xref: /freebsd/sys/contrib/openzfs/cmd/ztest.c (revision 7543a9c0280a0f4262489671936a6e03b9b2c563)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * (7) Threads are created with a reduced stack size, for sanity checking.
69  *     Therefore, it's important not to allocate huge buffers on the stack.
70  *
71  * When run with no arguments, ztest runs for about five minutes and
72  * produces no output if successful.  To get a little bit of information,
73  * specify -V.  To get more information, specify -VV, and so on.
74  *
75  * To turn this into an overnight stress test, use -T to specify run time.
76  *
77  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78  * to increase the pool capacity, fanout, and overall stress level.
79  *
80  * Use the -k option to set the desired frequency of kills.
81  *
82  * When ztest invokes itself it passes all relevant information through a
83  * temporary file which is mmap-ed in the child process. This allows shared
84  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85  * stored at offset 0 of this file and contains information on the size and
86  * number of shared structures in the file. The information stored in this file
87  * must remain backwards compatible with older versions of ztest so that
88  * ztest can invoke them during backwards compatibility testing (-B).
89  */
90 
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <sys/blake3.h>
125 #include <stdio.h>
126 #include <stdlib.h>
127 #include <unistd.h>
128 #include <getopt.h>
129 #include <signal.h>
130 #include <umem.h>
131 #include <ctype.h>
132 #include <math.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #if (__GLIBC__ && !__UCLIBC__)
139 #include <execinfo.h> /* for backtrace() */
140 #endif
141 
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
144 
145 typedef struct ztest_shared_hdr {
146 	uint64_t	zh_hdr_size;
147 	uint64_t	zh_opts_size;
148 	uint64_t	zh_size;
149 	uint64_t	zh_stats_size;
150 	uint64_t	zh_stats_count;
151 	uint64_t	zh_ds_size;
152 	uint64_t	zh_ds_count;
153 } ztest_shared_hdr_t;
154 
155 static ztest_shared_hdr_t *ztest_shared_hdr;
156 
157 enum ztest_class_state {
158 	ZTEST_VDEV_CLASS_OFF,
159 	ZTEST_VDEV_CLASS_ON,
160 	ZTEST_VDEV_CLASS_RND
161 };
162 
163 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
164 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
165 
166 typedef struct ztest_shared_opts {
167 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
168 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
169 	char zo_alt_ztest[MAXNAMELEN];
170 	char zo_alt_libpath[MAXNAMELEN];
171 	uint64_t zo_vdevs;
172 	uint64_t zo_vdevtime;
173 	size_t zo_vdev_size;
174 	int zo_ashift;
175 	int zo_mirrors;
176 	int zo_raid_children;
177 	int zo_raid_parity;
178 	char zo_raid_type[8];
179 	int zo_draid_data;
180 	int zo_draid_spares;
181 	int zo_datasets;
182 	int zo_threads;
183 	uint64_t zo_passtime;
184 	uint64_t zo_killrate;
185 	int zo_verbose;
186 	int zo_init;
187 	uint64_t zo_time;
188 	uint64_t zo_maxloops;
189 	uint64_t zo_metaslab_force_ganging;
190 	int zo_mmp_test;
191 	int zo_special_vdevs;
192 	int zo_dump_dbgmsg;
193 	int zo_gvars_count;
194 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
195 } ztest_shared_opts_t;
196 
197 /* Default values for command line options. */
198 #define	DEFAULT_POOL "ztest"
199 #define	DEFAULT_VDEV_DIR "/tmp"
200 #define	DEFAULT_VDEV_COUNT 5
201 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
202 #define	DEFAULT_VDEV_SIZE_STR "256M"
203 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
204 #define	DEFAULT_MIRRORS 2
205 #define	DEFAULT_RAID_CHILDREN 4
206 #define	DEFAULT_RAID_PARITY 1
207 #define	DEFAULT_DRAID_DATA 4
208 #define	DEFAULT_DRAID_SPARES 1
209 #define	DEFAULT_DATASETS_COUNT 7
210 #define	DEFAULT_THREADS 23
211 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
212 #define	DEFAULT_RUN_TIME_STR "300 sec"
213 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
214 #define	DEFAULT_PASS_TIME_STR "60 sec"
215 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
216 #define	DEFAULT_KILLRATE_STR "70%"
217 #define	DEFAULT_INITS 1
218 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
219 #define	DEFAULT_FORCE_GANGING (64 << 10)
220 #define	DEFAULT_FORCE_GANGING_STR "64K"
221 
222 /* Simplifying assumption: -1 is not a valid default. */
223 #define	NO_DEFAULT -1
224 
225 static const ztest_shared_opts_t ztest_opts_defaults = {
226 	.zo_pool = DEFAULT_POOL,
227 	.zo_dir = DEFAULT_VDEV_DIR,
228 	.zo_alt_ztest = { '\0' },
229 	.zo_alt_libpath = { '\0' },
230 	.zo_vdevs = DEFAULT_VDEV_COUNT,
231 	.zo_ashift = DEFAULT_ASHIFT,
232 	.zo_mirrors = DEFAULT_MIRRORS,
233 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
234 	.zo_raid_parity = DEFAULT_RAID_PARITY,
235 	.zo_raid_type = VDEV_TYPE_RAIDZ,
236 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
237 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
238 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
239 	.zo_datasets = DEFAULT_DATASETS_COUNT,
240 	.zo_threads = DEFAULT_THREADS,
241 	.zo_passtime = DEFAULT_PASS_TIME,
242 	.zo_killrate = DEFAULT_KILL_RATE,
243 	.zo_verbose = 0,
244 	.zo_mmp_test = 0,
245 	.zo_init = DEFAULT_INITS,
246 	.zo_time = DEFAULT_RUN_TIME,
247 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
248 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
249 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
250 	.zo_gvars_count = 0,
251 };
252 
253 extern uint64_t metaslab_force_ganging;
254 extern uint64_t metaslab_df_alloc_threshold;
255 extern uint64_t zfs_deadman_synctime_ms;
256 extern uint_t metaslab_preload_limit;
257 extern int zfs_compressed_arc_enabled;
258 extern int zfs_abd_scatter_enabled;
259 extern uint_t dmu_object_alloc_chunk_shift;
260 extern boolean_t zfs_force_some_double_word_sm_entries;
261 extern unsigned long zio_decompress_fail_fraction;
262 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
263 
264 
265 static ztest_shared_opts_t *ztest_shared_opts;
266 static ztest_shared_opts_t ztest_opts;
267 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
268 
269 typedef struct ztest_shared_ds {
270 	uint64_t	zd_seq;
271 } ztest_shared_ds_t;
272 
273 static ztest_shared_ds_t *ztest_shared_ds;
274 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
275 
276 #define	BT_MAGIC	0x123456789abcdefULL
277 #define	MAXFAULTS(zs) \
278 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
279 
280 enum ztest_io_type {
281 	ZTEST_IO_WRITE_TAG,
282 	ZTEST_IO_WRITE_PATTERN,
283 	ZTEST_IO_WRITE_ZEROES,
284 	ZTEST_IO_TRUNCATE,
285 	ZTEST_IO_SETATTR,
286 	ZTEST_IO_REWRITE,
287 	ZTEST_IO_TYPES
288 };
289 
290 typedef struct ztest_block_tag {
291 	uint64_t	bt_magic;
292 	uint64_t	bt_objset;
293 	uint64_t	bt_object;
294 	uint64_t	bt_dnodesize;
295 	uint64_t	bt_offset;
296 	uint64_t	bt_gen;
297 	uint64_t	bt_txg;
298 	uint64_t	bt_crtxg;
299 } ztest_block_tag_t;
300 
301 typedef struct bufwad {
302 	uint64_t	bw_index;
303 	uint64_t	bw_txg;
304 	uint64_t	bw_data;
305 } bufwad_t;
306 
307 /*
308  * It would be better to use a rangelock_t per object.  Unfortunately
309  * the rangelock_t is not a drop-in replacement for rl_t, because we
310  * still need to map from object ID to rangelock_t.
311  */
312 typedef enum {
313 	RL_READER,
314 	RL_WRITER,
315 	RL_APPEND
316 } rl_type_t;
317 
318 typedef struct rll {
319 	void		*rll_writer;
320 	int		rll_readers;
321 	kmutex_t	rll_lock;
322 	kcondvar_t	rll_cv;
323 } rll_t;
324 
325 typedef struct rl {
326 	uint64_t	rl_object;
327 	uint64_t	rl_offset;
328 	uint64_t	rl_size;
329 	rll_t		*rl_lock;
330 } rl_t;
331 
332 #define	ZTEST_RANGE_LOCKS	64
333 #define	ZTEST_OBJECT_LOCKS	64
334 
335 /*
336  * Object descriptor.  Used as a template for object lookup/create/remove.
337  */
338 typedef struct ztest_od {
339 	uint64_t	od_dir;
340 	uint64_t	od_object;
341 	dmu_object_type_t od_type;
342 	dmu_object_type_t od_crtype;
343 	uint64_t	od_blocksize;
344 	uint64_t	od_crblocksize;
345 	uint64_t	od_crdnodesize;
346 	uint64_t	od_gen;
347 	uint64_t	od_crgen;
348 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
349 } ztest_od_t;
350 
351 /*
352  * Per-dataset state.
353  */
354 typedef struct ztest_ds {
355 	ztest_shared_ds_t *zd_shared;
356 	objset_t	*zd_os;
357 	pthread_rwlock_t zd_zilog_lock;
358 	zilog_t		*zd_zilog;
359 	ztest_od_t	*zd_od;		/* debugging aid */
360 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
361 	kmutex_t	zd_dirobj_lock;
362 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
363 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
364 } ztest_ds_t;
365 
366 /*
367  * Per-iteration state.
368  */
369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
370 
371 typedef struct ztest_info {
372 	ztest_func_t	*zi_func;	/* test function */
373 	uint64_t	zi_iters;	/* iterations per execution */
374 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
375 	const char	*zi_funcname;	/* name of test function */
376 } ztest_info_t;
377 
378 typedef struct ztest_shared_callstate {
379 	uint64_t	zc_count;	/* per-pass count */
380 	uint64_t	zc_time;	/* per-pass time */
381 	uint64_t	zc_next;	/* next time to call this function */
382 } ztest_shared_callstate_t;
383 
384 static ztest_shared_callstate_t *ztest_shared_callstate;
385 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
386 
387 ztest_func_t ztest_dmu_read_write;
388 ztest_func_t ztest_dmu_write_parallel;
389 ztest_func_t ztest_dmu_object_alloc_free;
390 ztest_func_t ztest_dmu_object_next_chunk;
391 ztest_func_t ztest_dmu_commit_callbacks;
392 ztest_func_t ztest_zap;
393 ztest_func_t ztest_zap_parallel;
394 ztest_func_t ztest_zil_commit;
395 ztest_func_t ztest_zil_remount;
396 ztest_func_t ztest_dmu_read_write_zcopy;
397 ztest_func_t ztest_dmu_objset_create_destroy;
398 ztest_func_t ztest_dmu_prealloc;
399 ztest_func_t ztest_fzap;
400 ztest_func_t ztest_dmu_snapshot_create_destroy;
401 ztest_func_t ztest_dsl_prop_get_set;
402 ztest_func_t ztest_spa_prop_get_set;
403 ztest_func_t ztest_spa_create_destroy;
404 ztest_func_t ztest_fault_inject;
405 ztest_func_t ztest_dmu_snapshot_hold;
406 ztest_func_t ztest_mmp_enable_disable;
407 ztest_func_t ztest_scrub;
408 ztest_func_t ztest_dsl_dataset_promote_busy;
409 ztest_func_t ztest_vdev_attach_detach;
410 ztest_func_t ztest_vdev_LUN_growth;
411 ztest_func_t ztest_vdev_add_remove;
412 ztest_func_t ztest_vdev_class_add;
413 ztest_func_t ztest_vdev_aux_add_remove;
414 ztest_func_t ztest_split_pool;
415 ztest_func_t ztest_reguid;
416 ztest_func_t ztest_spa_upgrade;
417 ztest_func_t ztest_device_removal;
418 ztest_func_t ztest_spa_checkpoint_create_discard;
419 ztest_func_t ztest_initialize;
420 ztest_func_t ztest_trim;
421 ztest_func_t ztest_blake3;
422 ztest_func_t ztest_fletcher;
423 ztest_func_t ztest_fletcher_incr;
424 ztest_func_t ztest_verify_dnode_bt;
425 
426 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
427 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
428 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
429 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
430 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
431 
432 #define	ZTI_INIT(func, iters, interval) \
433 	{   .zi_func = (func), \
434 	    .zi_iters = (iters), \
435 	    .zi_interval = (interval), \
436 	    .zi_funcname = # func }
437 
438 static ztest_info_t ztest_info[] = {
439 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
440 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
441 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
442 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
443 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
444 	ZTI_INIT(ztest_zap, 30, &zopt_always),
445 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
446 	ZTI_INIT(ztest_split_pool, 1, &zopt_always),
447 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
448 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
449 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
450 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
451 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
452 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
453 #if 0
454 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
455 #endif
456 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
457 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
458 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
459 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
460 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
461 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
462 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
463 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
464 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
465 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
466 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
467 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
468 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
469 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
470 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
471 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
472 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
473 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
474 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
475 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
476 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
477 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
478 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
479 };
480 
481 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
482 
483 /*
484  * The following struct is used to hold a list of uncalled commit callbacks.
485  * The callbacks are ordered by txg number.
486  */
487 typedef struct ztest_cb_list {
488 	kmutex_t	zcl_callbacks_lock;
489 	list_t		zcl_callbacks;
490 } ztest_cb_list_t;
491 
492 /*
493  * Stuff we need to share writably between parent and child.
494  */
495 typedef struct ztest_shared {
496 	boolean_t	zs_do_init;
497 	hrtime_t	zs_proc_start;
498 	hrtime_t	zs_proc_stop;
499 	hrtime_t	zs_thread_start;
500 	hrtime_t	zs_thread_stop;
501 	hrtime_t	zs_thread_kill;
502 	uint64_t	zs_enospc_count;
503 	uint64_t	zs_vdev_next_leaf;
504 	uint64_t	zs_vdev_aux;
505 	uint64_t	zs_alloc;
506 	uint64_t	zs_space;
507 	uint64_t	zs_splits;
508 	uint64_t	zs_mirrors;
509 	uint64_t	zs_metaslab_sz;
510 	uint64_t	zs_metaslab_df_alloc_threshold;
511 	uint64_t	zs_guid;
512 } ztest_shared_t;
513 
514 #define	ID_PARALLEL	-1ULL
515 
516 static char ztest_dev_template[] = "%s/%s.%llua";
517 static char ztest_aux_template[] = "%s/%s.%s.%llu";
518 static ztest_shared_t *ztest_shared;
519 
520 static spa_t *ztest_spa = NULL;
521 static ztest_ds_t *ztest_ds;
522 
523 static kmutex_t ztest_vdev_lock;
524 static boolean_t ztest_device_removal_active = B_FALSE;
525 static boolean_t ztest_pool_scrubbed = B_FALSE;
526 static kmutex_t ztest_checkpoint_lock;
527 
528 /*
529  * The ztest_name_lock protects the pool and dataset namespace used by
530  * the individual tests. To modify the namespace, consumers must grab
531  * this lock as writer. Grabbing the lock as reader will ensure that the
532  * namespace does not change while the lock is held.
533  */
534 static pthread_rwlock_t ztest_name_lock;
535 
536 static boolean_t ztest_dump_core = B_TRUE;
537 static boolean_t ztest_exiting;
538 
539 /* Global commit callback list */
540 static ztest_cb_list_t zcl;
541 /* Commit cb delay */
542 static uint64_t zc_min_txg_delay = UINT64_MAX;
543 static int zc_cb_counter = 0;
544 
545 /*
546  * Minimum number of commit callbacks that need to be registered for us to check
547  * whether the minimum txg delay is acceptable.
548  */
549 #define	ZTEST_COMMIT_CB_MIN_REG	100
550 
551 /*
552  * If a number of txgs equal to this threshold have been created after a commit
553  * callback has been registered but not called, then we assume there is an
554  * implementation bug.
555  */
556 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
557 
558 enum ztest_object {
559 	ZTEST_META_DNODE = 0,
560 	ZTEST_DIROBJ,
561 	ZTEST_OBJECTS
562 };
563 
564 static __attribute__((noreturn)) void usage(boolean_t requested);
565 static int ztest_scrub_impl(spa_t *spa);
566 
567 /*
568  * These libumem hooks provide a reasonable set of defaults for the allocator's
569  * debugging facilities.
570  */
571 const char *
572 _umem_debug_init(void)
573 {
574 	return ("default,verbose"); /* $UMEM_DEBUG setting */
575 }
576 
577 const char *
578 _umem_logging_init(void)
579 {
580 	return ("fail,contents"); /* $UMEM_LOGGING setting */
581 }
582 
583 static void
584 dump_debug_buffer(void)
585 {
586 	ssize_t ret __attribute__((unused));
587 
588 	if (!ztest_opts.zo_dump_dbgmsg)
589 		return;
590 
591 	/*
592 	 * We use write() instead of printf() so that this function
593 	 * is safe to call from a signal handler.
594 	 */
595 	ret = write(STDOUT_FILENO, "\n", 1);
596 	zfs_dbgmsg_print("ztest");
597 }
598 
599 #define	BACKTRACE_SZ	100
600 
601 static void sig_handler(int signo)
602 {
603 	struct sigaction action;
604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
605 	int nptrs;
606 	void *buffer[BACKTRACE_SZ];
607 
608 	nptrs = backtrace(buffer, BACKTRACE_SZ);
609 	backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
610 #endif
611 	dump_debug_buffer();
612 
613 	/*
614 	 * Restore default action and re-raise signal so SIGSEGV and
615 	 * SIGABRT can trigger a core dump.
616 	 */
617 	action.sa_handler = SIG_DFL;
618 	sigemptyset(&action.sa_mask);
619 	action.sa_flags = 0;
620 	(void) sigaction(signo, &action, NULL);
621 	raise(signo);
622 }
623 
624 #define	FATAL_MSG_SZ	1024
625 
626 static const char *fatal_msg;
627 
628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
629 fatal(int do_perror, const char *message, ...)
