(lwb, !=, NULL);
2504 	ASSERT3U(size, !=, 0);
2505 
2506 	ztest_object_lock(zd, object, ZTRL_READER);
2507 	error = dmu_bonus_hold(os, object, FTAG, &db);
2508 	if (error) {
2509 		ztest_object_unlock(zd, object);
2510 		return (error);
2511 	}
2512 
2513 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2514 
2515 	if (crtxg == 0 || crtxg > txg) {
2516 		dmu_buf_rele(db, FTAG);
2517 		ztest_object_unlock(zd, object);
2518 		return (ENOENT);
2519 	}
2520 
2521 	dmu_object_info_from_db(db, &doi);
2522 	dmu_buf_rele(db, FTAG);
2523 	db = NULL;
2524 
2525 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2526 	zgd->zgd_lwb = lwb;
2527 	zgd->zgd_private = zd;
2528 
2529 	if (buf != NULL) {	/* immediate write */
2530 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2531 		    object, offset, size, ZTRL_READER);
2532 
2533 		error = dmu_read(os, object, offset, size, buf,
2534 		    DMU_READ_NO_PREFETCH);
2535 		ASSERT0(error);
2536 	} else {
2537 		ASSERT3P(zio, !=, NULL);
2538 		size = doi.doi_data_block_size;
2539 		if (ISP2(size)) {
2540 			offset = P2ALIGN_TYPED(offset, size, uint64_t);
2541 		} else {
2542 			ASSERT3U(offset, <, size);
2543 			offset = 0;
2544 		}
2545 
2546 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2547 		    object, offset, size, ZTRL_READER);
2548 
2549 		error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2550 
2551 		if (error == 0) {
2552 			blkptr_t *bp = &lr->lr_blkptr;
2553 
2554 			zgd->zgd_db = db;
2555 			zgd->zgd_bp = bp;
2556 
2557 			ASSERT3U(db->db_offset, ==, offset);
2558 			ASSERT3U(db->db_size, ==, size);
2559 
2560 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2561 			    ztest_get_done, zgd);
2562 
2563 			if (error == 0)
2564 				return (0);
2565 		}
2566 	}
2567 
2568 	ztest_get_done(zgd, error);
2569 
2570 	return (error);
2571 }
2572 
2573 static void *
2574 ztest_lr_alloc(size_t lrsize, char *name)
2575 {
2576 	char *lr;
2577 	size_t namesize = name ? strlen(name) + 1 : 0;
2578 
2579 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2580 
2581 	if (name)
2582 		memcpy(lr + lrsize, name, namesize);
2583 
2584 	return (lr);
2585 }
2586 
2587 static void
2588 ztest_lr_free(void *lr, size_t lrsize, char *name)
2589 {
2590 	size_t namesize = name ? strlen(name) + 1 : 0;
2591 
2592 	umem_free(lr, lrsize + namesize);
2593 }
2594 
2595 /*
2596  * Lookup a bunch of objects.  Returns the number of objects not found.
2597  */
2598 static int
2599 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2600 {
2601 	int missing = 0;
2602 	int error;
2603 	int i;
2604 
2605 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2606 
2607 	for (i = 0; i < count; i++, od++) {
2608 		od->od_object = 0;
2609 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2610 		    sizeof (uint64_t), 1, &od->od_object);
2611 		if (error) {
2612 			ASSERT3S(error, ==, ENOENT);
2613 			ASSERT0(od->od_object);
2614 			missing++;
2615 		} else {
2616 			dmu_buf_t *db;
2617 			ztest_block_tag_t *bbt;
2618 			dmu_object_info_t doi;
2619 
2620 			ASSERT3U(od->od_object, !=, 0);
2621 			ASSERT0(missing);	/* there should be no gaps */
2622 
2623 			ztest_object_lock(zd, od->od_object, ZTRL_READER);
2624 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2625 			    FTAG, &db));
2626 			dmu_object_info_from_db(db, &doi);
2627 			bbt = ztest_bt_bonus(db);
2628 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2629 			od->od_type = doi.doi_type;
2630 			od->od_blocksize = doi.doi_data_block_size;
2631 			od->od_gen = bbt->bt_gen;
2632 			dmu_buf_rele(db, FTAG);
2633 			ztest_object_unlock(zd, od->od_object);
2634 		}
2635 	}
2636 
2637 	return (missing);
2638 }
2639 
2640 static int
2641 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2642 {
2643 	int missing = 0;
2644 	int i;
2645 
2646 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2647 
2648 	for (i = 0; i < count; i++, od++) {
2649 		if (missing) {
2650 			od->od_object = 0;
2651 			missing++;
2652 			continue;
2653 		}
2654 
2655 		lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2656 		_lr_create_t *lr = &lrc->lr_create;
2657 
2658 		lr->lr_doid = od->od_dir;
2659 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2660 		lr->lrz_type = od->od_crtype;
2661 		lr->lrz_blocksize = od->od_crblocksize;
2662 		lr->lrz_ibshift = ztest_random_ibshift();
2663 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2664 		lr->lrz_dnodesize = od->od_crdnodesize;
2665 		lr->lr_gen = od->od_crgen;
2666 		lr->lr_crtime[0] = time(NULL);
2667 
2668 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2669 			ASSERT0(missing);
2670 			od->od_object = 0;
2671 			missing++;
2672 		} else {
2673 			od->od_object = lr->lr_foid;
2674 			od->od_type = od->od_crtype;
2675 			od->od_blocksize = od->od_crblocksize;
2676 			od->od_gen = od->od_crgen;
2677 			ASSERT3U(od->od_object, !=, 0);
2678 		}
2679 
2680 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2681 	}
2682 
2683 	return (missing);
2684 }
2685 
2686 static int
2687 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2688 {
2689 	int missing = 0;
2690 	int error;
2691 	int i;
2692 
2693 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2694 
2695 	od += count - 1;
2696 
2697 	for (i = count - 1; i >= 0; i--, od--) {
2698 		if (missing) {
2699 			missing++;
2700 			continue;
2701 		}
2702 
2703 		/*
2704 		 * No object was found.
2705 		 */
2706 		if (od->od_object == 0)
2707 			continue;
2708 
2709 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2710 
2711 		lr->lr_doid = od->od_dir;
2712 
2713 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2714 			ASSERT3U(error, ==, ENOSPC);
2715 			missing++;
2716 		} else {
2717 			od->od_object = 0;
2718 		}
2719 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2720 	}
2721 
2722 	return (missing);
2723 }
2724 
2725 static int
2726 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2727     const void *data)
2728 {
2729 	lr_write_t *lr;
2730 	int error;
2731 
2732 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2733 
2734 	lr->lr_foid = object;
2735 	lr->lr_offset = offset;
2736 	lr->lr_length = size;
2737 	lr->lr_blkoff = 0;
2738 	BP_ZERO(&lr->lr_blkptr);
2739 
2740 	memcpy(&lr->lr_data[0], data, size);
2741 
2742 	error = ztest_replay_write(zd, lr, B_FALSE);
2743 
2744 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2745 
2746 	return (error);
2747 }
2748 
2749 static int
2750 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2751 {
2752 	lr_truncate_t *lr;
2753 	int error;
2754 
2755 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2756 
2757 	lr->lr_foid = object;
2758 	lr->lr_offset = offset;
2759 	lr->lr_length = size;
2760 
2761 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2762 
2763 	ztest_lr_free(lr, sizeof (*lr), NULL);
2764 
2765 	return (error);
2766 }
2767 
2768 static int
2769 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2770 {
2771 	lr_setattr_t *lr;
2772 	int error;
2773 
2774 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2775 
2776 	lr->lr_foid = object;
2777 	lr->lr_size = 0;
2778 	lr->lr_mode = 0;
2779 
2780 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2781 
2782 	ztest_lr_free(lr, sizeof (*lr), NULL);
2783 
2784 	return (error);
2785 }
2786 
2787 static void
2788 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2789 {
2790 	objset_t *os = zd->zd_os;
2791 	dmu_tx_t *tx;
2792 	uint64_t txg;
2793 	rl_t *rl;
2794 
2795 	txg_wait_synced(dmu_objset_pool(os), 0);
2796 
2797 	ztest_object_lock(zd, object, ZTRL_READER);
2798 	rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2799 
2800 	tx = dmu_tx_create(os);
2801 
2802 	dmu_tx_hold_write(tx, object, offset, size);
2803 
2804 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2805 
2806 	if (txg != 0) {
2807 		dmu_prealloc(os, object, offset, size, tx);
2808 		dmu_tx_commit(tx);
2809 		txg_wait_synced(dmu_objset_pool(os), txg);
2810 	} else {
2811 		(void) dmu_free_long_range(os, object, offset, size);
2812 	}
2813 
2814 	ztest_range_unlock(rl);
2815 	ztest_object_unlock(zd, object);
2816 }
2817 
2818 static void
2819 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2820 {
2821 	int err;
2822 	ztest_block_tag_t wbt;
2823 	dmu_object_info_t doi;
2824 	enum ztest_io_type io_type;
2825 	uint64_t blocksize;
2826 	void *data;
2827 	uint32_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2828 
2829 	/*
2830 	 * We will randomly set when to do O_DIRECT on a read.
2831 	 */
2832 	if (ztest_random(4) == 0)
2833 		dmu_read_flags |= DMU_DIRECTIO;
2834 
2835 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2836 	blocksize = doi.doi_data_block_size;
2837 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2838 
2839 	/*
2840 	 * Pick an i/o type at random, biased toward writing block tags.
2841 	 */
2842 	io_type = ztest_random(ZTEST_IO_TYPES);
2843 	if (ztest_random(2) == 0)
2844 		io_type = ZTEST_IO_WRITE_TAG;
2845 
2846 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2847 
2848 	switch (io_type) {
2849 
2850 	case ZTEST_IO_WRITE_TAG:
2851 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2852 		    offset, 0, 0, 0);
2853 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2854 		break;
2855 
2856 	case ZTEST_IO_WRITE_PATTERN:
2857 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2858 		if (ztest_random(2) == 0) {
2859 			/*
2860 			 * Induce fletcher2 collisions to ensure that
2861 			 * zio_ddt_collision() detects and resolves them
2862 			 * when using fletcher2-verify for deduplication.
2863 			 */
2864 			((uint64_t *)data)[0] ^= 1ULL << 63;
2865 			((uint64_t *)data)[4] ^= 1ULL << 63;
2866 		}
2867 		(void) ztest_write(zd, object, offset, blocksize, data);
2868 		break;
2869 
2870 	case ZTEST_IO_WRITE_ZEROES:
2871 		memset(data, 0, blocksize);
2872 		(void) ztest_write(zd, object, offset, blocksize, data);
2873 		break;
2874 
2875 	case ZTEST_IO_TRUNCATE:
2876 		(void) ztest_truncate(zd, object, offset, blocksize);
2877 		break;
2878 
2879 	case ZTEST_IO_SETATTR:
2880 		(void) ztest_setattr(zd, object);
2881 		break;
2882 	default:
2883 		break;
2884 
2885 	case ZTEST_IO_REWRITE:
2886 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2887 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2888 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2889 		    B_FALSE);
2890 		ASSERT(err == 0 || err == ENOSPC);
2891 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2892 		    ZFS_PROP_COMPRESSION,
2893 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2894 		    B_FALSE);
2895 		ASSERT(err == 0 || err == ENOSPC);
2896 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2897 
2898 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2899 		    dmu_read_flags));
2900 
2901 		(void) ztest_write(zd, object, offset, blocksize, data);
2902 		break;
2903 	}
2904 
2905 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2906 
2907 	umem_free(data, blocksize);
2908 }
2909 
2910 /*
2911  * Initialize an object description template.
2912  */
2913 static void
2914 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2915     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2916     uint64_t gen)
2917 {
2918 	od->od_dir = ZTEST_DIROBJ;
2919 	od->od_object = 0;
2920 
2921 	od->od_crtype = type;
2922 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2923 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2924 	od->od_crgen = gen;
2925 
2926 	od->od_type = DMU_OT_NONE;
2927 	od->od_blocksize = 0;
2928 	od->od_gen = 0;
2929 
2930 	(void) snprintf(od->od_name, sizeof (od->od_name),
2931 	    "%s(%"PRId64")[%"PRIu64"]",
2932 	    tag, id, index);
2933 }
2934 
2935 /*
2936  * Lookup or create the objects for a test using the od template.
2937  * If the objects do not all exist, or if 'remove' is specified,
2938  * remove any existing objects and create new ones.  Otherwise,
2939  * use the existing objects.
2940  */
2941 static int
2942 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2943 {
2944 	int count = size / sizeof (*od);
2945 	int rv = 0;
2946 
2947 	mutex_enter(&zd->zd_dirobj_lock);
2948 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2949 	    (ztest_remove(zd, od, count) != 0 ||
2950 	    ztest_create(zd, od, count) != 0))
2951 		rv = -1;
2952 	zd->zd_od = od;
2953 	mutex_exit(&zd->zd_dirobj_lock);
2954 
2955 	return (rv);
2956 }
2957 
2958 void
2959 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2960 {
2961 	(void) id;
2962 	zilog_t *zilog = zd->zd_zilog;
2963 
2964 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2965 
2966 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2967 
2968 	/*
2969 	 * Remember the committed values in zd, which is in parent/child
2970 	 * shared memory.  If we die, the next iteration of ztest_run()
2971 	 * will verify that the log really does contain this record.
2972 	 */
2973 	mutex_enter(&zilog->zl_lock);
2974 	ASSERT3P(zd->zd_shared, !=, NULL);
2975 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2976 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2977 	mutex_exit(&zilog->zl_lock);
2978 
2979 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2980 }
2981 
2982 /*
2983  * This function is designed to simulate the operations that occur during a
2984  * mount/unmount operation.  We hold the dataset across these operations in an
2985  * attempt to expose any implicit assumptions about ZIL management.
2986  */
2987 void
2988 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2989 {
2990 	(void) id;
2991 	objset_t *os = zd->zd_os;
2992 
2993 	/*
2994 	 * We hold the ztest_vdev_lock so we don't cause problems with
2995 	 * other threads that wish to remove a log device, such as
2996 	 * ztest_device_removal().
2997 	 */
2998 	mutex_enter(&ztest_vdev_lock);
2999 
3000 	/*
3001 	 * We grab the zd_dirobj_lock to ensure that no other thread is
3002 	 * updating the zil (i.e. adding in-memory log records) and the
3003 	 * zd_zilog_lock to block any I/O.
3004 	 */
3005 	mutex_enter(&zd->zd_dirobj_lock);
3006 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3007 
3008 	/* zfsvfs_teardown() */
3009 	zil_close(zd->zd_zilog);
3010 
3011 	/* zfsvfs_setup() */
3012 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3013 	zil_replay(os, zd, ztest_replay_vector);
3014 
3015 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3016 	mutex_exit(&zd->zd_dirobj_lock);
3017 	mutex_exit(&ztest_vdev_lock);
3018 }
3019 
3020 /*
3021  * Verify that we can't destroy an active pool, create an existing pool,
3022  * or create a pool with a bad vdev spec.
3023  */
3024 void
3025 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3026 {
3027 	(void) zd, (void) id;
3028 	ztest_shared_opts_t *zo = &ztest_opts;
3029 	spa_t *spa;
3030 	nvlist_t *nvroot;
3031 
3032 	if (zo->zo_mmp_test)
3033 		return;
3034 
3035 	/*
3036 	 * Attempt to create using a bad file.
3037 	 */
3038 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3039 	VERIFY3U(ENOENT, ==,
3040 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3041 	fnvlist_free(nvroot);
3042 
3043 	/*
3044 	 * Attempt to create using a bad mirror.
3045 	 */
3046 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3047 	VERIFY3U(ENOENT, ==,
3048 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3049 	fnvlist_free(nvroot);
3050 
3051 	/*
3052 	 * Attempt to create an existing pool.  It shouldn't matter
3053 	 * what's in the nvroot; we should fail with EEXIST.
3054 	 */
3055 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
3056 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3057 	VERIFY3U(EEXIST, ==,
3058 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3059 	fnvlist_free(nvroot);
3060 
3061 	/*
3062 	 * We open a reference to the spa and then we try to export it
3063 	 * expecting one of the following errors:
3064 	 *
3065 	 * EBUSY
3066 	 *	Because of the reference we just opened.
3067 	 *
3068 	 * ZFS_ERR_EXPORT_IN_PROGRESS
3069 	 *	For the case that there is another ztest thread doing
3070 	 *	an export concurrently.
3071 	 */
3072 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3073 	int error = spa_destroy(zo->zo_pool);
3074 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3075 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3076 		    spa->spa_name, error);
3077 	}
3078 	spa_close(spa, FTAG);
3079 
3080 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3081 }
3082 
3083 /*
3084  * Start and then stop the MMP threads to ensure the startup and shutdown code
3085  * works properly.  Actual protection and property-related code tested via ZTS.
3086  */
3087 void
3088 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3089 {
3090 	(void) zd, (void) id;
3091 	ztest_shared_opts_t *zo = &ztest_opts;
3092 	spa_t *spa = ztest_spa;
3093 
3094 	if (zo->zo_mmp_test)
3095 		return;
3096 
3097 	/*
3098 	 * Since enabling MMP involves setting a property, it could not be done
3099 	 * while the pool is suspended.
3100 	 */
3101 	if (spa_suspended(spa))
3102 		return;
3103 
3104 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3105 	mutex_enter(&spa->spa_props_lock);
3106 
3107 	zfs_multihost_fail_intervals = 0;
3108 
3109 	if (!spa_multihost(spa)) {
3110 		spa->spa_multihost = B_TRUE;
3111 		mmp_thread_start(spa);
3112 	}
3113 
3114 	mutex_exit(&spa->spa_props_lock);
3115 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3116 
3117 	txg_wait_synced(spa_get_dsl(spa), 0);
3118 	mmp_signal_all_threads();
3119 	txg_wait_synced(spa_get_dsl(spa), 0);
3120 
3121 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3122 	mutex_enter(&spa->spa_props_lock);
3123 
3124 	if (spa_multihost(spa)) {
3125 		mmp_thread_stop(spa);
3126 		spa->spa_multihost = B_FALSE;
3127 	}
3128 
3129 	mutex_exit(&spa->spa_props_lock);
3130 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3131 }
3132 
3133 static int
3134 ztest_get_raidz_children(spa_t *spa)
3135 {
3136 	(void) spa;
3137 	vdev_t *raidvd;
3138 
3139 	ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3140 
3141 	if (ztest_opts.zo_raid_do_expand) {
3142 		raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3143 
3144 		ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3145 
3146 		return (raidvd->vdev_children);
3147 	}
3148 
3149 	return (ztest_opts.zo_raid_children);
3150 }
3151 
3152 void
3153 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3154 {
3155 	(void) zd, (void) id;
3156 	spa_t *spa;
3157 	uint64_t initial_version = SPA_VERSION_INITIAL;
3158 	uint64_t raidz_children, version, newversion;
3159 	nvlist_t *nvroot, *props;
3160 	char *name;
3161 
3162 	if (ztest_opts.zo_mmp_test)
3163 		return;
3164 
3165 	/* dRAID added after feature flags, skip upgrade test. */
3166 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3167 		return;
3168 
3169 	mutex_enter(&ztest_vdev_lock);
3170 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3171 
3172 	/*
3173 	 * Clean up from previous runs.
3174 	 */
3175 	(void) spa_destroy(name);
3176 
3177 	raidz_children = ztest_get_raidz_children(ztest_spa);
3178 
3179 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3180 	    NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3181 
3182 	/*
3183 	 * If we're configuring a RAIDZ device then make sure that the
3184 	 * initial version is capable of supporting that feature.
3185 	 */
3186 	switch (ztest_opts.zo_raid_parity) {
3187 	case 0:
3188 	case 1:
3189 		initial_version = SPA_VERSION_INITIAL;
3190 		break;
3191 	case 2:
3192 		initial_version = SPA_VERSION_RAIDZ2;
3193 		break;
3194 	case 3:
3195 		initial_version = SPA_VERSION_RAIDZ3;
3196 		break;
3197 	}
3198 
3199 	/*
3200 	 * Create a pool with a spa version that can be upgraded. Pick
3201 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3202 	 */
3203 	do {
3204 		version = ztest_random_spa_version(initial_version);
3205 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3206 
3207 	props = fnvlist_alloc();
3208 	fnvlist_add_uint64(props,
3209 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3210 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3211 	fnvlist_free(nvroot);
3212 	fnvlist_free(props);
3213 
3214 	VERIFY0(spa_open(name, &spa, FTAG));
3215 	VERIFY3U(spa_version(spa), ==, version);
3216 	newversion = ztest_random_spa_version(version + 1);
3217 
3218 	if (ztest_opts.zo_verbose >= 4) {
3219 		(void) printf("upgrading spa version from "
3220 		    "%"PRIu64" to %"PRIu64"\n",
3221 		    version, newversion);
3222 	}
3223 
3224 	spa_upgrade(spa, newversion);
3225 	VERIFY3U(spa_version(spa), >, version);
3226 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3227 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3228 	spa_close(spa, FTAG);
3229 
3230 	kmem_strfree(name);
3231 	mutex_exit(&ztest_vdev_lock);
3232 }
3233 
3234 static void
3235 ztest_spa_checkpoint(spa_t *spa)
3236 {
3237 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3238 
3239 	int error = spa_checkpoint(spa->spa_name);
3240 
3241 	switch (error) {
3242 	case 0:
3243 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3244 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3245 	case ZFS_ERR_CHECKPOINT_EXISTS:
3246 	case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3247 		break;
3248 	case ENOSPC:
3249 		ztest_record_enospc(FTAG);
3250 		break;
3251 	default:
3252 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3253 	}
3254 }
3255 
3256 static void
3257 ztest_spa_discard_checkpoint(spa_t *spa)
3258 {
3259 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3260 
3261 	int error = spa_checkpoint_discard(spa->spa_name);
3262 
3263 	switch (error) {
3264 	case 0:
3265 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3266 	case ZFS_ERR_NO_CHECKPOINT:
3267 		break;
3268 	default:
3269 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3270 		    spa->spa_name, error);
3271 	}
3272 
3273 }
3274 
3275 void
3276 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3277 {
3278 	(void) zd, (void) id;
3279 	spa_t *spa = ztest_spa;
3280 
3281 	mutex_enter(&ztest_checkpoint_lock);
3282 	if (ztest_random(2) == 0) {
3283 		ztest_spa_checkpoint(spa);
3284 	} else {
3285 		ztest_spa_discard_checkpoint(spa);
3286 	}
3287 	mutex_exit(&ztest_checkpoint_lock);
3288 }
3289 
3290 
3291 static vdev_t *
3292 vdev_lookup_by_path(vdev_t *vd, const char *path)
3293 {
3294 	vdev_t *mvd;
3295 	int c;
3296 
3297 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3298 		return (vd);
3299 
3300 	for (c = 0; c < vd->vdev_children; c++)
3301 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3302 		    NULL)
3303 			return (mvd);
3304 
3305 	return (NULL);
3306 }
3307 
3308 static int
3309 spa_num_top_vdevs(spa_t *spa)
3310 {
3311 	vdev_t *rvd = spa->spa_root_vdev;
3312 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3313 	return (rvd->vdev_children);
3314 }
3315 
3316 /*
3317  * Verify that vdev_add() works as expected.
3318  */
3319 void
3320 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3321 {
3322 	(void) zd, (void) id;
3323 	ztest_shared_t *zs = ztest_shared;
3324 	spa_t *spa = ztest_spa;
3325 	uint64_t leaves;
3326 	uint64_t guid;
3327 	uint64_t raidz_children;
3328 
3329 	nvlist_t *nvroot;
3330 	int error;
3331 
3332 	if (ztest_opts.zo_mmp_test)
3333 		return;
3334 
3335 	mutex_enter(&ztest_vdev_lock);
3336 	raidz_children = ztest_get_raidz_children(spa);
3337 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3338 
3339 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3340 
3341 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3342 
3343 	/*
3344 	 * If we have slogs then remove them 1/4 of the time.
3345 	 */
3346 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3347 		metaslab_group_t *mg;
3348 
3349 		/*
3350 		 * find the first real slog in log allocation class
3351 		 */
3352 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3353 		while (!mg->mg_vd->vdev_islog)
3354 			mg = mg->mg_next;
3355 
3356 		guid = mg->mg_vd->vdev_guid;
3357 
3358 		spa_config_exit(spa, SCL_VDEV, FTAG);
3359 
3360 		/*
3361 		 * We have to grab the zs_name_lock as writer to
3362 		 * prevent a race between removing a slog (dmu_objset_find)
3363 		 * and destroying a dataset. Removing the slog will
3364 		 * grab a reference on the dataset which may cause
3365 		 * dsl_destroy_head() to fail with EBUSY thus
3366 		 * leaving the dataset in an inconsistent state.