630 {
631 	va_list args;
632 	int save_errno = errno;
633 	char *buf;
634 
635 	(void) fflush(stdout);
636 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
637 	if (buf == NULL)
638 		goto out;
639 
640 	va_start(args, message);
641 	(void) sprintf(buf, "ztest: ");
642 	/* LINTED */
643 	(void) vsprintf(buf + strlen(buf), message, args);
644 	va_end(args);
645 	if (do_perror) {
646 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
647 		    ": %s", strerror(save_errno));
648 	}
649 	(void) fprintf(stderr, "%s\n", buf);
650 	fatal_msg = buf;			/* to ease debugging */
651 
652 out:
653 	if (ztest_dump_core)
654 		abort();
655 	else
656 		dump_debug_buffer();
657 
658 	exit(3);
659 }
660 
661 static int
662 str2shift(const char *buf)
663 {
664 	const char *ends = "BKMGTPEZ";
665 	int i;
666 
667 	if (buf[0] == '\0')
668 		return (0);
669 	for (i = 0; i < strlen(ends); i++) {
670 		if (toupper(buf[0]) == ends[i])
671 			break;
672 	}
673 	if (i == strlen(ends)) {
674 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
675 		    buf);
676 		usage(B_FALSE);
677 	}
678 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
679 		return (10*i);
680 	}
681 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
682 	usage(B_FALSE);
683 }
684 
685 static uint64_t
686 nicenumtoull(const char *buf)
687 {
688 	char *end;
689 	uint64_t val;
690 
691 	val = strtoull(buf, &end, 0);
692 	if (end == buf) {
693 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
694 		usage(B_FALSE);
695 	} else if (end[0] == '.') {
696 		double fval = strtod(buf, &end);
697 		fval *= pow(2, str2shift(end));
698 		/*
699 		 * UINT64_MAX is not exactly representable as a double.
700 		 * The closest representation is UINT64_MAX + 1, so we
701 		 * use a >= comparison instead of > for the bounds check.
702 		 */
703 		if (fval >= (double)UINT64_MAX) {
704 			(void) fprintf(stderr, "ztest: value too large: %s\n",
705 			    buf);
706 			usage(B_FALSE);
707 		}
708 		val = (uint64_t)fval;
709 	} else {
710 		int shift = str2shift(end);
711 		if (shift >= 64 || (val << shift) >> shift != val) {
712 			(void) fprintf(stderr, "ztest: value too large: %s\n",
713 			    buf);
714 			usage(B_FALSE);
715 		}
716 		val <<= shift;
717 	}
718 	return (val);
719 }
720 
721 typedef struct ztest_option {
722 	const char	short_opt;
723 	const char	*long_opt;
724 	const char	*long_opt_param;
725 	const char	*comment;
726 	unsigned int	default_int;
727 	const char	*default_str;
728 } ztest_option_t;
729 
730 /*
731  * The following option_table is used for generating the usage info as well as
732  * the long and short option information for calling getopt_long().
733  */
734 static ztest_option_t option_table[] = {
735 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
736 	    NULL},
737 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
738 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
739 	{ 'a',	"alignment-shift", "INTEGER",
740 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
741 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
742 	    DEFAULT_MIRRORS, NULL},
743 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
744 	    DEFAULT_RAID_CHILDREN, NULL},
745 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
746 	    DEFAULT_RAID_PARITY, NULL},
747 	{ 'K',	"raid-kind", "raidz|draid|random", "Raid kind",
748 	    NO_DEFAULT, "random"},
749 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
750 	    DEFAULT_DRAID_DATA, NULL},
751 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
752 	    DEFAULT_DRAID_SPARES, NULL},
753 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
754 	    DEFAULT_DATASETS_COUNT, NULL},
755 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
756 	    DEFAULT_THREADS, NULL},
757 	{ 'g',	"gang-block-threshold", "INTEGER",
758 	    "Metaslab gang block threshold",
759 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
760 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
761 	    DEFAULT_INITS, NULL},
762 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
763 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
764 	{ 'p',	"pool-name", "STRING", "Pool name",
765 	    NO_DEFAULT, DEFAULT_POOL},
766 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
767 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
768 	{ 'M',	"multi-host", NULL,
769 	    "Multi-host; simulate pool imported on remote host",
770 	    NO_DEFAULT, NULL},
771 	{ 'E',	"use-existing-pool", NULL,
772 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
773 	{ 'T',	"run-time", "INTEGER", "Total run time",
774 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
775 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
776 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
777 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
778 	    DEFAULT_MAX_LOOPS, NULL},
779 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
780 	    NO_DEFAULT, NULL},
781 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
782 	    NO_DEFAULT, "random"},
783 	{ 'o',	"option", "\"OPTION=INTEGER\"",
784 	    "Set global variable to an unsigned 32-bit integer value",
785 	    NO_DEFAULT, NULL},
786 	{ 'G',	"dump-debug-msg", NULL,
787 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
788 	    NO_DEFAULT, NULL},
789 	{ 'V',	"verbose", NULL,
790 	    "Verbose (use multiple times for ever more verbosity)",
791 	    NO_DEFAULT, NULL},
792 	{ 'h',	"help",	NULL, "Show this help",
793 	    NO_DEFAULT, NULL},
794 	{0, 0, 0, 0, 0, 0}
795 };
796 
797 static struct option *long_opts = NULL;
798 static char *short_opts = NULL;
799 
800 static void
801 init_options(void)
802 {
803 	ASSERT3P(long_opts, ==, NULL);
804 	ASSERT3P(short_opts, ==, NULL);
805 
806 	int count = sizeof (option_table) / sizeof (option_table[0]);
807 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
808 
809 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
810 	int short_opt_index = 0;
811 
812 	for (int i = 0; i < count; i++) {
813 		long_opts[i].val = option_table[i].short_opt;
814 		long_opts[i].name = option_table[i].long_opt;
815 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
816 		    ? required_argument : no_argument;
817 		long_opts[i].flag = NULL;
818 		short_opts[short_opt_index++] = option_table[i].short_opt;
819 		if (option_table[i].long_opt_param != NULL) {
820 			short_opts[short_opt_index++] = ':';
821 		}
822 	}
823 }
824 
825 static void
826 fini_options(void)
827 {
828 	int count = sizeof (option_table) / sizeof (option_table[0]);
829 
830 	umem_free(long_opts, sizeof (struct option) * count);
831 	umem_free(short_opts, sizeof (char) * 2 * count);
832 
833 	long_opts = NULL;
834 	short_opts = NULL;
835 }
836 
837 static __attribute__((noreturn)) void
838 usage(boolean_t requested)
839 {
840 	char option[80];
841 	FILE *fp = requested ? stdout : stderr;
842 
843 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
844 	for (int i = 0; option_table[i].short_opt != 0; i++) {
845 		if (option_table[i].long_opt_param != NULL) {
846 			(void) sprintf(option, "  -%c --%s=%s",
847 			    option_table[i].short_opt,
848 			    option_table[i].long_opt,
849 			    option_table[i].long_opt_param);
850 		} else {
851 			(void) sprintf(option, "  -%c --%s",
852 			    option_table[i].short_opt,
853 			    option_table[i].long_opt);
854 		}
855 		(void) fprintf(fp, "  %-40s%s", option,
856 		    option_table[i].comment);
857 
858 		if (option_table[i].long_opt_param != NULL) {
859 			if (option_table[i].default_str != NULL) {
860 				(void) fprintf(fp, " (default: %s)",
861 				    option_table[i].default_str);
862 			} else if (option_table[i].default_int != NO_DEFAULT) {
863 				(void) fprintf(fp, " (default: %u)",
864 				    option_table[i].default_int);
865 			}
866 		}
867 		(void) fprintf(fp, "\n");
868 	}
869 	exit(requested ? 0 : 1);
870 }
871 
872 static uint64_t
873 ztest_random(uint64_t range)
874 {
875 	uint64_t r;
876 
877 	ASSERT3S(ztest_fd_rand, >=, 0);
878 
879 	if (range == 0)
880 		return (0);
881 
882 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
883 		fatal(B_TRUE, "short read from /dev/urandom");
884 
885 	return (r % range);
886 }
887 
888 static void
889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
890 {
891 	char name[32];
892 	char *value;
893 	int state = ZTEST_VDEV_CLASS_RND;
894 
895 	(void) strlcpy(name, input, sizeof (name));
896 
897 	value = strchr(name, '=');
898 	if (value == NULL) {
899 		(void) fprintf(stderr, "missing value in property=value "
900 		    "'-C' argument (%s)\n", input);
901 		usage(B_FALSE);
902 	}
903 	*(value) = '\0';
904 	value++;
905 
906 	if (strcmp(value, "on") == 0) {
907 		state = ZTEST_VDEV_CLASS_ON;
908 	} else if (strcmp(value, "off") == 0) {
909 		state = ZTEST_VDEV_CLASS_OFF;
910 	} else if (strcmp(value, "random") == 0) {
911 		state = ZTEST_VDEV_CLASS_RND;
912 	} else {
913 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
914 		usage(B_FALSE);
915 	}
916 
917 	if (strcmp(name, "special") == 0) {
918 		zo->zo_special_vdevs = state;
919 	} else {
920 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
921 		usage(B_FALSE);
922 	}
923 	if (zo->zo_verbose >= 3)
924 		(void) printf("%s vdev state is '%s'\n", name, value);
925 }
926 
927 static void
928 process_options(int argc, char **argv)
929 {
930 	char *path;
931 	ztest_shared_opts_t *zo = &ztest_opts;
932 
933 	int opt;
934 	uint64_t value;
935 	const char *raid_kind = "random";
936 
937 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
938 
939 	init_options();
940 
941 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
942 	    NULL)) != EOF) {
943 		value = 0;
944 		switch (opt) {
945 		case 'v':
946 		case 's':
947 		case 'a':
948 		case 'm':
949 		case 'r':
950 		case 'R':
951 		case 'D':
952 		case 'S':
953 		case 'd':
954 		case 't':
955 		case 'g':
956 		case 'i':
957 		case 'k':
958 		case 'T':
959 		case 'P':
960 		case 'F':
961 			value = nicenumtoull(optarg);
962 		}
963 		switch (opt) {
964 		case 'v':
965 			zo->zo_vdevs = value;
966 			break;
967 		case 's':
968 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
969 			break;
970 		case 'a':
971 			zo->zo_ashift = value;
972 			break;
973 		case 'm':
974 			zo->zo_mirrors = value;
975 			break;
976 		case 'r':
977 			zo->zo_raid_children = MAX(1, value);
978 			break;
979 		case 'R':
980 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
981 			break;
982 		case 'K':
983 			raid_kind = optarg;
984 			break;
985 		case 'D':
986 			zo->zo_draid_data = MAX(1, value);
987 			break;
988 		case 'S':
989 			zo->zo_draid_spares = MAX(1, value);
990 			break;
991 		case 'd':
992 			zo->zo_datasets = MAX(1, value);
993 			break;
994 		case 't':
995 			zo->zo_threads = MAX(1, value);
996 			break;
997 		case 'g':
998 			zo->zo_metaslab_force_ganging =
999 			    MAX(SPA_MINBLOCKSIZE << 1, value);
1000 			break;
1001 		case 'i':
1002 			zo->zo_init = value;
1003 			break;
1004 		case 'k':
1005 			zo->zo_killrate = value;
1006 			break;
1007 		case 'p':
1008 			(void) strlcpy(zo->zo_pool, optarg,
1009 			    sizeof (zo->zo_pool));
1010 			break;
1011 		case 'f':
1012 			path = realpath(optarg, NULL);
1013 			if (path == NULL) {
1014 				(void) fprintf(stderr, "error: %s: %s\n",
1015 				    optarg, strerror(errno));
1016 				usage(B_FALSE);
1017 			} else {
1018 				(void) strlcpy(zo->zo_dir, path,
1019 				    sizeof (zo->zo_dir));
1020 				free(path);
1021 			}
1022 			break;
1023 		case 'M':
1024 			zo->zo_mmp_test = 1;
1025 			break;
1026 		case 'V':
1027 			zo->zo_verbose++;
1028 			break;
1029 		case 'E':
1030 			zo->zo_init = 0;
1031 			break;
1032 		case 'T':
1033 			zo->zo_time = value;
1034 			break;
1035 		case 'P':
1036 			zo->zo_passtime = MAX(1, value);
1037 			break;
1038 		case 'F':
1039 			zo->zo_maxloops = MAX(1, value);
1040 			break;
1041 		case 'B':
1042 			(void) strlcpy(zo->zo_alt_ztest, optarg,
1043 			    sizeof (zo->zo_alt_ztest));
1044 			break;
1045 		case 'C':
1046 			ztest_parse_name_value(optarg, zo);
1047 			break;
1048 		case 'o':
1049 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1050 				(void) fprintf(stderr,
1051 				    "max global var count (%zu) exceeded\n",
1052 				    ZO_GVARS_MAX_COUNT);
1053 				usage(B_FALSE);
1054 			}
1055 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1056 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1057 			    ZO_GVARS_MAX_ARGLEN) {
1058 				(void) fprintf(stderr,
1059 				    "global var option '%s' is too long\n",
1060 				    optarg);
1061 				usage(B_FALSE);
1062 			}
1063 			zo->zo_gvars_count++;
1064 			break;
1065 		case 'G':
1066 			zo->zo_dump_dbgmsg = 1;
1067 			break;
1068 		case 'h':
1069 			usage(B_TRUE);
1070 			break;
1071 		case '?':
1072 		default:
1073 			usage(B_FALSE);
1074 			break;
1075 		}
1076 	}
1077 
1078 	fini_options();
1079 
1080 	/* When raid choice is 'random' add a draid pool 50% of the time */
1081 	if (strcmp(raid_kind, "random") == 0) {
1082 		raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
1083 
1084 		if (ztest_opts.zo_verbose >= 3)
1085 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1086 	}
1087 
1088 	if (strcmp(raid_kind, "draid") == 0) {
1089 		uint64_t min_devsize;
1090 
1091 		/* With fewer disk use 256M, otherwise 128M is OK */
1092 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1093 		    (256ULL << 20) : (128ULL << 20);
1094 
1095 		/* No top-level mirrors with dRAID for now */
1096 		zo->zo_mirrors = 0;
1097 
1098 		/* Use more appropriate defaults for dRAID */
1099 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1100 			zo->zo_vdevs = 1;
1101 		if (zo->zo_raid_children ==
1102 		    ztest_opts_defaults.zo_raid_children)
1103 			zo->zo_raid_children = 16;
1104 		if (zo->zo_ashift < 12)
1105 			zo->zo_ashift = 12;
1106 		if (zo->zo_vdev_size < min_devsize)
1107 			zo->zo_vdev_size = min_devsize;
1108 
1109 		if (zo->zo_draid_data + zo->zo_raid_parity >
1110 		    zo->zo_raid_children - zo->zo_draid_spares) {
1111 			(void) fprintf(stderr, "error: too few draid "
1112 			    "children (%d) for stripe width (%d)\n",
1113 			    zo->zo_raid_children,
1114 			    zo->zo_draid_data + zo->zo_raid_parity);
1115 			usage(B_FALSE);
1116 		}
1117 
1118 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1119 		    sizeof (zo->zo_raid_type));
1120 
1121 	} else /* using raidz */ {
1122 		ASSERT0(strcmp(raid_kind, "raidz"));
1123 
1124 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1125 		    zo->zo_raid_children - 1);
1126 	}
1127 
1128 	zo->zo_vdevtime =
1129 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1130 	    UINT64_MAX >> 2);
1131 
1132 	if (*zo->zo_alt_ztest) {
1133 		const char *invalid_what = "ztest";
1134 		char *val = zo->zo_alt_ztest;
1135 		if (0 != access(val, X_OK) ||
1136 		    (strrchr(val, '/') == NULL && (errno = EINVAL)))
1137 			goto invalid;
1138 
1139 		int dirlen = strrchr(val, '/') - val;
1140 		strlcpy(zo->zo_alt_libpath, val,
1141 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1142 		invalid_what = "library path", val = zo->zo_alt_libpath;
1143 		if (strrchr(val, '/') == NULL && (errno = EINVAL))
1144 			goto invalid;
1145 		*strrchr(val, '/') = '\0';
1146 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1147 
1148 		if (0 != access(zo->zo_alt_libpath, X_OK))
1149 			goto invalid;
1150 		return;
1151 
1152 invalid:
1153 		ztest_dump_core = B_FALSE;
1154 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1155 	}
1156 }
1157 
1158 static void
1159 ztest_kill(ztest_shared_t *zs)
1160 {
1161 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1162 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1163 
1164 	/*
1165 	 * Before we kill ourselves, make sure that the config is updated.
1166 	 * See comment above spa_write_cachefile().
1167 	 */
1168 	mutex_enter(&spa_namespace_lock);
1169 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1170 	mutex_exit(&spa_namespace_lock);
1171 
1172 	(void) raise(SIGKILL);
1173 }
1174 
1175 static void
1176 ztest_record_enospc(const char *s)
1177 {
1178 	(void) s;
1179 	ztest_shared->zs_enospc_count++;
1180 }
1181 
1182 static uint64_t
1183 ztest_get_ashift(void)
1184 {
1185 	if (ztest_opts.zo_ashift == 0)
1186 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1187 	return (ztest_opts.zo_ashift);
1188 }
1189 
1190 static boolean_t
1191 ztest_is_draid_spare(const char *name)
1192 {
1193 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1194 
1195 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1196 	    &parity, &vdev_id, &spare_id) == 3) {
1197 		return (B_TRUE);
1198 	}
1199 
1200 	return (B_FALSE);
1201 }
1202 
1203 static nvlist_t *
1204 make_vdev_file(const char *path, const char *aux, const char *pool,
1205     size_t size, uint64_t ashift)
1206 {
1207 	char *pathbuf = NULL;
1208 	uint64_t vdev;
1209 	nvlist_t *file;
1210 	boolean_t draid_spare = B_FALSE;
1211 
1212 
1213 	if (ashift == 0)
1214 		ashift = ztest_get_ashift();
1215 
1216 	if (path == NULL) {
1217 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1218 		path = pathbuf;
1219 
1220 		if (aux != NULL) {
1221 			vdev = ztest_shared->zs_vdev_aux;
1222 			(void) snprintf(pathbuf, MAXPATHLEN,
1223 			    ztest_aux_template, ztest_opts.zo_dir,
1224 			    pool == NULL ? ztest_opts.zo_pool : pool,
1225 			    aux, vdev);
1226 		} else {
1227 			vdev = ztest_shared->zs_vdev_next_leaf++;
1228 			(void) snprintf(pathbuf, MAXPATHLEN,
1229 			    ztest_dev_template, ztest_opts.zo_dir,
1230 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1231 		}
1232 	} else {
1233 		draid_spare = ztest_is_draid_spare(path);
1234 	}
1235 
1236 	if (size != 0 && !draid_spare) {
1237 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1238 		if (fd == -1)
1239 			fatal(B_TRUE, "can't open %s", path);
1240 		if (ftruncate(fd, size) != 0)
1241 			fatal(B_TRUE, "can't ftruncate %s", path);
1242 		(void) close(fd);
1243 	}
1244 
1245 	file = fnvlist_alloc();
1246 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1247 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1248 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1249 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1250 	umem_free(pathbuf, MAXPATHLEN);
1251 
1252 	return (file);
1253 }
1254 
1255 static nvlist_t *
1256 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1257     uint64_t ashift, int r)
1258 {
1259 	nvlist_t *raid, **child;
1260 	int c;
1261 
1262 	if (r < 2)
1263 		return (make_vdev_file(path, aux, pool, size, ashift));
1264 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1265 
1266 	for (c = 0; c < r; c++)
1267 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1268 
1269 	raid = fnvlist_alloc();
1270 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1271 	    ztest_opts.zo_raid_type);
1272 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1273 	    ztest_opts.zo_raid_parity);
1274 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1275 	    (const nvlist_t **)child, r);
1276 
1277 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1278 		uint64_t ndata = ztest_opts.zo_draid_data;
1279 		uint64_t nparity = ztest_opts.zo_raid_parity;
1280 		uint64_t nspares = ztest_opts.zo_draid_spares;
1281 		uint64_t children = ztest_opts.zo_raid_children;
1282 		uint64_t ngroups = 1;
1283 
1284 		/*
1285 		 * Calculate the minimum number of groups required to fill a
1286 		 * slice. This is the LCM of the stripe width (data + parity)
1287 		 * and the number of data drives (children - spares).
1288 		 */
1289 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1290 			ngroups++;
1291 
1292 		/* Store the basic dRAID configuration. */
1293 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1294 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1295 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1296 	}
1297 
1298 	for (c = 0; c < r; c++)
1299 		fnvlist_free(child[c]);
1300 
1301 	umem_free(child, r * sizeof (nvlist_t *));
1302 
1303 	return (raid);
1304 }
1305 
1306 static nvlist_t *
1307 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1308     size_t size, uint64_t ashift, int r, int m)
1309 {
1310 	nvlist_t *mirror, **child;
1311 	int c;
1312 
1313 	if (m < 1)
1314 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1315 
1316 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1317 
1318 	for (c = 0; c < m; c++)
1319 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1320 
1321 	mirror = fnvlist_alloc();
1322 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1323 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1324 	    (const nvlist_t **)child, m);
1325 
1326 	for (c = 0; c < m; c++)
1327 		fnvlist_free(child[c]);
1328 
1329 	umem_free(child, m * sizeof (nvlist_t *));
1330 
1331 	return (mirror);
1332 }
1333 
1334 static nvlist_t *
1335 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1336     uint64_t ashift, const char *class, int r, int m, int t)
1337 {
1338 	nvlist_t *root, **child;
1339 	int c;
1340 	boolean_t log;
1341 
1342 	ASSERT3S(t, >, 0);
1343 
1344 	log = (class != NULL && strcmp(class, "log") == 0);
1345 
1346 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1347 
1348 	for (c = 0; c < t; c++) {
1349 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1350 		    r, m);
1351 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1352 
1353 		if (class != NULL && class[0] != '\0') {
1354 			ASSERT(m > 1 || log);   /* expecting a mirror */
1355 			fnvlist_add_string(child[c],
1356 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1357 		}
1358 	}
1359 
1360 	root = fnvlist_alloc();
1361 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1362 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1363 	    (const nvlist_t **)child, t);
1364 
1365 	for (c = 0; c < t; c++)
1366 		fnvlist_free(child[c]);
1367 
1368 	umem_free(child, t * sizeof (nvlist_t *));
1369 
1370 	return (root);
1371 }
1372 
1373 /*
1374  * Find a random spa version. Returns back a random spa version in the
1375  * range [initial_version, SPA_VERSION_FEATURES].
1376  */
1377 static uint64_t
1378 ztest_random_spa_version(uint64_t initial_version)
1379 {
1380 	uint64_t version = initial_version;
1381 
1382 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1383 		version = version +
1384 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1385 	}
1386 
1387 	if (version > SPA_VERSION_BEFORE_FEATURES)
1388 		version = SPA_VERSION_FEATURES;
1389 
1390 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1391 	return (version);
1392 }
1393 
1394 static int
1395 ztest_random_blocksize(void)
1396 {
1397 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1398 
1399 	/*
1400 	 * Choose a block size >= the ashift.
1401 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1402 	 */
1403 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1404 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1405 		maxbs = 20;
1406 	uint64_t block_shift =
1407 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1408 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1409 }
1410 
1411 static int
1412 ztest_random_dnodesize(void)
1413 {
1414 	int slots;
1415 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1416 
1417 	if (max_slots == DNODE_MIN_SLOTS)
1418 		return (DNODE_MIN_SIZE);
1419 
1420 	/*
1421 	 * Weight the random distribution more heavily toward smaller
1422 	 * dnode sizes since that is more likely to reflect real-world
1423 	 * usage.
1424 	 */
1425 	ASSERT3U(max_slots, >, 4);
1426 	switch (ztest_random(10)) {
1427 	case 0:
1428 		slots = 5 + ztest_random(max_slots - 4);
1429 		break;
1430 	case 1 ... 4:
1431 		slots = 2 + ztest_random(3);
1432 		break;
1433 	default:
1434 		slots = 1;
1435 		break;
1436 	}
1437 
1438 	return (slots << DNODE_SHIFT);
1439 }
1440 
1441 static int
1442 ztest_random_ibshift(void)
1443 {
1444 	return (DN_MIN_INDBLKSHIFT +
1445 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1446 }
1447 
1448 static uint64_t
1449 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1450 {
1451 	uint64_t top;
1452 	vdev_t *rvd = spa->spa_root_vdev;
1453 	vdev_t *tvd;
1454 
1455 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1456 
1457 	do {
1458 		top = ztest_random(rvd->vdev_children);
1459 		tvd = rvd->vdev_child[top];
1460 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1461 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1462 
1463 	return (top);
1464 }
1465 
1466 static uint64_t
1467 ztest_random_dsl_prop(zfs_prop_t prop)
1468 {
1469 	uint64_t value;
1470 
1471 	do {
1472 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1473 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1474 
1475 	return (value);
1476 }
1477 
1478 static int
1479 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1480     boolean_t inherit)
1481 {
1482 	const char *propname = zfs_prop_to_name(prop);
1483 	const char *valname;
1484 	char *setpoint;
1485 	uint64_t curval;
1486 	int error;
1487 
1488 	error = dsl_prop_set_int(osname, propname,
1489 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1490 
1491 	if (error == ENOSPC) {
1492 		ztest_record_enospc(FTAG);
1493 		return (error);
1494 	}
1495 	ASSERT0(error);
1496 
1497 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1498 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1499 
1500 	if (ztest_opts.zo_verbose >= 6) {
1501 		int err;
1502 
1503 		err = zfs_prop_index_to_string(prop, curval, &valname);
1504 		if (err)
1505 			(void) printf("%s %s = %llu at '%s'\n", osname,
1506 			    propname, (unsigned long long)curval, setpoint);
1507 		else
1508 			(void) printf("%s %s = %s at '%s'\n",
1509 			    osname, propname, valname, setpoint);
1510 	}
1511 	umem_free(setpoint, MAXPATHLEN);
1512 
1513 	return (error);
1514 }
1515 
1516 static int
1517 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1518 {
1519 	spa_t *spa = ztest_spa;
1520 	nvlist_t *props = NULL;
1521 	int error;
1522 
1523 	props = fnvlist_alloc();
1524 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1525 
1526 	error = spa_prop_set(spa, props);
1527 
1528 	fnvlist_free(props);
1529 
1530 	if (error == ENOSPC) {
1531 		ztest_record_enospc(FTAG);
1532 		return (error);
1533 	}
1534 	ASSERT0(error);
1535 
1536 	return (error);
1537 }
1538 
1539 static int
1540 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1541     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1542 {
1543 	int err;
1544 	char *cp = NULL;
1545 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1546 
1547 	strlcpy(ddname, name, sizeof (ddname));
1548 	cp = strchr(ddname, '@');
1549 	if (cp != NULL)
1550 		*cp = '\0';
1551 
1552 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1553 	while (decrypt && err == EACCES) {
1554 		dsl_crypto_params_t *dcp;
1555 		nvlist_t *crypto_args = fnvlist_alloc();
1556 
1557 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1558 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1559 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1560 		    crypto_args, &dcp));
1561 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1562 		/*
1563 		 * Note: if there was an error loading, the wkey was not
1564 		 * consumed, and needs to be freed.
1565 		 */
1566 		dsl_crypto_params_free(dcp, (err != 0));
1567 		fnvlist_free(crypto_args);
1568 
1569 		if (err == EINVAL) {
1570 			/*
1571 			 * We couldn't load a key for this dataset so try
1572 			 * the parent. This loop will eventually hit the
1573 			 * encryption root since ztest only makes clones
1574 			 * as children of their origin datasets.
1575 			 */
1576 			cp = strrchr(ddname, '/');
1577 			if (cp == NULL)
1578 				return (err);
1579 
1580 			*cp = '\0';
1581 			err = EACCES;
1582 			continue;
1583 		} else if (err != 0) {
1584 			break;
1585 		}
1586 
1587 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1588 		break;
1589 	}
1590 
1591 	return (err);
1592 }
1593 
1594 static void
1595 ztest_rll_init(rll_t *rll)
1596 {
1597 	rll->rll_writer = NULL;
1598 	rll->rll_readers = 0;
1599 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1600 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1601 }
1602 
1603 static void
1604 ztest_rll_destroy(rll_t *rll)
1605 {
1606 	ASSERT3P(rll->rll_writer, ==, NULL);
1607 	ASSERT0(rll->rll_readers);
1608 	mutex_destroy(&rll->rll_lock);
1609 	cv_destroy(&rll->rll_cv);
1610 }
1611 
1612 static void
1613 ztest_rll_lock(rll_t *rll, rl_type_t type)
1614 {
1615 	mutex_enter(&rll->rll_lock);
1616 
1617 	if (type == RL_READER) {
1618 		while (rll->rll_writer != NULL)
1619 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1620 		rll->rll_readers++;
1621 	} else {
1622 		while (rll->rll_writer != NULL || rll->rll_readers)
1623 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1624 		rll->rll_writer = curthread;
1625 	}
1626 
1627 	mutex_exit(&rll->rll_lock);
1628 }
1629 
1630 static void
1631 ztest_rll_unlock(rll_t *rll)
1632 {
1633 	mutex_enter(&rll->rll_lock);
1634 
1635 	if (rll->rll_writer) {
1636 		ASSERT0(rll->rll_readers);
1637 		rll->rll_writer = NULL;
1638 	} else {
1639 		ASSERT3S(rll->rll_readers, >, 0);
1640 		ASSERT3P(rll->rll_writer, ==, NULL);
1641 		rll->rll_readers--;
1642 	}
1643 
1644 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1645 		cv_broadcast(&rll->rll_cv);
1646 
1647 	mutex_exit(&rll->rll_lock);
1648 }
1649 
1650 static void
1651 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1652 {
1653 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1654 
1655 	ztest_rll_lock(rll, type);
1656 }
1657 
1658 static void
1659 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1660 {
1661 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1662 
1663 	ztest_rll_unlock(rll);
1664 }
1665 
1666 static rl_t *
1667 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1668     uint64_t size, rl_type_t type)
1669 {
1670 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1671 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1672 	rl_t *rl;
1673 
1674 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1675 	rl->rl_object = object;
1676 	rl->rl_offset = offset;
1677 	rl->rl_size = size;
1678 	rl->rl_lock = rll;
1679 
1680 	ztest_rll_lock(rll, type);
1681 
1682 	return (rl);
1683 }
1684 
1685 static void
1686 ztest_range_unlock(rl_t *rl)
1687 {
1688 	rll_t *rll = rl->rl_lock;
1689 
1690 	ztest_rll_unlock(rll);
1691 
1692 	umem_free(rl, sizeof (*rl));
1693 }
1694 
1695 static void
1696 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1697 {
1698 	zd->zd_os = os;
1699 	zd->zd_zilog = dmu_objset_zil(os);
1700 	zd->zd_shared = szd;
1701 	dmu_objset_name(os, zd->zd_name);
1702 	int l;
1703 
1704 	if (zd->zd_shared != NULL)
1705 		zd->zd_shared->zd_seq = 0;
1706 
1707 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1708 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1709 
1710 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1711 		ztest_rll_init(&zd->zd_object_lock[l]);
1712 
1713 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1714 		ztest_rll_init(&zd->zd_range_lock[l]);
1715 }
1716 
1717 static void
1718 ztest_zd_fini(ztest_ds_t *zd)
1719 {
1720 	int l;
1721 
1722 	mutex_destroy(&zd->zd_dirobj_lock);
1723 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1724 
1725 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1726 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1727 
1728 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1729 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1730 }
1731 
1732 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1733 
1734 static uint64_t
1735 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1736 {
1737 	uint64_t txg;
1738 	int error;
1739 
1740 	/*
1741 	 * Attempt to assign tx to some transaction group.
1742 	 */
1743 	error = dmu_tx_assign(tx, txg_how);
1744 	if (error) {
1745 		if (error == ERESTART) {
1746 			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1747 			dmu_tx_wait(tx);
1748 		} else {
1749 			ASSERT3U(error, ==, ENOSPC);
1750 			ztest_record_enospc(tag);
1751 		}
1752 		dmu_tx_abort(tx);
1753 		return (0);
1754 	}
1755 	txg = dmu_tx_get_txg(tx);
1756 	ASSERT3U(txg, !=, 0);
1757 	return (txg);
1758 }
1759 
1760 static void
1761 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1762     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1763     uint64_t crtxg)
1764 {
1765 	bt->bt_magic = BT_MAGIC;
1766 	bt->bt_objset = dmu_objset_id(os);
1767 	bt->bt_object = object;
1768 	bt->bt_dnodesize = dnodesize;
1769 	bt->bt_offset = offset;
1770 	bt->bt_gen = gen;
1771 	bt->bt_txg = txg;
1772 	bt->bt_crtxg = crtxg;
1773 }
1774 
1775 static void
1776 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1777     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1778     uint64_t crtxg)
1779 {
1780 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1781 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1782 	ASSERT3U(bt->bt_object, ==, object);
1783 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1784 	ASSERT3U(bt->bt_offset, ==, offset);
1785 	ASSERT3U(bt->bt_gen, <=, gen);
1786 	ASSERT3U(bt->bt_txg, <=, txg);
1787 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1788 }
1789 
1790 static ztest_block_tag_t *
1791 ztest_bt_bonus(dmu_buf_t *db)
1792 {
1793 	dmu_object_info_t doi;
1794 	ztest_block_tag_t *bt;
1795 
1796 	dmu_object_info_from_db(db, &doi);
1797 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1798 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1799 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1800 
1801 	return (bt);
1802 }
1803 
1804 /*
1805  * Generate a token to fill up unused bonus buffer space.  Try to make
1806  * it unique to the object, generation, and offset to verify that data
1807  * is not getting overwritten by data from other dnodes.
1808  */
1809 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1810 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1811 
1812 /*
1813  * Fill up the unused bonus buffer region before the block tag with a
1814  * verifiable pattern. Filling the whole bonus area with non-zero data
1815  * helps ensure that all dnode traversal code properly skips the
1816  * interior regions of large dnodes.
1817  */
1818 static void
1819 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1820     objset_t *os, uint64_t gen)
1821 {
1822 	uint64_t *bonusp;
1823 
1824 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1825 
1826 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1827 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1828 		    gen, bonusp - (uint64_t *)db->db_data);
1829 		*bonusp = token;
1830 	}
1831 }
1832 
1833 /*
1834  * Verify that the unused area of a bonus buffer is filled with the
1835  * expected tokens.