3367 		 */
3368 		pthread_rwlock_wrlock(&ztest_name_lock);
3369 		error = spa_vdev_remove(spa, guid, B_FALSE);
3370 		pthread_rwlock_unlock(&ztest_name_lock);
3371 
3372 		switch (error) {
3373 		case 0:
3374 		case EEXIST:	/* Generic zil_reset() error */
3375 		case EBUSY:	/* Replay required */
3376 		case EACCES:	/* Crypto key not loaded */
3377 		case ZFS_ERR_CHECKPOINT_EXISTS:
3378 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3379 			break;
3380 		default:
3381 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3382 		}
3383 	} else {
3384 		spa_config_exit(spa, SCL_VDEV, FTAG);
3385 
3386 		/*
3387 		 * Make 1/4 of the devices be log devices
3388 		 */
3389 		nvroot = make_vdev_root(NULL, NULL, NULL,
3390 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3391 		    "log" : NULL, raidz_children, zs->zs_mirrors,
3392 		    1);
3393 
3394 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3395 		fnvlist_free(nvroot);
3396 
3397 		switch (error) {
3398 		case 0:
3399 			break;
3400 		case ENOSPC:
3401 			ztest_record_enospc("spa_vdev_add");
3402 			break;
3403 		default:
3404 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3405 		}
3406 	}
3407 
3408 	mutex_exit(&ztest_vdev_lock);
3409 }
3410 
3411 void
3412 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3413 {
3414 	(void) zd, (void) id;
3415 	ztest_shared_t *zs = ztest_shared;
3416 	spa_t *spa = ztest_spa;
3417 	uint64_t leaves;
3418 	nvlist_t *nvroot;
3419 	uint64_t raidz_children;
3420 	const char *class = (ztest_random(2) == 0) ?
3421 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3422 	int error;
3423 
3424 	/*
3425 	 * By default add a special vdev 50% of the time
3426 	 */
3427 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3428 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3429 	    ztest_random(2) == 0)) {
3430 		return;
3431 	}
3432 
3433 	mutex_enter(&ztest_vdev_lock);
3434 
3435 	/* Only test with mirrors */
3436 	if (zs->zs_mirrors < 2) {
3437 		mutex_exit(&ztest_vdev_lock);
3438 		return;
3439 	}
3440 
3441 	/* requires feature@allocation_classes */
3442 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3443 		mutex_exit(&ztest_vdev_lock);
3444 		return;
3445 	}
3446 
3447 	raidz_children = ztest_get_raidz_children(spa);
3448 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3449 
3450 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3451 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3452 	spa_config_exit(spa, SCL_VDEV, FTAG);
3453 
3454 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3455 	    class, raidz_children, zs->zs_mirrors, 1);
3456 
3457 	error = spa_vdev_add(spa, nvroot, B_FALSE);
3458 	fnvlist_free(nvroot);
3459 
3460 	if (error == ENOSPC)
3461 		ztest_record_enospc("spa_vdev_add");
3462 	else if (error != 0)
3463 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3464 
3465 	/*
3466 	 * 50% of the time allow small blocks in the special class
3467 	 */
3468 	if (error == 0 &&
3469 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3470 		if (ztest_opts.zo_verbose >= 3)
3471 			(void) printf("Enabling special VDEV small blocks\n");
3472 		error = ztest_dsl_prop_set_uint64(zd->zd_name,
3473 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3474 		ASSERT(error == 0 || error == ENOSPC);
3475 	}
3476 
3477 	mutex_exit(&ztest_vdev_lock);
3478 
3479 	if (ztest_opts.zo_verbose >= 3) {
3480 		metaslab_class_t *mc;
3481 
3482 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3483 			mc = spa_special_class(spa);
3484 		else
3485 			mc = spa_dedup_class(spa);
3486 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3487 		    class, (int)mc->mc_groups);
3488 	}
3489 }
3490 
3491 /*
3492  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3493  */
3494 void
3495 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3496 {
3497 	(void) zd, (void) id;
3498 	ztest_shared_t *zs = ztest_shared;
3499 	spa_t *spa = ztest_spa;
3500 	vdev_t *rvd = spa->spa_root_vdev;
3501 	spa_aux_vdev_t *sav;
3502 	const char *aux;
3503 	char *path;
3504 	uint64_t guid = 0;
3505 	int error, ignore_err = 0;
3506 
3507 	if (ztest_opts.zo_mmp_test)
3508 		return;
3509 
3510 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3511 
3512 	if (ztest_random(2) == 0) {
3513 		sav = &spa->spa_spares;
3514 		aux = ZPOOL_CONFIG_SPARES;
3515 	} else {
3516 		sav = &spa->spa_l2cache;
3517 		aux = ZPOOL_CONFIG_L2CACHE;
3518 	}
3519 
3520 	mutex_enter(&ztest_vdev_lock);
3521 
3522 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3523 
3524 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3525 		/*
3526 		 * Pick a random device to remove.
3527 		 */
3528 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3529 
3530 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3531 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3532 			ignore_err = ENOTSUP;
3533 
3534 		guid = svd->vdev_guid;
3535 	} else {
3536 		/*
3537 		 * Find an unused device we can add.
3538 		 */
3539 		zs->zs_vdev_aux = 0;
3540 		for (;;) {
3541 			int c;
3542 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3543 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3544 			    zs->zs_vdev_aux);
3545 			for (c = 0; c < sav->sav_count; c++)
3546 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3547 				    path) == 0)
3548 					break;
3549 			if (c == sav->sav_count &&
3550 			    vdev_lookup_by_path(rvd, path) == NULL)
3551 				break;
3552 			zs->zs_vdev_aux++;
3553 		}
3554 	}
3555 
3556 	spa_config_exit(spa, SCL_VDEV, FTAG);
3557 
3558 	if (guid == 0) {
3559 		/*
3560 		 * Add a new device.
3561 		 */
3562 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3563 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3564 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3565 
3566 		switch (error) {
3567 		case 0:
3568 			break;
3569 		default:
3570 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3571 		}
3572 		fnvlist_free(nvroot);
3573 	} else {
3574 		/*
3575 		 * Remove an existing device.  Sometimes, dirty its
3576 		 * vdev state first to make sure we handle removal
3577 		 * of devices that have pending state changes.
3578 		 */
3579 		if (ztest_random(2) == 0)
3580 			(void) vdev_online(spa, guid, 0, NULL);
3581 
3582 		error = spa_vdev_remove(spa, guid, B_FALSE);
3583 
3584 		switch (error) {
3585 		case 0:
3586 		case EBUSY:
3587 		case ZFS_ERR_CHECKPOINT_EXISTS:
3588 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3589 			break;
3590 		default:
3591 			if (error != ignore_err)
3592 				fatal(B_FALSE,
3593 				    "spa_vdev_remove(%"PRIu64") = %d",
3594 				    guid, error);
3595 		}
3596 	}
3597 
3598 	mutex_exit(&ztest_vdev_lock);
3599 
3600 	umem_free(path, MAXPATHLEN);
3601 }
3602 
3603 /*
3604  * split a pool if it has mirror tlvdevs
3605  */
3606 void
3607 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3608 {
3609 	(void) zd, (void) id;
3610 	ztest_shared_t *zs = ztest_shared;
3611 	spa_t *spa = ztest_spa;
3612 	vdev_t *rvd = spa->spa_root_vdev;
3613 	nvlist_t *tree, **child, *config, *split, **schild;
3614 	uint_t c, children, schildren = 0, lastlogid = 0;
3615 	int error = 0;
3616 
3617 	if (ztest_opts.zo_mmp_test)
3618 		return;
3619 
3620 	mutex_enter(&ztest_vdev_lock);
3621 
3622 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3623 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3624 		mutex_exit(&ztest_vdev_lock);
3625 		return;
3626 	}
3627 
3628 	/* clean up the old pool, if any */
3629 	(void) spa_destroy("splitp");
3630 
3631 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3632 
3633 	/* generate a config from the existing config */
3634 	mutex_enter(&spa->spa_props_lock);
3635 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3636 	mutex_exit(&spa->spa_props_lock);
3637 
3638 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3639 	    &child, &children));
3640 
3641 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3642 	    UMEM_NOFAIL);
3643 	for (c = 0; c < children; c++) {
3644 		vdev_t *tvd = rvd->vdev_child[c];
3645 		nvlist_t **mchild;
3646 		uint_t mchildren;
3647 
3648 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3649 			schild[schildren] = fnvlist_alloc();
3650 			fnvlist_add_string(schild[schildren],
3651 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3652 			fnvlist_add_uint64(schild[schildren],
3653 			    ZPOOL_CONFIG_IS_HOLE, 1);
3654 			if (lastlogid == 0)
3655 				lastlogid = schildren;
3656 			++schildren;
3657 			continue;
3658 		}
3659 		lastlogid = 0;
3660 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3661 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3662 		schild[schildren++] = fnvlist_dup(mchild[0]);
3663 	}
3664 
3665 	/* OK, create a config that can be used to split */
3666 	split = fnvlist_alloc();
3667 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3668 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3669 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3670 
3671 	config = fnvlist_alloc();
3672 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3673 
3674 	for (c = 0; c < schildren; c++)
3675 		fnvlist_free(schild[c]);
3676 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3677 	fnvlist_free(split);
3678 
3679 	spa_config_exit(spa, SCL_VDEV, FTAG);
3680 
3681 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3682 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3683 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3684 
3685 	fnvlist_free(config);
3686 
3687 	if (error == 0) {
3688 		(void) printf("successful split - results:\n");
3689 		mutex_enter(&spa_namespace_lock);
3690 		show_pool_stats(spa);
3691 		show_pool_stats(spa_lookup("splitp"));
3692 		mutex_exit(&spa_namespace_lock);
3693 		++zs->zs_splits;
3694 		--zs->zs_mirrors;
3695 	}
3696 	mutex_exit(&ztest_vdev_lock);
3697 }
3698 
3699 /*
3700  * Verify that we can attach and detach devices.
3701  */
3702 void
3703 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3704 {
3705 	(void) zd, (void) id;
3706 	ztest_shared_t *zs = ztest_shared;
3707 	spa_t *spa = ztest_spa;
3708 	spa_aux_vdev_t *sav = &spa->spa_spares;
3709 	vdev_t *rvd = spa->spa_root_vdev;
3710 	vdev_t *oldvd, *newvd, *pvd;
3711 	nvlist_t *root;
3712 	uint64_t leaves;
3713 	uint64_t leaf, top;
3714 	uint64_t ashift = ztest_get_ashift();
3715 	uint64_t oldguid, pguid;
3716 	uint64_t oldsize, newsize;
3717 	uint64_t raidz_children;
3718 	char *oldpath, *newpath;
3719 	int replacing;
3720 	int oldvd_has_siblings = B_FALSE;
3721 	int newvd_is_spare = B_FALSE;
3722 	int newvd_is_dspare = B_FALSE;
3723 	int oldvd_is_log;
3724 	int oldvd_is_special;
3725 	int error, expected_error;
3726 
3727 	if (ztest_opts.zo_mmp_test)
3728 		return;
3729 
3730 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3731 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3732 
3733 	mutex_enter(&ztest_vdev_lock);
3734 	raidz_children = ztest_get_raidz_children(spa);
3735 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3736 
3737 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3738 
3739 	/*
3740 	 * If a vdev is in the process of being removed, its removal may
3741 	 * finish while we are in progress, leading to an unexpected error
3742 	 * value.  Don't bother trying to attach while we are in the middle
3743 	 * of removal.
3744 	 */
3745 	if (ztest_device_removal_active) {
3746 		spa_config_exit(spa, SCL_ALL, FTAG);
3747 		goto out;
3748 	}
3749 
3750 	/*
3751 	 * RAIDZ leaf VDEV mirrors are not currently supported while a
3752 	 * RAIDZ expansion is in progress.
3753 	 */
3754 	if (ztest_opts.zo_raid_do_expand) {
3755 		spa_config_exit(spa, SCL_ALL, FTAG);
3756 		goto out;
3757 	}
3758 
3759 	/*
3760 	 * Decide whether to do an attach or a replace.
3761 	 */
3762 	replacing = ztest_random(2);
3763 
3764 	/*
3765 	 * Pick a random top-level vdev.
3766 	 */
3767 	top = ztest_random_vdev_top(spa, B_TRUE);
3768 
3769 	/*
3770 	 * Pick a random leaf within it.
3771 	 */
3772 	leaf = ztest_random(leaves);
3773 
3774 	/*
3775 	 * Locate this vdev.
3776 	 */
3777 	oldvd = rvd->vdev_child[top];
3778 
3779 	/* pick a child from the mirror */
3780 	if (zs->zs_mirrors >= 1) {
3781 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3782 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3783 		oldvd = oldvd->vdev_child[leaf / raidz_children];
3784 	}
3785 
3786 	/* pick a child out of the raidz group */
3787 	if (ztest_opts.zo_raid_children > 1) {
3788 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3789 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3790 		else
3791 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3792 		oldvd = oldvd->vdev_child[leaf % raidz_children];
3793 	}
3794 
3795 	/*
3796 	 * If we're already doing an attach or replace, oldvd may be a
3797 	 * mirror vdev -- in which case, pick a random child.
3798 	 */
3799 	while (oldvd->vdev_children != 0) {
3800 		oldvd_has_siblings = B_TRUE;
3801 		ASSERT3U(oldvd->vdev_children, >=, 2);
3802 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3803 	}
3804 
3805 	oldguid = oldvd->vdev_guid;
3806 	oldsize = vdev_get_min_asize(oldvd);
3807 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3808 	oldvd_is_special =
3809 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3810 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3811 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3812 	pvd = oldvd->vdev_parent;
3813 	pguid = pvd->vdev_guid;
3814 
3815 	/*
3816 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3817 	 * to the detach the pool is scrubbed in order to prevent creating
3818 	 * unrepairable blocks as a result of the data corruption injection.
3819 	 */
3820 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3821 		spa_config_exit(spa, SCL_ALL, FTAG);
3822 
3823 		error = ztest_scrub_impl(spa);
3824 		if (error)
3825 			goto out;
3826 
3827 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3828 		if (error != 0 && error != ENODEV && error != EBUSY &&
3829 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3830 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3831 			fatal(B_FALSE, "detach (%s) returned %d",
3832 			    oldpath, error);
3833 		goto out;
3834 	}
3835 
3836 	/*
3837 	 * For the new vdev, choose with equal probability between the two
3838 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3839 	 */
3840 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3841 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3842 		newvd_is_spare = B_TRUE;
3843 
3844 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3845 			newvd_is_dspare = B_TRUE;
3846 
3847 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3848 	} else {
3849 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3850 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3851 		    top * leaves + leaf);
3852 		if (ztest_random(2) == 0)
3853 			newpath[strlen(newpath) - 1] = 'b';
3854 		newvd = vdev_lookup_by_path(rvd, newpath);
3855 	}
3856 
3857 	if (newvd) {
3858 		/*
3859 		 * Reopen to ensure the vdev's asize field isn't stale.
3860 		 */
3861 		vdev_reopen(newvd);
3862 		newsize = vdev_get_min_asize(newvd);
3863 	} else {
3864 		/*
3865 		 * Make newsize a little bigger or smaller than oldsize.
3866 		 * If it's smaller, the attach should fail.
3867 		 * If it's larger, and we're doing a replace,
3868 		 * we should get dynamic LUN growth when we're done.
3869 		 */
3870 		newsize = 10 * oldsize / (9 + ztest_random(3));
3871 	}
3872 
3873 	/*
3874 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3875 	 * unless it's a replace; in that case any non-replacing parent is OK.
3876 	 *
3877 	 * If newvd is already part of the pool, it should fail with EBUSY.
3878 	 *
3879 	 * If newvd is too small, it should fail with EOVERFLOW.
3880 	 *
3881 	 * If newvd is a distributed spare and it's being attached to a
3882 	 * dRAID which is not its parent it should fail with EINVAL.
3883 	 */
3884 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3885 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3886 	    pvd->vdev_ops == &vdev_replacing_ops ||
3887 	    pvd->vdev_ops == &vdev_spare_ops))
3888 		expected_error = ENOTSUP;
3889 	else if (newvd_is_spare &&
3890 	    (!replacing || oldvd_is_log || oldvd_is_special))
3891 		expected_error = ENOTSUP;
3892 	else if (newvd == oldvd)
3893 		expected_error = replacing ? 0 : EBUSY;
3894 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3895 		expected_error = EBUSY;
3896 	else if (!newvd_is_dspare && newsize < oldsize)
3897 		expected_error = EOVERFLOW;
3898 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3899 		expected_error = EDOM;
3900 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3901 		expected_error = EINVAL;
3902 	else
3903 		expected_error = 0;
3904 
3905 	spa_config_exit(spa, SCL_ALL, FTAG);
3906 
3907 	/*
3908 	 * Build the nvlist describing newpath.
3909 	 */
3910 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3911 	    ashift, NULL, 0, 0, 1);
3912 
3913 	/*
3914 	 * When supported select either a healing or sequential resilver.
3915 	 */
3916 	boolean_t rebuilding = B_FALSE;
3917 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3918 	    pvd->vdev_ops ==  &vdev_root_ops) {
3919 		rebuilding = !!ztest_random(2);
3920 	}
3921 
3922 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3923 
3924 	fnvlist_free(root);
3925 
3926 	/*
3927 	 * If our parent was the replacing vdev, but the replace completed,
3928 	 * then instead of failing with ENOTSUP we may either succeed,
3929 	 * fail with ENODEV, or fail with EOVERFLOW.
3930 	 */
3931 	if (expected_error == ENOTSUP &&
3932 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3933 		expected_error = error;
3934 
3935 	/*
3936 	 * If someone grew the LUN, the replacement may be too small.
3937 	 */
3938 	if (error == EOVERFLOW || error == EBUSY)
3939 		expected_error = error;
3940 
3941 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3942 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3943 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3944 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3945 		expected_error = error;
3946 
3947 	if (error != expected_error && expected_error != EBUSY) {
3948 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3949 		    "returned %d, expected %d",
3950 		    oldpath, oldsize, newpath,
3951 		    newsize, replacing, error, expected_error);
3952 	}
3953 out:
3954 	mutex_exit(&ztest_vdev_lock);
3955 
3956 	umem_free(oldpath, MAXPATHLEN);
3957 	umem_free(newpath, MAXPATHLEN);
3958 }
3959 
3960 static void
3961 raidz_scratch_verify(void)
3962 {
3963 	spa_t *spa;
3964 	uint64_t write_size, logical_size, offset;
3965 	raidz_reflow_scratch_state_t state;
3966 	vdev_raidz_expand_t *vre;
3967 	vdev_t *raidvd;
3968 
3969 	ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3970 
3971 	if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3972 		return;
3973 
3974 	kernel_init(SPA_MODE_READ);
3975 
3976 	mutex_enter(&spa_namespace_lock);
3977 	spa = spa_lookup(ztest_opts.zo_pool);
3978 	ASSERT(spa);
3979 	spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3980 	mutex_exit(&spa_namespace_lock);
3981 
3982 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3983 
3984 	ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3985 
3986 	mutex_enter(&ztest_vdev_lock);
3987 
3988 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3989 
3990 	vre = spa->spa_raidz_expand;
3991 	if (vre == NULL)
3992 		goto out;
3993 
3994 	raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3995 	offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3996 	state = RRSS_GET_STATE(&spa->spa_uberblock);
3997 	write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3998 	    uint64_t);
3999 	logical_size = write_size * raidvd->vdev_children;
4000 
4001 	switch (state) {
4002 		/*
4003 		 * Initial state of reflow process.  RAIDZ expansion was
4004 		 * requested by user, but scratch object was not created.
4005 		 */
4006 		case RRSS_SCRATCH_NOT_IN_USE:
4007 			ASSERT3U(offset, ==, 0);
4008 			break;
4009 
4010 		/*
4011 		 * Scratch object was synced and stored in boot area.
4012 		 */
4013 		case RRSS_SCRATCH_VALID:
4014 
4015 		/*
4016 		 * Scratch object was synced back to raidz start offset,
4017 		 * raidz is ready for sector by sector reflow process.
4018 		 */
4019 		case RRSS_SCRATCH_INVALID_SYNCED:
4020 
4021 		/*
4022 		 * Scratch object was synced back to raidz start offset
4023 		 * on zpool importing, raidz is ready for sector by sector
4024 		 * reflow process.
4025 		 */
4026 		case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4027 			ASSERT3U(offset, ==, logical_size);
4028 			break;
4029 
4030 		/*
4031 		 * Sector by sector reflow process started.
4032 		 */
4033 		case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4034 			ASSERT3U(offset, >=, logical_size);
4035 			break;
4036 	}
4037 
4038 out:
4039 	spa_config_exit(spa, SCL_ALL, FTAG);
4040 
4041 	mutex_exit(&ztest_vdev_lock);
4042 
4043 	ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4044 
4045 	spa_close(spa, FTAG);
4046 	kernel_fini();
4047 }
4048 
4049 static void
4050 ztest_scratch_thread(void *arg)
4051 {
4052 	(void) arg;
4053 
4054 	/* wait up to 10 seconds */
4055 	for (int t = 100; t > 0; t -= 1) {
4056 		if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4057 			thread_exit();
4058 
4059 		(void) poll(NULL, 0, 100);
4060 	}
4061 
4062 	/* killed when the scratch area progress reached a certain point */
4063 	ztest_kill(ztest_shared);
4064 }
4065 
4066 /*
4067  * Verify that we can attach raidz device.
4068  */
4069 void
4070 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4071 {
4072 	(void) zd, (void) id;
4073 	ztest_shared_t *zs = ztest_shared;
4074 	spa_t *spa = ztest_spa;
4075 	uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4076 	kthread_t *scratch_thread = NULL;
4077 	vdev_t *newvd, *pvd;
4078 	nvlist_t *root;
4079 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4080 	int error, expected_error = 0;
4081 
4082 	mutex_enter(&ztest_vdev_lock);
4083 
4084 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4085 
4086 	/* Only allow attach when raid-kind = 'eraidz' */
4087 	if (!ztest_opts.zo_raid_do_expand) {
4088 		spa_config_exit(spa, SCL_ALL, FTAG);
4089 		goto out;
4090 	}
4091 
4092 	if (ztest_opts.zo_mmp_test) {
4093 		spa_config_exit(spa, SCL_ALL, FTAG);
4094 		goto out;
4095 	}
4096 
4097 	if (ztest_device_removal_active) {
4098 		spa_config_exit(spa, SCL_ALL, FTAG);
4099 		goto out;
4100 	}
4101 
4102 	pvd = vdev_lookup_top(spa, 0);
4103 
4104 	ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4105 
4106 	/*
4107 	 * Get size of a child of the raidz group,
4108 	 * make sure device is a bit bigger
4109 	 */
4110 	newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4111 	newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4112 
4113 	/*
4114 	 * Get next attached leaf id
4115 	 */
4116 	raidz_children = ztest_get_raidz_children(spa);
4117 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4118 	zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4119 
4120 	if (spa->spa_raidz_expand)
4121 		expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4122 
4123 	spa_config_exit(spa, SCL_ALL, FTAG);
4124 
4125 	/*
4126 	 * Path to vdev to be attached
4127 	 */
4128 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4129 	    ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4130 
4131 	/*
4132 	 * Build the nvlist describing newpath.
4133 	 */
4134 	root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4135 	    0, 0, 1);
4136 
4137 	/*
4138 	 * 50% of the time, set raidz_expand_pause_point to cause
4139 	 * raidz_reflow_scratch_sync() to pause at a certain point and
4140 	 * then kill the test after 10 seconds so raidz_scratch_verify()
4141 	 * can confirm consistency when the pool is imported.
4142 	 */
4143 	if (ztest_random(2) == 0 && expected_error == 0) {
4144 		raidz_expand_pause_point =
4145 		    ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4146 		scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4147 		    ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4148 	}
4149 
4150 	error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4151 
4152 	nvlist_free(root);
4153 
4154 	if (error == EOVERFLOW || error == ENXIO ||
4155 	    error == ZFS_ERR_CHECKPOINT_EXISTS ||
4156 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
4157 		expected_error = error;
4158 
4159 	if (error != 0 && error != expected_error) {
4160 		fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4161 		    newpath, newsize, error, expected_error);
4162 	}
4163 
4164 	if (raidz_expand_pause_point) {
4165 		if (error != 0) {
4166 			/*
4167 			 * Do not verify scratch object in case of error
4168 			 * returned by vdev attaching.
4169 			 */
4170 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4171 		}
4172 
4173 		VERIFY0(thread_join(scratch_thread));
4174 	}
4175 out:
4176 	mutex_exit(&ztest_vdev_lock);
4177 
4178 	umem_free(newpath, MAXPATHLEN);
4179 }
4180 
4181 void
4182 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4183 {
4184 	(void) zd, (void) id;
4185 	spa_t *spa = ztest_spa;
4186 	vdev_t *vd;
4187 	uint64_t guid;
4188 	int error;
4189 
4190 	mutex_enter(&ztest_vdev_lock);
4191 
4192 	if (ztest_device_removal_active) {
4193 		mutex_exit(&ztest_vdev_lock);
4194 		return;
4195 	}
4196 
4197 	/*
4198 	 * Remove a random top-level vdev and wait for removal to finish.
4199 	 */
4200 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4201 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4202 	guid = vd->vdev_guid;
4203 	spa_config_exit(spa, SCL_VDEV, FTAG);
4204 
4205 	error = spa_vdev_remove(spa, guid, B_FALSE);
4206 	if (error == 0) {
4207 		ztest_device_removal_active = B_TRUE;
4208 		mutex_exit(&ztest_vdev_lock);
4209 
4210 		/*
4211 		 * spa->spa_vdev_removal is created in a sync task that
4212 		 * is initiated via dsl_sync_task_nowait(). Since the
4213 		 * task may not run before spa_vdev_remove() returns, we
4214 		 * must wait at least 1 txg to ensure that the removal
4215 		 * struct has been created.