1836  */
1837 static void
1838 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1839     objset_t *os, uint64_t gen)
1840 {
1841 	uint64_t *bonusp;
1842 
1843 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1844 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1845 		    gen, bonusp - (uint64_t *)db->db_data);
1846 		VERIFY3U(*bonusp, ==, token);
1847 	}
1848 }
1849 
1850 /*
1851  * ZIL logging ops
1852  */
1853 
1854 #define	lrz_type	lr_mode
1855 #define	lrz_blocksize	lr_uid
1856 #define	lrz_ibshift	lr_gid
1857 #define	lrz_bonustype	lr_rdev
1858 #define	lrz_dnodesize	lr_crtime[1]
1859 
1860 static void
1861 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1862 {
1863 	char *name = (void *)(lr + 1);		/* name follows lr */
1864 	size_t namesize = strlen(name) + 1;
1865 	itx_t *itx;
1866 
1867 	if (zil_replaying(zd->zd_zilog, tx))
1868 		return;
1869 
1870 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1871 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1872 	    sizeof (*lr) + namesize - sizeof (lr_t));
1873 
1874 	zil_itx_assign(zd->zd_zilog, itx, tx);
1875 }
1876 
1877 static void
1878 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1879 {
1880 	char *name = (void *)(lr + 1);		/* name follows lr */
1881 	size_t namesize = strlen(name) + 1;
1882 	itx_t *itx;
1883 
1884 	if (zil_replaying(zd->zd_zilog, tx))
1885 		return;
1886 
1887 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1888 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1889 	    sizeof (*lr) + namesize - sizeof (lr_t));
1890 
1891 	itx->itx_oid = object;
1892 	zil_itx_assign(zd->zd_zilog, itx, tx);
1893 }
1894 
1895 static void
1896 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1897 {
1898 	itx_t *itx;
1899 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1900 
1901 	if (zil_replaying(zd->zd_zilog, tx))
1902 		return;
1903 
1904 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1905 		write_state = WR_INDIRECT;
1906 
1907 	itx = zil_itx_create(TX_WRITE,
1908 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1909 
1910 	if (write_state == WR_COPIED &&
1911 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1912 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1913 		zil_itx_destroy(itx);
1914 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1915 		write_state = WR_NEED_COPY;
1916 	}
1917 	itx->itx_private = zd;
1918 	itx->itx_wr_state = write_state;
1919 	itx->itx_sync = (ztest_random(8) == 0);
1920 
1921 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1922 	    sizeof (*lr) - sizeof (lr_t));
1923 
1924 	zil_itx_assign(zd->zd_zilog, itx, tx);
1925 }
1926 
1927 static void
1928 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1929 {
1930 	itx_t *itx;
1931 
1932 	if (zil_replaying(zd->zd_zilog, tx))
1933 		return;
1934 
1935 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1936 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1937 	    sizeof (*lr) - sizeof (lr_t));
1938 
1939 	itx->itx_sync = B_FALSE;
1940 	zil_itx_assign(zd->zd_zilog, itx, tx);
1941 }
1942 
1943 static void
1944 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1945 {
1946 	itx_t *itx;
1947 
1948 	if (zil_replaying(zd->zd_zilog, tx))
1949 		return;
1950 
1951 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1952 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1953 	    sizeof (*lr) - sizeof (lr_t));
1954 
1955 	itx->itx_sync = B_FALSE;
1956 	zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958 
1959 /*
1960  * ZIL replay ops
1961  */
1962 static int
1963 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1964 {
1965 	ztest_ds_t *zd = arg1;
1966 	lr_create_t *lr = arg2;
1967 	char *name = (void *)(lr + 1);		/* name follows lr */
1968 	objset_t *os = zd->zd_os;
1969 	ztest_block_tag_t *bbt;
1970 	dmu_buf_t *db;
1971 	dmu_tx_t *tx;
1972 	uint64_t txg;
1973 	int error = 0;
1974 	int bonuslen;
1975 
1976 	if (byteswap)
1977 		byteswap_uint64_array(lr, sizeof (*lr));
1978 
1979 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1980 	ASSERT3S(name[0], !=, '\0');
1981 
1982 	tx = dmu_tx_create(os);
1983 
1984 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1985 
1986 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1987 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1988 	} else {
1989 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1990 	}
1991 
1992 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1993 	if (txg == 0)
1994 		return (ENOSPC);
1995 
1996 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
1997 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1998 
1999 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2000 		if (lr->lr_foid == 0) {
2001 			lr->lr_foid = zap_create_dnsize(os,
2002 			    lr->lrz_type, lr->lrz_bonustype,
2003 			    bonuslen, lr->lrz_dnodesize, tx);
2004 		} else {
2005 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2006 			    lr->lrz_type, lr->lrz_bonustype,
2007 			    bonuslen, lr->lrz_dnodesize, tx);
2008 		}
2009 	} else {
2010 		if (lr->lr_foid == 0) {
2011 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2012 			    lr->lrz_type, 0, lr->lrz_bonustype,
2013 			    bonuslen, lr->lrz_dnodesize, tx);
2014 		} else {
2015 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2016 			    lr->lrz_type, 0, lr->lrz_bonustype,
2017 			    bonuslen, lr->lrz_dnodesize, tx);
2018 		}
2019 	}
2020 
2021 	if (error) {
2022 		ASSERT3U(error, ==, EEXIST);
2023 		ASSERT(zd->zd_zilog->zl_replay);
2024 		dmu_tx_commit(tx);
2025 		return (error);
2026 	}
2027 
2028 	ASSERT3U(lr->lr_foid, !=, 0);
2029 
2030 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2031 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2032 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2033 
2034 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2035 	bbt = ztest_bt_bonus(db);
2036 	dmu_buf_will_dirty(db, tx);
2037 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2038 	    lr->lr_gen, txg, txg);
2039 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2040 	dmu_buf_rele(db, FTAG);
2041 
2042 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2043 	    &lr->lr_foid, tx));
2044 
2045 	(void) ztest_log_create(zd, tx, lr);
2046 
2047 	dmu_tx_commit(tx);
2048 
2049 	return (0);
2050 }
2051 
2052 static int
2053 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2054 {
2055 	ztest_ds_t *zd = arg1;
2056 	lr_remove_t *lr = arg2;
2057 	char *name = (void *)(lr + 1);		/* name follows lr */
2058 	objset_t *os = zd->zd_os;
2059 	dmu_object_info_t doi;
2060 	dmu_tx_t *tx;
2061 	uint64_t object, txg;
2062 
2063 	if (byteswap)
2064 		byteswap_uint64_array(lr, sizeof (*lr));
2065 
2066 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2067 	ASSERT3S(name[0], !=, '\0');
2068 
2069 	VERIFY0(
2070 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2071 	ASSERT3U(object, !=, 0);
2072 
2073 	ztest_object_lock(zd, object, RL_WRITER);
2074 
2075 	VERIFY0(dmu_object_info(os, object, &doi));
2076 
2077 	tx = dmu_tx_create(os);
2078 
2079 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2080 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2081 
2082 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2083 	if (txg == 0) {
2084 		ztest_object_unlock(zd, object);
2085 		return (ENOSPC);
2086 	}
2087 
2088 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2089 		VERIFY0(zap_destroy(os, object, tx));
2090 	} else {
2091 		VERIFY0(dmu_object_free(os, object, tx));
2092 	}
2093 
2094 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2095 
2096 	(void) ztest_log_remove(zd, tx, lr, object);
2097 
2098 	dmu_tx_commit(tx);
2099 
2100 	ztest_object_unlock(zd, object);
2101 
2102 	return (0);
2103 }
2104 
2105 static int
2106 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2107 {
2108 	ztest_ds_t *zd = arg1;
2109 	lr_write_t *lr = arg2;
2110 	objset_t *os = zd->zd_os;
2111 	void *data = lr + 1;			/* data follows lr */
2112 	uint64_t offset, length;
2113 	ztest_block_tag_t *bt = data;
2114 	ztest_block_tag_t *bbt;
2115 	uint64_t gen, txg, lrtxg, crtxg;
2116 	dmu_object_info_t doi;
2117 	dmu_tx_t *tx;
2118 	dmu_buf_t *db;
2119 	arc_buf_t *abuf = NULL;
2120 	rl_t *rl;
2121 
2122 	if (byteswap)
2123 		byteswap_uint64_array(lr, sizeof (*lr));
2124 
2125 	offset = lr->lr_offset;
2126 	length = lr->lr_length;
2127 
2128 	/* If it's a dmu_sync() block, write the whole block */
2129 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2130 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2131 		if (length < blocksize) {
2132 			offset -= offset % blocksize;
2133 			length = blocksize;
2134 		}
2135 	}
2136 
2137 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2138 		byteswap_uint64_array(bt, sizeof (*bt));
2139 
2140 	if (bt->bt_magic != BT_MAGIC)
2141 		bt = NULL;
2142 
2143 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2144 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2145 
2146 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2147 
2148 	dmu_object_info_from_db(db, &doi);
2149 
2150 	bbt = ztest_bt_bonus(db);
2151 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2152 	gen = bbt->bt_gen;
2153 	crtxg = bbt->bt_crtxg;
2154 	lrtxg = lr->lr_common.lrc_txg;
2155 
2156 	tx = dmu_tx_create(os);
2157 
2158 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2159 
2160 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2161 	    P2PHASE(offset, length) == 0)
2162 		abuf = dmu_request_arcbuf(db, length);
2163 
2164 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2165 	if (txg == 0) {
2166 		if (abuf != NULL)
2167 			dmu_return_arcbuf(abuf);
2168 		dmu_buf_rele(db, FTAG);
2169 		ztest_range_unlock(rl);
2170 		ztest_object_unlock(zd, lr->lr_foid);
2171 		return (ENOSPC);
2172 	}
2173 
2174 	if (bt != NULL) {
2175 		/*
2176 		 * Usually, verify the old data before writing new data --
2177 		 * but not always, because we also want to verify correct
2178 		 * behavior when the data was not recently read into cache.
2179 		 */
2180 		ASSERT(doi.doi_data_block_size);
2181 		ASSERT0(offset % doi.doi_data_block_size);
2182 		if (ztest_random(4) != 0) {
2183 			int prefetch = ztest_random(2) ?
2184 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2185 			ztest_block_tag_t rbt;
2186 
2187 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2188 			    sizeof (rbt), &rbt, prefetch) == 0);
2189 			if (rbt.bt_magic == BT_MAGIC) {
2190 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2191 				    offset, gen, txg, crtxg);
2192 			}
2193 		}
2194 
2195 		/*
2196 		 * Writes can appear to be newer than the bonus buffer because
2197 		 * the ztest_get_data() callback does a dmu_read() of the
2198 		 * open-context data, which may be different than the data
2199 		 * as it was when the write was generated.
2200 		 */
2201 		if (zd->zd_zilog->zl_replay) {
2202 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2203 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2204 			    bt->bt_crtxg);
2205 		}
2206 
2207 		/*
2208 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2209 		 * so that all of the usual ASSERTs will work.
2210 		 */
2211 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2212 		    crtxg);
2213 	}
2214 
2215 	if (abuf == NULL) {
2216 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2217 	} else {
2218 		memcpy(abuf->b_data, data, length);
2219 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2220 	}
2221 
2222 	(void) ztest_log_write(zd, tx, lr);
2223 
2224 	dmu_buf_rele(db, FTAG);
2225 
2226 	dmu_tx_commit(tx);
2227 
2228 	ztest_range_unlock(rl);
2229 	ztest_object_unlock(zd, lr->lr_foid);
2230 
2231 	return (0);
2232 }
2233 
2234 static int
2235 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2236 {
2237 	ztest_ds_t *zd = arg1;
2238 	lr_truncate_t *lr = arg2;
2239 	objset_t *os = zd->zd_os;
2240 	dmu_tx_t *tx;
2241 	uint64_t txg;
2242 	rl_t *rl;
2243 
2244 	if (byteswap)
2245 		byteswap_uint64_array(lr, sizeof (*lr));
2246 
2247 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2248 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2249 	    RL_WRITER);
2250 
2251 	tx = dmu_tx_create(os);
2252 
2253 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2254 
2255 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2256 	if (txg == 0) {
2257 		ztest_range_unlock(rl);
2258 		ztest_object_unlock(zd, lr->lr_foid);
2259 		return (ENOSPC);
2260 	}
2261 
2262 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2263 	    lr->lr_length, tx));
2264 
2265 	(void) ztest_log_truncate(zd, tx, lr);
2266 
2267 	dmu_tx_commit(tx);
2268 
2269 	ztest_range_unlock(rl);
2270 	ztest_object_unlock(zd, lr->lr_foid);
2271 
2272 	return (0);
2273 }
2274 
2275 static int
2276 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2277 {
2278 	ztest_ds_t *zd = arg1;
2279 	lr_setattr_t *lr = arg2;
2280 	objset_t *os = zd->zd_os;
2281 	dmu_tx_t *tx;
2282 	dmu_buf_t *db;
2283 	ztest_block_tag_t *bbt;
2284 	uint64_t txg, lrtxg, crtxg, dnodesize;
2285 
2286 	if (byteswap)
2287 		byteswap_uint64_array(lr, sizeof (*lr));
2288 
2289 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2290 
2291 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2292 
2293 	tx = dmu_tx_create(os);
2294 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2295 
2296 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2297 	if (txg == 0) {
2298 		dmu_buf_rele(db, FTAG);
2299 		ztest_object_unlock(zd, lr->lr_foid);
2300 		return (ENOSPC);
2301 	}
2302 
2303 	bbt = ztest_bt_bonus(db);
2304 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2305 	crtxg = bbt->bt_crtxg;
2306 	lrtxg = lr->lr_common.lrc_txg;
2307 	dnodesize = bbt->bt_dnodesize;
2308 
2309 	if (zd->zd_zilog->zl_replay) {
2310 		ASSERT3U(lr->lr_size, !=, 0);
2311 		ASSERT3U(lr->lr_mode, !=, 0);
2312 		ASSERT3U(lrtxg, !=, 0);
2313 	} else {
2314 		/*
2315 		 * Randomly change the size and increment the generation.
2316 		 */
2317 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2318 		    sizeof (*bbt);
2319 		lr->lr_mode = bbt->bt_gen + 1;
2320 		ASSERT0(lrtxg);
2321 	}
2322 
2323 	/*
2324 	 * Verify that the current bonus buffer is not newer than our txg.
2325 	 */
2326 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2327 	    MAX(txg, lrtxg), crtxg);
2328 
2329 	dmu_buf_will_dirty(db, tx);
2330 
2331 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2332 	ASSERT3U(lr->lr_size, <=, db->db_size);
2333 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2334 	bbt = ztest_bt_bonus(db);
2335 
2336 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2337 	    txg, crtxg);
2338 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2339 	dmu_buf_rele(db, FTAG);
2340 
2341 	(void) ztest_log_setattr(zd, tx, lr);
2342 
2343 	dmu_tx_commit(tx);
2344 
2345 	ztest_object_unlock(zd, lr->lr_foid);
2346 
2347 	return (0);
2348 }
2349 
2350 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2351 	NULL,			/* 0 no such transaction type */
2352 	ztest_replay_create,	/* TX_CREATE */
2353 	NULL,			/* TX_MKDIR */
2354 	NULL,			/* TX_MKXATTR */
2355 	NULL,			/* TX_SYMLINK */
2356 	ztest_replay_remove,	/* TX_REMOVE */
2357 	NULL,			/* TX_RMDIR */
2358 	NULL,			/* TX_LINK */
2359 	NULL,			/* TX_RENAME */
2360 	ztest_replay_write,	/* TX_WRITE */
2361 	ztest_replay_truncate,	/* TX_TRUNCATE */
2362 	ztest_replay_setattr,	/* TX_SETATTR */
2363 	NULL,			/* TX_ACL */
2364 	NULL,			/* TX_CREATE_ACL */
2365 	NULL,			/* TX_CREATE_ATTR */
2366 	NULL,			/* TX_CREATE_ACL_ATTR */
2367 	NULL,			/* TX_MKDIR_ACL */
2368 	NULL,			/* TX_MKDIR_ATTR */
2369 	NULL,			/* TX_MKDIR_ACL_ATTR */
2370 	NULL,			/* TX_WRITE2 */
2371 	NULL,			/* TX_SETSAXATTR */
2372 	NULL,			/* TX_RENAME_EXCHANGE */
2373 	NULL,			/* TX_RENAME_WHITEOUT */
2374 };
2375 
2376 /*
2377  * ZIL get_data callbacks
2378  */
2379 
2380 static void
2381 ztest_get_done(zgd_t *zgd, int error)
2382 {
2383 	(void) error;
2384 	ztest_ds_t *zd = zgd->zgd_private;
2385 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2386 
2387 	if (zgd->zgd_db)
2388 		dmu_buf_rele(zgd->zgd_db, zgd);
2389 
2390 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2391 	ztest_object_unlock(zd, object);
2392 
2393 	umem_free(zgd, sizeof (*zgd));
2394 }
2395 
2396 static int
2397 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2398     struct lwb *lwb, zio_t *zio)
2399 {
2400 	(void) arg2;
2401 	ztest_ds_t *zd = arg;
2402 	objset_t *os = zd->zd_os;
2403 	uint64_t object = lr->lr_foid;
2404 	uint64_t offset = lr->lr_offset;
2405 	uint64_t size = lr->lr_length;
2406 	uint64_t txg = lr->lr_common.lrc_txg;
2407 	uint64_t crtxg;
2408 	dmu_object_info_t doi;
2409 	dmu_buf_t *db;
2410 	zgd_t *zgd;
2411 	int error;
2412 
2413 	ASSERT3P(lwb, !=, NULL);
2414 	ASSERT3P(zio, !=, NULL);
2415 	ASSERT3U(size, !=, 0);
2416 
2417 	ztest_object_lock(zd, object, RL_READER);
2418 	error = dmu_bonus_hold(os, object, FTAG, &db);
2419 	if (error) {
2420 		ztest_object_unlock(zd, object);
2421 		return (error);
2422 	}
2423 
2424 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2425 
2426 	if (crtxg == 0 || crtxg > txg) {
2427 		dmu_buf_rele(db, FTAG);
2428 		ztest_object_unlock(zd, object);
2429 		return (ENOENT);
2430 	}
2431 
2432 	dmu_object_info_from_db(db, &doi);
2433 	dmu_buf_rele(db, FTAG);
2434 	db = NULL;
2435 
2436 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2437 	zgd->zgd_lwb = lwb;
2438 	zgd->zgd_private = zd;
2439 
2440 	if (buf != NULL) {	/* immediate write */
2441 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2442 		    object, offset, size, RL_READER);
2443 
2444 		error = dmu_read(os, object, offset, size, buf,
2445 		    DMU_READ_NO_PREFETCH);
2446 		ASSERT0(error);
2447 	} else {
2448 		size = doi.doi_data_block_size;
2449 		if (ISP2(size)) {
2450 			offset = P2ALIGN(offset, size);
2451 		} else {
2452 			ASSERT3U(offset, <, size);
2453 			offset = 0;
2454 		}
2455 
2456 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2457 		    object, offset, size, RL_READER);
2458 
2459 		error = dmu_buf_hold(os, object, offset, zgd, &db,
2460 		    DMU_READ_NO_PREFETCH);
2461 
2462 		if (error == 0) {
2463 			blkptr_t *bp = &lr->lr_blkptr;
2464 
2465 			zgd->zgd_db = db;
2466 			zgd->zgd_bp = bp;
2467 
2468 			ASSERT3U(db->db_offset, ==, offset);
2469 			ASSERT3U(db->db_size, ==, size);
2470 
2471 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2472 			    ztest_get_done, zgd);
2473 
2474 			if (error == 0)
2475 				return (0);
2476 		}
2477 	}
2478 
2479 	ztest_get_done(zgd, error);
2480 
2481 	return (error);
2482 }
2483 
2484 static void *
2485 ztest_lr_alloc(size_t lrsize, char *name)
2486 {
2487 	char *lr;
2488 	size_t namesize = name ? strlen(name) + 1 : 0;
2489 
2490 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2491 
2492 	if (name)
2493 		memcpy(lr + lrsize, name, namesize);
2494 
2495 	return (lr);
2496 }
2497 
2498 static void
2499 ztest_lr_free(void *lr, size_t lrsize, char *name)
2500 {
2501 	size_t namesize = name ? strlen(name) + 1 : 0;
2502 
2503 	umem_free(lr, lrsize + namesize);
2504 }
2505 
2506 /*
2507  * Lookup a bunch of objects.  Returns the number of objects not found.
2508  */
2509 static int
2510 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2511 {
2512 	int missing = 0;
2513 	int error;
2514 	int i;
2515 
2516 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2517 
2518 	for (i = 0; i < count; i++, od++) {
2519 		od->od_object = 0;
2520 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2521 		    sizeof (uint64_t), 1, &od->od_object);
2522 		if (error) {
2523 			ASSERT3S(error, ==, ENOENT);
2524 			ASSERT0(od->od_object);
2525 			missing++;
2526 		} else {
2527 			dmu_buf_t *db;
2528 			ztest_block_tag_t *bbt;
2529 			dmu_object_info_t doi;
2530 
2531 			ASSERT3U(od->od_object, !=, 0);
2532 			ASSERT0(missing);	/* there should be no gaps */
2533 
2534 			ztest_object_lock(zd, od->od_object, RL_READER);
2535 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2536 			    FTAG, &db));
2537 			dmu_object_info_from_db(db, &doi);
2538 			bbt = ztest_bt_bonus(db);
2539 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2540 			od->od_type = doi.doi_type;
2541 			od->od_blocksize = doi.doi_data_block_size;
2542 			od->od_gen = bbt->bt_gen;
2543 			dmu_buf_rele(db, FTAG);
2544 			ztest_object_unlock(zd, od->od_object);
2545 		}
2546 	}
2547 
2548 	return (missing);
2549 }
2550 
2551 static int
2552 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2553 {
2554 	int missing = 0;
2555 	int i;
2556 
2557 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2558 
2559 	for (i = 0; i < count; i++, od++) {
2560 		if (missing) {
2561 			od->od_object = 0;
2562 			missing++;
2563 			continue;
2564 		}
2565 
2566 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2567 
2568 		lr->lr_doid = od->od_dir;
2569 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2570 		lr->lrz_type = od->od_crtype;
2571 		lr->lrz_blocksize = od->od_crblocksize;
2572 		lr->lrz_ibshift = ztest_random_ibshift();
2573 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2574 		lr->lrz_dnodesize = od->od_crdnodesize;
2575 		lr->lr_gen = od->od_crgen;
2576 		lr->lr_crtime[0] = time(NULL);
2577 
2578 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2579 			ASSERT0(missing);
2580 			od->od_object = 0;
2581 			missing++;
2582 		} else {
2583 			od->od_object = lr->lr_foid;
2584 			od->od_type = od->od_crtype;
2585 			od->od_blocksize = od->od_crblocksize;
2586 			od->od_gen = od->od_crgen;
2587 			ASSERT3U(od->od_object, !=, 0);
2588 		}
2589 
2590 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2591 	}
2592 
2593 	return (missing);
2594 }
2595 
2596 static int
2597 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2598 {
2599 	int missing = 0;
2600 	int error;
2601 	int i;
2602 
2603 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2604 
2605 	od += count - 1;
2606 
2607 	for (i = count - 1; i >= 0; i--, od--) {
2608 		if (missing) {
2609 			missing++;
2610 			continue;
2611 		}
2612 
2613 		/*
2614 		 * No object was found.
2615 		 */
2616 		if (od->od_object == 0)
2617 			continue;
2618 
2619 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2620 
2621 		lr->lr_doid = od->od_dir;
2622 
2623 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2624 			ASSERT3U(error, ==, ENOSPC);
2625 			missing++;
2626 		} else {
2627 			od->od_object = 0;
2628 		}
2629 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2630 	}
2631 
2632 	return (missing);
2633 }
2634 
2635 static int
2636 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2637     void *data)
2638 {
2639 	lr_write_t *lr;
2640 	int error;
2641 
2642 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2643 
2644 	lr->lr_foid = object;
2645 	lr->lr_offset = offset;
2646 	lr->lr_length = size;
2647 	lr->lr_blkoff = 0;
2648 	BP_ZERO(&lr->lr_blkptr);
2649 
2650 	memcpy(lr + 1, data, size);
2651 
2652 	error = ztest_replay_write(zd, lr, B_FALSE);
2653 
2654 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2655 
2656 	return (error);
2657 }
2658 
2659 static int
2660 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2661 {
2662 	lr_truncate_t *lr;
2663 	int error;
2664 
2665 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2666 
2667 	lr->lr_foid = object;
2668 	lr->lr_offset = offset;
2669 	lr->lr_length = size;
2670 
2671 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2672 
2673 	ztest_lr_free(lr, sizeof (*lr), NULL);
2674 
2675 	return (error);
2676 }
2677 
2678 static int
2679 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2680 {
2681 	lr_setattr_t *lr;
2682 	int error;
2683 
2684 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2685 
2686 	lr->lr_foid = object;
2687 	lr->lr_size = 0;
2688 	lr->lr_mode = 0;
2689 
2690 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2691 
2692 	ztest_lr_free(lr, sizeof (*lr), NULL);
2693 
2694 	return (error);
2695 }
2696 
2697 static void
2698 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2699 {
2700 	objset_t *os = zd->zd_os;
2701 	dmu_tx_t *tx;
2702 	uint64_t txg;
2703 	rl_t *rl;
2704 
2705 	txg_wait_synced(dmu_objset_pool(os), 0);
2706 
2707 	ztest_object_lock(zd, object, RL_READER);
2708 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2709 
2710 	tx = dmu_tx_create(os);
2711 
2712 	dmu_tx_hold_write(tx, object, offset, size);
2713 
2714 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2715 
2716 	if (txg != 0) {
2717 		dmu_prealloc(os, object, offset, size, tx);
2718 		dmu_tx_commit(tx);
2719 		txg_wait_synced(dmu_objset_pool(os), txg);
2720 	} else {
2721 		(void) dmu_free_long_range(os, object, offset, size);
2722 	}
2723 
2724 	ztest_range_unlock(rl);
2725 	ztest_object_unlock(zd, object);
2726 }
2727 
2728 static void
2729 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2730 {
2731 	int err;
2732 	ztest_block_tag_t wbt;
2733 	dmu_object_info_t doi;
2734 	enum ztest_io_type io_type;
2735 	uint64_t blocksize;
2736 	void *data;
2737 
2738 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2739 	blocksize = doi.doi_data_block_size;
2740 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2741 
2742 	/*
2743 	 * Pick an i/o type at random, biased toward writing block tags.
2744 	 */
2745 	io_type = ztest_random(ZTEST_IO_TYPES);
2746 	if (ztest_random(2) == 0)
2747 		io_type = ZTEST_IO_WRITE_TAG;
2748 
2749 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2750 
2751 	switch (io_type) {
2752 
2753 	case ZTEST_IO_WRITE_TAG:
2754 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2755 		    offset, 0, 0, 0);
2756 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2757 		break;
2758 
2759 	case ZTEST_IO_WRITE_PATTERN:
2760 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2761 		if (ztest_random(2) == 0) {
2762 			/*
2763 			 * Induce fletcher2 collisions to ensure that
2764 			 * zio_ddt_collision() detects and resolves them
2765 			 * when using fletcher2-verify for deduplication.
2766 			 */
2767 			((uint64_t *)data)[0] ^= 1ULL << 63;
2768 			((uint64_t *)data)[4] ^= 1ULL << 63;
2769 		}
2770 		(void) ztest_write(zd, object, offset, blocksize, data);
2771 		break;
2772 
2773 	case ZTEST_IO_WRITE_ZEROES:
2774 		memset(data, 0, blocksize);
2775 		(void) ztest_write(zd, object, offset, blocksize, data);
2776 		break;
2777 
2778 	case ZTEST_IO_TRUNCATE:
2779 		(void) ztest_truncate(zd, object, offset, blocksize);
2780 		break;
2781 
2782 	case ZTEST_IO_SETATTR:
2783 		(void) ztest_setattr(zd, object);
2784 		break;
2785 	default:
2786 		break;
2787 
2788 	case ZTEST_IO_REWRITE:
2789 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2790 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2791 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2792 		    B_FALSE);
2793 		VERIFY(err == 0 || err == ENOSPC);
2794 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2795 		    ZFS_PROP_COMPRESSION,
2796 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2797 		    B_FALSE);
2798 		VERIFY(err == 0 || err == ENOSPC);
2799 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2800 
2801 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2802 		    DMU_READ_NO_PREFETCH));
2803 
2804 		(void) ztest_write(zd, object, offset, blocksize, data);
2805 		break;
2806 	}
2807 
2808 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2809 
2810 	umem_free(data, blocksize);
2811 }
2812 
2813 /*
2814  * Initialize an object description template.
2815  */
2816 static void
2817 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2818     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2819     uint64_t gen)
2820 {
2821 	od->od_dir = ZTEST_DIROBJ;
2822 	od->od_object = 0;
2823 
2824 	od->od_crtype = type;
2825 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2826 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2827 	od->od_crgen = gen;
2828 
2829 	od->od_type = DMU_OT_NONE;
2830 	od->od_blocksize = 0;
2831 	od->od_gen = 0;
2832 
2833 	(void) snprintf(od->od_name, sizeof (od->od_name),
2834 	    "%s(%"PRId64")[%"PRIu64"]",
2835 	    tag, id, index);
2836 }
2837 
2838 /*
2839  * Lookup or create the objects for a test using the od template.
2840  * If the objects do not all exist, or if 'remove' is specified,
2841  * remove any existing objects and create new ones.  Otherwise,
2842  * use the existing objects.
2843  */
2844 static int
2845 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2846 {
2847 	int count = size / sizeof (*od);
2848 	int rv = 0;
2849 
2850 	mutex_enter(&zd->zd_dirobj_lock);
2851 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2852 	    (ztest_remove(zd, od, count) != 0 ||
2853 	    ztest_create(zd, od, count) != 0))
2854 		rv = -1;
2855 	zd->zd_od = od;
2856 	mutex_exit(&zd->zd_dirobj_lock);
2857 
2858 	return (rv);
2859 }
2860 
2861 void
2862 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2863 {
2864 	(void) id;
2865 	zilog_t *zilog = zd->zd_zilog;
2866 
2867 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2868 
2869 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2870 
2871 	/*
2872 	 * Remember the committed values in zd, which is in parent/child
2873 	 * shared memory.  If we die, the next iteration of ztest_run()
2874 	 * will verify that the log really does contain this record.
2875 	 */
2876 	mutex_enter(&zilog->zl_lock);
2877 	ASSERT3P(zd->zd_shared, !=, NULL);
2878 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2879 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2880 	mutex_exit(&zilog->zl_lock);
2881 
2882 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2883 }
2884 
2885 /*
2886  * This function is designed to simulate the operations that occur during a
2887  * mount/unmount operation.  We hold the dataset across these operations in an
2888  * attempt to expose any implicit assumptions about ZIL management.
2889  */
2890 void
2891 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2892 {
2893 	(void) id;
2894 	objset_t *os = zd->zd_os;
2895 
2896 	/*
2897 	 * We hold the ztest_vdev_lock so we don't cause problems with
2898 	 * other threads that wish to remove a log device, such as
2899 	 * ztest_device_removal().
2900 	 */
2901 	mutex_enter(&ztest_vdev_lock);
2902 
2903 	/*
2904 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2905 	 * updating the zil (i.e. adding in-memory log records) and the
2906 	 * zd_zilog_lock to block any I/O.
2907 	 */
2908 	mutex_enter(&zd->zd_dirobj_lock);
2909 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2910 
2911 	/* zfsvfs_teardown() */
2912 	zil_close(zd->zd_zilog);
2913 
2914 	/* zfsvfs_setup() */
2915 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2916 	zil_replay(os, zd, ztest_replay_vector);
2917 
2918 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2919 	mutex_exit(&zd->zd_dirobj_lock);
2920 	mutex_exit(&ztest_vdev_lock);
2921 }
2922 
2923 /*
2924  * Verify that we can't destroy an active pool, create an existing pool,
2925  * or create a pool with a bad vdev spec.
2926  */
2927 void
2928 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2929 {
2930 	(void) zd, (void) id;
2931 	ztest_shared_opts_t *zo = &ztest_opts;
2932 	spa_t *spa;
2933 	nvlist_t *nvroot;
2934 
2935 	if (zo->zo_mmp_test)
2936 		return;
2937 
2938 	/*
2939 	 * Attempt to create using a bad file.
2940 	 */
2941 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2942 	VERIFY3U(ENOENT, ==,
2943 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2944 	fnvlist_free(nvroot);
2945 
2946 	/*
2947 	 * Attempt to create using a bad mirror.
2948 	 */
2949 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2950 	VERIFY3U(ENOENT, ==,
2951 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2952 	fnvlist_free(nvroot);
2953 
2954 	/*
2955 	 * Attempt to create an existing pool.  It shouldn't matter
2956 	 * what's in the nvroot; we should fail with EEXIST.
2957 	 */
2958 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
2959 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2960 	VERIFY3U(EEXIST, ==,
2961 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2962 	fnvlist_free(nvroot);
2963 
2964 	/*
2965 	 * We open a reference to the spa and then we try to export it
2966 	 * expecting one of the following errors:
2967 	 *
2968 	 * EBUSY
2969 	 *	Because of the reference we just opened.
2970 	 *
2971 	 * ZFS_ERR_EXPORT_IN_PROGRESS
2972 	 *	For the case that there is another ztest thread doing
2973 	 *	an export concurrently.
2974 	 */
2975 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2976 	int error = spa_destroy(zo->zo_pool);
2977 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2978 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
2979 		    spa->spa_name, error);
2980 	}
2981 	spa_close(spa, FTAG);
2982 
2983 	(void) pthread_rwlock_unlock(&ztest_name_lock);
2984 }
2985 
2986 /*
2987  * Start and then stop the MMP threads to ensure the startup and shutdown code
2988  * works properly.  Actual protection and property-related code tested via ZTS.
2989  */
2990 void
2991 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2992 {
2993 	(void) zd, (void) id;
2994 	ztest_shared_opts_t *zo = &ztest_opts;
2995 	spa_t *spa = ztest_spa;
2996 
2997 	if (zo->zo_mmp_test)
2998 		return;
2999 
3000 	/*
3001 	 * Since enabling MMP involves setting a property, it could not be done
3002 	 * while the pool is suspended.
3003 	 */
3004 	if (spa_suspended(spa))
3005 		return;
3006 
3007 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3008 	mutex_enter(&spa->spa_props_lock);
3009 
3010 	zfs_multihost_fail_intervals = 0;
3011 
3012 	if (!spa_multihost(spa)) {
3013 		spa->spa_multihost = B_TRUE;
3014 		mmp_thread_start(spa);
3015 	}
3016 
3017 	mutex_exit(&spa->spa_props_lock);
3018 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3019 
3020 	txg_wait_synced(spa_get_dsl(spa), 0);
3021 	mmp_signal_all_threads();
3022 	txg_wait_synced(spa_get_dsl(spa), 0);
3023 
3024 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3025 	mutex_enter(&spa->spa_props_lock);
3026 
3027 	if (spa_multihost(spa)) {
3028 		mmp_thread_stop(spa);
3029 		spa->spa_multihost = B_FALSE;
3030 	}
3031 
3032 	mutex_exit(&spa->spa_props_lock);
3033 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3034 }
3035 
3036 void
3037 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3038 {
3039 	(void) zd, (void) id;
3040 	spa_t *spa;
3041 	uint64_t initial_version = SPA_VERSION_INITIAL;
3042 	uint64_t version, newversion;
3043 	nvlist_t *nvroot, *props;
3044 	char *name;
3045 
3046 	if (ztest_opts.zo_mmp_test)
3047 		return;
3048 
3049 	/* dRAID added after feature flags, skip upgrade test. */
3050 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3051 		return;
3052 
3053 	mutex_enter(&ztest_vdev_lock);
3054 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3055 
3056 	/*
3057 	 * Clean up from previous runs.
3058 	 */
3059 	(void) spa_destroy(name);
3060 
3061 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3062 	    NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3063 
3064 	/*
3065 	 * If we're configuring a RAIDZ device then make sure that the
3066 	 * initial version is capable of supporting that feature.
3067 	 */
3068 	switch (ztest_opts.zo_raid_parity) {
3069 	case 0:
3070 	case 1:
3071 		initial_version = SPA_VERSION_INITIAL;
3072 		break;
3073 	case 2:
3074 		initial_version = SPA_VERSION_RAIDZ2;
3075 		break;
3076 	case 3:
3077 		initial_version = SPA_VERSION_RAIDZ3;
3078 		break;
3079 	}
3080 
3081 	/*
3082 	 * Create a pool with a spa version that can be upgraded. Pick
3083 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3084 	 */
3085 	do {
3086 		version = ztest_random_spa_version(initial_version);
3087 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3088 
3089 	props = fnvlist_alloc();
3090 	fnvlist_add_uint64(props,
3091 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3092 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3093 	fnvlist_free(nvroot);
3094 	fnvlist_free(props);
3095 
3096 	VERIFY0(spa_open(name, &spa, FTAG));
3097 	VERIFY3U(spa_version(spa), ==, version);
3098 	newversion = ztest_random_spa_version(version + 1);
3099 
3100 	if (ztest_opts.zo_verbose >= 4) {
3101 		(void) printf("upgrading spa version from "
3102 		    "%"PRIu64" to %"PRIu64"\n",
3103 		    version, newversion);
3104 	}
3105 
3106 	spa_upgrade(spa, newversion);
3107 	VERIFY3U(spa_version(spa), >, version);
3108 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3109 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3110 	spa_close(spa, FTAG);
3111 
3112 	kmem_strfree(name);
3113 	mutex_exit(&ztest_vdev_lock);
3114 }
3115 
3116 static void
3117 ztest_spa_checkpoint(spa_t *spa)
3118 {
3119 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3120 
3121 	int error = spa_checkpoint(spa->spa_name);
3122 
3123 	switch (error) {
3124 	case 0:
3125 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3126 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3127 	case ZFS_ERR_CHECKPOINT_EXISTS:
3128 		break;
3129 	case ENOSPC:
3130 		ztest_record_enospc(FTAG);
3131 		break;
3132 	default:
3133 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3134 	}
3135 }
3136 
3137 static void
3138 ztest_spa_discard_checkpoint(spa_t *spa)
3139 {
3140 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3141 
3142 	int error = spa_checkpoint_discard(spa->spa_name);
3143 
3144 	switch (error) {
3145 	case 0:
3146 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3147 	case ZFS_ERR_NO_CHECKPOINT:
3148 		break;
3149 	default:
3150 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3151 		    spa->spa_name, error);
3152 	}
3153 
3154 }
3155 
3156 void
3157 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3158 {
3159 	(void) zd, (void) id;
3160 	spa_t *spa = ztest_spa;
3161 
3162 	mutex_enter(&ztest_checkpoint_lock);
3163 	if (ztest_random(2) == 0) {
3164 		ztest_spa_checkpoint(spa);
3165 	} else {
3166 		ztest_spa_discard_checkpoint(spa);
3167 	}
3168 	mutex_exit(&ztest_checkpoint_lock);
3169 }
3170 
3171 
3172 static vdev_t *
3173 vdev_lookup_by_path(vdev_t *vd, const char *path)
3174 {
3175 	vdev_t *mvd;
3176 	int c;
3177 
3178 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3179 		return (vd);
3180 
3181 	for (c = 0; c < vd->vdev_children; c++)
3182 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3183 		    NULL)
3184 			return (mvd);
3185 
3186 	return (NULL);
3187 }
3188 
3189 static int
3190 spa_num_top_vdevs(spa_t *spa)
3191 {
3192 	vdev_t *rvd = spa->spa_root_vdev;
3193 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3194 	return (rvd->vdev_children);
3195 }
3196 
3197 /*
3198  * Verify that vdev_add() works as expected.