4216 		 */
4217 		txg_wait_synced(spa_get_dsl(spa), 0);
4218 
4219 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4220 			txg_wait_synced(spa_get_dsl(spa), 0);
4221 	} else {
4222 		mutex_exit(&ztest_vdev_lock);
4223 		return;
4224 	}
4225 
4226 	/*
4227 	 * The pool needs to be scrubbed after completing device removal.
4228 	 * Failure to do so may result in checksum errors due to the
4229 	 * strategy employed by ztest_fault_inject() when selecting which
4230 	 * offset are redundant and can be damaged.
4231 	 */
4232 	error = spa_scan(spa, POOL_SCAN_SCRUB);
4233 	if (error == 0) {
4234 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4235 			txg_wait_synced(spa_get_dsl(spa), 0);
4236 	}
4237 
4238 	mutex_enter(&ztest_vdev_lock);
4239 	ztest_device_removal_active = B_FALSE;
4240 	mutex_exit(&ztest_vdev_lock);
4241 }
4242 
4243 /*
4244  * Callback function which expands the physical size of the vdev.
4245  */
4246 static vdev_t *
4247 grow_vdev(vdev_t *vd, void *arg)
4248 {
4249 	spa_t *spa __maybe_unused = vd->vdev_spa;
4250 	size_t *newsize = arg;
4251 	size_t fsize;
4252 	int fd;
4253 
4254 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4255 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4256 
4257 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4258 		return (vd);
4259 
4260 	fsize = lseek(fd, 0, SEEK_END);
4261 	VERIFY0(ftruncate(fd, *newsize));
4262 
4263 	if (ztest_opts.zo_verbose >= 6) {
4264 		(void) printf("%s grew from %lu to %lu bytes\n",
4265 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4266 	}
4267 	(void) close(fd);
4268 	return (NULL);
4269 }
4270 
4271 /*
4272  * Callback function which expands a given vdev by calling vdev_online().
4273  */
4274 static vdev_t *
4275 online_vdev(vdev_t *vd, void *arg)
4276 {
4277 	(void) arg;
4278 	spa_t *spa = vd->vdev_spa;
4279 	vdev_t *tvd = vd->vdev_top;
4280 	uint64_t guid = vd->vdev_guid;
4281 	uint64_t generation = spa->spa_config_generation + 1;
4282 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4283 	int error;
4284 
4285 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4286 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4287 
4288 	/* Calling vdev_online will initialize the new metaslabs */
4289 	spa_config_exit(spa, SCL_STATE, spa);
4290 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4291 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4292 
4293 	/*
4294 	 * If vdev_online returned an error or the underlying vdev_open
4295 	 * failed then we abort the expand. The only way to know that
4296 	 * vdev_open fails is by checking the returned newstate.
4297 	 */
4298 	if (error || newstate != VDEV_STATE_HEALTHY) {
4299 		if (ztest_opts.zo_verbose >= 5) {
4300 			(void) printf("Unable to expand vdev, state %u, "
4301 			    "error %d\n", newstate, error);
4302 		}
4303 		return (vd);
4304 	}
4305 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4306 
4307 	/*
4308 	 * Since we dropped the lock we need to ensure that we're
4309 	 * still talking to the original vdev. It's possible this
4310 	 * vdev may have been detached/replaced while we were
4311 	 * trying to online it.
4312 	 */
4313 	if (generation != spa->spa_config_generation) {
4314 		if (ztest_opts.zo_verbose >= 5) {
4315 			(void) printf("vdev configuration has changed, "
4316 			    "guid %"PRIu64", state %"PRIu64", "
4317 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
4318 			    guid,
4319 			    tvd->vdev_state,
4320 			    generation,
4321 			    spa->spa_config_generation);
4322 		}
4323 		return (vd);
4324 	}
4325 	return (NULL);
4326 }
4327 
4328 /*
4329  * Traverse the vdev tree calling the supplied function.
4330  * We continue to walk the tree until we either have walked all
4331  * children or we receive a non-NULL return from the callback.
4332  * If a NULL callback is passed, then we just return back the first
4333  * leaf vdev we encounter.
4334  */
4335 static vdev_t *
4336 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4337 {
4338 	uint_t c;
4339 
4340 	if (vd->vdev_ops->vdev_op_leaf) {
4341 		if (func == NULL)
4342 			return (vd);
4343 		else
4344 			return (func(vd, arg));
4345 	}
4346 
4347 	for (c = 0; c < vd->vdev_children; c++) {
4348 		vdev_t *cvd = vd->vdev_child[c];
4349 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4350 			return (cvd);
4351 	}
4352 	return (NULL);
4353 }
4354 
4355 /*
4356  * Verify that dynamic LUN growth works as expected.
4357  */
4358 void
4359 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4360 {
4361 	(void) zd, (void) id;
4362 	spa_t *spa = ztest_spa;
4363 	vdev_t *vd, *tvd;
4364 	metaslab_class_t *mc;
4365 	metaslab_group_t *mg;
4366 	size_t psize, newsize;
4367 	uint64_t top;
4368 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4369 
4370 	mutex_enter(&ztest_checkpoint_lock);
4371 	mutex_enter(&ztest_vdev_lock);
4372 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4373 
4374 	/*
4375 	 * If there is a vdev removal in progress, it could complete while
4376 	 * we are running, in which case we would not be able to verify
4377 	 * that the metaslab_class space increased (because it decreases
4378 	 * when the device removal completes).
4379 	 */
4380 	if (ztest_device_removal_active) {
4381 		spa_config_exit(spa, SCL_STATE, spa);
4382 		mutex_exit(&ztest_vdev_lock);
4383 		mutex_exit(&ztest_checkpoint_lock);
4384 		return;
4385 	}
4386 
4387 	/*
4388 	 * If we are under raidz expansion, the test can failed because the
4389 	 * metaslabs count will not increase immediately after the vdev is
4390 	 * expanded. It will happen only after raidz expansion completion.
4391 	 */
4392 	if (spa->spa_raidz_expand) {
4393 		spa_config_exit(spa, SCL_STATE, spa);
4394 		mutex_exit(&ztest_vdev_lock);
4395 		mutex_exit(&ztest_checkpoint_lock);
4396 		return;
4397 	}
4398 
4399 	top = ztest_random_vdev_top(spa, B_TRUE);
4400 
4401 	tvd = spa->spa_root_vdev->vdev_child[top];
4402 	mg = tvd->vdev_mg;
4403 	mc = mg->mg_class;
4404 	old_ms_count = tvd->vdev_ms_count;
4405 	old_class_space = metaslab_class_get_space(mc);
4406 
4407 	/*
4408 	 * Determine the size of the first leaf vdev associated with
4409 	 * our top-level device.
4410 	 */
4411 	vd = vdev_walk_tree(tvd, NULL, NULL);
4412 	ASSERT3P(vd, !=, NULL);
4413 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4414 
4415 	psize = vd->vdev_psize;
4416 
4417 	/*
4418 	 * We only try to expand the vdev if it's healthy, less than 4x its
4419 	 * original size, and it has a valid psize.
4420 	 */
4421 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4422 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4423 		spa_config_exit(spa, SCL_STATE, spa);
4424 		mutex_exit(&ztest_vdev_lock);
4425 		mutex_exit(&ztest_checkpoint_lock);
4426 		return;
4427 	}
4428 	ASSERT3U(psize, >, 0);
4429 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4430 	ASSERT3U(newsize, >, psize);
4431 
4432 	if (ztest_opts.zo_verbose >= 6) {
4433 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4434 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4435 	}
4436 
4437 	/*
4438 	 * Growing the vdev is a two step process:
4439 	 *	1). expand the physical size (i.e. relabel)
4440 	 *	2). online the vdev to create the new metaslabs
4441 	 */
4442 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4443 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4444 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4445 		if (ztest_opts.zo_verbose >= 5) {
4446 			(void) printf("Could not expand LUN because "
4447 			    "the vdev configuration changed.\n");
4448 		}
4449 		spa_config_exit(spa, SCL_STATE, spa);
4450 		mutex_exit(&ztest_vdev_lock);
4451 		mutex_exit(&ztest_checkpoint_lock);
4452 		return;
4453 	}
4454 
4455 	spa_config_exit(spa, SCL_STATE, spa);
4456 
4457 	/*
4458 	 * Expanding the LUN will update the config asynchronously,
4459 	 * thus we must wait for the async thread to complete any
4460 	 * pending tasks before proceeding.
4461 	 */
4462 	for (;;) {
4463 		boolean_t done;
4464 		mutex_enter(&spa->spa_async_lock);
4465 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4466 		mutex_exit(&spa->spa_async_lock);
4467 		if (done)
4468 			break;
4469 		txg_wait_synced(spa_get_dsl(spa), 0);
4470 		(void) poll(NULL, 0, 100);
4471 	}
4472 
4473 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4474 
4475 	tvd = spa->spa_root_vdev->vdev_child[top];
4476 	new_ms_count = tvd->vdev_ms_count;
4477 	new_class_space = metaslab_class_get_space(mc);
4478 
4479 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4480 		if (ztest_opts.zo_verbose >= 5) {
4481 			(void) printf("Could not verify LUN expansion due to "
4482 			    "intervening vdev offline or remove.\n");
4483 		}
4484 		spa_config_exit(spa, SCL_STATE, spa);
4485 		mutex_exit(&ztest_vdev_lock);
4486 		mutex_exit(&ztest_checkpoint_lock);
4487 		return;
4488 	}
4489 
4490 	/*
4491 	 * Make sure we were able to grow the vdev.
4492 	 */
4493 	if (new_ms_count <= old_ms_count) {
4494 		fatal(B_FALSE,
4495 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4496 		    old_ms_count, new_ms_count);
4497 	}
4498 
4499 	/*
4500 	 * Make sure we were able to grow the pool.
4501 	 */
4502 	if (new_class_space <= old_class_space) {
4503 		fatal(B_FALSE,
4504 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4505 		    old_class_space, new_class_space);
4506 	}
4507 
4508 	if (ztest_opts.zo_verbose >= 5) {
4509 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4510 
4511 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4512 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4513 		(void) printf("%s grew from %s to %s\n",
4514 		    spa->spa_name, oldnumbuf, newnumbuf);
4515 	}
4516 
4517 	spa_config_exit(spa, SCL_STATE, spa);
4518 	mutex_exit(&ztest_vdev_lock);
4519 	mutex_exit(&ztest_checkpoint_lock);
4520 }
4521 
4522 /*
4523  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4524  */
4525 static void
4526 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4527 {
4528 	(void) arg, (void) cr;
4529 
4530 	/*
4531 	 * Create the objects common to all ztest datasets.
4532 	 */
4533 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4534 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4535 }
4536 
4537 static int
4538 ztest_dataset_create(char *dsname)
4539 {
4540 	int err;
4541 	uint64_t rand;
4542 	dsl_crypto_params_t *dcp = NULL;
4543 
4544 	/*
4545 	 * 50% of the time, we create encrypted datasets
4546 	 * using a random cipher suite and a hard-coded
4547 	 * wrapping key.
4548 	 */
4549 	rand = ztest_random(2);
4550 	if (rand != 0) {
4551 		nvlist_t *crypto_args = fnvlist_alloc();
4552 		nvlist_t *props = fnvlist_alloc();
4553 
4554 		/* slight bias towards the default cipher suite */
4555 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4556 		if (rand < ZIO_CRYPT_AES_128_CCM)
4557 			rand = ZIO_CRYPT_ON;
4558 
4559 		fnvlist_add_uint64(props,
4560 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4561 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4562 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4563 
4564 		/*
4565 		 * These parameters aren't really used by the kernel. They
4566 		 * are simply stored so that userspace knows how to load
4567 		 * the wrapping key.
4568 		 */
4569 		fnvlist_add_uint64(props,
4570 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4571 		fnvlist_add_string(props,
4572 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4573 		fnvlist_add_uint64(props,
4574 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4575 		fnvlist_add_uint64(props,
4576 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4577 
4578 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4579 		    crypto_args, &dcp));
4580 
4581 		/*
4582 		 * Cycle through all available encryption implementations
4583 		 * to verify interoperability.
4584 		 */
4585 		VERIFY0(gcm_impl_set("cycle"));
4586 		VERIFY0(aes_impl_set("cycle"));
4587 
4588 		fnvlist_free(crypto_args);
4589 		fnvlist_free(props);
4590 	}
4591 
4592 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4593 	    ztest_objset_create_cb, NULL);
4594 	dsl_crypto_params_free(dcp, !!err);
4595 
4596 	rand = ztest_random(100);
4597 	if (err || rand < 80)
4598 		return (err);
4599 
4600 	if (ztest_opts.zo_verbose >= 5)
4601 		(void) printf("Setting dataset %s to sync always\n", dsname);
4602 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4603 	    ZFS_SYNC_ALWAYS, B_FALSE));
4604 }
4605 
4606 static int
4607 ztest_objset_destroy_cb(const char *name, void *arg)
4608 {
4609 	(void) arg;
4610 	objset_t *os;
4611 	dmu_object_info_t doi;
4612 	int error;
4613 
4614 	/*
4615 	 * Verify that the dataset contains a directory object.
4616 	 */
4617 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4618 	    B_TRUE, FTAG, &os));
4619 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4620 	if (error != ENOENT) {
4621 		/* We could have crashed in the middle of destroying it */
4622 		ASSERT0(error);
4623 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4624 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4625 	}
4626 	dmu_objset_disown(os, B_TRUE, FTAG);
4627 
4628 	/*
4629 	 * Destroy the dataset.
4630 	 */
4631 	if (strchr(name, '@') != NULL) {
4632 		error = dsl_destroy_snapshot(name, B_TRUE);
4633 		if (error != ECHRNG) {
4634 			/*
4635 			 * The program was executed, but encountered a runtime
4636 			 * error, such as insufficient slop, or a hold on the
4637 			 * dataset.
4638 			 */
4639 			ASSERT0(error);
4640 		}
4641 	} else {
4642 		error = dsl_destroy_head(name);
4643 		if (error == ENOSPC) {
4644 			/* There could be checkpoint or insufficient slop */
4645 			ztest_record_enospc(FTAG);
4646 		} else if (error != EBUSY) {
4647 			/* There could be a hold on this dataset */
4648 			ASSERT0(error);
4649 		}
4650 	}
4651 	return (0);
4652 }
4653 
4654 static boolean_t
4655 ztest_snapshot_create(char *osname, uint64_t id)
4656 {
4657 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4658 	int error;
4659 
4660 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4661 
4662 	error = dmu_objset_snapshot_one(osname, snapname);
4663 	if (error == ENOSPC) {
4664 		ztest_record_enospc(FTAG);
4665 		return (B_FALSE);
4666 	}
4667 	if (error != 0 && error != EEXIST && error != ECHRNG) {
4668 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4669 		    snapname, error);
4670 	}
4671 	return (B_TRUE);
4672 }
4673 
4674 static boolean_t
4675 ztest_snapshot_destroy(char *osname, uint64_t id)
4676 {
4677 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4678 	int error;
4679 
4680 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4681 	    osname, id);
4682 
4683 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4684 	if (error != 0 && error != ENOENT && error != ECHRNG)
4685 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4686 		    snapname, error);
4687 	return (B_TRUE);
4688 }
4689 
4690 void
4691 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4692 {
4693 	(void) zd;
4694 	ztest_ds_t *zdtmp;
4695 	int iters;
4696 	int error;
4697 	objset_t *os, *os2;
4698 	char name[ZFS_MAX_DATASET_NAME_LEN];
4699 	zilog_t *zilog;
4700 	int i;
4701 
4702 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4703 
4704 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4705 
4706 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4707 	    ztest_opts.zo_pool, id);
4708 
4709 	/*
4710 	 * If this dataset exists from a previous run, process its replay log
4711 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4712 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4713 	 */
4714 	if (ztest_random(2) == 0 &&
4715 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4716 	    B_TRUE, FTAG, &os) == 0) {
4717 		ztest_zd_init(zdtmp, NULL, os);
4718 		zil_replay(os, zdtmp, ztest_replay_vector);
4719 		ztest_zd_fini(zdtmp);
4720 		dmu_objset_disown(os, B_TRUE, FTAG);
4721 	}
4722 
4723 	/*
4724 	 * There may be an old instance of the dataset we're about to
4725 	 * create lying around from a previous run.  If so, destroy it
4726 	 * and all of its snapshots.
4727 	 */
4728 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4729 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4730 
4731 	/*
4732 	 * Verify that the destroyed dataset is no longer in the namespace.
4733 	 * It may still be present if the destroy above fails with ENOSPC.
4734 	 */
4735 	error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4736 	    FTAG, &os);
4737 	if (error == 0) {
4738 		dmu_objset_disown(os, B_TRUE, FTAG);
4739 		ztest_record_enospc(FTAG);
4740 		goto out;
4741 	}
4742 	VERIFY3U(ENOENT, ==, error);
4743 
4744 	/*
4745 	 * Verify that we can create a new dataset.
4746 	 */
4747 	error = ztest_dataset_create(name);
4748 	if (error) {
4749 		if (error == ENOSPC) {
4750 			ztest_record_enospc(FTAG);
4751 			goto out;
4752 		}
4753 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4754 	}
4755 
4756 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4757 	    FTAG, &os));
4758 
4759 	ztest_zd_init(zdtmp, NULL, os);
4760 
4761 	/*
4762 	 * Open the intent log for it.
4763 	 */
4764 	zilog = zil_open(os, ztest_get_data, NULL);
4765 
4766 	/*
4767 	 * Put some objects in there, do a little I/O to them,
4768 	 * and randomly take a couple of snapshots along the way.
4769 	 */
4770 	iters = ztest_random(5);
4771 	for (i = 0; i < iters; i++) {
4772 		ztest_dmu_object_alloc_free(zdtmp, id);
4773 		if (ztest_random(iters) == 0)
4774 			(void) ztest_snapshot_create(name, i);
4775 	}
4776 
4777 	/*
4778 	 * Verify that we cannot create an existing dataset.
4779 	 */
4780 	VERIFY3U(EEXIST, ==,
4781 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4782 
4783 	/*
4784 	 * Verify that we can hold an objset that is also owned.
4785 	 */
4786 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4787 	dmu_objset_rele(os2, FTAG);
4788 
4789 	/*
4790 	 * Verify that we cannot own an objset that is already owned.
4791 	 */
4792 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4793 	    B_FALSE, B_TRUE, FTAG, &os2));
4794 
4795 	zil_close(zilog);
4796 	dmu_objset_disown(os, B_TRUE, FTAG);
4797 	ztest_zd_fini(zdtmp);
4798 out:
4799 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4800 
4801 	umem_free(zdtmp, sizeof (ztest_ds_t));
4802 }
4803 
4804 /*
4805  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4806  */
4807 void
4808 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4809 {
4810 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4811 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4812 	(void) ztest_snapshot_create(zd->zd_name, id);
4813 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4814 }
4815 
4816 /*
4817  * Cleanup non-standard snapshots and clones.
4818  */
4819 static void
4820 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4821 {
4822 	char *snap1name;
4823 	char *clone1name;
4824 	char *snap2name;
4825 	char *clone2name;
4826 	char *snap3name;
4827 	int error;
4828 
4829 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4830 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4831 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834 
4835 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4836 	    osname, id);
4837 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4838 	    osname, id);
4839 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4840 	    clone1name, id);
4841 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4842 	    osname, id);
4843 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4844 	    clone1name, id);
4845 
4846 	error = dsl_destroy_head(clone2name);
4847 	if (error && error != ENOENT)
4848 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4849 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4850 	if (error && error != ENOENT)
4851 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4852 		    snap3name, error);
4853 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4854 	if (error && error != ENOENT)
4855 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4856 		    snap2name, error);
4857 	error = dsl_destroy_head(clone1name);
4858 	if (error && error != ENOENT)
4859 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4860 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4861 	if (error && error != ENOENT)
4862 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4863 		    snap1name, error);
4864 
4865 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4866 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4867 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4868 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4869 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4870 }
4871 
4872 /*
4873  * Verify dsl_dataset_promote handles EBUSY
4874  */
4875 void
4876 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4877 {
4878 	objset_t *os;
4879 	char *snap1name;
4880 	char *clone1name;
4881 	char *snap2name;
4882 	char *clone2name;
4883 	char *snap3name;
4884 	char *osname = zd->zd_name;
4885 	int error;
4886 
4887 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4888 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4889 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892 
4893 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4894 
4895 	ztest_dsl_dataset_cleanup(osname, id);
4896 
4897 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4898 	    osname, id);
4899 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4900 	    osname, id);
4901 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4902 	    clone1name, id);
4903 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4904 	    osname, id);
4905 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4906 	    clone1name, id);
4907 
4908 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4909 	if (error && error != EEXIST) {
4910 		if (error == ENOSPC) {
4911 			ztest_record_enospc(FTAG);
4912 			goto out;
4913 		}
4914 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4915 	}
4916 
4917 	error = dmu_objset_clone(clone1name, snap1name);
4918 	if (error) {
4919 		if (error == ENOSPC) {
4920 			ztest_record_enospc(FTAG);
4921 			goto out;
4922 		}
4923 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4924 	}
4925 
4926 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4927 	if (error && error != EEXIST) {
4928 		if (error == ENOSPC) {
4929 			ztest_record_enospc(FTAG);
4930 			goto out;
4931 		}
4932 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4933 	}
4934 
4935 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4936 	if (error && error != EEXIST) {
4937 		if (error == ENOSPC) {
4938 			ztest_record_enospc(FTAG);
4939 			goto out;
4940 		}
4941 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4942 	}
4943 
4944 	error = dmu_objset_clone(clone2name, snap3name);
4945 	if (error) {
4946 		if (error == ENOSPC) {
4947 			ztest_record_enospc(FTAG);
4948 			goto out;
4949 		}
4950 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4951 	}
4952 
4953 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4954 	    FTAG, &os);
4955 	if (error)
4956 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4957 	error = dsl_dataset_promote(clone2name, NULL);
4958 	if (error == ENOSPC) {
4959 		dmu_objset_disown(os, B_TRUE, FTAG);
4960 		ztest_record_enospc(FTAG);
4961 		goto out;
4962 	}
4963 	if (error != EBUSY)
4964 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4965 		    clone2name, error);
4966 	dmu_objset_disown(os, B_TRUE, FTAG);
4967 
4968 out:
4969 	ztest_dsl_dataset_cleanup(osname, id);
4970 
4971 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4972 
4973 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4974 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4975 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4976 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4977 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4978 }
4979 
4980 #undef OD_ARRAY_SIZE
4981 #define	OD_ARRAY_SIZE	4
4982 
4983 /*
4984  * Verify that dmu_object_{alloc,free} work as expected.
4985  */
4986 void
4987 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4988 {
4989 	ztest_od_t *od;
4990 	int batchsize;
4991 	int size;
4992 	int b;
4993 
4994 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4995 	od = umem_alloc(size, UMEM_NOFAIL);
4996 	batchsize = OD_ARRAY_SIZE;
4997 
4998 	for (b = 0; b < batchsize; b++)
4999 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5000 		    0, 0, 0);
5001 
5002 	/*
5003 	 * Destroy the previous batch of objects, create a new batch,
5004 	 * and do some I/O on the new objects.
5005 	 */
5006 	if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5007 		zd->zd_od = NULL;
5008 		umem_free(od, size);
5009 		return;
5010 	}
5011 
5012 	while (ztest_random(4 * batchsize) != 0)
5013 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
5014 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5015 
5016 	umem_free(od, size);
5017 }
5018 
5019 /*
5020  * Rewind the global allocator to verify object allocation backfilling.
5021  */
5022 void
5023 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5024 {
5025 	(void) id;
5026 	objset_t *os = zd->zd_os;
5027 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5028 	uint64_t object;
5029 
5030 	/*
5031 	 * Rewind the global allocator randomly back to a lower object number
5032 	 * to force backfilling and reclamation of recently freed dnodes.
5033 	 */
5034 	mutex_enter(&os->os_obj_lock);
5035 	object = ztest_random(os->os_obj_next_chunk);
5036 	os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5037 	    uint64_t);
5038 	mutex_exit(&os->os_obj_lock);
5039 }
5040 
5041 #undef OD_ARRAY_SIZE
5042 #define	OD_ARRAY_SIZE	2
5043 
5044 /*
5045  * Verify that dmu_{read,write} work as expected.
5046  */
5047 void
5048 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5049 {
5050 	int size;
5051 	ztest_od_t *od;
5052 
5053 	objset_t *os = zd->zd_os;
5054 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5055 	od = umem_alloc(size, UMEM_NOFAIL);
5056 	dmu_tx_t *tx;
5057 	int freeit, error;
5058 	uint64_t i, n, s, txg;
5059 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5060 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5061 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5062 	uint64_t regions = 997;
5063 	uint64_t stride = 123456789ULL;
5064 	uint64_t width = 40;
5065 	int free_percent = 5;
5066 	uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5067 
5068 	/*
5069 	 * We will randomly set when to do O_DIRECT on a read.
5070 	 */
5071 	if (ztest_random(4) == 0)
5072 		dmu_read_flags |= DMU_DIRECTIO;
5073 
5074 	/*
5075 	 * This test uses two objects, packobj and bigobj, that are always
5076 	 * updated together (i.e. in the same tx) so that their contents are
5077 	 * in sync and can be compared.  Their contents relate to each other
5078 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5079 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5080 	 * for any index n, there are three bufwads that should be identical:
5081 	 *
5082 	 *	packobj, at offset n * sizeof (bufwad_t)
5083 	 *	bigobj, at the head of the nth chunk
5084 	 *	bigobj, at the tail of the nth chunk
5085 	 *
5086 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
5087 	 * and it doesn't have any relation to the object blocksize.
5088 	 * The only requirement is that it can hold at least two bufwads.
5089 	 *
5090 	 * Normally, we write the bufwad to each of these locations.
5091 	 * However, free_percent of the time we instead write zeroes to
5092 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
5093 	 * bigobj to packobj, we can verify that the DMU is correctly
5094 	 * tracking which parts of an object are allocated and free,
5095 	 * and that the contents of the allocated blocks are correct.
5096 	 */
5097 
5098 	/*
5099 	 * Read the directory info.  If it's the first time, set things up.
5100 	 */
5101 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5102 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5103 	    chunksize);
5104 
5105 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5106 		umem_free(od, size);
5107 		return;
5108 	}
5109 
5110 	bigobj = od[0].od_object;
5111 	packobj = od[1].od_object;
5112 	chunksize = od[0].od_gen;
5113 	ASSERT3U(chunksize, ==, od[1].od_gen);
5114 
5115 	/*
5116 	 * Prefetch a random chunk of the big object.
5117 	 * Our aim here is to get some async reads in flight
5118 	 * for blocks that we may free below; the DMU should
5119 	 * handle this race correctly.
5120 	 */
5121 	n = ztest_random(regions) * stride + ztest_random(width);
5122 	s = 1 + ztest_random(2 * width - 1);
5123 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5124 	    ZIO_PRIORITY_SYNC_READ);
5125 
5126 	/*
5127 	 * Pick a random index and compute the offsets into packobj and bigobj.
5128 	 */
5129 	n = ztest_random(regions) * stride + ztest_random(width);
5130 	s = 1 + ztest_random(width - 1);
5131 
5132 	packoff = n * sizeof (bufwad_t);
5133 	packsize = s * sizeof (bufwad_t);
5134 
5135 	bigoff = n * chunksize;
5136 	bigsize = s * chunksize;
5137 
5138 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5139 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5140 
5141 	/*
5142 	 * free_percent of the time, free a range of bigobj rather than
5143 	 * overwriting it.
5144 	 */
5145 	freeit = (ztest_random(100) < free_percent);
5146 
5147 	/*
5148 	 * Read the current contents of our objects.
5149 	 */
5150 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
5151 	    dmu_read_flags);
5152 	ASSERT0(error);
5153 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5154 	    dmu_read_flags);
5155 	ASSERT0(error);
5156 
5157 	/*
5158 	 * Get a tx for the mods to both packobj and bigobj.
5159 	 */
5160 	tx = dmu_tx_create(os);
5161 
5162 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
5163 
5164 	if (freeit)
5165 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5166 	else
5167 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5168 
5169 	/* This accounts for setting the checksum/compression. */
5170 	dmu_tx_hold_bonus(tx, bigobj);
5171 
5172 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5173 	if (txg == 0) {
5174 		umem_free(packbuf, packsize);
5175 		umem_free(bigbuf, bigsize);
5176 		umem_free(od, size);
5177 		return;
5178 	}
5179 
5180 	enum zio_checksum cksum;
5181 	do {
5182 		cksum = (enum zio_checksum)
5183 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5184 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5185 	dmu_object_set_checksum(os, bigobj, cksum, tx);
5186 
5187 	enum zio_compress comp;
5188 	do {
5189 		comp = (enum zio_compress)
5190 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5191 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5192 	dmu_object_set_compress(os, bigobj, comp, tx);
5193 
5194 	/*
5195 	 * For each index from n to n + s, verify that the existing bufwad
5196 	 * in packobj matches the bufwads at the head and tail of the
5197 	 * corresponding chunk in bigobj.  Then update all three bufwads
5198 	 * with the new values we want to write out.
5199 	 */
5200 	for (i = 0; i < s; i++) {
5201 		/* LINTED */
5202 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5203 		/* LINTED */
5204 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5205 		/* LINTED */
5206 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5207 
5208 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5209 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5210 
5211 		if (pack->bw_txg > txg)
5212 			fatal(B_FALSE,
5213 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5214 			    pack->bw_txg, txg);
5215 
5216 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5217 			fatal(B_FALSE, "wrong index: "
5218 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5219 			    pack->bw_index, n, i);
5220 
5221 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5222 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5223 			    pack, bigH);
5224 
5225 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5226 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5227 			    pack, bigT);
5228 
5229 		if (freeit) {
5230 			memset(pack, 0, sizeof (bufwad_t));
5231 		} else {
5232 			pack->bw_index = n + i;
5233 			pack->bw_txg = txg;
5234 			pack->bw_data = 1 + ztest_random(-2ULL);
5235 		}
5236 		*bigH = *pack;
5237 		*bigT = *pack;
5238 	}
5239 
5240 	/*
5241 	 * We've verified all the old bufwads, and made new ones.
5242 	 * Now write them out.
5243 	 */
5244 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5245 
5246 	if (freeit) {
5247 		if (ztest_opts.zo_verbose >= 7) {
5248 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5249 			    " txg %"PRIx64"\n",
5250 			    bigoff, bigsize, txg);
5251 		}
5252 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5253 	} else {
5254 		if (ztest_opts.zo_verbose >= 7) {
5255 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5256 			    " txg %"PRIx64"\n",
5257 			    bigoff, bigsize, txg);
5258 		}
5259 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5260 	}
5261 
5262 	dmu_tx_commit(tx);
5263 
5264 	/*
5265 	 * Sanity check the stuff we just wrote.
5266 	 */
5267 	{
5268 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5269 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5270 
5271 		VERIFY0(dmu_read(os, packobj, packoff,
5272 		    packsize, packcheck, dmu_read_flags));
5273 		VERIFY0(dmu_read(os, bigobj, bigoff,
5274 		    bigsize, bigcheck, dmu_read_flags));
5275 
5276 		ASSERT0(memcmp(packbuf, packcheck, packsize));
5277 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5278 
5279 		umem_free(packcheck, packsize);
5280 		umem_free(bigcheck, bigsize);
5281 	}
5282 
5283 	umem_free(packbuf, packsize);
5284 	umem_free(bigbuf, bigsize);
5285 	umem_free(od, size);
5286 }
5287 
5288 static void
5289 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5290     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5291 {
5292 	uint64_t i;
5293 	bufwad_t *pack;
5294 	bufwad_t *bigH;
5295 	bufwad_t *bigT;
5296 
5297 	/*
5298 	 * For each index from n to n + s, verify that the existing bufwad
5299 	 * in packobj matches the bufwads at the head and tail of the
5300 	 * corresponding chunk in bigobj.  Then update all three bufwads
5301 	 * with the new values we want to write out.
5302 	 */
5303 	for (i = 0; i < s; i++) {
5304 		/* LINTED */
5305 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5306 		/* LINTED */
5307 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5308 		/* LINTED */
5309 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5310 
5311 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5312 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5313 
5314 		if (pack->bw_txg > txg)
5315 			fatal(B_FALSE,
5316 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5317 			    pack->bw_txg, txg);
5318 
5319 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5320 			fatal(B_FALSE, "wrong index: "
5321 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5322 			    pack->bw_index, n, i);
5323 
5324 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5325 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5326 			    pack, bigH);
5327 
5328 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5329 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5330 			    pack, bigT);
5331 
5332 		pack->bw_index = n + i;
5333 		pack->bw_txg = txg;
5334 		pack->bw_data = 1 + ztest_random(-2ULL);
5335 
5336 		*bigH = *pack;
5337 		*bigT = *pack;
5338 	}
5339 }
5340 
5341 #undef OD_ARRAY_SIZE
5342 #define	OD_ARRAY_SIZE	2
5343 
5344 void
5345 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5346 {
5347 	objset_t *os = zd->zd_os;
5348 	ztest_od_t *od;
5349 	dmu_tx_t *tx;
5350 	uint64_t i;
5351 	int error;
5352 	int size;
5353 	uint64_t n, s, txg;
5354 	bufwad_t *packbuf, *bigbuf;
5355 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5356 	uint64_t blocksize = ztest_random_blocksize();
5357 	uint64_t chunksize = blocksize;
5358 	uint64_t regions = 997;
5359 	uint64_t stride = 123456789ULL;
5360 	uint64_t width = 9;
5361 	dmu_buf_t *bonus_db;
5362 	arc_buf_t **bigbuf_arcbufs;
5363 	dmu_object_info_t doi;
5364 	uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5365 
5366 	/*
5367 	 * We will randomly set when to do O_DIRECT on a read.
5368 	 */
5369 	if (ztest_random(4) == 0)
5370 		dmu_read_flags |= DMU_DIRECTIO;
5371 
5372 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5373 	od = umem_alloc(size, UMEM_NOFAIL);
5374 
5375 	/*
5376 	 * This test uses two objects, packobj and bigobj, that are always
5377 	 * updated together (i.e. in the same tx) so that their contents are
5378 	 * in sync and can be compared.  Their contents relate to each other
5379 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5380 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5381 	 * for any index n, there are three bufwads that should be identical:
5382 	 *
5383 	 *	packobj, at offset n * sizeof (bufwad_t)
5384 	 *	bigobj, at the head of the nth chunk
5385 	 *	bigobj, at the tail of the nth chunk
5386 	 *
5387 	 * The chunk size is set equal to bigobj block size so that
5388 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5389 	 */
5390 
5391 	/*
5392 	 * Read the directory info.  If it's the first time, set things up.
5393 	 */
5394 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5395 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5396 	    chunksize);
5397 
5398 
5399 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5400 		umem_free(od, size);
5401 		return;
5402 	}
5403 
5404 	bigobj = od[0].od_object;
5405 	packobj = od[1].od_object;
5406 	blocksize = od[0].od_blocksize;
5407 	chunksize = blocksize;
5408 	ASSERT3U(chunksize, ==, od[1].od_gen);
5409 
5410 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5411 	VERIFY(ISP2(doi.doi_data_block_size));
5412 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5413 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5414 
5415 	/*
5416 	 * Pick a random index and compute the offsets into packobj and bigobj.
5417 	 */
5418 	n = ztest_random(regions) * stride + ztest_random(width);
5419 	s = 1 + ztest_random(width - 1);
5420 
5421 	packoff = n * sizeof (bufwad_t);
5422 	packsize = s * sizeof (bufwad_t);
5423 
5424 	bigoff = n * chunksize;
5425 	bigsize = s * chunksize;
5426 
5427 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5428 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5429 
5430 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5431 
5432 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5433 
5434 	/*
5435 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5436 	 * Iteration 1 test zcopy to already referenced dbufs.
5437 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5438 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5439 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5440 	 * Iteration 5 test zcopy when it can't be done.
5441 	 * Iteration 6 one more zcopy write.
5442 	 */
5443 	for (i = 0; i < 7; i++) {
5444 		uint64_t j;
5445 		uint64_t off;
5446 
5447 		/*
5448 		 * In iteration 5 (i == 5) use arcbufs
5449 		 * that don't match bigobj blksz to test
5450 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5451 		 * assign an arcbuf to a dbuf.
5452 		 */
5453 		for (j = 0; j < s; j++) {
5454 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5455 				bigbuf_arcbufs[j] =
5456 				    dmu_request_arcbuf(bonus_db, chunksize);
5457 			} else {
5458 				bigbuf_arcbufs[2 * j] =
5459 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5460 				bigbuf_arcbufs[2 * j + 1] =
5461 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5462 			}
5463 		}
5464 
5465 		/*
5466 		 * Get a tx for the mods to both packobj and bigobj.
5467 		 */
5468 		tx = dmu_tx_create(os);
5469 
5470 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5471 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5472 
5473 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5474 		if (txg == 0) {
5475 			umem_free(packbuf, packsize);
5476 			umem_free(bigbuf, bigsize);
5477 			for (j = 0; j < s; j++) {
5478 				if (i != 5 ||
5479 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5480 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5481 				} else {
5482 					dmu_return_arcbuf(
5483 					    bigbuf_arcbufs[2 * j]);
5484 					dmu_return_arcbuf(
5485 					    bigbuf_arcbufs[2 * j + 1]);
5486 				}
5487 			}
5488 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5489 			umem_free(od, size);
5490 			dmu_buf_rele(bonus_db, FTAG);
5491 			return;
5492 		}
5493 
5494 		/*
5495 		 * 50% of the time don't read objects in the 1st iteration to
5496 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5497 		 * no existing dbufs for the specified offsets.
5498 		 */
5499 		if (i != 0 || ztest_random(2) != 0) {
5500 			error = dmu_read(os, packobj, packoff,
5501 			    packsize, packbuf, dmu_read_flags);
5502 			ASSERT0(error);
5503 			error = dmu_read(os, bigobj, bigoff, bigsize,
5504 			    bigbuf, dmu_read_flags);
5505 			ASSERT0(error);
5506 		}
5507 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5508 		    n, chunksize, txg);
5509 
5510 		/*
5511 		 * We've verified all the old bufwads, and made new ones.
5512 		 * Now write them out.
5513 		 */
5514 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5515 		if (ztest_opts.zo_verbose >= 7) {
5516 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5517 			    " txg %"PRIx64"\n",
5518 			    bigoff, bigsize, txg);
5519 		}
5520 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5521 			dmu_buf_t *dbt;
5522 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5523 				memcpy(bigbuf_arcbufs[j]->b_data,
5524 				    (caddr_t)bigbuf + (off - bigoff),
5525 				    chunksize);
5526 			} else {
5527 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5528 				    (caddr_t)bigbuf + (off - bigoff),
5529 				    chunksize / 2);
5530 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5531 				    (caddr_t)bigbuf + (off - bigoff) +
5532 				    chunksize / 2,
5533 				    chunksize / 2);
5534 			}
5535 
5536 			if (i == 1) {
5537 				VERIFY(dmu_buf_hold(os, bigobj, off,
5538 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5539 			}
5540 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5541 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5542 				    off, bigbuf_arcbufs[j], tx));
5543 			} else {
5544 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5545 				    off, bigbuf_arcbufs[2 * j], tx));
5546 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5547 				    off + chunksize / 2,
5548 				    bigbuf_arcbufs[2 * j + 1], tx));
5549 			}
5550 			if (i == 1) {
5551 				dmu_buf_rele(dbt, FTAG);
5552 			}
5553 		}
5554 		dmu_tx_commit(tx);
5555 
5556 		/*
5557 		 * Sanity check the stuff we just wrote.
5558 		 */
5559 		{
5560 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5561 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5562 
5563 			VERIFY0(dmu_read(os, packobj, packoff,
5564 			    packsize, packcheck, dmu_read_flags));
5565 			VERIFY0(dmu_read(os, bigobj, bigoff,
5566 			    bigsize, bigcheck, dmu_read_flags));
5567 
5568 			ASSERT0(memcmp(packbuf, packcheck, packsize));
5569 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5570 
5571 			umem_free(packcheck, packsize);
5572 			umem_free(bigcheck, bigsize);
5573 		}
5574 		if (i == 2) {
5575 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5576 		} else if (i == 3) {
5577 			txg_wait_synced(dmu_objset_pool(os), 0);
5578 		}
5579 	}
5580 
5581 	dmu_buf_rele(bonus_db, FTAG);
5582 	umem_free(packbuf, packsize);
5583 	umem_free(bigbuf, bigsize);
5584 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5585 	umem_free(od, size);
5586 }
5587 
5588 void
5589 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5590 {
5591 	(void) id;
5592 	ztest_od_t *od;
5593 
5594 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5595 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5596 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5597 
5598 	/*
5599 	 * Have multiple threads write to large offsets in an object
5600 	 * to verify that parallel writes to an object -- even to the
5601 	 * same blocks within the object -- doesn't cause any trouble.
5602 	 */
5603 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5604 
5605 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5606 		return;
5607 
5608 	while (ztest_random(10) != 0)
5609 		ztest_io(zd, od->od_object, offset);
5610 
5611 	umem_free(od, sizeof (ztest_od_t));
5612 }
5613 
5614 void
5615 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5616 {
5617 	ztest_od_t *od;
5618 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5619 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5620 	uint64_t count = ztest_random(20) + 1;
5621 	uint64_t blocksize = ztest_random_blocksize();
5622 	void *data;
5623 
5624 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5625 
5626 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5627 
5628 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5629 	    !ztest_random(2)) != 0) {
5630 		umem_free(od, sizeof (ztest_od_t));
5631 		return;
5632 	}
5633 
5634 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5635 		umem_free(od, sizeof (ztest_od_t));
5636 		return;
5637 	}
5638 
5639 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5640 
5641 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5642 
5643 	while (ztest_random(count) != 0) {
5644 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5645 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5646 		    data) != 0)
5647 			break;
5648 		while (ztest_random(4) != 0)
5649 			ztest_io(zd, od->od_object, randoff);
5650 	}
5651 
5652 	umem_free(data, blocksize);
5653 	umem_free(od, sizeof (ztest_od_t));
5654 }
5655 
5656 /*
5657  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5658  */
5659 #define	ZTEST_ZAP_MIN_INTS	1
5660 #define	ZTEST_ZAP_MAX_INTS	4
5661 #define	ZTEST_ZAP_MAX_PROPS	1000
5662 
5663 void
5664 ztest_zap(ztest_ds_t *zd, uint64_t id)
5665 {
5666 	objset_t *os = zd->zd_os;
5667 	ztest_od_t *od;
5668 	uint64_t object;
5669 	uint64_t txg, last_txg;
5670 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5671 	uint64_t zl_ints, zl_intsize, prop;
5672 	int i, ints;
5673 	dmu_tx_t *tx;
5674 	char propname[100], txgname[100];
5675 	int error;
5676 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5677 
5678 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5679 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5680 
5681 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5682 	    !ztest_random(2)) != 0)
5683 		goto out;
5684 
5685 	object = od->od_object;
5686 
5687 	/*
5688 	 * Generate a known hash collision, and verify that
5689 	 * we can lookup and remove both entries.
5690 	 */
5691 	tx = dmu_tx_create(os);
5692 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5693 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5694 	if (txg == 0)
5695 		goto out;
5696 	for (i = 0; i < 2; i++) {
5697 		value[i] = i;
5698 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5699 		    1, &value[i], tx));
5700 	}
5701 	for (i = 0; i < 2; i++) {
5702 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5703 		    sizeof (uint64_t), 1, &value[i], tx));
5704 		VERIFY0(
5705 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5706 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5707 		ASSERT3U(zl_ints, ==, 1);
5708 	}
5709 	for (i = 0; i < 2; i++) {
5710 		VERIFY0(zap_remove(os, object, hc[i], tx));
5711 	}
5712 	dmu_tx_commit(tx);
5713 
5714 	/*
5715 	 * Generate a bunch of random entries.
5716 	 */
5717 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5718 
5719 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5720 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5721 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5722 	memset(value, 0, sizeof (value));
5723 	last_txg = 0;
5724 
5725 	/*
5726 	 * If these zap entries already exist, validate their contents.
5727 	 */
5728 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5729 	if (error == 0) {
5730 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5731 		ASSERT3U(zl_ints, ==, 1);
5732 
5733 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5734 		    zl_ints, &last_txg));
5735 
5736 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5737 		    &zl_ints));
5738 
5739 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5740 		ASSERT3U(zl_ints, ==, ints);
5741 
5742 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5743 		    zl_ints, value));
5744 
5745 		for (i = 0; i < ints; i++) {
5746 			ASSERT3U(value[i], ==, last_txg + object + i);
5747 		}
5748 	} else {
5749 		ASSERT3U(error, ==, ENOENT);
5750 	}
5751 
5752 	/*
5753 	 * Atomically update two entries in our zap object.
5754 	 * The first is named txg_%llu, and contains the txg
5755 	 * in which the property was last updated.  The second
5756 	 * is named prop_%llu, and the nth element of its value
5757 	 * should be txg + object + n.
5758 	 */
5759 	tx = dmu_tx_create(os);
5760 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5761 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5762 	if (txg == 0)
5763 		goto out;
5764 
5765 	if (last_txg > txg)
5766 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5767 		    last_txg, txg);
5768 
5769 	for (i = 0; i < ints; i++)
5770 		value[i] = txg + object + i;
5771 
5772 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5773 	    1, &txg, tx));
5774 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5775 	    ints, value, tx));
5776 
5777 	dmu_tx_commit(tx);
5778 
5779 	/*
5780 	 * Remove a random pair of entries.
5781 	 */
5782 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5783 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5784 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5785 
5786 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5787 
5788 	if (error == ENOENT)
5789 		goto out;
5790 
5791 	ASSERT0(error);
5792 
5793 	tx = dmu_tx_create(os);
5794 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5795 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5796 	if (txg == 0)
5797 		goto out;
5798 	VERIFY0(zap_remove(os, object, txgname, tx));
5799 	VERIFY0(zap_remove(os, object, propname, tx));
5800 	dmu_tx_commit(tx);
5801 out:
5802 	umem_free(od, sizeof (ztest_od_t));
5803 }
5804 
5805 /*
5806  * Test case to test the upgrading of a microzap to fatzap.
5807  */
5808 void
5809 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5810 {
5811 	objset_t *os = zd->zd_os;
5812 	ztest_od_t *od;
5813 	uint64_t object, txg, value;
5814 
5815 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5816 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5817 
5818 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5819 	    !ztest_random(2)) != 0)
5820 		goto out;
5821 	object = od->od_object;
5822 
5823 	/*
5824 	 * Add entries to this ZAP and make sure it spills over
5825 	 * and gets upgraded to a fatzap. Also, since we are adding
5826 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5827 	 */
5828 	for (value = 0; value < 2050; value++) {
5829 		char name[ZFS_MAX_DATASET_NAME_LEN];
5830 		dmu_tx_t *tx;
5831 		int error;
5832 
5833 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5834 		    id, value);
5835 
5836 		tx = dmu_tx_create(os);
5837 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5838 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5839 		if (txg == 0)
5840 			goto out;
5841 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5842 		    &value, tx);
5843 		ASSERT(error == 0 || error == EEXIST);
5844 		dmu_tx_commit(tx);
5845 	}
5846 out:
5847 	umem_free(od, sizeof (ztest_od_t));
5848 }
5849 
5850 void
5851 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5852 {
5853 	(void) id;
5854 	objset_t *os = zd->zd_os;
5855 	ztest_od_t *od;
5856 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5857 	dmu_tx_t *tx;
5858 	int i, namelen, error;
5859 	int micro = ztest_random(2);
5860 	char name[20], string_value[20];
5861 	void *data;
5862 
5863 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5864 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5865 
5866 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5867 		umem_free(od, sizeof (ztest_od_t));
5868 		return;
5869 	}
5870 
5871 	object = od->od_object;
5872 
5873 	/*
5874 	 * Generate a random name of the form 'xxx.....' where each
5875 	 * x is a random printable character and the dots are dots.
5876 	 * There are 94 such characters, and the name length goes from
5877 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5878 	 */
5879 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5880 
5881 	for (i = 0; i < 3; i++)
5882 		name[i] = '!' + ztest_random('~' - '!' + 1);
5883 	for (; i < namelen - 1; i++)
5884 		name[i] = '.';
5885 	name[i] = '\0';
5886 
5887 	if ((namelen & 1) || micro) {
5888 		wsize = sizeof (txg);
5889 		wc = 1;
5890 		data = &txg;
5891 	} else {
5892 		wsize = 1;
5893 		wc = namelen;
5894 		data = string_value;
5895 	}
5896 
5897 	count = -1ULL;
5898 	VERIFY0(zap_count(os, object, &count));
5899 	ASSERT3S(count, !=, -1ULL);
5900 
5901 	/*
5902 	 * Select an operation: length, lookup, add, update, remove.
5903 	 */
5904 	i = ztest_random(5);
5905 
5906 	if (i >= 2) {
5907 		tx = dmu_tx_create(os);
5908 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5909 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5910 		if (txg == 0) {
5911 			umem_free(od, sizeof (ztest_od_t));
5912 			return;
5913 		}
5914 		memcpy(string_value, name, namelen);
5915 	} else {
5916 		tx = NULL;
5917 		txg = 0;
5918 		memset(string_value, 0, namelen);
5919 	}
5920 
5921 	switch (i) {
5922 
5923 	case 0:
5924 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5925 		if (error == 0) {
5926 			ASSERT3U(wsize, ==, zl_wsize);
5927 			ASSERT3U(wc, ==, zl_wc);
5928 		} else {
5929 			ASSERT3U(error, ==, ENOENT);
5930 		}
5931 		break;
5932 
5933 	case 1:
5934 		error = zap_lookup(os, object, name, wsize, wc, data);
5935 		if (error == 0) {
5936 			if (data == string_value &&
5937 			    memcmp(name, data, namelen) != 0)
5938 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5939 				    name, (char *)data, namelen);
5940 		} else {
5941 			ASSERT3U(error, ==, ENOENT);
5942 		}
5943 		break;
5944 
5945 	case 2:
5946 		error = zap_add(os, object, name, wsize, wc, data, tx);
5947 		ASSERT(error == 0 || error == EEXIST);
5948 		break;
5949 
5950 	case 3:
5951 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5952 		break;
5953 
5954 	case 4:
5955 		error = zap_remove(os, object, name, tx);
5956 		ASSERT(error == 0 || error == ENOENT);
5957 		break;
5958 	}
5959 
5960 	if (tx != NULL)
5961 		dmu_tx_commit(tx);
5962 
5963 	umem_free(od, sizeof (ztest_od_t));
5964 }
5965 
5966 /*
5967  * Commit callback data.