3199  */
3200 void
3201 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3202 {
3203 	(void) zd, (void) id;
3204 	ztest_shared_t *zs = ztest_shared;
3205 	spa_t *spa = ztest_spa;
3206 	uint64_t leaves;
3207 	uint64_t guid;
3208 	nvlist_t *nvroot;
3209 	int error;
3210 
3211 	if (ztest_opts.zo_mmp_test)
3212 		return;
3213 
3214 	mutex_enter(&ztest_vdev_lock);
3215 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3216 	    ztest_opts.zo_raid_children;
3217 
3218 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3219 
3220 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3221 
3222 	/*
3223 	 * If we have slogs then remove them 1/4 of the time.
3224 	 */
3225 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3226 		metaslab_group_t *mg;
3227 
3228 		/*
3229 		 * find the first real slog in log allocation class
3230 		 */
3231 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3232 		while (!mg->mg_vd->vdev_islog)
3233 			mg = mg->mg_next;
3234 
3235 		guid = mg->mg_vd->vdev_guid;
3236 
3237 		spa_config_exit(spa, SCL_VDEV, FTAG);
3238 
3239 		/*
3240 		 * We have to grab the zs_name_lock as writer to
3241 		 * prevent a race between removing a slog (dmu_objset_find)
3242 		 * and destroying a dataset. Removing the slog will
3243 		 * grab a reference on the dataset which may cause
3244 		 * dsl_destroy_head() to fail with EBUSY thus
3245 		 * leaving the dataset in an inconsistent state.
3246 		 */
3247 		pthread_rwlock_wrlock(&ztest_name_lock);
3248 		error = spa_vdev_remove(spa, guid, B_FALSE);
3249 		pthread_rwlock_unlock(&ztest_name_lock);
3250 
3251 		switch (error) {
3252 		case 0:
3253 		case EEXIST:	/* Generic zil_reset() error */
3254 		case EBUSY:	/* Replay required */
3255 		case EACCES:	/* Crypto key not loaded */
3256 		case ZFS_ERR_CHECKPOINT_EXISTS:
3257 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3258 			break;
3259 		default:
3260 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3261 		}
3262 	} else {
3263 		spa_config_exit(spa, SCL_VDEV, FTAG);
3264 
3265 		/*
3266 		 * Make 1/4 of the devices be log devices
3267 		 */
3268 		nvroot = make_vdev_root(NULL, NULL, NULL,
3269 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3270 		    "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3271 		    1);
3272 
3273 		error = spa_vdev_add(spa, nvroot);
3274 		fnvlist_free(nvroot);
3275 
3276 		switch (error) {
3277 		case 0:
3278 			break;
3279 		case ENOSPC:
3280 			ztest_record_enospc("spa_vdev_add");
3281 			break;
3282 		default:
3283 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3284 		}
3285 	}
3286 
3287 	mutex_exit(&ztest_vdev_lock);
3288 }
3289 
3290 void
3291 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3292 {
3293 	(void) zd, (void) id;
3294 	ztest_shared_t *zs = ztest_shared;
3295 	spa_t *spa = ztest_spa;
3296 	uint64_t leaves;
3297 	nvlist_t *nvroot;
3298 	const char *class = (ztest_random(2) == 0) ?
3299 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3300 	int error;
3301 
3302 	/*
3303 	 * By default add a special vdev 50% of the time
3304 	 */
3305 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3306 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3307 	    ztest_random(2) == 0)) {
3308 		return;
3309 	}
3310 
3311 	mutex_enter(&ztest_vdev_lock);
3312 
3313 	/* Only test with mirrors */
3314 	if (zs->zs_mirrors < 2) {
3315 		mutex_exit(&ztest_vdev_lock);
3316 		return;
3317 	}
3318 
3319 	/* requires feature@allocation_classes */
3320 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3321 		mutex_exit(&ztest_vdev_lock);
3322 		return;
3323 	}
3324 
3325 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3326 	    ztest_opts.zo_raid_children;
3327 
3328 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3329 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3330 	spa_config_exit(spa, SCL_VDEV, FTAG);
3331 
3332 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3333 	    class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3334 
3335 	error = spa_vdev_add(spa, nvroot);
3336 	fnvlist_free(nvroot);
3337 
3338 	if (error == ENOSPC)
3339 		ztest_record_enospc("spa_vdev_add");
3340 	else if (error != 0)
3341 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3342 
3343 	/*
3344 	 * 50% of the time allow small blocks in the special class
3345 	 */
3346 	if (error == 0 &&
3347 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3348 		if (ztest_opts.zo_verbose >= 3)
3349 			(void) printf("Enabling special VDEV small blocks\n");
3350 		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
3351 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3352 	}
3353 
3354 	mutex_exit(&ztest_vdev_lock);
3355 
3356 	if (ztest_opts.zo_verbose >= 3) {
3357 		metaslab_class_t *mc;
3358 
3359 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3360 			mc = spa_special_class(spa);
3361 		else
3362 			mc = spa_dedup_class(spa);
3363 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3364 		    class, (int)mc->mc_groups);
3365 	}
3366 }
3367 
3368 /*
3369  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3370  */
3371 void
3372 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3373 {
3374 	(void) zd, (void) id;
3375 	ztest_shared_t *zs = ztest_shared;
3376 	spa_t *spa = ztest_spa;
3377 	vdev_t *rvd = spa->spa_root_vdev;
3378 	spa_aux_vdev_t *sav;
3379 	const char *aux;
3380 	char *path;
3381 	uint64_t guid = 0;
3382 	int error, ignore_err = 0;
3383 
3384 	if (ztest_opts.zo_mmp_test)
3385 		return;
3386 
3387 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3388 
3389 	if (ztest_random(2) == 0) {
3390 		sav = &spa->spa_spares;
3391 		aux = ZPOOL_CONFIG_SPARES;
3392 	} else {
3393 		sav = &spa->spa_l2cache;
3394 		aux = ZPOOL_CONFIG_L2CACHE;
3395 	}
3396 
3397 	mutex_enter(&ztest_vdev_lock);
3398 
3399 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3400 
3401 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3402 		/*
3403 		 * Pick a random device to remove.
3404 		 */
3405 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3406 
3407 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3408 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3409 			ignore_err = ENOTSUP;
3410 
3411 		guid = svd->vdev_guid;
3412 	} else {
3413 		/*
3414 		 * Find an unused device we can add.
3415 		 */
3416 		zs->zs_vdev_aux = 0;
3417 		for (;;) {
3418 			int c;
3419 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3420 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3421 			    zs->zs_vdev_aux);
3422 			for (c = 0; c < sav->sav_count; c++)
3423 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3424 				    path) == 0)
3425 					break;
3426 			if (c == sav->sav_count &&
3427 			    vdev_lookup_by_path(rvd, path) == NULL)
3428 				break;
3429 			zs->zs_vdev_aux++;
3430 		}
3431 	}
3432 
3433 	spa_config_exit(spa, SCL_VDEV, FTAG);
3434 
3435 	if (guid == 0) {
3436 		/*
3437 		 * Add a new device.
3438 		 */
3439 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3440 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3441 		error = spa_vdev_add(spa, nvroot);
3442 
3443 		switch (error) {
3444 		case 0:
3445 			break;
3446 		default:
3447 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3448 		}
3449 		fnvlist_free(nvroot);
3450 	} else {
3451 		/*
3452 		 * Remove an existing device.  Sometimes, dirty its
3453 		 * vdev state first to make sure we handle removal
3454 		 * of devices that have pending state changes.
3455 		 */
3456 		if (ztest_random(2) == 0)
3457 			(void) vdev_online(spa, guid, 0, NULL);
3458 
3459 		error = spa_vdev_remove(spa, guid, B_FALSE);
3460 
3461 		switch (error) {
3462 		case 0:
3463 		case EBUSY:
3464 		case ZFS_ERR_CHECKPOINT_EXISTS:
3465 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3466 			break;
3467 		default:
3468 			if (error != ignore_err)
3469 				fatal(B_FALSE,
3470 				    "spa_vdev_remove(%"PRIu64") = %d",
3471 				    guid, error);
3472 		}
3473 	}
3474 
3475 	mutex_exit(&ztest_vdev_lock);
3476 
3477 	umem_free(path, MAXPATHLEN);
3478 }
3479 
3480 /*
3481  * split a pool if it has mirror tlvdevs
3482  */
3483 void
3484 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3485 {
3486 	(void) zd, (void) id;
3487 	ztest_shared_t *zs = ztest_shared;
3488 	spa_t *spa = ztest_spa;
3489 	vdev_t *rvd = spa->spa_root_vdev;
3490 	nvlist_t *tree, **child, *config, *split, **schild;
3491 	uint_t c, children, schildren = 0, lastlogid = 0;
3492 	int error = 0;
3493 
3494 	if (ztest_opts.zo_mmp_test)
3495 		return;
3496 
3497 	mutex_enter(&ztest_vdev_lock);
3498 
3499 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3500 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3501 		mutex_exit(&ztest_vdev_lock);
3502 		return;
3503 	}
3504 
3505 	/* clean up the old pool, if any */
3506 	(void) spa_destroy("splitp");
3507 
3508 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3509 
3510 	/* generate a config from the existing config */
3511 	mutex_enter(&spa->spa_props_lock);
3512 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3513 	mutex_exit(&spa->spa_props_lock);
3514 
3515 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3516 	    &child, &children));
3517 
3518 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3519 	    UMEM_NOFAIL);
3520 	for (c = 0; c < children; c++) {
3521 		vdev_t *tvd = rvd->vdev_child[c];
3522 		nvlist_t **mchild;
3523 		uint_t mchildren;
3524 
3525 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3526 			schild[schildren] = fnvlist_alloc();
3527 			fnvlist_add_string(schild[schildren],
3528 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3529 			fnvlist_add_uint64(schild[schildren],
3530 			    ZPOOL_CONFIG_IS_HOLE, 1);
3531 			if (lastlogid == 0)
3532 				lastlogid = schildren;
3533 			++schildren;
3534 			continue;
3535 		}
3536 		lastlogid = 0;
3537 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3538 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3539 		schild[schildren++] = fnvlist_dup(mchild[0]);
3540 	}
3541 
3542 	/* OK, create a config that can be used to split */
3543 	split = fnvlist_alloc();
3544 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3545 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3546 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3547 
3548 	config = fnvlist_alloc();
3549 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3550 
3551 	for (c = 0; c < schildren; c++)
3552 		fnvlist_free(schild[c]);
3553 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3554 	fnvlist_free(split);
3555 
3556 	spa_config_exit(spa, SCL_VDEV, FTAG);
3557 
3558 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3559 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3560 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3561 
3562 	fnvlist_free(config);
3563 
3564 	if (error == 0) {
3565 		(void) printf("successful split - results:\n");
3566 		mutex_enter(&spa_namespace_lock);
3567 		show_pool_stats(spa);
3568 		show_pool_stats(spa_lookup("splitp"));
3569 		mutex_exit(&spa_namespace_lock);
3570 		++zs->zs_splits;
3571 		--zs->zs_mirrors;
3572 	}
3573 	mutex_exit(&ztest_vdev_lock);
3574 }
3575 
3576 /*
3577  * Verify that we can attach and detach devices.
3578  */
3579 void
3580 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3581 {
3582 	(void) zd, (void) id;
3583 	ztest_shared_t *zs = ztest_shared;
3584 	spa_t *spa = ztest_spa;
3585 	spa_aux_vdev_t *sav = &spa->spa_spares;
3586 	vdev_t *rvd = spa->spa_root_vdev;
3587 	vdev_t *oldvd, *newvd, *pvd;
3588 	nvlist_t *root;
3589 	uint64_t leaves;
3590 	uint64_t leaf, top;
3591 	uint64_t ashift = ztest_get_ashift();
3592 	uint64_t oldguid, pguid;
3593 	uint64_t oldsize, newsize;
3594 	char *oldpath, *newpath;
3595 	int replacing;
3596 	int oldvd_has_siblings = B_FALSE;
3597 	int newvd_is_spare = B_FALSE;
3598 	int newvd_is_dspare = B_FALSE;
3599 	int oldvd_is_log;
3600 	int error, expected_error;
3601 
3602 	if (ztest_opts.zo_mmp_test)
3603 		return;
3604 
3605 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3606 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3607 
3608 	mutex_enter(&ztest_vdev_lock);
3609 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3610 
3611 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3612 
3613 	/*
3614 	 * If a vdev is in the process of being removed, its removal may
3615 	 * finish while we are in progress, leading to an unexpected error
3616 	 * value.  Don't bother trying to attach while we are in the middle
3617 	 * of removal.
3618 	 */
3619 	if (ztest_device_removal_active) {
3620 		spa_config_exit(spa, SCL_ALL, FTAG);
3621 		goto out;
3622 	}
3623 
3624 	/*
3625 	 * Decide whether to do an attach or a replace.
3626 	 */
3627 	replacing = ztest_random(2);
3628 
3629 	/*
3630 	 * Pick a random top-level vdev.
3631 	 */
3632 	top = ztest_random_vdev_top(spa, B_TRUE);
3633 
3634 	/*
3635 	 * Pick a random leaf within it.
3636 	 */
3637 	leaf = ztest_random(leaves);
3638 
3639 	/*
3640 	 * Locate this vdev.
3641 	 */
3642 	oldvd = rvd->vdev_child[top];
3643 
3644 	/* pick a child from the mirror */
3645 	if (zs->zs_mirrors >= 1) {
3646 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3647 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3648 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3649 	}
3650 
3651 	/* pick a child out of the raidz group */
3652 	if (ztest_opts.zo_raid_children > 1) {
3653 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3654 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3655 		else
3656 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3657 		ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3658 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3659 	}
3660 
3661 	/*
3662 	 * If we're already doing an attach or replace, oldvd may be a
3663 	 * mirror vdev -- in which case, pick a random child.
3664 	 */
3665 	while (oldvd->vdev_children != 0) {
3666 		oldvd_has_siblings = B_TRUE;
3667 		ASSERT3U(oldvd->vdev_children, >=, 2);
3668 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3669 	}
3670 
3671 	oldguid = oldvd->vdev_guid;
3672 	oldsize = vdev_get_min_asize(oldvd);
3673 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3674 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3675 	pvd = oldvd->vdev_parent;
3676 	pguid = pvd->vdev_guid;
3677 
3678 	/*
3679 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3680 	 * to the detach the pool is scrubbed in order to prevent creating
3681 	 * unrepairable blocks as a result of the data corruption injection.
3682 	 */
3683 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3684 		spa_config_exit(spa, SCL_ALL, FTAG);
3685 
3686 		error = ztest_scrub_impl(spa);
3687 		if (error)
3688 			goto out;
3689 
3690 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3691 		if (error != 0 && error != ENODEV && error != EBUSY &&
3692 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3693 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3694 			fatal(B_FALSE, "detach (%s) returned %d",
3695 			    oldpath, error);
3696 		goto out;
3697 	}
3698 
3699 	/*
3700 	 * For the new vdev, choose with equal probability between the two
3701 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3702 	 */
3703 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3704 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3705 		newvd_is_spare = B_TRUE;
3706 
3707 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3708 			newvd_is_dspare = B_TRUE;
3709 
3710 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3711 	} else {
3712 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3713 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3714 		    top * leaves + leaf);
3715 		if (ztest_random(2) == 0)
3716 			newpath[strlen(newpath) - 1] = 'b';
3717 		newvd = vdev_lookup_by_path(rvd, newpath);
3718 	}
3719 
3720 	if (newvd) {
3721 		/*
3722 		 * Reopen to ensure the vdev's asize field isn't stale.
3723 		 */
3724 		vdev_reopen(newvd);
3725 		newsize = vdev_get_min_asize(newvd);
3726 	} else {
3727 		/*
3728 		 * Make newsize a little bigger or smaller than oldsize.
3729 		 * If it's smaller, the attach should fail.
3730 		 * If it's larger, and we're doing a replace,
3731 		 * we should get dynamic LUN growth when we're done.
3732 		 */
3733 		newsize = 10 * oldsize / (9 + ztest_random(3));
3734 	}
3735 
3736 	/*
3737 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3738 	 * unless it's a replace; in that case any non-replacing parent is OK.
3739 	 *
3740 	 * If newvd is already part of the pool, it should fail with EBUSY.
3741 	 *
3742 	 * If newvd is too small, it should fail with EOVERFLOW.
3743 	 *
3744 	 * If newvd is a distributed spare and it's being attached to a
3745 	 * dRAID which is not its parent it should fail with EINVAL.
3746 	 */
3747 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3748 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3749 	    pvd->vdev_ops == &vdev_replacing_ops ||
3750 	    pvd->vdev_ops == &vdev_spare_ops))
3751 		expected_error = ENOTSUP;
3752 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3753 		expected_error = ENOTSUP;
3754 	else if (newvd == oldvd)
3755 		expected_error = replacing ? 0 : EBUSY;
3756 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3757 		expected_error = EBUSY;
3758 	else if (!newvd_is_dspare && newsize < oldsize)
3759 		expected_error = EOVERFLOW;
3760 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3761 		expected_error = EDOM;
3762 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3763 		expected_error = ENOTSUP;
3764 	else
3765 		expected_error = 0;
3766 
3767 	spa_config_exit(spa, SCL_ALL, FTAG);
3768 
3769 	/*
3770 	 * Build the nvlist describing newpath.
3771 	 */
3772 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3773 	    ashift, NULL, 0, 0, 1);
3774 
3775 	/*
3776 	 * When supported select either a healing or sequential resilver.