5968  */
5969 typedef struct ztest_cb_data {
5970 	list_node_t		zcd_node;
5971 	uint64_t		zcd_txg;
5972 	int			zcd_expected_err;
5973 	boolean_t		zcd_added;
5974 	boolean_t		zcd_called;
5975 	spa_t			*zcd_spa;
5976 } ztest_cb_data_t;
5977 
5978 /* This is the actual commit callback function */
5979 static void
5980 ztest_commit_callback(void *arg, int error)
5981 {
5982 	ztest_cb_data_t *data = arg;
5983 	uint64_t synced_txg;
5984 
5985 	VERIFY3P(data, !=, NULL);
5986 	VERIFY3S(data->zcd_expected_err, ==, error);
5987 	VERIFY(!data->zcd_called);
5988 
5989 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5990 	if (data->zcd_txg > synced_txg)
5991 		fatal(B_FALSE,
5992 		    "commit callback of txg %"PRIu64" called prematurely, "
5993 		    "last synced txg = %"PRIu64"\n",
5994 		    data->zcd_txg, synced_txg);
5995 
5996 	data->zcd_called = B_TRUE;
5997 
5998 	if (error == ECANCELED) {
5999 		ASSERT0(data->zcd_txg);
6000 		ASSERT(!data->zcd_added);
6001 
6002 		/*
6003 		 * The private callback data should be destroyed here, but
6004 		 * since we are going to check the zcd_called field after
6005 		 * dmu_tx_abort(), we will destroy it there.
6006 		 */
6007 		return;
6008 	}
6009 
6010 	ASSERT(data->zcd_added);
6011 	ASSERT3U(data->zcd_txg, !=, 0);
6012 
6013 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6014 
6015 	/* See if this cb was called more quickly */
6016 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6017 		zc_min_txg_delay = synced_txg - data->zcd_txg;
6018 
6019 	/* Remove our callback from the list */
6020 	list_remove(&zcl.zcl_callbacks, data);
6021 
6022 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6023 
6024 	umem_free(data, sizeof (ztest_cb_data_t));
6025 }
6026 
6027 /* Allocate and initialize callback data structure */
6028 static ztest_cb_data_t *
6029 ztest_create_cb_data(objset_t *os, uint64_t txg)
6030 {
6031 	ztest_cb_data_t *cb_data;
6032 
6033 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6034 
6035 	cb_data->zcd_txg = txg;
6036 	cb_data->zcd_spa = dmu_objset_spa(os);
6037 	list_link_init(&cb_data->zcd_node);
6038 
6039 	return (cb_data);
6040 }
6041 
6042 /*
6043  * Commit callback test.
6044  */
6045 void
6046 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6047 {
6048 	objset_t *os = zd->zd_os;
6049 	ztest_od_t *od;
6050 	dmu_tx_t *tx;
6051 	ztest_cb_data_t *cb_data[3], *tmp_cb;
6052 	uint64_t old_txg, txg;
6053 	int i, error = 0;
6054 
6055 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6056 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6057 
6058 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6059 		umem_free(od, sizeof (ztest_od_t));
6060 		return;
6061 	}
6062 
6063 	tx = dmu_tx_create(os);
6064 
6065 	cb_data[0] = ztest_create_cb_data(os, 0);
6066 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6067 
6068 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6069 
6070 	/* Every once in a while, abort the transaction on purpose */
6071 	if (ztest_random(100) == 0)
6072 		error = -1;
6073 
6074 	if (!error)
6075 		error = dmu_tx_assign(tx, TXG_NOWAIT);
6076 
6077 	txg = error ? 0 : dmu_tx_get_txg(tx);
6078 
6079 	cb_data[0]->zcd_txg = txg;
6080 	cb_data[1] = ztest_create_cb_data(os, txg);
6081 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6082 
6083 	if (error) {
6084 		/*
6085 		 * It's not a strict requirement to call the registered
6086 		 * callbacks from inside dmu_tx_abort(), but that's what
6087 		 * it's supposed to happen in the current implementation
6088 		 * so we will check for that.
6089 		 */
6090 		for (i = 0; i < 2; i++) {
6091 			cb_data[i]->zcd_expected_err = ECANCELED;
6092 			VERIFY(!cb_data[i]->zcd_called);
6093 		}
6094 
6095 		dmu_tx_abort(tx);
6096 
6097 		for (i = 0; i < 2; i++) {
6098 			VERIFY(cb_data[i]->zcd_called);
6099 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6100 		}
6101 
6102 		umem_free(od, sizeof (ztest_od_t));
6103 		return;
6104 	}
6105 
6106 	cb_data[2] = ztest_create_cb_data(os, txg);
6107 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6108 
6109 	/*
6110 	 * Read existing data to make sure there isn't a future leak.
6111 	 */
6112 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6113 	    &old_txg, DMU_READ_PREFETCH));
6114 
6115 	if (old_txg > txg)
6116 		fatal(B_FALSE,
6117 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
6118 		    old_txg, txg);
6119 
6120 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6121 
6122 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6123 
6124 	/*
6125 	 * Since commit callbacks don't have any ordering requirement and since
6126 	 * it is theoretically possible for a commit callback to be called
6127 	 * after an arbitrary amount of time has elapsed since its txg has been
6128 	 * synced, it is difficult to reliably determine whether a commit
6129 	 * callback hasn't been called due to high load or due to a flawed
6130 	 * implementation.
6131 	 *
6132 	 * In practice, we will assume that if after a certain number of txgs a
6133 	 * commit callback hasn't been called, then most likely there's an
6134 	 * implementation bug..
6135 	 */
6136 	tmp_cb = list_head(&zcl.zcl_callbacks);
6137 	if (tmp_cb != NULL &&
6138 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6139 		fatal(B_FALSE,
6140 		    "Commit callback threshold exceeded, "
6141 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6142 		    tmp_cb->zcd_txg, txg);
6143 	}
6144 
6145 	/*
6146 	 * Let's find the place to insert our callbacks.
6147 	 *
6148 	 * Even though the list is ordered by txg, it is possible for the
6149 	 * insertion point to not be the end because our txg may already be
6150 	 * quiescing at this point and other callbacks in the open txg
6151 	 * (from other objsets) may have sneaked in.
6152 	 */
6153 	tmp_cb = list_tail(&zcl.zcl_callbacks);
6154 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6155 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6156 
6157 	/* Add the 3 callbacks to the list */
6158 	for (i = 0; i < 3; i++) {
6159 		if (tmp_cb == NULL)
6160 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6161 		else
6162 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6163 			    cb_data[i]);
6164 
6165 		cb_data[i]->zcd_added = B_TRUE;
6166 		VERIFY(!cb_data[i]->zcd_called);
6167 
6168 		tmp_cb = cb_data[i];
6169 	}
6170 
6171 	zc_cb_counter += 3;
6172 
6173 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6174 
6175 	dmu_tx_commit(tx);
6176 
6177 	umem_free(od, sizeof (ztest_od_t));
6178 }
6179 
6180 /*
6181  * Visit each object in the dataset. Verify that its properties
6182  * are consistent what was stored in the block tag when it was created,
6183  * and that its unused bonus buffer space has not been overwritten.
6184  */
6185 void
6186 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6187 {
6188 	(void) id;
6189 	objset_t *os = zd->zd_os;
6190 	uint64_t obj;
6191 	int err = 0;
6192 
6193 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6194 		ztest_block_tag_t *bt = NULL;
6195 		dmu_object_info_t doi;
6196 		dmu_buf_t *db;
6197 
6198 		ztest_object_lock(zd, obj, ZTRL_READER);
6199 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6200 			ztest_object_unlock(zd, obj);
6201 			continue;
6202 		}
6203 
6204 		dmu_object_info_from_db(db, &doi);
6205 		if (doi.doi_bonus_size >= sizeof (*bt))
6206 			bt = ztest_bt_bonus(db);
6207 
6208 		if (bt && bt->bt_magic == BT_MAGIC) {
6209 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6210 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
6211 			    bt->bt_crtxg);
6212 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6213 		}
6214 
6215 		dmu_buf_rele(db, FTAG);
6216 		ztest_object_unlock(zd, obj);
6217 	}
6218 }
6219 
6220 void
6221 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6222 {
6223 	(void) id;
6224 	zfs_prop_t proplist[] = {
6225 		ZFS_PROP_CHECKSUM,
6226 		ZFS_PROP_COMPRESSION,
6227 		ZFS_PROP_COPIES,
6228 		ZFS_PROP_DEDUP
6229 	};
6230 
6231 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6232 
6233 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6234 		int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6235 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6236 		ASSERT(error == 0 || error == ENOSPC);
6237 	}
6238 
6239 	int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6240 	    ztest_random_blocksize(), (int)ztest_random(2));
6241 	ASSERT(error == 0 || error == ENOSPC);
6242 
6243 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6244 }
6245 
6246 void
6247 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6248 {
6249 	(void) zd, (void) id;
6250 
6251 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6252 
6253 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6254 
6255 	nvlist_t *props = fnvlist_alloc();
6256 
6257 	VERIFY0(spa_prop_get(ztest_spa, props));
6258 
6259 	if (ztest_opts.zo_verbose >= 6)
6260 		dump_nvlist(props, 4);
6261 
6262 	fnvlist_free(props);
6263 
6264 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6265 }
6266 
6267 static int
6268 user_release_one(const char *snapname, const char *holdname)
6269 {
6270 	nvlist_t *snaps, *holds;
6271 	int error;
6272 
6273 	snaps = fnvlist_alloc();
6274 	holds = fnvlist_alloc();
6275 	fnvlist_add_boolean(holds, holdname);
6276 	fnvlist_add_nvlist(snaps, snapname, holds);
6277 	fnvlist_free(holds);
6278 	error = dsl_dataset_user_release(snaps, NULL);
6279 	fnvlist_free(snaps);
6280 	return (error);
6281 }
6282 
6283 /*
6284  * Test snapshot hold/release and deferred destroy.
6285  */
6286 void
6287 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6288 {
6289 	int error;
6290 	objset_t *os = zd->zd_os;
6291 	objset_t *origin;
6292 	char snapname[100];
6293 	char fullname[100];
6294 	char clonename[100];
6295 	char tag[100];
6296 	char osname[ZFS_MAX_DATASET_NAME_LEN];
6297 	nvlist_t *holds;
6298 
6299 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6300 
6301 	dmu_objset_name(os, osname);
6302 
6303 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6304 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6305 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6306 	    osname, id);
6307 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6308 
6309 	/*
6310 	 * Clean up from any previous run.
6311 	 */
6312 	error = dsl_destroy_head(clonename);
6313 	if (error != ENOENT)
6314 		ASSERT0(error);
6315 	error = user_release_one(fullname, tag);
6316 	if (error != ESRCH && error != ENOENT)
6317 		ASSERT0(error);
6318 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6319 	if (error != ENOENT)
6320 		ASSERT0(error);
6321 
6322 	/*
6323 	 * Create snapshot, clone it, mark snap for deferred destroy,
6324 	 * destroy clone, verify snap was also destroyed.
6325 	 */
6326 	error = dmu_objset_snapshot_one(osname, snapname);
6327 	if (error) {
6328 		if (error == ENOSPC) {
6329 			ztest_record_enospc("dmu_objset_snapshot");
6330 			goto out;
6331 		}
6332 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6333 	}
6334 
6335 	error = dmu_objset_clone(clonename, fullname);
6336 	if (error) {
6337 		if (error == ENOSPC) {
6338 			ztest_record_enospc("dmu_objset_clone");
6339 			goto out;
6340 		}
6341 		fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6342 	}
6343 
6344 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6345 	if (error) {
6346 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6347 		    fullname, error);
6348 	}
6349 
6350 	error = dsl_destroy_head(clonename);
6351 	if (error)
6352 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6353 
6354 	error = dmu_objset_hold(fullname, FTAG, &origin);
6355 	if (error != ENOENT)
6356 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6357 
6358 	/*
6359 	 * Create snapshot, add temporary hold, verify that we can't
6360 	 * destroy a held snapshot, mark for deferred destroy,
6361 	 * release hold, verify snapshot was destroyed.
6362 	 */
6363 	error = dmu_objset_snapshot_one(osname, snapname);
6364 	if (error) {
6365 		if (error == ENOSPC) {
6366 			ztest_record_enospc("dmu_objset_snapshot");
6367 			goto out;
6368 		}
6369 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6370 	}
6371 
6372 	holds = fnvlist_alloc();
6373 	fnvlist_add_string(holds, fullname, tag);
6374 	error = dsl_dataset_user_hold(holds, 0, NULL);
6375 	fnvlist_free(holds);
6376 
6377 	if (error == ENOSPC) {
6378 		ztest_record_enospc("dsl_dataset_user_hold");
6379 		goto out;
6380 	} else if (error) {
6381 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6382 		    fullname, tag, error);
6383 	}
6384 
6385 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6386 	if (error != EBUSY) {
6387 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6388 		    fullname, error);
6389 	}
6390 
6391 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6392 	if (error) {
6393 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6394 		    fullname, error);
6395 	}
6396 
6397 	error = user_release_one(fullname, tag);
6398 	if (error)
6399 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6400 		    fullname, tag, error);
6401 
6402 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6403 
6404 out:
6405 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6406 }
6407 
6408 /*
6409  * Inject random faults into the on-disk data.
6410  */
6411 void
6412 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6413 {
6414 	(void) zd, (void) id;
6415 	ztest_shared_t *zs = ztest_shared;
6416 	spa_t *spa = ztest_spa;
6417 	int fd;
6418 	uint64_t offset;
6419 	uint64_t leaves;
6420 	uint64_t bad = 0x1990c0ffeedecadeull;
6421 	uint64_t top, leaf;
6422 	uint64_t raidz_children;
6423 	char *path0;
6424 	char *pathrand;
6425 	size_t fsize;
6426 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6427 	int iters = 1000;
6428 	int maxfaults;
6429 	int mirror_save;
6430 	vdev_t *vd0 = NULL;
6431 	uint64_t guid0 = 0;
6432 	boolean_t islog = B_FALSE;
6433 	boolean_t injected = B_FALSE;
6434 
6435 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6436 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6437 
6438 	mutex_enter(&ztest_vdev_lock);
6439 
6440 	/*
6441 	 * Device removal is in progress, fault injection must be disabled
6442 	 * until it completes and the pool is scrubbed.  The fault injection
6443 	 * strategy for damaging blocks does not take in to account evacuated
6444 	 * blocks which may have already been damaged.
6445 	 */
6446 	if (ztest_device_removal_active)
6447 		goto out;
6448 
6449 	/*
6450 	 * The fault injection strategy for damaging blocks cannot be used
6451 	 * if raidz expansion is in progress. The leaves value
6452 	 * (attached raidz children) is variable and strategy for damaging
6453 	 * blocks will corrupt same data blocks on different child vdevs
6454 	 * because of the reflow process.
6455 	 */
6456 	if (spa->spa_raidz_expand != NULL)
6457 		goto out;
6458 
6459 	maxfaults = MAXFAULTS(zs);
6460 	raidz_children = ztest_get_raidz_children(spa);
6461 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6462 	mirror_save = zs->zs_mirrors;
6463 
6464 	ASSERT3U(leaves, >=, 1);
6465 
6466 	/*
6467 	 * While ztest is running the number of leaves will not change.  This
6468 	 * is critical for the fault injection logic as it determines where
6469 	 * errors can be safely injected such that they are always repairable.
6470 	 *
6471 	 * When restarting ztest a different number of leaves may be requested
6472 	 * which will shift the regions to be damaged.  This is fine as long
6473 	 * as the pool has been scrubbed prior to using the new mapping.
6474 	 * Failure to do can result in non-repairable damage being injected.
6475 	 */
6476 	if (ztest_pool_scrubbed == B_FALSE)
6477 		goto out;
6478 
6479 	/*
6480 	 * Grab the name lock as reader. There are some operations
6481 	 * which don't like to have their vdevs changed while
6482 	 * they are in progress (i.e. spa_change_guid). Those
6483 	 * operations will have grabbed the name lock as writer.
6484 	 */
6485 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6486 
6487 	/*
6488 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6489 	 */
6490 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6491 
6492 	if (ztest_random(2) == 0) {
6493 		/*
6494 		 * Inject errors on a normal data device or slog device.
6495 		 */
6496 		top = ztest_random_vdev_top(spa, B_TRUE);
6497 		leaf = ztest_random(leaves) + zs->zs_splits;
6498 
6499 		/*
6500 		 * Generate paths to the first leaf in this top-level vdev,
6501 		 * and to the random leaf we selected.  We'll induce transient
6502 		 * write failures and random online/offline activity on leaf 0,
6503 		 * and we'll write random garbage to the randomly chosen leaf.
6504 		 */
6505 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6506 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6507 		    top * leaves + zs->zs_splits);
6508 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6509 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6510 		    top * leaves + leaf);
6511 
6512 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6513 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6514 			islog = B_TRUE;
6515 
6516 		/*
6517 		 * If the top-level vdev needs to be resilvered
6518 		 * then we only allow faults on the device that is
6519 		 * resilvering.
6520 		 */
6521 		if (vd0 != NULL && maxfaults != 1 &&
6522 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6523 		    vd0->vdev_resilver_txg != 0)) {
6524 			/*
6525 			 * Make vd0 explicitly claim to be unreadable,
6526 			 * or unwritable, or reach behind its back
6527 			 * and close the underlying fd.  We can do this if
6528 			 * maxfaults == 0 because we'll fail and reexecute,
6529 			 * and we can do it if maxfaults >= 2 because we'll
6530 			 * have enough redundancy.  If maxfaults == 1, the
6531 			 * combination of this with injection of random data
6532 			 * corruption below exceeds the pool's fault tolerance.
6533 			 */
6534 			vdev_file_t *vf = vd0->vdev_tsd;
6535 
6536 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6537 			    (long long)vd0->vdev_id, (int)maxfaults);
6538 
6539 			if (vf != NULL && ztest_random(3) == 0) {
6540 				(void) close(vf->vf_file->f_fd);
6541 				vf->vf_file->f_fd = -1;
6542 			} else if (ztest_random(2) == 0) {
6543 				vd0->vdev_cant_read = B_TRUE;
6544 			} else {
6545 				vd0->vdev_cant_write = B_TRUE;
6546 			}
6547 			guid0 = vd0->vdev_guid;
6548 		}
6549 	} else {
6550 		/*
6551 		 * Inject errors on an l2cache device.
6552 		 */
6553 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6554 
6555 		if (sav->sav_count == 0) {
6556 			spa_config_exit(spa, SCL_STATE, FTAG);
6557 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6558 			goto out;
6559 		}
6560 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6561 		guid0 = vd0->vdev_guid;
6562 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6563 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6564 
6565 		leaf = 0;
6566 		leaves = 1;
6567 		maxfaults = INT_MAX;	/* no limit on cache devices */
6568 	}
6569 
6570 	spa_config_exit(spa, SCL_STATE, FTAG);
6571 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6572 
6573 	/*
6574 	 * If we can tolerate two or more faults, or we're dealing
6575 	 * with a slog, randomly online/offline vd0.
6576 	 */
6577 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6578 		if (ztest_random(10) < 6) {
6579 			int flags = (ztest_random(2) == 0 ?
6580 			    ZFS_OFFLINE_TEMPORARY : 0);
6581 
6582 			/*
6583 			 * We have to grab the zs_name_lock as writer to
6584 			 * prevent a race between offlining a slog and
6585 			 * destroying a dataset. Offlining the slog will
6586 			 * grab a reference on the dataset which may cause
6587 			 * dsl_destroy_head() to fail with EBUSY thus
6588 			 * leaving the dataset in an inconsistent state.
6589 			 */
6590 			if (islog)
6591 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6592 
6593 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6594 
6595 			if (islog)
6596 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6597 		} else {
6598 			/*
6599 			 * Ideally we would like to be able to randomly
6600 			 * call vdev_[on|off]line without holding locks
6601 			 * to force unpredictable failures but the side
6602 			 * effects of vdev_[on|off]line prevent us from
6603 			 * doing so.
6604 			 */
6605 			(void) vdev_online(spa, guid0, 0, NULL);
6606 		}
6607 	}
6608 
6609 	if (maxfaults == 0)
6610 		goto out;
6611 
6612 	/*
6613 	 * We have at least single-fault tolerance, so inject data corruption.
6614 	 */
6615 	fd = open(pathrand, O_RDWR);
6616 
6617 	if (fd == -1) /* we hit a gap in the device namespace */
6618 		goto out;
6619 
6620 	fsize = lseek(fd, 0, SEEK_END);
6621 
6622 	while (--iters != 0) {
6623 		/*
6624 		 * The offset must be chosen carefully to ensure that
6625 		 * we do not inject a given logical block with errors
6626 		 * on two different leaf devices, because ZFS can not
6627 		 * tolerate that (if maxfaults==1).
6628 		 *
6629 		 * To achieve this we divide each leaf device into
6630 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6631 		 * Each chunk is further divided into error-injection
6632 		 * ranges (can accept errors) and clear ranges (we do
6633 		 * not inject errors in those). Each error-injection
6634 		 * range can accept errors only for a single leaf vdev.
6635 		 * Error-injection ranges are separated by clear ranges.
6636 		 *
6637 		 * For example, with 3 leaves, each chunk looks like:
6638 		 *    0 to  32M: injection range for leaf 0
6639 		 *  32M to  64M: clear range - no injection allowed
6640 		 *  64M to  96M: injection range for leaf 1
6641 		 *  96M to 128M: clear range - no injection allowed
6642 		 * 128M to 160M: injection range for leaf 2
6643 		 * 160M to 192M: clear range - no injection allowed
6644 		 *
6645 		 * Each clear range must be large enough such that a
6646 		 * single block cannot straddle it. This way a block
6647 		 * can't be a target in two different injection ranges
6648 		 * (on different leaf vdevs).
6649 		 */
6650 		offset = ztest_random(fsize / (leaves << bshift)) *
6651 		    (leaves << bshift) + (leaf << bshift) +
6652 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6653 
6654 		/*
6655 		 * Only allow damage to the labels at one end of the vdev.
6656 		 *
6657 		 * If all labels are damaged, the device will be totally
6658 		 * inaccessible, which will result in loss of data,
6659 		 * because we also damage (parts of) the other side of
6660 		 * the mirror/raidz.
6661 		 *
6662 		 * Additionally, we will always have both an even and an
6663 		 * odd label, so that we can handle crashes in the
6664 		 * middle of vdev_config_sync().
6665 		 */
6666 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6667 			continue;
6668 
6669 		/*
6670 		 * The two end labels are stored at the "end" of the disk, but
6671 		 * the end of the disk (vdev_psize) is aligned to
6672 		 * sizeof (vdev_label_t).
6673 		 */
6674 		uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6675 		    uint64_t);
6676 		if ((leaf & 1) == 1 &&
6677 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6678 			continue;
6679 
6680 		if (mirror_save != zs->zs_mirrors) {
6681 			(void) close(fd);
6682 			goto out;
6683 		}
6684 
6685 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6686 			fatal(B_TRUE,
6687 			    "can't inject bad word at 0x%"PRIx64" in %s",
6688 			    offset, pathrand);
6689 
6690 		if (ztest_opts.zo_verbose >= 7)
6691 			(void) printf("injected bad word into %s,"
6692 			    " offset 0x%"PRIx64"\n", pathrand, offset);
6693 
6694 		injected = B_TRUE;
6695 	}
6696 
6697 	(void) close(fd);
6698 out:
6699 	mutex_exit(&ztest_vdev_lock);
6700 
6701 	if (injected && ztest_opts.zo_raid_do_expand) {
6702 		int error = spa_scan(spa, POOL_SCAN_SCRUB);
6703 		if (error == 0) {
6704 			while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6705 				txg_wait_synced(spa_get_dsl(spa), 0);
6706 		}
6707 	}
6708 
6709 	umem_free(path0, MAXPATHLEN);
6710 	umem_free(pathrand, MAXPATHLEN);
6711 }
6712 
6713 /*
6714  * By design ztest will never inject uncorrectable damage in to the pool.
6715  * Issue a scrub, wait for it to complete, and verify there is never any
6716  * persistent damage.
6717  *
6718  * Only after a full scrub has been completed is it safe to start injecting
6719  * data corruption.  See the comment in zfs_fault_inject().
6720  */
6721 static int
6722 ztest_scrub_impl(spa_t *spa)
6723 {
6724 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6725 	if (error)
6726 		return (error);
6727 
6728 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6729 		txg_wait_synced(spa_get_dsl(spa), 0);
6730 
6731 	if (spa_approx_errlog_size(spa) > 0)
6732 		return (ECKSUM);
6733 
6734 	ztest_pool_scrubbed = B_TRUE;
6735 
6736 	return (0);
6737 }
6738 
6739 /*
6740  * Scrub the pool.