3777 	 */
3778 	boolean_t rebuilding = B_FALSE;
3779 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3780 	    pvd->vdev_ops ==  &vdev_root_ops) {
3781 		rebuilding = !!ztest_random(2);
3782 	}
3783 
3784 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3785 
3786 	fnvlist_free(root);
3787 
3788 	/*
3789 	 * If our parent was the replacing vdev, but the replace completed,
3790 	 * then instead of failing with ENOTSUP we may either succeed,
3791 	 * fail with ENODEV, or fail with EOVERFLOW.
3792 	 */
3793 	if (expected_error == ENOTSUP &&
3794 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3795 		expected_error = error;
3796 
3797 	/*
3798 	 * If someone grew the LUN, the replacement may be too small.
3799 	 */
3800 	if (error == EOVERFLOW || error == EBUSY)
3801 		expected_error = error;
3802 
3803 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3804 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3805 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3806 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3807 		expected_error = error;
3808 
3809 	if (error != expected_error && expected_error != EBUSY) {
3810 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3811 		    "returned %d, expected %d",
3812 		    oldpath, oldsize, newpath,
3813 		    newsize, replacing, error, expected_error);
3814 	}
3815 out:
3816 	mutex_exit(&ztest_vdev_lock);
3817 
3818 	umem_free(oldpath, MAXPATHLEN);
3819 	umem_free(newpath, MAXPATHLEN);
3820 }
3821 
3822 void
3823 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3824 {
3825 	(void) zd, (void) id;
3826 	spa_t *spa = ztest_spa;
3827 	vdev_t *vd;
3828 	uint64_t guid;
3829 	int error;
3830 
3831 	mutex_enter(&ztest_vdev_lock);
3832 
3833 	if (ztest_device_removal_active) {
3834 		mutex_exit(&ztest_vdev_lock);
3835 		return;
3836 	}
3837 
3838 	/*
3839 	 * Remove a random top-level vdev and wait for removal to finish.
3840 	 */
3841 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3842 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3843 	guid = vd->vdev_guid;
3844 	spa_config_exit(spa, SCL_VDEV, FTAG);
3845 
3846 	error = spa_vdev_remove(spa, guid, B_FALSE);
3847 	if (error == 0) {
3848 		ztest_device_removal_active = B_TRUE;
3849 		mutex_exit(&ztest_vdev_lock);
3850 
3851 		/*
3852 		 * spa->spa_vdev_removal is created in a sync task that
3853 		 * is initiated via dsl_sync_task_nowait(). Since the
3854 		 * task may not run before spa_vdev_remove() returns, we
3855 		 * must wait at least 1 txg to ensure that the removal
3856 		 * struct has been created.
3857 		 */
3858 		txg_wait_synced(spa_get_dsl(spa), 0);
3859 
3860 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3861 			txg_wait_synced(spa_get_dsl(spa), 0);
3862 	} else {
3863 		mutex_exit(&ztest_vdev_lock);
3864 		return;
3865 	}
3866 
3867 	/*
3868 	 * The pool needs to be scrubbed after completing device removal.
3869 	 * Failure to do so may result in checksum errors due to the
3870 	 * strategy employed by ztest_fault_inject() when selecting which
3871 	 * offset are redundant and can be damaged.
3872 	 */
3873 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3874 	if (error == 0) {
3875 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3876 			txg_wait_synced(spa_get_dsl(spa), 0);
3877 	}
3878 
3879 	mutex_enter(&ztest_vdev_lock);
3880 	ztest_device_removal_active = B_FALSE;
3881 	mutex_exit(&ztest_vdev_lock);
3882 }
3883 
3884 /*
3885  * Callback function which expands the physical size of the vdev.
3886  */
3887 static vdev_t *
3888 grow_vdev(vdev_t *vd, void *arg)
3889 {
3890 	spa_t *spa __maybe_unused = vd->vdev_spa;
3891 	size_t *newsize = arg;
3892 	size_t fsize;
3893 	int fd;
3894 
3895 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3896 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3897 
3898 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3899 		return (vd);
3900 
3901 	fsize = lseek(fd, 0, SEEK_END);
3902 	VERIFY0(ftruncate(fd, *newsize));
3903 
3904 	if (ztest_opts.zo_verbose >= 6) {
3905 		(void) printf("%s grew from %lu to %lu bytes\n",
3906 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3907 	}
3908 	(void) close(fd);
3909 	return (NULL);
3910 }
3911 
3912 /*
3913  * Callback function which expands a given vdev by calling vdev_online().
3914  */
3915 static vdev_t *
3916 online_vdev(vdev_t *vd, void *arg)
3917 {
3918 	(void) arg;
3919 	spa_t *spa = vd->vdev_spa;
3920 	vdev_t *tvd = vd->vdev_top;
3921 	uint64_t guid = vd->vdev_guid;
3922 	uint64_t generation = spa->spa_config_generation + 1;
3923 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3924 	int error;
3925 
3926 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3927 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3928 
3929 	/* Calling vdev_online will initialize the new metaslabs */
3930 	spa_config_exit(spa, SCL_STATE, spa);
3931 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3932 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3933 
3934 	/*
3935 	 * If vdev_online returned an error or the underlying vdev_open
3936 	 * failed then we abort the expand. The only way to know that
3937 	 * vdev_open fails is by checking the returned newstate.
3938 	 */
3939 	if (error || newstate != VDEV_STATE_HEALTHY) {
3940 		if (ztest_opts.zo_verbose >= 5) {
3941 			(void) printf("Unable to expand vdev, state %u, "
3942 			    "error %d\n", newstate, error);
3943 		}
3944 		return (vd);
3945 	}
3946 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3947 
3948 	/*
3949 	 * Since we dropped the lock we need to ensure that we're
3950 	 * still talking to the original vdev. It's possible this
3951 	 * vdev may have been detached/replaced while we were
3952 	 * trying to online it.
3953 	 */
3954 	if (generation != spa->spa_config_generation) {
3955 		if (ztest_opts.zo_verbose >= 5) {
3956 			(void) printf("vdev configuration has changed, "
3957 			    "guid %"PRIu64", state %"PRIu64", "
3958 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
3959 			    guid,
3960 			    tvd->vdev_state,
3961 			    generation,
3962 			    spa->spa_config_generation);
3963 		}
3964 		return (vd);
3965 	}
3966 	return (NULL);
3967 }
3968 
3969 /*
3970  * Traverse the vdev tree calling the supplied function.
3971  * We continue to walk the tree until we either have walked all
3972  * children or we receive a non-NULL return from the callback.
3973  * If a NULL callback is passed, then we just return back the first
3974  * leaf vdev we encounter.
3975  */
3976 static vdev_t *
3977 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3978 {
3979 	uint_t c;
3980 
3981 	if (vd->vdev_ops->vdev_op_leaf) {
3982 		if (func == NULL)
3983 			return (vd);
3984 		else
3985 			return (func(vd, arg));
3986 	}
3987 
3988 	for (c = 0; c < vd->vdev_children; c++) {
3989 		vdev_t *cvd = vd->vdev_child[c];
3990 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3991 			return (cvd);
3992 	}
3993 	return (NULL);
3994 }
3995 
3996 /*
3997  * Verify that dynamic LUN growth works as expected.
3998  */
3999 void
4000 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4001 {
4002 	(void) zd, (void) id;
4003 	spa_t *spa = ztest_spa;
4004 	vdev_t *vd, *tvd;
4005 	metaslab_class_t *mc;
4006 	metaslab_group_t *mg;
4007 	size_t psize, newsize;
4008 	uint64_t top;
4009 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4010 
4011 	mutex_enter(&ztest_checkpoint_lock);
4012 	mutex_enter(&ztest_vdev_lock);
4013 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4014 
4015 	/*
4016 	 * If there is a vdev removal in progress, it could complete while
4017 	 * we are running, in which case we would not be able to verify
4018 	 * that the metaslab_class space increased (because it decreases
4019 	 * when the device removal completes).
4020 	 */
4021 	if (ztest_device_removal_active) {
4022 		spa_config_exit(spa, SCL_STATE, spa);
4023 		mutex_exit(&ztest_vdev_lock);
4024 		mutex_exit(&ztest_checkpoint_lock);
4025 		return;
4026 	}
4027 
4028 	top = ztest_random_vdev_top(spa, B_TRUE);
4029 
4030 	tvd = spa->spa_root_vdev->vdev_child[top];
4031 	mg = tvd->vdev_mg;
4032 	mc = mg->mg_class;
4033 	old_ms_count = tvd->vdev_ms_count;
4034 	old_class_space = metaslab_class_get_space(mc);
4035 
4036 	/*
4037 	 * Determine the size of the first leaf vdev associated with
4038 	 * our top-level device.
4039 	 */
4040 	vd = vdev_walk_tree(tvd, NULL, NULL);
4041 	ASSERT3P(vd, !=, NULL);
4042 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4043 
4044 	psize = vd->vdev_psize;
4045 
4046 	/*
4047 	 * We only try to expand the vdev if it's healthy, less than 4x its
4048 	 * original size, and it has a valid psize.
4049 	 */
4050 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4051 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4052 		spa_config_exit(spa, SCL_STATE, spa);
4053 		mutex_exit(&ztest_vdev_lock);
4054 		mutex_exit(&ztest_checkpoint_lock);
4055 		return;
4056 	}
4057 	ASSERT3U(psize, >, 0);
4058 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4059 	ASSERT3U(newsize, >, psize);
4060 
4061 	if (ztest_opts.zo_verbose >= 6) {
4062 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4063 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4064 	}
4065 
4066 	/*
4067 	 * Growing the vdev is a two step process:
4068 	 *	1). expand the physical size (i.e. relabel)
4069 	 *	2). online the vdev to create the new metaslabs
4070 	 */
4071 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4072 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4073 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4074 		if (ztest_opts.zo_verbose >= 5) {
4075 			(void) printf("Could not expand LUN because "
4076 			    "the vdev configuration changed.\n");
4077 		}
4078 		spa_config_exit(spa, SCL_STATE, spa);
4079 		mutex_exit(&ztest_vdev_lock);
4080 		mutex_exit(&ztest_checkpoint_lock);
4081 		return;
4082 	}
4083 
4084 	spa_config_exit(spa, SCL_STATE, spa);
4085 
4086 	/*
4087 	 * Expanding the LUN will update the config asynchronously,
4088 	 * thus we must wait for the async thread to complete any
4089 	 * pending tasks before proceeding.
4090 	 */
4091 	for (;;) {
4092 		boolean_t done;
4093 		mutex_enter(&spa->spa_async_lock);
4094 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4095 		mutex_exit(&spa->spa_async_lock);
4096 		if (done)
4097 			break;
4098 		txg_wait_synced(spa_get_dsl(spa), 0);
4099 		(void) poll(NULL, 0, 100);
4100 	}
4101 
4102 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4103 
4104 	tvd = spa->spa_root_vdev->vdev_child[top];
4105 	new_ms_count = tvd->vdev_ms_count;
4106 	new_class_space = metaslab_class_get_space(mc);
4107 
4108 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4109 		if (ztest_opts.zo_verbose >= 5) {
4110 			(void) printf("Could not verify LUN expansion due to "
4111 			    "intervening vdev offline or remove.\n");
4112 		}
4113 		spa_config_exit(spa, SCL_STATE, spa);
4114 		mutex_exit(&ztest_vdev_lock);
4115 		mutex_exit(&ztest_checkpoint_lock);
4116 		return;
4117 	}
4118 
4119 	/*
4120 	 * Make sure we were able to grow the vdev.
4121 	 */
4122 	if (new_ms_count <= old_ms_count) {
4123 		fatal(B_FALSE,
4124 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4125 		    old_ms_count, new_ms_count);
4126 	}
4127 
4128 	/*
4129 	 * Make sure we were able to grow the pool.
4130 	 */
4131 	if (new_class_space <= old_class_space) {
4132 		fatal(B_FALSE,
4133 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4134 		    old_class_space, new_class_space);
4135 	}
4136 
4137 	if (ztest_opts.zo_verbose >= 5) {
4138 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4139 
4140 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4141 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4142 		(void) printf("%s grew from %s to %s\n",
4143 		    spa->spa_name, oldnumbuf, newnumbuf);
4144 	}
4145 
4146 	spa_config_exit(spa, SCL_STATE, spa);
4147 	mutex_exit(&ztest_vdev_lock);
4148 	mutex_exit(&ztest_checkpoint_lock);
4149 }
4150 
4151 /*
4152  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4153  */
4154 static void
4155 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4156 {
4157 	(void) arg, (void) cr;
4158 
4159 	/*
4160 	 * Create the objects common to all ztest datasets.
4161 	 */
4162 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4163 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4164 }
4165 
4166 static int
4167 ztest_dataset_create(char *dsname)
4168 {
4169 	int err;
4170 	uint64_t rand;
4171 	dsl_crypto_params_t *dcp = NULL;
4172 
4173 	/*
4174 	 * 50% of the time, we create encrypted datasets
4175 	 * using a random cipher suite and a hard-coded
4176 	 * wrapping key.
4177 	 */
4178 	rand = ztest_random(2);
4179 	if (rand != 0) {
4180 		nvlist_t *crypto_args = fnvlist_alloc();
4181 		nvlist_t *props = fnvlist_alloc();
4182 
4183 		/* slight bias towards the default cipher suite */
4184 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4185 		if (rand < ZIO_CRYPT_AES_128_CCM)
4186 			rand = ZIO_CRYPT_ON;
4187 
4188 		fnvlist_add_uint64(props,
4189 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4190 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4191 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4192 
4193 		/*
4194 		 * These parameters aren't really used by the kernel. They
4195 		 * are simply stored so that userspace knows how to load
4196 		 * the wrapping key.
4197 		 */
4198 		fnvlist_add_uint64(props,
4199 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4200 		fnvlist_add_string(props,
4201 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4202 		fnvlist_add_uint64(props,
4203 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4204 		fnvlist_add_uint64(props,
4205 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4206 
4207 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4208 		    crypto_args, &dcp));
4209 
4210 		/*
4211 		 * Cycle through all available encryption implementations
4212 		 * to verify interoperability.
4213 		 */
4214 		VERIFY0(gcm_impl_set("cycle"));
4215 		VERIFY0(aes_impl_set("cycle"));
4216 
4217 		fnvlist_free(crypto_args);
4218 		fnvlist_free(props);
4219 	}
4220 
4221 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4222 	    ztest_objset_create_cb, NULL);
4223 	dsl_crypto_params_free(dcp, !!err);
4224 
4225 	rand = ztest_random(100);
4226 	if (err || rand < 80)
4227 		return (err);
4228 
4229 	if (ztest_opts.zo_verbose >= 5)
4230 		(void) printf("Setting dataset %s to sync always\n", dsname);
4231 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4232 	    ZFS_SYNC_ALWAYS, B_FALSE));
4233 }
4234 
4235 static int
4236 ztest_objset_destroy_cb(const char *name, void *arg)
4237 {
4238 	(void) arg;
4239 	objset_t *os;
4240 	dmu_object_info_t doi;
4241 	int error;
4242 
4243 	/*
4244 	 * Verify that the dataset contains a directory object.
4245 	 */
4246 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4247 	    B_TRUE, FTAG, &os));
4248 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4249 	if (error != ENOENT) {
4250 		/* We could have crashed in the middle of destroying it */
4251 		ASSERT0(error);
4252 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4253 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4254 	}
4255 	dmu_objset_disown(os, B_TRUE, FTAG);
4256 
4257 	/*
4258 	 * Destroy the dataset.
4259 	 */
4260 	if (strchr(name, '@') != NULL) {
4261 		error = dsl_destroy_snapshot(name, B_TRUE);
4262 		if (error != ECHRNG) {
4263 			/*
4264 			 * The program was executed, but encountered a runtime
4265 			 * error, such as insufficient slop, or a hold on the
4266 			 * dataset.
4267 			 */
4268 			ASSERT0(error);
4269 		}
4270 	} else {
4271 		error = dsl_destroy_head(name);
4272 		if (error == ENOSPC) {
4273 			/* There could be checkpoint or insufficient slop */
4274 			ztest_record_enospc(FTAG);
4275 		} else if (error != EBUSY) {
4276 			/* There could be a hold on this dataset */
4277 			ASSERT0(error);
4278 		}
4279 	}
4280 	return (0);
4281 }
4282 
4283 static boolean_t
4284 ztest_snapshot_create(char *osname, uint64_t id)
4285 {
4286 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4287 	int error;
4288 
4289 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4290 
4291 	error = dmu_objset_snapshot_one(osname, snapname);
4292 	if (error == ENOSPC) {
4293 		ztest_record_enospc(FTAG);
4294 		return (B_FALSE);
4295 	}
4296 	if (error != 0 && error != EEXIST) {
4297 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4298 		    snapname, error);
4299 	}
4300 	return (B_TRUE);
4301 }
4302 
4303 static boolean_t
4304 ztest_snapshot_destroy(char *osname, uint64_t id)
4305 {
4306 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4307 	int error;
4308 
4309 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4310 	    osname, id);
4311 
4312 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4313 	if (error != 0 && error != ENOENT)
4314 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4315 		    snapname, error);
4316 	return (B_TRUE);
4317 }
4318 
4319 void
4320 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4321 {
4322 	(void) zd;
4323 	ztest_ds_t *zdtmp;
4324 	int iters;
4325 	int error;
4326 	objset_t *os, *os2;
4327 	char name[ZFS_MAX_DATASET_NAME_LEN];
4328 	zilog_t *zilog;
4329 	int i;
4330 
4331 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4332 
4333 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4334 
4335 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4336 	    ztest_opts.zo_pool, id);
4337 
4338 	/*
4339 	 * If this dataset exists from a previous run, process its replay log
4340 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4341 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4342 	 */
4343 	if (ztest_random(2) == 0 &&
4344 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4345 	    B_TRUE, FTAG, &os) == 0) {
4346 		ztest_zd_init(zdtmp, NULL, os);
4347 		zil_replay(os, zdtmp, ztest_replay_vector);
4348 		ztest_zd_fini(zdtmp);
4349 		dmu_objset_disown(os, B_TRUE, FTAG);
4350 	}
4351 
4352 	/*
4353 	 * There may be an old instance of the dataset we're about to
4354 	 * create lying around from a previous run.  If so, destroy it
4355 	 * and all of its snapshots.
4356 	 */
4357 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4358 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4359 
4360 	/*
4361 	 * Verify that the destroyed dataset is no longer in the namespace.