6741  */
6742 void
6743 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6744 {
6745 	(void) zd, (void) id;
6746 	spa_t *spa = ztest_spa;
6747 	int error;
6748 
6749 	/*
6750 	 * Scrub in progress by device removal.
6751 	 */
6752 	if (ztest_device_removal_active)
6753 		return;
6754 
6755 	/*
6756 	 * Start a scrub, wait a moment, then force a restart.
6757 	 */
6758 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6759 	(void) poll(NULL, 0, 100);
6760 
6761 	error = ztest_scrub_impl(spa);
6762 	if (error == EBUSY)
6763 		error = 0;
6764 	ASSERT0(error);
6765 }
6766 
6767 /*
6768  * Change the guid for the pool.
6769  */
6770 void
6771 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6772 {
6773 	(void) zd, (void) id;
6774 	spa_t *spa = ztest_spa;
6775 	uint64_t orig, load;
6776 	int error;
6777 	ztest_shared_t *zs = ztest_shared;
6778 
6779 	if (ztest_opts.zo_mmp_test)
6780 		return;
6781 
6782 	orig = spa_guid(spa);
6783 	load = spa_load_guid(spa);
6784 
6785 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6786 	error = spa_change_guid(spa, NULL);
6787 	zs->zs_guid = spa_guid(spa);
6788 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6789 
6790 	if (error != 0)
6791 		return;
6792 
6793 	if (ztest_opts.zo_verbose >= 4) {
6794 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6795 		    orig, spa_guid(spa));
6796 	}
6797 
6798 	VERIFY3U(orig, !=, spa_guid(spa));
6799 	VERIFY3U(load, ==, spa_load_guid(spa));
6800 }
6801 
6802 void
6803 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6804 {
6805 	(void) zd, (void) id;
6806 	hrtime_t end = gethrtime() + NANOSEC;
6807 	zio_cksum_salt_t salt;
6808 	void *salt_ptr = &salt.zcs_bytes;
6809 	struct abd *abd_data, *abd_meta;
6810 	void *buf, *templ;
6811 	int i, *ptr;
6812 	uint32_t size;
6813 	BLAKE3_CTX ctx;
6814 	const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6815 
6816 	size = ztest_random_blocksize();
6817 	buf = umem_alloc(size, UMEM_NOFAIL);
6818 	abd_data = abd_alloc(size, B_FALSE);
6819 	abd_meta = abd_alloc(size, B_TRUE);
6820 
6821 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6822 		*ptr = ztest_random(UINT_MAX);
6823 	memset(salt_ptr, 'A', 32);
6824 
6825 	abd_copy_from_buf_off(abd_data, buf, 0, size);
6826 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6827 
6828 	while (gethrtime() <= end) {
6829 		int run_count = 100;
6830 		zio_cksum_t zc_ref1, zc_ref2;
6831 		zio_cksum_t zc_res1, zc_res2;
6832 
6833 		void *ref1 = &zc_ref1;
6834 		void *ref2 = &zc_ref2;
6835 		void *res1 = &zc_res1;
6836 		void *res2 = &zc_res2;
6837 
6838 		/* BLAKE3_KEY_LEN = 32 */
6839 		VERIFY0(blake3->setname("generic"));
6840 		templ = abd_checksum_blake3_tmpl_init(&salt);
6841 		Blake3_InitKeyed(&ctx, salt_ptr);
6842 		Blake3_Update(&ctx, buf, size);
6843 		Blake3_Final(&ctx, ref1);
6844 		zc_ref2 = zc_ref1;
6845 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6846 		abd_checksum_blake3_tmpl_free(templ);
6847 
6848 		VERIFY0(blake3->setname("cycle"));
6849 		while (run_count-- > 0) {
6850 
6851 			/* Test current implementation */
6852 			Blake3_InitKeyed(&ctx, salt_ptr);
6853 			Blake3_Update(&ctx, buf, size);
6854 			Blake3_Final(&ctx, res1);
6855 			zc_res2 = zc_res1;
6856 			ZIO_CHECKSUM_BSWAP(&zc_res2);
6857 
6858 			VERIFY0(memcmp(ref1, res1, 32));
6859 			VERIFY0(memcmp(ref2, res2, 32));
6860 
6861 			/* Test ABD - data */
6862 			templ = abd_checksum_blake3_tmpl_init(&salt);
6863 			abd_checksum_blake3_native(abd_data, size,
6864 			    templ, &zc_res1);
6865 			abd_checksum_blake3_byteswap(abd_data, size,
6866 			    templ, &zc_res2);
6867 
6868 			VERIFY0(memcmp(ref1, res1, 32));
6869 			VERIFY0(memcmp(ref2, res2, 32));
6870 
6871 			/* Test ABD - metadata */
6872 			abd_checksum_blake3_native(abd_meta, size,
6873 			    templ, &zc_res1);
6874 			abd_checksum_blake3_byteswap(abd_meta, size,
6875 			    templ, &zc_res2);
6876 			abd_checksum_blake3_tmpl_free(templ);
6877 
6878 			VERIFY0(memcmp(ref1, res1, 32));
6879 			VERIFY0(memcmp(ref2, res2, 32));
6880 
6881 		}
6882 	}
6883 
6884 	abd_free(abd_data);
6885 	abd_free(abd_meta);
6886 	umem_free(buf, size);
6887 }
6888 
6889 void
6890 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6891 {
6892 	(void) zd, (void) id;
6893 	hrtime_t end = gethrtime() + NANOSEC;
6894 
6895 	while (gethrtime() <= end) {
6896 		int run_count = 100;
6897 		void *buf;
6898 		struct abd *abd_data, *abd_meta;
6899 		uint32_t size;
6900 		int *ptr;
6901 		int i;
6902 		zio_cksum_t zc_ref;
6903 		zio_cksum_t zc_ref_byteswap;
6904 
6905 		size = ztest_random_blocksize();
6906 
6907 		buf = umem_alloc(size, UMEM_NOFAIL);
6908 		abd_data = abd_alloc(size, B_FALSE);
6909 		abd_meta = abd_alloc(size, B_TRUE);
6910 
6911 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6912 			*ptr = ztest_random(UINT_MAX);
6913 
6914 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6915 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6916 
6917 		VERIFY0(fletcher_4_impl_set("scalar"));
6918 		fletcher_4_native(buf, size, NULL, &zc_ref);
6919 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6920 
6921 		VERIFY0(fletcher_4_impl_set("cycle"));
6922 		while (run_count-- > 0) {
6923 			zio_cksum_t zc;
6924 			zio_cksum_t zc_byteswap;
6925 
6926 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6927 			fletcher_4_native(buf, size, NULL, &zc);
6928 
6929 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6930 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6931 			    sizeof (zc_byteswap)));
6932 
6933 			/* Test ABD - data */
6934 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6935 			    &zc_byteswap);
6936 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6937 
6938 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6939 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6940 			    sizeof (zc_byteswap)));
6941 
6942 			/* Test ABD - metadata */
6943 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6944 			    &zc_byteswap);
6945 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6946 
6947 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6948 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6949 			    sizeof (zc_byteswap)));
6950 
6951 		}
6952 
6953 		umem_free(buf, size);
6954 		abd_free(abd_data);
6955 		abd_free(abd_meta);
6956 	}
6957 }
6958 
6959 void
6960 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6961 {
6962 	(void) zd, (void) id;
6963 	void *buf;
6964 	size_t size;
6965 	int *ptr;
6966 	int i;
6967 	zio_cksum_t zc_ref;
6968 	zio_cksum_t zc_ref_bswap;
6969 
6970 	hrtime_t end = gethrtime() + NANOSEC;
6971 
6972 	while (gethrtime() <= end) {
6973 		int run_count = 100;
6974 
6975 		size = ztest_random_blocksize();
6976 		buf = umem_alloc(size, UMEM_NOFAIL);
6977 
6978 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6979 			*ptr = ztest_random(UINT_MAX);
6980 
6981 		VERIFY0(fletcher_4_impl_set("scalar"));
6982 		fletcher_4_native(buf, size, NULL, &zc_ref);
6983 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6984 
6985 		VERIFY0(fletcher_4_impl_set("cycle"));
6986 
6987 		while (run_count-- > 0) {
6988 			zio_cksum_t zc;
6989 			zio_cksum_t zc_bswap;
6990 			size_t pos = 0;
6991 
6992 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6993 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6994 
6995 			while (pos < size) {
6996 				size_t inc = 64 * ztest_random(size / 67);
6997 				/* sometimes add few bytes to test non-simd */
6998 				if (ztest_random(100) < 10)
6999 					inc += P2ALIGN_TYPED(ztest_random(64),
7000 					    sizeof (uint32_t), uint64_t);
7001 
7002 				if (inc > (size - pos))
7003 					inc = size - pos;
7004 
7005 				fletcher_4_incremental_native(buf + pos, inc,
7006 				    &zc);
7007 				fletcher_4_incremental_byteswap(buf + pos, inc,
7008 				    &zc_bswap);
7009 
7010 				pos += inc;
7011 			}
7012 
7013 			VERIFY3U(pos, ==, size);
7014 
7015 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7016 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7017 
7018 			/*
7019 			 * verify if incremental on the whole buffer is
7020 			 * equivalent to non-incremental version
7021 			 */
7022 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7023 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7024 
7025 			fletcher_4_incremental_native(buf, size, &zc);
7026 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7027 
7028 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7029 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7030 		}
7031 
7032 		umem_free(buf, size);
7033 	}
7034 }
7035 
7036 void
7037 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7038 {
7039 	(void) zd, (void) id;
7040 	spa_t *spa;
7041 
7042 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7043 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7044 
7045 	ddt_prefetch_all(spa);
7046 
7047 	spa_close(spa, FTAG);
7048 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7049 }
7050 
7051 static int
7052 ztest_set_global_vars(void)
7053 {
7054 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7055 		char *kv = ztest_opts.zo_gvars[i];
7056 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7057 		VERIFY3U(strlen(kv), >, 0);
7058 		int err = set_global_var(kv);
7059 		if (ztest_opts.zo_verbose > 0) {
7060 			(void) printf("setting global var %s ... %s\n", kv,
7061 			    err ? "failed" : "ok");
7062 		}
7063 		if (err != 0) {
7064 			(void) fprintf(stderr,
7065 			    "failed to set global var '%s'\n", kv);
7066 			return (err);
7067 		}
7068 	}
7069 	return (0);
7070 }
7071 
7072 static char **
7073 ztest_global_vars_to_zdb_args(void)
7074 {
7075 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7076 	char **cur = args;
7077 	if (args == NULL)
7078 		return (NULL);
7079 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7080 		*cur++ = (char *)"-o";
7081 		*cur++ = ztest_opts.zo_gvars[i];
7082 	}
7083 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7084 	*cur = NULL;
7085 	return (args);
7086 }
7087 
7088 /* The end of strings is indicated by a NULL element */
7089 static char *
7090 join_strings(char **strings, const char *sep)
7091 {
7092 	size_t totallen = 0;
7093 	for (char **sp = strings; *sp != NULL; sp++) {
7094 		totallen += strlen(*sp);
7095 		totallen += strlen(sep);
7096 	}
7097 	if (totallen > 0) {
7098 		ASSERT(totallen >= strlen(sep));
7099 		totallen -= strlen(sep);
7100 	}
7101 
7102 	size_t buflen = totallen + 1;
7103 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7104 	o[0] = '\0';
7105 	for (char **sp = strings; *sp != NULL; sp++) {
7106 		size_t would;
7107 		would = strlcat(o, *sp, buflen);
7108 		VERIFY3U(would, <, buflen);
7109 		if (*(sp+1) == NULL) {
7110 			break;
7111 		}
7112 		would = strlcat(o, sep, buflen);
7113 		VERIFY3U(would, <, buflen);
7114 	}
7115 	ASSERT3S(strlen(o), ==, totallen);
7116 	return (o);
7117 }
7118 
7119 static int
7120 ztest_check_path(char *path)
7121 {
7122 	struct stat s;
7123 	/* return true on success */
7124 	return (!stat(path, &s));
7125 }
7126 
7127 static void
7128 ztest_get_zdb_bin(char *bin, int len)
7129 {
7130 	char *zdb_path;
7131 	/*
7132 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
7133 	 * let popen to search through PATH.
7134 	 */
7135 	if ((zdb_path = getenv("ZDB"))) {
7136 		strlcpy(bin, zdb_path, len); /* In env */
7137 		if (!ztest_check_path(bin)) {
7138 			ztest_dump_core = 0;
7139 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
7140 		}
7141 		return;
7142 	}
7143 
7144 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7145 	if (strstr(bin, ".libs/ztest")) {
7146 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7147 		strcat(bin, "zdb");
7148 		if (ztest_check_path(bin))
7149 			return;
7150 	}
7151 	strcpy(bin, "zdb");
7152 }
7153 
7154 static vdev_t *
7155 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7156 {
7157 	if (vd == NULL)
7158 		return (NULL);
7159 
7160 	if (vd->vdev_children == 0)
7161 		return (vd);
7162 
7163 	vdev_t *eligible[vd->vdev_children];
7164 	int eligible_idx = 0, i;
7165 	for (i = 0; i < vd->vdev_children; i++) {
7166 		vdev_t *cvd = vd->vdev_child[i];
7167 		if (cvd->vdev_top->vdev_removing)
7168 			continue;
7169 		if (cvd->vdev_children > 0 ||
7170 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7171 			eligible[eligible_idx++] = cvd;
7172 		}
7173 	}
7174 	VERIFY3S(eligible_idx, >, 0);
7175 
7176 	uint64_t child_no = ztest_random(eligible_idx);
7177 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7178 }
7179 
7180 void
7181 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7182 {
7183 	(void) zd, (void) id;
7184 	spa_t *spa = ztest_spa;
7185 	int error = 0;
7186 
7187 	mutex_enter(&ztest_vdev_lock);
7188 
7189 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7190 
7191 	/* Random leaf vdev */
7192 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7193 	if (rand_vd == NULL) {
7194 		spa_config_exit(spa, SCL_VDEV, FTAG);
7195 		mutex_exit(&ztest_vdev_lock);
7196 		return;
7197 	}
7198 
7199 	/*
7200 	 * The random vdev we've selected may change as soon as we
7201 	 * drop the spa_config_lock. We create local copies of things
7202 	 * we're interested in.
7203 	 */
7204 	uint64_t guid = rand_vd->vdev_guid;
7205 	char *path = strdup(rand_vd->vdev_path);
7206 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7207 
7208 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7209 	spa_config_exit(spa, SCL_VDEV, FTAG);
7210 
7211 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7212 
7213 	nvlist_t *vdev_guids = fnvlist_alloc();
7214 	nvlist_t *vdev_errlist = fnvlist_alloc();
7215 	fnvlist_add_uint64(vdev_guids, path, guid);
7216 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7217 	fnvlist_free(vdev_guids);
7218 	fnvlist_free(vdev_errlist);
7219 
7220 	switch (cmd) {
7221 	case POOL_INITIALIZE_CANCEL:
7222 		if (ztest_opts.zo_verbose >= 4) {
7223 			(void) printf("Cancel initialize %s", path);
7224 			if (!active)
7225 				(void) printf(" failed (no initialize active)");
7226 			(void) printf("\n");
7227 		}
7228 		break;
7229 	case POOL_INITIALIZE_START:
7230 		if (ztest_opts.zo_verbose >= 4) {
7231 			(void) printf("Start initialize %s", path);
7232 			if (active && error == 0)
7233 				(void) printf(" failed (already active)");
7234 			else if (error != 0)
7235 				(void) printf(" failed (error %d)", error);
7236 			(void) printf("\n");
7237 		}
7238 		break;
7239 	case POOL_INITIALIZE_SUSPEND:
7240 		if (ztest_opts.zo_verbose >= 4) {
7241 			(void) printf("Suspend initialize %s", path);
7242 			if (!active)
7243 				(void) printf(" failed (no initialize active)");
7244 			(void) printf("\n");
7245 		}
7246 		break;
7247 	}
7248 	free(path);
7249 	mutex_exit(&ztest_vdev_lock);
7250 }
7251 
7252 void
7253 ztest_trim(ztest_ds_t *zd, uint64_t id)
7254 {
7255 	(void) zd, (void) id;
7256 	spa_t *spa = ztest_spa;
7257 	int error = 0;
7258 
7259 	mutex_enter(&ztest_vdev_lock);
7260 
7261 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7262 
7263 	/* Random leaf vdev */
7264 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7265 	if (rand_vd == NULL) {
7266 		spa_config_exit(spa, SCL_VDEV, FTAG);
7267 		mutex_exit(&ztest_vdev_lock);
7268 		return;
7269 	}
7270 
7271 	/*
7272 	 * The random vdev we've selected may change as soon as we
7273 	 * drop the spa_config_lock. We create local copies of things
7274 	 * we're interested in.
7275 	 */
7276 	uint64_t guid = rand_vd->vdev_guid;
7277 	char *path = strdup(rand_vd->vdev_path);
7278 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
7279 
7280 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7281 	spa_config_exit(spa, SCL_VDEV, FTAG);
7282 
7283 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7284 	uint64_t rate = 1 << ztest_random(30);
7285 	boolean_t partial = (ztest_random(5) > 0);
7286 	boolean_t secure = (ztest_random(5) > 0);
7287 
7288 	nvlist_t *vdev_guids = fnvlist_alloc();
7289 	nvlist_t *vdev_errlist = fnvlist_alloc();
7290 	fnvlist_add_uint64(vdev_guids, path, guid);
7291 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7292 	    secure, vdev_errlist);
7293 	fnvlist_free(vdev_guids);
7294 	fnvlist_free(vdev_errlist);
7295 
7296 	switch (cmd) {
7297 	case POOL_TRIM_CANCEL:
7298 		if (ztest_opts.zo_verbose >= 4) {
7299 			(void) printf("Cancel TRIM %s", path);
7300 			if (!active)
7301 				(void) printf(" failed (no TRIM active)");
7302 			(void) printf("\n");
7303 		}
7304 		break;
7305 	case POOL_TRIM_START:
7306 		if (ztest_opts.zo_verbose >= 4) {
7307 			(void) printf("Start TRIM %s", path);
7308 			if (active && error == 0)
7309 				(void) printf(" failed (already active)");
7310 			else if (error != 0)
7311 				(void) printf(" failed (error %d)", error);
7312 			(void) printf("\n");
7313 		}
7314 		break;
7315 	case POOL_TRIM_SUSPEND:
7316 		if (ztest_opts.zo_verbose >= 4) {
7317 			(void) printf("Suspend TRIM %s", path);
7318 			if (!active)
7319 				(void) printf(" failed (no TRIM active)");
7320 			(void) printf("\n");
7321 		}
7322 		break;
7323 	}
7324 	free(path);
7325 	mutex_exit(&ztest_vdev_lock);
7326 }
7327 
7328 void
7329 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7330 {
7331 	(void) zd, (void) id;
7332 
7333 	spa_t *spa = ztest_spa;
7334 	uint64_t pct = ztest_random(15) + 1;
7335 
7336 	(void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7337 }
7338 
7339 /*
7340  * Verify pool integrity by running zdb.
7341  */
7342 static void
7343 ztest_run_zdb(uint64_t guid)
7344 {
7345 	int status;
7346 	char *bin;
7347 	char *zdb;
7348 	char *zbuf;
7349 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
7350 	FILE *fp;
7351 
7352 	bin = umem_alloc(len, UMEM_NOFAIL);
7353 	zdb = umem_alloc(len, UMEM_NOFAIL);
7354 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
7355 
7356 	ztest_get_zdb_bin(bin, len);
7357 
7358 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
7359 	if (set_gvars_args == NULL) {
7360 		fatal(B_FALSE, "Failed to allocate memory in "
7361 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7362 	}
7363 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7364 	free(set_gvars_args);
7365 
7366 	size_t would = snprintf(zdb, len,
7367 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7368 	    bin,
7369 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
7370 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
7371 	    set_gvars_args_joined,
7372 	    ztest_opts.zo_dir,
7373 	    guid);
7374 	ASSERT3U(would, <, len);
7375 
7376 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7377 
7378 	if (ztest_opts.zo_verbose >= 5)
7379 		(void) printf("Executing %s\n", zdb);
7380 
7381 	fp = popen(zdb, "r");
7382 
7383 	while (fgets(zbuf, 1024, fp) != NULL)
7384 		if (ztest_opts.zo_verbose >= 3)
7385 			(void) printf("%s", zbuf);
7386 
7387 	status = pclose(fp);
7388 
7389 	if (status == 0)
7390 		goto out;
7391 
7392 	ztest_dump_core = 0;
7393 	if (WIFEXITED(status))
7394 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7395 	else
7396 		fatal(B_FALSE, "'%s' died with signal %d",
7397 		    zdb, WTERMSIG(status));
7398 out:
7399 	umem_free(bin, len);
7400 	umem_free(zdb, len);
7401 	umem_free(zbuf, 1024);
7402 }
7403 
7404 static void
7405 ztest_walk_pool_directory(const char *header)
7406 {
7407 	spa_t *spa = NULL;
7408 
7409 	if (ztest_opts.zo_verbose >= 6)
7410 		(void) puts(header);
7411 
7412 	mutex_enter(&spa_namespace_lock);
7413 	while ((spa = spa_next(spa)) != NULL)
7414 		if (ztest_opts.zo_verbose >= 6)
7415 			(void) printf("\t%s\n", spa_name(spa));
7416 	mutex_exit(&spa_namespace_lock);
7417 }
7418 
7419 static void
7420 ztest_spa_import_export(char *oldname, char *newname)
7421 {
7422 	nvlist_t *config, *newconfig;
7423 	uint64_t pool_guid;
7424 	spa_t *spa;
7425 	int error;
7426 
7427 	if (ztest_opts.zo_verbose >= 4) {
7428 		(void) printf("import/export: old = %s, new = %s\n",
7429 		    oldname, newname);
7430 	}
7431 
7432 	/*
7433 	 * Clean up from previous runs.
7434 	 */
7435 	(void) spa_destroy(newname);
7436 
7437 	/*
7438 	 * Get the pool's configuration and guid.
7439 	 */
7440 	VERIFY0(spa_open(oldname, &spa, FTAG));
7441 
7442 	/*
7443 	 * Kick off a scrub to tickle scrub/export races.
7444 	 */
7445 	if (ztest_random(2) == 0)
7446 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7447 
7448 	pool_guid = spa_guid(spa);
7449 	spa_close(spa, FTAG);
7450 
7451 	ztest_walk_pool_directory("pools before export");
7452 
7453 	/*
7454 	 * Export it.
7455 	 */
7456 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7457 
7458 	ztest_walk_pool_directory("pools after export");
7459 
7460 	/*
7461 	 * Try to import it.
7462 	 */
7463 	newconfig = spa_tryimport(config);
7464 	ASSERT3P(newconfig, !=, NULL);
7465 	fnvlist_free(newconfig);
7466 
7467 	/*
7468 	 * Import it under the new name.
7469 	 */
7470 	error = spa_import(newname, config, NULL, 0);
7471 	if (error != 0) {
7472 		dump_nvlist(config, 0);
7473 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7474 		    oldname, newname, error);
7475 	}
7476 
7477 	ztest_walk_pool_directory("pools after import");
7478 
7479 	/*
7480 	 * Try to import it again -- should fail with EEXIST.
7481 	 */
7482 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7483 
7484 	/*
7485 	 * Try to import it under a different name -- should fail with EEXIST.
7486 	 */
7487 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7488 
7489 	/*
7490 	 * Verify that the pool is no longer visible under the old name.
7491 	 */
7492 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7493 
7494 	/*
7495 	 * Verify that we can open and close the pool using the new name.
7496 	 */
7497 	VERIFY0(spa_open(newname, &spa, FTAG));
7498 	ASSERT3U(pool_guid, ==, spa_guid(spa));
7499 	spa_close(spa, FTAG);
7500 
7501 	fnvlist_free(config);
7502 }
7503 
7504 static void
7505 ztest_resume(spa_t *spa)
7506 {
7507 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7508 		(void) printf("resuming from suspended state\n");
7509 	spa_vdev_state_enter(spa, SCL_NONE);
7510 	vdev_clear(spa, NULL);
7511 	(void) spa_vdev_state_exit(spa, NULL, 0);
7512 	(void) zio_resume(spa);
7513 }
7514 
7515 static __attribute__((noreturn)) void
7516 ztest_resume_thread(void *arg)
7517 {
7518 	spa_t *spa = arg;
7519 
7520 	/*
7521 	 * Synthesize aged DDT entries for ddt prune testing
7522 	 */
7523 	ddt_prune_artificial_age = B_TRUE;
7524 	if (ztest_opts.zo_verbose >= 3)
7525 		ddt_dump_prune_histogram = B_TRUE;
7526 
7527 	while (!ztest_exiting) {
7528 		if (spa_suspended(spa))
7529 			ztest_resume(spa);
7530 		(void) poll(NULL, 0, 100);
7531 
7532 		/*
7533 		 * Periodically change the zfs_compressed_arc_enabled setting.
7534 		 */
7535 		if (ztest_random(10) == 0)
7536 			zfs_compressed_arc_enabled = ztest_random(2);
7537 
7538 		/*
7539 		 * Periodically change the zfs_abd_scatter_enabled setting.
7540 		 */
7541 		if (ztest_random(10) == 0)
7542 			zfs_abd_scatter_enabled = ztest_random(2);
7543 	}
7544 
7545 	thread_exit();
7546 }
7547 
7548 static __attribute__((noreturn)) void
7549 ztest_deadman_thread(void *arg)
7550 {
7551 	ztest_shared_t *zs = arg;
7552 	spa_t *spa = ztest_spa;
7553 	hrtime_t delay, overdue, last_run = gethrtime();
7554 
7555 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7556 	    MSEC2NSEC(zfs_deadman_synctime_ms);
7557 
7558 	while (!ztest_exiting) {
7559 		/*
7560 		 * Wait for the delay timer while checking occasionally
7561 		 * if we should stop.
7562 		 */
7563 		if (gethrtime() < last_run + delay) {
7564 			(void) poll(NULL, 0, 1000);
7565 			continue;
7566 		}
7567 
7568 		/*
7569 		 * If the pool is suspended then fail immediately. Otherwise,
7570 		 * check to see if the pool is making any progress. If
7571 		 * vdev_deadman() discovers that there hasn't been any recent
7572 		 * I/Os then it will end up aborting the tests.
7573 		 */
7574 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7575 			fatal(B_FALSE,
7576 			    "aborting test after %llu seconds because "
7577 			    "pool has transitioned to a suspended state.",
7578 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7579 		}
7580 		vdev_deadman(spa->spa_root_vdev, FTAG);
7581 
7582 		/*
7583 		 * If the process doesn't complete within a grace period of
7584 		 * zfs_deadman_synctime_ms over the expected finish time,
7585 		 * then it may be hung and is terminated.
7586 		 */
7587 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7588 		if (gethrtime() > overdue) {
7589 			fatal(B_FALSE,
7590 			    "aborting test after %llu seconds because "
7591 			    "the process is overdue for termination.",
7592 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7593 		}
7594 
7595 		(void) printf("ztest has been running for %lld seconds\n",
7596 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7597 
7598 		last_run = gethrtime();
7599 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7600 	}
7601 
7602 	thread_exit();
7603 }
7604 
7605 static void
7606 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7607 {
7608 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7609 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7610 	hrtime_t functime = gethrtime();
7611 	int i;
7612 
7613 	for (i = 0; i < zi->zi_iters; i++)
7614 		zi->zi_func(zd, id);
7615 
7616 	functime = gethrtime() - functime;
7617 
7618 	atomic_add_64(&zc->zc_count, 1);
7619 	atomic_add_64(&zc->zc_time, functime);
7620 
7621 	if (ztest_opts.zo_verbose >= 4)
7622 		(void) printf("%6.2f sec in %s\n",
7623 		    (double)functime / NANOSEC, zi->zi_funcname);
7624 }
7625 
7626 typedef struct ztest_raidz_expand_io {
7627 	uint64_t	rzx_id;
7628 	uint64_t	rzx_amount;
7629 	uint64_t	rzx_bufsize;
7630 	const void	*rzx_buffer;
7631 	uint64_t	rzx_alloc_max;
7632 	spa_t		*rzx_spa;
7633 } ztest_expand_io_t;
7634 
7635 #undef OD_ARRAY_SIZE
7636 #define	OD_ARRAY_SIZE	10
7637 
7638 /*
7639  * Write a request amount of data to some dataset objects.
7640  * There will be ztest_opts.zo_threads count of these running in parallel.
7641  */
7642 static __attribute__((noreturn)) void
7643 ztest_rzx_thread(void *arg)
7644 {
7645 	ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7646 	ztest_od_t *od;
7647 	int batchsize;
7648 	int od_size;
7649 	ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7650 	spa_t *spa = info->rzx_spa;
7651 
7652 	od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7653 	od = umem_alloc(od_size, UMEM_NOFAIL);
7654 	batchsize = OD_ARRAY_SIZE;
7655 
7656 	/* Create objects to write to */
7657 	for (int b = 0; b < batchsize; b++) {
7658 		ztest_od_init(od + b, info->rzx_id, FTAG, b,
7659 		    DMU_OT_UINT64_OTHER, 0, 0, 0);
7660 	}
7661 	if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7662 		umem_free(od, od_size);
7663 		thread_exit();
7664 	}
7665 
7666 	for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7667 	    offset += info->rzx_bufsize) {
7668 		/* write to 10 objects */
7669 		for (int i = 0; i < batchsize && written < info->rzx_amount;
7670 		    i++) {
7671 			(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7672 			ztest_write(zd, od[i].od_object, offset,
7673 			    info->rzx_bufsize, info->rzx_buffer);
7674 			(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7675 			written += info->rzx_bufsize;
7676 		}
7677 		txg_wait_synced(spa_get_dsl(spa), 0);
7678 		/* due to inflation, we'll typically bail here */
7679 		if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7680 		    info->rzx_alloc_max) {
7681 			break;
7682 		}
7683 	}
7684 
7685 	/* Remove a few objects to leave some holes in allocation space */
7686 	mutex_enter(&zd->zd_dirobj_lock);
7687 	(void) ztest_remove(zd, od, 2);
7688 	mutex_exit(&zd->zd_dirobj_lock);
7689 
7690 	umem_free(od, od_size);
7691 
7692 	thread_exit();
7693 }
7694 
7695 static __attribute__((noreturn)) void
7696 ztest_thread(void *arg)
7697 {
7698 	int rand;
7699 	uint64_t id = (uintptr_t)arg;
7700 	ztest_shared_t *zs = ztest_shared;
7701 	uint64_t call_next;
7702 	hrtime_t now;
7703 	ztest_info_t *zi;
7704 	ztest_shared_callstate_t *zc;
7705 
7706 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7707 		/*
7708 		 * See if it's time to force a crash.
7709 		 */
7710 		if (now > zs->zs_thread_kill &&
7711 		    raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7712 			ztest_kill(zs);
7713 		}
7714 
7715 		/*
7716 		 * If we're getting ENOSPC with some regularity, stop.
7717 		 */
7718 		if (zs->zs_enospc_count > 10)
7719 			break;
7720 
7721 		/*
7722 		 * Pick a random function to execute.
7723 		 */
7724 		rand = ztest_random(ZTEST_FUNCS);
7725 		zi = &ztest_info[rand];
7726 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7727 		call_next = zc->zc_next;
7728 
7729 		if (now >= call_next &&
7730 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7731 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7732 			ztest_execute(rand, zi, id);
7733 		}
7734 	}
7735 
7736 	thread_exit();
7737 }
7738 
7739 static void
7740 ztest_dataset_name(char *dsname, const char *pool, int d)
7741 {
7742 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7743 }
7744 
7745 static void
7746 ztest_dataset_destroy(int d)
7747 {
7748 	char name[ZFS_MAX_DATASET_NAME_LEN];
7749 	int t;
7750 
7751 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7752 
7753 	if (ztest_opts.zo_verbose >= 3)
7754 		(void) printf("Destroying %s to free up space\n", name);
7755 
7756 	/*
7757 	 * Cleanup any non-standard clones and snapshots.  In general,
7758 	 * ztest thread t operates on dataset (t % zopt_datasets),
7759 	 * so there may be more than one thing to clean up.
7760 	 */
7761 	for (t = d; t < ztest_opts.zo_threads;
7762 	    t += ztest_opts.zo_datasets)
7763 		ztest_dsl_dataset_cleanup(name, t);
7764 
7765 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7766 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7767 }
7768 
7769 static void
7770 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7771 {
7772 	uint64_t usedobjs, dirobjs, scratch;
7773 
7774 	/*
7775 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7776 	 * Therefore, the number of objects in use should equal the
7777 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7778 	 * If not, we have an object leak.
7779 	 *
7780 	 * Note that we can only check this in ztest_dataset_open(),
7781 	 * when the open-context and syncing-context values agree.
7782 	 * That's because zap_count() returns the open-context value,
7783 	 * while dmu_objset_space() returns the rootbp fill count.
7784 	 */
7785 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7786 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7787 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7788 }
7789 
7790 static int
7791 ztest_dataset_open(int d)
7792 {
7793 	ztest_ds_t *zd = &ztest_ds[d];
7794 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7795 	objset_t *os;
7796 	zilog_t *zilog;
7797 	char name[ZFS_MAX_DATASET_NAME_LEN];
7798 	int error;
7799 
7800 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7801 
7802 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7803 
7804 	error = ztest_dataset_create(name);
7805 	if (error == ENOSPC) {
7806 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7807 		ztest_record_enospc(FTAG);
7808 		return (error);
7809 	}
7810 	ASSERT(error == 0 || error == EEXIST);
7811 
7812 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7813 	    B_TRUE, zd, &os));
7814 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7815 
7816 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7817 
7818 	zilog = zd->zd_zilog;
7819 
7820 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7821 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7822 		fatal(B_FALSE, "missing log records: "
7823 		    "claimed %"PRIu64" < committed %"PRIu64"",
7824 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7825 
7826 	ztest_dataset_dirobj_verify(zd);
7827 
7828 	zil_replay(os, zd, ztest_replay_vector);
7829 
7830 	ztest_dataset_dirobj_verify(zd);
7831 
7832 	if (ztest_opts.zo_verbose >= 6)
7833 		(void) printf("%s replay %"PRIu64" blocks, "
7834 		    "%"PRIu64" records, seq %"PRIu64"\n",
7835 		    zd->zd_name,
7836 		    zilog->zl_parse_blk_count,
7837 		    zilog->zl_parse_lr_count,
7838 		    zilog->zl_replaying_seq);
7839 
7840 	zilog = zil_open(os, ztest_get_data, NULL);
7841 
7842 	if (zilog->zl_replaying_seq != 0 &&
7843 	    zilog->zl_replaying_seq < committed_seq)
7844 		fatal(B_FALSE, "missing log records: "
7845 		    "replayed %"PRIu64" < committed %"PRIu64"",
7846 		    zilog->zl_replaying_seq, committed_seq);
7847 
7848 	return (0);
7849 }
7850 
7851 static void
7852 ztest_dataset_close(int d)
7853 {
7854 	ztest_ds_t *zd = &ztest_ds[d];
7855 
7856 	zil_close(zd->zd_zilog);
7857 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7858 
7859 	ztest_zd_fini(zd);
7860 }
7861 
7862 static int
7863 ztest_replay_zil_cb(const char *name, void *arg)
7864 {
7865 	(void) arg;
7866 	objset_t *os;
7867 	ztest_ds_t *zdtmp;
7868 
7869 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7870 	    B_TRUE, FTAG, &os));
7871 
7872 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7873 
7874 	ztest_zd_init(zdtmp, NULL, os);
7875 	zil_replay(os, zdtmp, ztest_replay_vector);
7876 	ztest_zd_fini(zdtmp);
7877 
7878 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7879 	    ztest_opts.zo_verbose >= 6) {
7880 		zilog_t *zilog = dmu_objset_zil(os);
7881 
7882 		(void) printf("%s replay %"PRIu64" blocks, "
7883 		    "%"PRIu64" records, seq %"PRIu64"\n",
7884 		    name,
7885 		    zilog->zl_parse_blk_count,
7886 		    zilog->zl_parse_lr_count,
7887 		    zilog->zl_replaying_seq);
7888 	}
7889 
7890 	umem_free(zdtmp, sizeof (ztest_ds_t));
7891 
7892 	dmu_objset_disown(os, B_TRUE, FTAG);
7893 	return (0);
7894 }
7895 
7896 static void
7897 ztest_freeze(void)
7898 {
7899 	ztest_ds_t *zd = &ztest_ds[0];
7900 	spa_t *spa;
7901 	int numloops = 0;
7902 
7903 	/* freeze not supported during RAIDZ expansion */
7904 	if (ztest_opts.zo_raid_do_expand)
7905 		return;
7906 
7907 	if (ztest_opts.zo_verbose >= 3)
7908 		(void) printf("testing spa_freeze()...\n");
7909 
7910 	raidz_scratch_verify();
7911 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7912 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7913 	VERIFY0(ztest_dataset_open(0));
7914 	ztest_spa = spa;
7915 
7916 	/*
7917 	 * Force the first log block to be transactionally allocated.
7918 	 * We have to do this before we freeze the pool -- otherwise
7919 	 * the log chain won't be anchored.
7920 	 */
7921 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7922 		ztest_dmu_object_alloc_free(zd, 0);
7923 		zil_commit(zd->zd_zilog, 0);
7924 	}
7925 
7926 	txg_wait_synced(spa_get_dsl(spa), 0);
7927 
7928 	/*
7929 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7930 	 * so that the only way to record changes from now on is the ZIL.
7931 	 */
7932 	spa_freeze(spa);
7933 
7934 	/*
7935 	 * Because it is hard to predict how much space a write will actually
7936 	 * require beforehand, we leave ourselves some fudge space to write over
7937 	 * capacity.
7938 	 */
7939 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7940 
7941 	/*
7942 	 * Run tests that generate log records but don't alter the pool config
7943 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7944 	 * We do a txg_wait_synced() after each iteration to force the txg
7945 	 * to increase well beyond the last synced value in the uberblock.
7946 	 * The ZIL should be OK with that.
7947 	 *
7948 	 * Run a random number of times less than zo_maxloops and ensure we do
7949 	 * not run out of space on the pool.
7950 	 */
7951 	while (ztest_random(10) != 0 &&
7952 	    numloops++ < ztest_opts.zo_maxloops &&
7953 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7954 		ztest_od_t od;
7955 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7956 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7957 		ztest_io(zd, od.od_object,
7958 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7959 		txg_wait_synced(spa_get_dsl(spa), 0);
7960 	}
7961 
7962 	/*
7963 	 * Commit all of the changes we just generated.
7964 	 */
7965 	zil_commit(zd->zd_zilog, 0);
7966 	txg_wait_synced(spa_get_dsl(spa), 0);
7967 
7968 	/*
7969 	 * Close our dataset and close the pool.
7970 	 */
7971 	ztest_dataset_close(0);
7972 	spa_close(spa, FTAG);
7973 	kernel_fini();
7974 
7975 	/*
7976 	 * Open and close the pool and dataset to induce log replay.
7977 	 */
7978 	raidz_scratch_verify();
7979 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7980 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7981 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7982 	VERIFY0(ztest_dataset_open(0));
7983 	ztest_spa = spa;
7984 	txg_wait_synced(spa_get_dsl(spa), 0);
7985 	ztest_dataset_close(0);
7986 	ztest_reguid(NULL, 0);
7987 
7988 	spa_close(spa, FTAG);
7989 	kernel_fini();
7990 }
7991 
7992 static void
7993 ztest_import_impl(void)
7994 {
7995 	importargs_t args = { 0 };
7996 	nvlist_t *cfg = NULL;
7997 	int nsearch = 1;
7998 	char *searchdirs[nsearch];
7999 	int flags = ZFS_IMPORT_MISSING_LOG;
8000 
8001 	searchdirs[0] = ztest_opts.zo_dir;
8002 	args.paths = nsearch;
8003 	args.path = searchdirs;
8004 	args.can_be_active = B_FALSE;
8005 
8006 	libpc_handle_t lpch = {
8007 		.lpc_lib_handle = NULL,
8008 		.lpc_ops = &libzpool_config_ops,
8009 		.lpc_printerr = B_TRUE
8010 	};
8011 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8012 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8013 	fnvlist_free(cfg);
8014 }
8015 
8016 /*
8017  * Import a storage pool with the given name.
8018  */
8019 static void
8020 ztest_import(ztest_shared_t *zs)
8021 {
8022 	spa_t *spa;
8023 
8024 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8025 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8026 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8027 
8028 	raidz_scratch_verify();
8029 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8030 
8031 	ztest_import_impl();
8032 
8033 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8034 	zs->zs_metaslab_sz =
8035 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8036 	zs->zs_guid = spa_guid(spa);
8037 	spa_close(spa, FTAG);
8038 
8039 	kernel_fini();
8040 
8041 	if (!ztest_opts.zo_mmp_test) {
8042 		ztest_run_zdb(zs->zs_guid);
8043 		ztest_freeze();
8044 		ztest_run_zdb(zs->zs_guid);
8045 	}
8046 
8047 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8048 	mutex_destroy(&ztest_vdev_lock);
8049 	mutex_destroy(&ztest_checkpoint_lock);
8050 }
8051 
8052 /*
8053  * After the expansion was killed, check that the pool is healthy
8054  */
8055 static void
8056 ztest_raidz_expand_check(spa_t *spa)
8057 {
8058 	ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8059 	/*
8060 	 * Set pool check done flag, main program will run a zdb check
8061 	 * of the pool when we exit.
8062 	 */
8063 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8064 
8065 	/* Wait for reflow to finish */
8066 	if (ztest_opts.zo_verbose >= 1) {
8067 		(void) printf("\nwaiting for reflow to finish ...\n");
8068 	}
8069 	pool_raidz_expand_stat_t rzx_stats;
8070 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8071 	do {
8072 		txg_wait_synced(spa_get_dsl(spa), 0);
8073 		(void) poll(NULL, 0, 500); /* wait 1/2 second */
8074 
8075 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8076 		(void) spa_raidz_expand_get_stats(spa, pres);
8077 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8078 	} while (pres->pres_state != DSS_FINISHED &&
8079 	    pres->pres_reflowed < pres->pres_to_reflow);
8080 
8081 	if (ztest_opts.zo_verbose >= 1) {
8082 		(void) printf("verifying an interrupted raidz "
8083 		    "expansion using a pool scrub ...\n");
8084 	}
8085 	/* Will fail here if there is non-recoverable corruption detected */
8086 	VERIFY0(ztest_scrub_impl(spa));
8087 	if (ztest_opts.zo_verbose >= 1) {
8088 		(void) printf("raidz expansion scrub check complete\n");
8089 	}
8090 }
8091 
8092 /*
8093  * Start a raidz expansion test.  We run some I/O on the pool for a while
8094  * to get some data in the pool.  Then we grow the raidz and
8095  * kill the test at the requested offset into the reflow, verifying that
8096  * doing such does not lead to pool corruption.
8097  */
8098 static void
8099 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8100 {
8101 	nvlist_t *root;
8102 	pool_raidz_expand_stat_t rzx_stats;
8103 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8104 	kthread_t **run_threads;
8105 	vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8106 	int total_disks = rzvd->vdev_children;
8107 	int data_disks = total_disks - vdev_get_nparity(rzvd);
8108 	uint64_t alloc_goal;
8109 	uint64_t csize;
8110 	int error, t;
8111 	int threads = ztest_opts.zo_threads;
8112 	ztest_expand_io_t *thread_args;
8113 
8114 	ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8115 	ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8116 	ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8117 
8118 	/* Setup a 1 MiB buffer of random data */
8119 	uint64_t bufsize = 1024 * 1024;
8120 	void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8121 
8122 	if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8123 		fatal(B_TRUE, "short read from /dev/urandom");
8124 	}
8125 	/*
8126 	 * Put some data in the pool and then attach a vdev to initiate
8127 	 * reflow.
8128 	 */
8129 	run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8130 	thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8131 	    UMEM_NOFAIL);
8132 	/* Aim for roughly 25% of allocatable space up to 1GB */
8133 	alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8134 	alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8135 	if (ztest_opts.zo_verbose >= 1) {
8136 		(void) printf("adding data to pool '%s', goal %llu bytes\n",
8137 		    ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8138 	}
8139 
8140 	/*
8141 	 * Kick off all the I/O generators that run in parallel.
8142 	 */
8143 	for (t = 0; t < threads; t++) {
8144 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8145 			umem_free(run_threads, threads * sizeof (kthread_t *));
8146 			umem_free(buffer, bufsize);
8147 			return;
8148 		}
8149 		thread_args[t].rzx_id = t;
8150 		thread_args[t].rzx_amount = alloc_goal / threads;
8151 		thread_args[t].rzx_bufsize = bufsize;
8152 		thread_args[t].rzx_buffer = buffer;
8153 		thread_args[t].rzx_alloc_max = alloc_goal;
8154 		thread_args[t].rzx_spa = spa;
8155 		run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8156 		    &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8157 		    defclsyspri);
8158 	}
8159 
8160 	/*
8161 	 * Wait for all of the writers to complete.
8162 	 */
8163 	for (t = 0; t < threads; t++)
8164 		VERIFY0(thread_join(run_threads[t]));
8165 
8166 	/*
8167 	 * Close all datasets. This must be done after all the threads
8168 	 * are joined so we can be sure none of the datasets are in-use
8169 	 * by any of the threads.
8170 	 */
8171 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8172 		if (t < ztest_opts.zo_datasets)
8173 			ztest_dataset_close(t);
8174 	}
8175 
8176 	txg_wait_synced(spa_get_dsl(spa), 0);
8177 
8178 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8179 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8180 
8181 	umem_free(buffer, bufsize);
8182 	umem_free(run_threads, threads * sizeof (kthread_t *));
8183 	umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8184 
8185 	/* Set our reflow target to 25%, 50% or 75% of allocated size */
8186 	uint_t multiple = ztest_random(3) + 1;
8187 	uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8188 	raidz_expand_max_reflow_bytes = reflow_max;
8189 
8190 	if (ztest_opts.zo_verbose >= 1) {
8191 		(void) printf("running raidz expansion test, killing when "
8192 		    "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8193 		    (u_longlong_t)reflow_max, multiple);
8194 	}
8195 
8196 	/* XXX - do we want some I/O load during the reflow? */
8197 
8198 	/*
8199 	 * Use a disk size that is larger than existing ones
8200 	 */
8201 	cvd = rzvd->vdev_child[0];
8202 	csize = vdev_get_min_asize(cvd);
8203 	csize += csize / 10;
8204 	/*
8205 	 * Path to vdev to be attached
8206 	 */
8207 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8208 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8209 	    ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8210 	/*
8211 	 * Build the nvlist describing newpath.
8212 	 */
8213 	root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8214 	    NULL, 0, 0, 1);
8215 	/*
8216 	 * Expand the raidz vdev by attaching the new disk
8217 	 */
8218 	if (ztest_opts.zo_verbose >= 1) {
8219 		(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8220 		    (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8221 		    newpath);
8222 	}
8223 	error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8224 	nvlist_free(root);
8225 	if (error != 0) {
8226 		fatal(0, "raidz expand: attach (%s %llu) returned %d",
8227 		    newpath, (long long)csize, error);
8228 	}
8229 
8230 	/*
8231 	 * Wait for reflow to begin
8232 	 */
8233 	while (spa->spa_raidz_expand == NULL) {
8234 		txg_wait_synced(spa_get_dsl(spa), 0);
8235 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8236 	}
8237 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8238 	(void) spa_raidz_expand_get_stats(spa, pres);
8239 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8240 	while (pres->pres_state != DSS_SCANNING) {
8241 		txg_wait_synced(spa_get_dsl(spa), 0);
8242 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8243 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8244 		(void) spa_raidz_expand_get_stats(spa, pres);
8245 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8246 	}
8247 
8248 	ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8249 	ASSERT3U(pres->pres_to_reflow, !=, 0);
8250 	/*
8251 	 * Set so when we are killed we go to raidz checking rather than
8252 	 * restarting test.
8253 	 */
8254 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8255 	if (ztest_opts.zo_verbose >= 1) {
8256 		(void) printf("raidz expansion reflow started, waiting for "
8257 		    "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8258 	}
8259 
8260 	/*
8261 	 * Wait for reflow maximum to be reached and then kill the test
8262 	 */
8263 	while (pres->pres_reflowed < reflow_max) {
8264 		txg_wait_synced(spa_get_dsl(spa), 0);
8265 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8266 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 		(void) spa_raidz_expand_get_stats(spa, pres);
8268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 	}
8270 
8271 	/* Reset the reflow pause before killing */
8272 	raidz_expand_max_reflow_bytes = 0;
8273 
8274 	if (ztest_opts.zo_verbose >= 1) {
8275 		(void) printf("killing raidz expansion test after reflow "
8276 		    "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8277 	}
8278 
8279 	/*
8280 	 * Kill ourself to simulate a panic during a reflow.  Our parent will
8281 	 * restart the test and the changed flag value will drive the test
8282 	 * through the scrub/check code to verify the pool is not corrupted.
8283 	 */
8284 	ztest_kill(zs);
8285 }
8286 
8287 static void
8288 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8289 {
8290 	kthread_t **run_threads;
8291 	int t;
8292 
8293 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8294 	    UMEM_NOFAIL);
8295 
8296 	/*
8297 	 * Kick off all the tests that run in parallel.
8298 	 */
8299 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8300 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8301 			umem_free(run_threads, ztest_opts.zo_threads *
8302 			    sizeof (kthread_t *));
8303 			return;
8304 		}
8305 
8306 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
8307 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8308 		    defclsyspri);
8309 	}
8310 
8311 	/*
8312 	 * Wait for all of the tests to complete.
8313 	 */
8314 	for (t = 0; t < ztest_opts.zo_threads; t++)
8315 		VERIFY0(thread_join(run_threads[t]));
8316 
8317 	/*
8318 	 * Close all datasets. This must be done after all the threads
8319 	 * are joined so we can be sure none of the datasets are in-use
8320 	 * by any of the threads.
8321 	 */
8322 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8323 		if (t < ztest_opts.zo_datasets)
8324 			ztest_dataset_close(t);
8325 	}
8326 
8327 	txg_wait_synced(spa_get_dsl(spa), 0);
8328 
8329 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8330 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8331 
8332 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8333 }
8334 
8335 /*
8336  * Setup our test context and kick off threads to run tests on all datasets
8337  * in parallel.
8338  */
8339 static void
8340 ztest_run(ztest_shared_t *zs)
8341 {
8342 	spa_t *spa;
8343 	objset_t *os;
8344 	kthread_t *resume_thread, *deadman_thread;
8345 	uint64_t object;
8346 	int error;
8347 	int t, d;
8348 
8349 	ztest_exiting = B_FALSE;
8350 
8351 	/*
8352 	 * Initialize parent/child shared state.
8353 	 */
8354 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8355 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8356 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8357 
8358 	zs->zs_thread_start = gethrtime();
8359 	zs->zs_thread_stop =
8360 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8361 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8362 	zs->zs_thread_kill = zs->zs_thread_stop;
8363 	if (ztest_random(100) < ztest_opts.zo_killrate) {
8364 		zs->zs_thread_kill -=
8365 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
8366 	}
8367 
8368 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8369 
8370 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8371 	    offsetof(ztest_cb_data_t, zcd_node));
8372 
8373 	/*
8374 	 * Open our pool.  It may need to be imported first depending on
8375 	 * what tests were running when the previous pass was terminated.
8376 	 */
8377 	raidz_scratch_verify();
8378 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8379 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8380 	if (error) {
8381 		VERIFY3S(error, ==, ENOENT);
8382 		ztest_import_impl();
8383 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8384 		zs->zs_metaslab_sz =
8385 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8386 	}
8387 
8388 	metaslab_preload_limit = ztest_random(20) + 1;
8389 	ztest_spa = spa;
8390 
8391 	/*
8392 	 * XXX - BUGBUG raidz expansion do not run this for generic for now
8393 	 */
8394 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8395 		VERIFY0(vdev_raidz_impl_set("cycle"));
8396 
8397 	dmu_objset_stats_t dds;
8398 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8399 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8400 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8401 	dmu_objset_fast_stat(os, &dds);
8402 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8403 	dmu_objset_disown(os, B_TRUE, FTAG);
8404 
8405 	/* Give the dedicated raidz expansion test more grace time */
8406 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8407 		zfs_deadman_synctime_ms *= 2;
8408 
8409 	/*
8410 	 * Create a thread to periodically resume suspended I/O.
8411 	 */
8412 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8413 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8414 
8415 	/*
8416 	 * Create a deadman thread and set to panic if we hang.
8417 	 */
8418 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8419 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8420 
8421 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8422 
8423 	/*
8424 	 * Verify that we can safely inquire about any object,
8425 	 * whether it's allocated or not.  To make it interesting,
8426 	 * we probe a 5-wide window around each power of two.
8427 	 * This hits all edge cases, including zero and the max.
8428 	 */
8429 	for (t = 0; t < 64; t++) {
8430 		for (d = -5; d <= 5; d++) {
8431 			error = dmu_object_info(spa->spa_meta_objset,
8432 			    (1ULL << t) + d, NULL);
8433 			ASSERT(error == 0 || error == ENOENT ||
8434 			    error == EINVAL);
8435 		}
8436 	}
8437 
8438 	/*
8439 	 * If we got any ENOSPC errors on the previous run, destroy something.
8440 	 */
8441 	if (zs->zs_enospc_count != 0) {
8442 		/* Not expecting ENOSPC errors during raidz expansion tests */
8443 		ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8444 		    RAIDZ_EXPAND_NONE);
8445 
8446 		int d = ztest_random(ztest_opts.zo_datasets);
8447 		ztest_dataset_destroy(d);
8448 	}
8449 	zs->zs_enospc_count = 0;
8450 
8451 	/*
8452 	 * If we were in the middle of ztest_device_removal() and were killed
8453 	 * we need to ensure the removal and scrub complete before running
8454 	 * any tests that check ztest_device_removal_active. The removal will
8455 	 * be restarted automatically when the spa is opened, but we need to
8456 	 * initiate the scrub manually if it is not already in progress. Note
8457 	 * that we always run the scrub whenever an indirect vdev exists
8458 	 * because we have no way of knowing for sure if ztest_device_removal()
8459 	 * fully completed its scrub before the pool was reimported.
8460 	 *
8461 	 * Does not apply for the RAIDZ expansion specific test runs
8462 	 */
8463 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8464 	    (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8465 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8466 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8467 			txg_wait_synced(spa_get_dsl(spa), 0);
8468 
8469 		error = ztest_scrub_impl(spa);
8470 		if (error == EBUSY)
8471 			error = 0;
8472 		ASSERT0(error);
8473 	}
8474 
8475 	if (ztest_opts.zo_verbose >= 4)
8476 		(void) printf("starting main threads...\n");
8477 
8478 	/*
8479 	 * Replay all logs of all datasets in the pool. This is primarily for
8480 	 * temporary datasets which wouldn't otherwise get replayed, which
8481 	 * can trigger failures when attempting to offline a SLOG in
8482 	 * ztest_fault_inject().
8483 	 */
8484 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8485 	    NULL, DS_FIND_CHILDREN);
8486 
8487 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8488 		ztest_raidz_expand_run(zs, spa);
8489 	else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8490 		ztest_raidz_expand_check(spa);
8491 	else
8492 		ztest_generic_run(zs, spa);
8493 
8494 	/* Kill the resume and deadman threads */
8495 	ztest_exiting = B_TRUE;
8496 	VERIFY0(thread_join(resume_thread));
8497 	VERIFY0(thread_join(deadman_thread));
8498 	ztest_resume(spa);
8499 
8500 	/*
8501 	 * Right before closing the pool, kick off a bunch of async I/O;
8502 	 * spa_close() should wait for it to complete.
8503 	 */
8504 	for (object = 1; object < 50; object++) {
8505 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8506 		    ZIO_PRIORITY_SYNC_READ);
8507 	}
8508 
8509 	/* Verify that at least one commit cb was called in a timely fashion */
8510 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8511 		VERIFY0(zc_min_txg_delay);
8512 
8513 	spa_close(spa, FTAG);
8514 
8515 	/*
8516 	 * Verify that we can loop over all pools.
8517 	 */
8518 	mutex_enter(&spa_namespace_lock);
8519 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8520 		if (ztest_opts.zo_verbose > 3)
8521 			(void) printf("spa_next: found %s\n", spa_name(spa));
8522 	mutex_exit(&spa_namespace_lock);
8523 
8524 	/*
8525 	 * Verify that we can export the pool and reimport it under a
8526 	 * different name.
8527 	 */
8528 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8529 		char name[ZFS_MAX_DATASET_NAME_LEN];
8530 		(void) snprintf(name, sizeof (name), "%s_import",
8531 		    ztest_opts.zo_pool);
8532 		ztest_spa_import_export(ztest_opts.zo_pool, name);
8533 		ztest_spa_import_export(name, ztest_opts.zo_pool);
8534 	}
8535 
8536 	kernel_fini();
8537 
8538 	list_destroy(&zcl.zcl_callbacks);
8539 	mutex_destroy(&zcl.zcl_callbacks_lock);
8540 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8541 	mutex_destroy(&ztest_vdev_lock);
8542 	mutex_destroy(&ztest_checkpoint_lock);
8543 }
8544 
8545 static void
8546 print_time(hrtime_t t, char *timebuf)
8547 {
8548 	hrtime_t s = t / NANOSEC;
8549 	hrtime_t m = s / 60;
8550 	hrtime_t h = m / 60;
8551 	hrtime_t d = h / 24;
8552 
8553 	s -= m * 60;
8554 	m -= h * 60;
8555 	h -= d * 24;
8556 
8557 	timebuf[0] = '\0';
8558 
8559 	if (d)
8560 		(void) sprintf(timebuf,
8561 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
8562 	else if (h)
8563 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8564 	else if (m)
8565 		(void) sprintf(timebuf, "%llum%02llus", m, s);
8566 	else
8567 		(void) sprintf(timebuf, "%llus", s);
8568 }
8569 
8570 static nvlist_t *
8571 make_random_pool_props(void)
8572 {
8573 	nvlist_t *props;
8574 
8575 	props = fnvlist_alloc();
8576 
8577 	/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8578 	if (ztest_random(5) == 0) {
8579 		fnvlist_add_uint64(props,
8580 		    zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8581 		    2 * 1024 * 1024);
8582 	}
8583 
8584 	/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8585 	if (ztest_random(2) == 0) {
8586 		fnvlist_add_uint64(props,
8587 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8588 	}
8589 
8590 	return (props);
8591 }
8592 
8593 /*
8594  * Create a storage pool with the given name and initial vdev size.
8595  * Then test spa_freeze() functionality.
8596  */
8597 static void
8598 ztest_init(ztest_shared_t *zs)
8599 {
8600 	spa_t *spa;
8601 	nvlist_t *nvroot, *props;
8602 	int i;
8603 
8604 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8605 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8606 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8607 
8608 	raidz_scratch_verify();
8609 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8610 
8611 	/*
8612 	 * Create the storage pool.
8613 	 */
8614 	(void) spa_destroy(ztest_opts.zo_pool);
8615 	ztest_shared->zs_vdev_next_leaf = 0;
8616 	zs->zs_splits = 0;
8617 	zs->zs_mirrors = ztest_opts.zo_mirrors;
8618 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8619 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8620 	props = make_random_pool_props();
8621 
8622 	/*
8623 	 * We don't expect the pool to suspend unless maxfaults == 0,
8624 	 * in which case ztest_fault_inject() temporarily takes away
8625 	 * the only valid replica.
8626 	 */
8627 	fnvlist_add_uint64(props,
8628 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8629 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8630 
8631 	for (i = 0; i < SPA_FEATURES; i++) {
8632 		char *buf;
8633 
8634 		if (!spa_feature_table[i].fi_zfs_mod_supported)
8635 			continue;
8636 
8637 		/*
8638 		 * 75% chance of using the log space map feature. We want ztest
8639 		 * to exercise both the code paths that use the log space map
8640 		 * feature and the ones that don't.
8641 		 */
8642 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8643 			continue;
8644 
8645 		/*
8646 		 * split 50/50 between legacy and fast dedup
8647 		 */
8648 		if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8649 			continue;
8650 
8651 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8652 		    spa_feature_table[i].fi_uname));
8653 		fnvlist_add_uint64(props, buf, 0);
8654 		free(buf);
8655 	}
8656 
8657 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8658 	fnvlist_free(nvroot);
8659 	fnvlist_free(props);
8660 
8661 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8662 	zs->zs_metaslab_sz =
8663 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8664 	zs->zs_guid = spa_guid(spa);
8665 	spa_close(spa, FTAG);
8666 
8667 	kernel_fini();
8668 
8669 	if (!ztest_opts.zo_mmp_test) {
8670 		ztest_run_zdb(zs->zs_guid);
8671 		ztest_freeze();
8672 		ztest_run_zdb(zs->zs_guid);
8673 	}
8674 
8675 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8676 	mutex_destroy(&ztest_vdev_lock);
8677 	mutex_destroy(&ztest_checkpoint_lock);
8678 }
8679 
8680 static void
8681 setup_data_fd(void)
8682 {
8683 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8684 
8685 	ztest_fd_data = mkstemp(ztest_name_data);
8686 	ASSERT3S(ztest_fd_data, >=, 0);
8687 	(void) unlink(ztest_name_data);
8688 }
8689 
8690 static int
8691 shared_data_size(ztest_shared_hdr_t *hdr)
8692 {
8693 	int size;
8694 
8695 	size = hdr->zh_hdr_size;
8696 	size += hdr->zh_opts_size;
8697 	size += hdr->zh_size;
8698 	size += hdr->zh_stats_size * hdr->zh_stats_count;
8699 	size += hdr->zh_ds_size * hdr->zh_ds_count;
8700 	size += hdr->zh_scratch_state_size;
8701 
8702 	return (size);
8703 }
8704 
8705 static void
8706 setup_hdr(void)
8707 {
8708 	int size;
8709 	ztest_shared_hdr_t *hdr;
8710 
8711 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8712 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8713 	ASSERT3P(hdr, !=, MAP_FAILED);
8714 
8715 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8716 
8717 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8718 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8719 	hdr->zh_size = sizeof (ztest_shared_t);
8720 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8721 	hdr->zh_stats_count = ZTEST_FUNCS;
8722 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8723 	hdr->zh_ds_count = ztest_opts.zo_datasets;
8724 	hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8725 
8726 	size = shared_data_size(hdr);
8727 	VERIFY0(ftruncate(ztest_fd_data, size));
8728 
8729 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8730 }
8731 
8732 static void
8733 setup_data(void)
8734 {
8735 	int size, offset;
8736 	ztest_shared_hdr_t *hdr;
8737 	uint8_t *buf;
8738 
8739 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8740 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8741 	ASSERT3P(hdr, !=, MAP_FAILED);
8742 
8743 	size = shared_data_size(hdr);
8744 
8745 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8746 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8747 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8748 	ASSERT3P(hdr, !=, MAP_FAILED);
8749 	buf = (uint8_t *)hdr;
8750 
8751 	offset = hdr->zh_hdr_size;
8752 	ztest_shared_opts = (void *)&buf[offset];
8753 	offset += hdr->zh_opts_size;
8754 	ztest_shared = (void *)&buf[offset];
8755 	offset += hdr->zh_size;
8756 	ztest_shared_callstate = (void *)&buf[offset];
8757 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
8758 	ztest_shared_ds = (void *)&buf[offset];
8759 	offset += hdr->zh_ds_size * hdr->zh_ds_count;
8760 	ztest_scratch_state = (void *)&buf[offset];
8761 }
8762 
8763 static boolean_t
8764 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8765 {
8766 	pid_t pid;
8767 	int status;
8768 	char *cmdbuf = NULL;
8769 
8770 	pid = fork();
8771 
8772 	if (cmd == NULL) {
8773 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8774 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8775 		cmd = cmdbuf;
8776 	}
8777 
8778 	if (pid == -1)
8779 		fatal(B_TRUE, "fork failed");
8780 
8781 	if (pid == 0) {	/* child */
8782 		char fd_data_str[12];
8783 
8784 		VERIFY3S(11, >=,
8785 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8786 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8787 
8788 		if (libpath != NULL) {
8789 			const char *curlp = getenv("LD_LIBRARY_PATH");
8790 			if (curlp == NULL)
8791 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8792 			else {
8793 				char *newlp = NULL;
8794 				VERIFY3S(-1, !=,
8795 				    asprintf(&newlp, "%s:%s", libpath, curlp));
8796 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8797 				free(newlp);
8798 			}
8799 		}
8800 		(void) execl(cmd, cmd, (char *)NULL);
8801 		ztest_dump_core = B_FALSE;
8802 		fatal(B_TRUE, "exec failed: %s", cmd);
8803 	}
8804 
8805 	if (cmdbuf != NULL) {
8806 		umem_free(cmdbuf, MAXPATHLEN);
8807 		cmd = NULL;
8808 	}
8809 
8810 	while (waitpid(pid, &status, 0) != pid)
8811 		continue;
8812 	if (statusp != NULL)
8813 		*statusp = status;
8814 
8815 	if (WIFEXITED(status)) {
8816 		if (WEXITSTATUS(status) != 0) {
8817 			(void) fprintf(stderr, "child exited with code %d\n",
8818 			    WEXITSTATUS(status));
8819 			exit(2);
8820 		}
8821 		return (B_FALSE);
8822 	} else if (WIFSIGNALED(status)) {
8823 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8824 			(void) fprintf(stderr, "child died with signal %d\n",
8825 			    WTERMSIG(status));
8826 			exit(3);
8827 		}
8828 		return (B_TRUE);
8829 	} else {
8830 		(void) fprintf(stderr, "something strange happened to child\n");
8831 		exit(4);
8832 	}
8833 }
8834 
8835 static void
8836 ztest_run_init(void)
8837 {
8838 	int i;
8839 
8840 	ztest_shared_t *zs = ztest_shared;
8841 
8842 	/*
8843 	 * Blow away any existing copy of zpool.cache
8844 	 */
8845 	(void) remove(spa_config_path);
8846 
8847 	if (ztest_opts.zo_init == 0) {
8848 		if (ztest_opts.zo_verbose >= 1)
8849 			(void) printf("Importing pool %s\n",
8850 			    ztest_opts.zo_pool);
8851 		ztest_import(zs);
8852 		return;
8853 	}
8854 
8855 	/*
8856 	 * Create and initialize our storage pool.
8857 	 */
8858 	for (i = 1; i <= ztest_opts.zo_init; i++) {
8859 		memset(zs, 0, sizeof (*zs));
8860 		if (ztest_opts.zo_verbose >= 3 &&
8861 		    ztest_opts.zo_init != 1) {
8862 			(void) printf("ztest_init(), pass %d\n", i);
8863 		}
8864 		ztest_init(zs);
8865 	}
8866 }
8867 
8868 int
8869 main(int argc, char **argv)
8870 {
8871 	int kills = 0;
8872 	int iters = 0;
8873 	int older = 0;
8874 	int newer = 0;
8875 	ztest_shared_t *zs;
8876 	ztest_info_t *zi;
8877 	ztest_shared_callstate_t *zc;
8878 	char timebuf[100];
8879 	char numbuf[NN_NUMBUF_SZ];
8880 	char *cmd;
8881 	boolean_t hasalt;
8882 	int f, err;
8883 	char *fd_data_str = getenv("ZTEST_FD_DATA");
8884 	struct sigaction action;
8885 
8886 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8887 
8888 	dprintf_setup(&argc, argv);
8889 	zfs_deadman_synctime_ms = 300000;
8890 	zfs_deadman_checktime_ms = 30000;
8891 	/*
8892 	 * As two-word space map entries may not come up often (especially
8893 	 * if pool and vdev sizes are small) we want to force at least some
8894 	 * of them so the feature get tested.
8895 	 */
8896 	zfs_force_some_double_word_sm_entries = B_TRUE;
8897 
8898 	/*
8899 	 * Verify that even extensively damaged split blocks with many
8900 	 * segments can be reconstructed in a reasonable amount of time
8901 	 * when reconstruction is known to be possible.
8902 	 *
8903 	 * Note: the lower this value is, the more damage we inflict, and
8904 	 * the more time ztest spends in recovering that damage. We chose
8905 	 * to induce damage 1/100th of the time so recovery is tested but
8906 	 * not so frequently that ztest doesn't get to test other code paths.
8907 	 */
8908 	zfs_reconstruct_indirect_damage_fraction = 100;
8909 
8910 	action.sa_handler = sig_handler;
8911 	sigemptyset(&action.sa_mask);
8912 	action.sa_flags = 0;
8913 
8914 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8915 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8916 		    strerror(errno));
8917 		exit(EXIT_FAILURE);
8918 	}
8919 
8920 	if (sigaction(SIGABRT, &action, NULL) < 0) {
8921 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8922 		    strerror(errno));
8923 		exit(EXIT_FAILURE);
8924 	}
8925 
8926 	/*
8927 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8928 	 * ztest from needlessly depleting the system entropy pool.
8929 	 */
8930 	random_path = "/dev/urandom";
8931 	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8932 	ASSERT3S(ztest_fd_rand, >=, 0);
8933 
8934 	if (!fd_data_str) {
8935 		process_options(argc, argv);
8936 
8937 		setup_data_fd();
8938 		setup_hdr();
8939 		setup_data();
8940 		memcpy(ztest_shared_opts, &ztest_opts,
8941 		    sizeof (*ztest_shared_opts));
8942 	} else {
8943 		ztest_fd_data = atoi(fd_data_str);
8944 		setup_data();
8945 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8946 	}
8947 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8948 
8949 	err = ztest_set_global_vars();
8950 	if (err != 0 && !fd_data_str) {
8951 		/* error message done by ztest_set_global_vars */
8952 		exit(EXIT_FAILURE);
8953 	} else {
8954 		/* children should not be spawned if setting gvars fails */
8955 		VERIFY3S(err, ==, 0);
8956 	}
8957 
8958 	/* Override location of zpool.cache */
8959 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8960 	    ztest_opts.zo_dir), !=, -1);
8961 
8962 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8963 	    UMEM_NOFAIL);
8964 	zs = ztest_shared;
8965 
8966 	if (fd_data_str) {
8967 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8968 		metaslab_df_alloc_threshold =
8969 		    zs->zs_metaslab_df_alloc_threshold;
8970 
8971 		if (zs->zs_do_init)
8972 			ztest_run_init();
8973 		else
8974 			ztest_run(zs);
8975 		exit(0);
8976 	}
8977 
8978 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8979 
8980 	if (ztest_opts.zo_verbose >= 1) {
8981 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
8982 		    "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
8983 		    ztest_opts.zo_vdevs,
8984 		    ztest_opts.zo_datasets,
8985 		    ztest_opts.zo_threads,
8986 		    ztest_opts.zo_raid_children,
8987 		    ztest_opts.zo_raid_type,
8988 		    ztest_opts.zo_raid_parity,
8989 		    ztest_opts.zo_time);
8990 	}
8991 
8992 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8993 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8994 
8995 	zs->zs_do_init = B_TRUE;
8996 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8997 		if (ztest_opts.zo_verbose >= 1) {
8998 			(void) printf("Executing older ztest for "
8999 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
9000 		}
9001 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9002 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9003 	} else {
9004 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9005 	}
9006 	zs->zs_do_init = B_FALSE;
9007 
9008 	zs->zs_proc_start = gethrtime();
9009 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9010 
9011 	for (f = 0; f < ZTEST_FUNCS; f++) {
9012 		zi = &ztest_info[f];
9013 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
9014 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9015 			zc->zc_next = UINT64_MAX;
9016 		else
9017 			zc->zc_next = zs->zs_proc_start +
9018 			    ztest_random(2 * zi->zi_interval[0] + 1);
9019 	}
9020 
9021 	/*
9022 	 * Run the tests in a loop.  These tests include fault injection
9023 	 * to verify that self-healing data works, and forced crashes
9024 	 * to verify that we never lose on-disk consistency.
9025 	 */
9026 	while (gethrtime() < zs->zs_proc_stop) {
9027 		int status;
9028 		boolean_t killed;
9029 
9030 		/*
9031 		 * Initialize the workload counters for each function.
9032 		 */
9033 		for (f = 0; f < ZTEST_FUNCS; f++) {
9034 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
9035 			zc->zc_count = 0;
9036 			zc->zc_time = 0;
9037 		}
9038 
9039 		/* Set the allocation switch size */
9040 		zs->zs_metaslab_df_alloc_threshold =
9041 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
9042 
9043 		if (!hasalt || ztest_random(2) == 0) {
9044 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9045 				(void) printf("Executing newer ztest: %s\n",
9046 				    cmd);
9047 			}
9048 			newer++;
9049 			killed = exec_child(cmd, NULL, B_TRUE, &status);
9050 		} else {
9051 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9052 				(void) printf("Executing older ztest: %s\n",
9053 				    ztest_opts.zo_alt_ztest);
9054 			}
9055 			older++;
9056 			killed = exec_child(ztest_opts.zo_alt_ztest,
9057 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
9058 		}
9059 
9060 		if (killed)
9061 			kills++;
9062 		iters++;
9063 
9064 		if (ztest_opts.zo_verbose >= 1) {
9065 			hrtime_t now = gethrtime();
9066 
9067 			now = MIN(now, zs->zs_proc_stop);
9068 			print_time(zs->zs_proc_stop - now, timebuf);
9069 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9070 
9071 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9072 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9073 			    iters,
9074 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
9075 			    zs->zs_enospc_count,
9076 			    100.0 * zs->zs_alloc / zs->zs_space,
9077 			    numbuf,
9078 			    100.0 * (now - zs->zs_proc_start) /
9079 			    (ztest_opts.zo_time * NANOSEC), timebuf);
9080 		}
9081 
9082 		if (ztest_opts.zo_verbose >= 2) {
9083 			(void) printf("\nWorkload summary:\n\n");
9084 			(void) printf("%7s %9s   %s\n",
9085 			    "Calls", "Time", "Function");
9086 			(void) printf("%7s %9s   %s\n",
9087 			    "-----", "----", "--------");
9088 			for (f = 0; f < ZTEST_FUNCS; f++) {
9089 				zi = &ztest_info[f];
9090 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
9091 				print_time(zc->zc_time, timebuf);
9092 				(void) printf("%7"PRIu64" %9s   %s\n",
9093 				    zc->zc_count, timebuf,
9094 				    zi->zi_funcname);
9095 			}
9096 			(void) printf("\n");
9097 		}
9098 
9099 		if (!ztest_opts.zo_mmp_test)
9100 			ztest_run_zdb(zs->zs_guid);
9101 		if (ztest_shared_opts->zo_raidz_expand_test ==
9102 		    RAIDZ_EXPAND_CHECKED)
9103 			break; /* raidz expand test complete */
9104 	}
9105 
9106 	if (ztest_opts.zo_verbose >= 1) {
9107 		if (hasalt) {
9108 			(void) printf("%d runs of older ztest: %s\n", older,
9109 			    ztest_opts.zo_alt_ztest);
9110 			(void) printf("%d runs of newer ztest: %s\n", newer,
9111 			    cmd);
9112 		}
9113 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9114 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9115 	}
9116 
9117 	umem_free(cmd, MAXNAMELEN);
9118 
9119 	return (0);
9120 }
9121