4362 	 */
4363 	VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4364 	    B_TRUE, FTAG, &os));
4365 
4366 	/*
4367 	 * Verify that we can create a new dataset.
4368 	 */
4369 	error = ztest_dataset_create(name);
4370 	if (error) {
4371 		if (error == ENOSPC) {
4372 			ztest_record_enospc(FTAG);
4373 			goto out;
4374 		}
4375 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4376 	}
4377 
4378 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4379 	    FTAG, &os));
4380 
4381 	ztest_zd_init(zdtmp, NULL, os);
4382 
4383 	/*
4384 	 * Open the intent log for it.
4385 	 */
4386 	zilog = zil_open(os, ztest_get_data, NULL);
4387 
4388 	/*
4389 	 * Put some objects in there, do a little I/O to them,
4390 	 * and randomly take a couple of snapshots along the way.
4391 	 */
4392 	iters = ztest_random(5);
4393 	for (i = 0; i < iters; i++) {
4394 		ztest_dmu_object_alloc_free(zdtmp, id);
4395 		if (ztest_random(iters) == 0)
4396 			(void) ztest_snapshot_create(name, i);
4397 	}
4398 
4399 	/*
4400 	 * Verify that we cannot create an existing dataset.
4401 	 */
4402 	VERIFY3U(EEXIST, ==,
4403 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4404 
4405 	/*
4406 	 * Verify that we can hold an objset that is also owned.
4407 	 */
4408 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4409 	dmu_objset_rele(os2, FTAG);
4410 
4411 	/*
4412 	 * Verify that we cannot own an objset that is already owned.
4413 	 */
4414 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4415 	    B_FALSE, B_TRUE, FTAG, &os2));
4416 
4417 	zil_close(zilog);
4418 	dmu_objset_disown(os, B_TRUE, FTAG);
4419 	ztest_zd_fini(zdtmp);
4420 out:
4421 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4422 
4423 	umem_free(zdtmp, sizeof (ztest_ds_t));
4424 }
4425 
4426 /*
4427  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4428  */
4429 void
4430 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4431 {
4432 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4433 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4434 	(void) ztest_snapshot_create(zd->zd_name, id);
4435 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4436 }
4437 
4438 /*
4439  * Cleanup non-standard snapshots and clones.
4440  */
4441 static void
4442 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4443 {
4444 	char *snap1name;
4445 	char *clone1name;
4446 	char *snap2name;
4447 	char *clone2name;
4448 	char *snap3name;
4449 	int error;
4450 
4451 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4452 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4453 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4454 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4455 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4456 
4457 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4458 	    osname, id);
4459 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4460 	    osname, id);
4461 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4462 	    clone1name, id);
4463 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4464 	    osname, id);
4465 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4466 	    clone1name, id);
4467 
4468 	error = dsl_destroy_head(clone2name);
4469 	if (error && error != ENOENT)
4470 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4471 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4472 	if (error && error != ENOENT)
4473 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4474 		    snap3name, error);
4475 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4476 	if (error && error != ENOENT)
4477 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4478 		    snap2name, error);
4479 	error = dsl_destroy_head(clone1name);
4480 	if (error && error != ENOENT)
4481 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4482 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4483 	if (error && error != ENOENT)
4484 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4485 		    snap1name, error);
4486 
4487 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4488 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4489 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4490 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4491 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4492 }
4493 
4494 /*
4495  * Verify dsl_dataset_promote handles EBUSY
4496  */
4497 void
4498 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4499 {
4500 	objset_t *os;
4501 	char *snap1name;
4502 	char *clone1name;
4503 	char *snap2name;
4504 	char *clone2name;
4505 	char *snap3name;
4506 	char *osname = zd->zd_name;
4507 	int error;
4508 
4509 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4510 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4511 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4512 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4513 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4514 
4515 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4516 
4517 	ztest_dsl_dataset_cleanup(osname, id);
4518 
4519 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4520 	    osname, id);
4521 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4522 	    osname, id);
4523 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4524 	    clone1name, id);
4525 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4526 	    osname, id);
4527 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4528 	    clone1name, id);
4529 
4530 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4531 	if (error && error != EEXIST) {
4532 		if (error == ENOSPC) {
4533 			ztest_record_enospc(FTAG);
4534 			goto out;
4535 		}
4536 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4537 	}
4538 
4539 	error = dmu_objset_clone(clone1name, snap1name);
4540 	if (error) {
4541 		if (error == ENOSPC) {
4542 			ztest_record_enospc(FTAG);
4543 			goto out;
4544 		}
4545 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4546 	}
4547 
4548 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4549 	if (error && error != EEXIST) {
4550 		if (error == ENOSPC) {
4551 			ztest_record_enospc(FTAG);
4552 			goto out;
4553 		}
4554 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4555 	}
4556 
4557 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4558 	if (error && error != EEXIST) {
4559 		if (error == ENOSPC) {
4560 			ztest_record_enospc(FTAG);
4561 			goto out;
4562 		}
4563 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4564 	}
4565 
4566 	error = dmu_objset_clone(clone2name, snap3name);
4567 	if (error) {
4568 		if (error == ENOSPC) {
4569 			ztest_record_enospc(FTAG);
4570 			goto out;
4571 		}
4572 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4573 	}
4574 
4575 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4576 	    FTAG, &os);
4577 	if (error)
4578 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4579 	error = dsl_dataset_promote(clone2name, NULL);
4580 	if (error == ENOSPC) {
4581 		dmu_objset_disown(os, B_TRUE, FTAG);
4582 		ztest_record_enospc(FTAG);
4583 		goto out;
4584 	}
4585 	if (error != EBUSY)
4586 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4587 		    clone2name, error);
4588 	dmu_objset_disown(os, B_TRUE, FTAG);
4589 
4590 out:
4591 	ztest_dsl_dataset_cleanup(osname, id);
4592 
4593 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4594 
4595 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4596 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4597 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4598 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4599 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4600 }
4601 
4602 #undef OD_ARRAY_SIZE
4603 #define	OD_ARRAY_SIZE	4
4604 
4605 /*
4606  * Verify that dmu_object_{alloc,free} work as expected.
4607  */
4608 void
4609 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4610 {
4611 	ztest_od_t *od;
4612 	int batchsize;
4613 	int size;
4614 	int b;
4615 
4616 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4617 	od = umem_alloc(size, UMEM_NOFAIL);
4618 	batchsize = OD_ARRAY_SIZE;
4619 
4620 	for (b = 0; b < batchsize; b++)
4621 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4622 		    0, 0, 0);
4623 
4624 	/*
4625 	 * Destroy the previous batch of objects, create a new batch,
4626 	 * and do some I/O on the new objects.
4627 	 */
4628 	if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4629 		return;
4630 
4631 	while (ztest_random(4 * batchsize) != 0)
4632 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4633 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4634 
4635 	umem_free(od, size);
4636 }
4637 
4638 /*
4639  * Rewind the global allocator to verify object allocation backfilling.
4640  */
4641 void
4642 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4643 {
4644 	(void) id;
4645 	objset_t *os = zd->zd_os;
4646 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4647 	uint64_t object;
4648 
4649 	/*
4650 	 * Rewind the global allocator randomly back to a lower object number
4651 	 * to force backfilling and reclamation of recently freed dnodes.
4652 	 */
4653 	mutex_enter(&os->os_obj_lock);
4654 	object = ztest_random(os->os_obj_next_chunk);
4655 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4656 	mutex_exit(&os->os_obj_lock);
4657 }
4658 
4659 #undef OD_ARRAY_SIZE
4660 #define	OD_ARRAY_SIZE	2
4661 
4662 /*
4663  * Verify that dmu_{read,write} work as expected.
4664  */
4665 void
4666 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4667 {
4668 	int size;
4669 	ztest_od_t *od;
4670 
4671 	objset_t *os = zd->zd_os;
4672 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4673 	od = umem_alloc(size, UMEM_NOFAIL);
4674 	dmu_tx_t *tx;
4675 	int freeit, error;
4676 	uint64_t i, n, s, txg;
4677 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4678 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4679 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4680 	uint64_t regions = 997;
4681 	uint64_t stride = 123456789ULL;
4682 	uint64_t width = 40;
4683 	int free_percent = 5;
4684 
4685 	/*
4686 	 * This test uses two objects, packobj and bigobj, that are always
4687 	 * updated together (i.e. in the same tx) so that their contents are
4688 	 * in sync and can be compared.  Their contents relate to each other
4689 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4690 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4691 	 * for any index n, there are three bufwads that should be identical:
4692 	 *
4693 	 *	packobj, at offset n * sizeof (bufwad_t)
4694 	 *	bigobj, at the head of the nth chunk
4695 	 *	bigobj, at the tail of the nth chunk
4696 	 *
4697 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
4698 	 * and it doesn't have any relation to the object blocksize.
4699 	 * The only requirement is that it can hold at least two bufwads.
4700 	 *
4701 	 * Normally, we write the bufwad to each of these locations.
4702 	 * However, free_percent of the time we instead write zeroes to
4703 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
4704 	 * bigobj to packobj, we can verify that the DMU is correctly
4705 	 * tracking which parts of an object are allocated and free,
4706 	 * and that the contents of the allocated blocks are correct.
4707 	 */
4708 
4709 	/*
4710 	 * Read the directory info.  If it's the first time, set things up.
4711 	 */
4712 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4713 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4714 	    chunksize);
4715 
4716 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4717 		umem_free(od, size);
4718 		return;
4719 	}
4720 
4721 	bigobj = od[0].od_object;
4722 	packobj = od[1].od_object;
4723 	chunksize = od[0].od_gen;
4724 	ASSERT3U(chunksize, ==, od[1].od_gen);
4725 
4726 	/*
4727 	 * Prefetch a random chunk of the big object.
4728 	 * Our aim here is to get some async reads in flight
4729 	 * for blocks that we may free below; the DMU should
4730 	 * handle this race correctly.
4731 	 */
4732 	n = ztest_random(regions) * stride + ztest_random(width);
4733 	s = 1 + ztest_random(2 * width - 1);
4734 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4735 	    ZIO_PRIORITY_SYNC_READ);
4736 
4737 	/*
4738 	 * Pick a random index and compute the offsets into packobj and bigobj.
4739 	 */
4740 	n = ztest_random(regions) * stride + ztest_random(width);
4741 	s = 1 + ztest_random(width - 1);
4742 
4743 	packoff = n * sizeof (bufwad_t);
4744 	packsize = s * sizeof (bufwad_t);
4745 
4746 	bigoff = n * chunksize;
4747 	bigsize = s * chunksize;
4748 
4749 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4750 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4751 
4752 	/*
4753 	 * free_percent of the time, free a range of bigobj rather than
4754 	 * overwriting it.
4755 	 */
4756 	freeit = (ztest_random(100) < free_percent);
4757 
4758 	/*
4759 	 * Read the current contents of our objects.
4760 	 */
4761 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
4762 	    DMU_READ_PREFETCH);
4763 	ASSERT0(error);
4764 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4765 	    DMU_READ_PREFETCH);
4766 	ASSERT0(error);
4767 
4768 	/*
4769 	 * Get a tx for the mods to both packobj and bigobj.
4770 	 */
4771 	tx = dmu_tx_create(os);
4772 
4773 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
4774 
4775 	if (freeit)
4776 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4777 	else
4778 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4779 
4780 	/* This accounts for setting the checksum/compression. */
4781 	dmu_tx_hold_bonus(tx, bigobj);
4782 
4783 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4784 	if (txg == 0) {
4785 		umem_free(packbuf, packsize);
4786 		umem_free(bigbuf, bigsize);
4787 		umem_free(od, size);
4788 		return;
4789 	}
4790 
4791 	enum zio_checksum cksum;
4792 	do {
4793 		cksum = (enum zio_checksum)
4794 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4795 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4796 	dmu_object_set_checksum(os, bigobj, cksum, tx);
4797 
4798 	enum zio_compress comp;
4799 	do {
4800 		comp = (enum zio_compress)
4801 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4802 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4803 	dmu_object_set_compress(os, bigobj, comp, tx);
4804 
4805 	/*
4806 	 * For each index from n to n + s, verify that the existing bufwad
4807 	 * in packobj matches the bufwads at the head and tail of the
4808 	 * corresponding chunk in bigobj.  Then update all three bufwads
4809 	 * with the new values we want to write out.
4810 	 */
4811 	for (i = 0; i < s; i++) {
4812 		/* LINTED */
4813 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4814 		/* LINTED */
4815 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4816 		/* LINTED */
4817 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4818 
4819 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4820 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4821 
4822 		if (pack->bw_txg > txg)
4823 			fatal(B_FALSE,
4824 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
4825 			    pack->bw_txg, txg);
4826 
4827 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4828 			fatal(B_FALSE, "wrong index: "
4829 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4830 			    pack->bw_index, n, i);
4831 
4832 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4833 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4834 			    pack, bigH);
4835 
4836 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4837 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4838 			    pack, bigT);
4839 
4840 		if (freeit) {
4841 			memset(pack, 0, sizeof (bufwad_t));
4842 		} else {
4843 			pack->bw_index = n + i;
4844 			pack->bw_txg = txg;
4845 			pack->bw_data = 1 + ztest_random(-2ULL);
4846 		}
4847 		*bigH = *pack;
4848 		*bigT = *pack;
4849 	}
4850 
4851 	/*
4852 	 * We've verified all the old bufwads, and made new ones.
4853 	 * Now write them out.
4854 	 */
4855 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4856 
4857 	if (freeit) {
4858 		if (ztest_opts.zo_verbose >= 7) {
4859 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
4860 			    " txg %"PRIx64"\n",
4861 			    bigoff, bigsize, txg);
4862 		}
4863 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4864 	} else {
4865 		if (ztest_opts.zo_verbose >= 7) {
4866 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
4867 			    " txg %"PRIx64"\n",
4868 			    bigoff, bigsize, txg);
4869 		}
4870 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4871 	}
4872 
4873 	dmu_tx_commit(tx);
4874 
4875 	/*
4876 	 * Sanity check the stuff we just wrote.
4877 	 */
4878 	{
4879 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4880 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4881 
4882 		VERIFY0(dmu_read(os, packobj, packoff,
4883 		    packsize, packcheck, DMU_READ_PREFETCH));
4884 		VERIFY0(dmu_read(os, bigobj, bigoff,
4885 		    bigsize, bigcheck, DMU_READ_PREFETCH));
4886 
4887 		ASSERT0(memcmp(packbuf, packcheck, packsize));
4888 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
4889 
4890 		umem_free(packcheck, packsize);
4891 		umem_free(bigcheck, bigsize);
4892 	}
4893 
4894 	umem_free(packbuf, packsize);
4895 	umem_free(bigbuf, bigsize);
4896 	umem_free(od, size);
4897 }
4898 
4899 static void
4900 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4901     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4902 {
4903 	uint64_t i;
4904 	bufwad_t *pack;
4905 	bufwad_t *bigH;
4906 	bufwad_t *bigT;
4907 
4908 	/*
4909 	 * For each index from n to n + s, verify that the existing bufwad
4910 	 * in packobj matches the bufwads at the head and tail of the
4911 	 * corresponding chunk in bigobj.  Then update all three bufwads
4912 	 * with the new values we want to write out.
4913 	 */
4914 	for (i = 0; i < s; i++) {
4915 		/* LINTED */
4916 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4917 		/* LINTED */
4918 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4919 		/* LINTED */
4920 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4921 
4922 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4923 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4924 
4925 		if (pack->bw_txg > txg)
4926 			fatal(B_FALSE,
4927 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
4928 			    pack->bw_txg, txg);
4929 
4930 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4931 			fatal(B_FALSE, "wrong index: "
4932 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4933 			    pack->bw_index, n, i);
4934 
4935 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4936 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4937 			    pack, bigH);
4938 
4939 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4940 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4941 			    pack, bigT);
4942 
4943 		pack->bw_index = n + i;
4944 		pack->bw_txg = txg;
4945 		pack->bw_data = 1 + ztest_random(-2ULL);
4946 
4947 		*bigH = *pack;
4948 		*bigT = *pack;
4949 	}
4950 }
4951 
4952 #undef OD_ARRAY_SIZE
4953 #define	OD_ARRAY_SIZE	2
4954 
4955 void
4956 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4957 {
4958 	objset_t *os = zd->zd_os;
4959 	ztest_od_t *od;
4960 	dmu_tx_t *tx;
4961 	uint64_t i;
4962 	int error;
4963 	int size;
4964 	uint64_t n, s, txg;
4965 	bufwad_t *packbuf, *bigbuf;
4966 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4967 	uint64_t blocksize = ztest_random_blocksize();
4968 	uint64_t chunksize = blocksize;
4969 	uint64_t regions = 997;
4970 	uint64_t stride = 123456789ULL;
4971 	uint64_t width = 9;
4972 	dmu_buf_t *bonus_db;
4973 	arc_buf_t **bigbuf_arcbufs;
4974 	dmu_object_info_t doi;
4975 
4976 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4977 	od = umem_alloc(size, UMEM_NOFAIL);
4978 
4979 	/*
4980 	 * This test uses two objects, packobj and bigobj, that are always
4981 	 * updated together (i.e. in the same tx) so that their contents are
4982 	 * in sync and can be compared.  Their contents relate to each other
4983 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4984 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4985 	 * for any index n, there are three bufwads that should be identical:
4986 	 *
4987 	 *	packobj, at offset n * sizeof (bufwad_t)
4988 	 *	bigobj, at the head of the nth chunk
4989 	 *	bigobj, at the tail of the nth chunk
4990 	 *
4991 	 * The chunk size is set equal to bigobj block size so that
4992 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4993 	 */
4994 
4995 	/*
4996 	 * Read the directory info.  If it's the first time, set things up.
4997 	 */
4998 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4999 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5000 	    chunksize);
5001 
5002 
5003 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5004 		umem_free(od, size);
5005 		return;
5006 	}
5007 
5008 	bigobj = od[0].od_object;
5009 	packobj = od[1].od_object;
5010 	blocksize = od[0].od_blocksize;
5011 	chunksize = blocksize;
5012 	ASSERT3U(chunksize, ==, od[1].od_gen);
5013 
5014 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5015 	VERIFY(ISP2(doi.doi_data_block_size));
5016 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5017 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5018 
5019 	/*
5020 	 * Pick a random index and compute the offsets into packobj and bigobj.
5021 	 */
5022 	n = ztest_random(regions) * stride + ztest_random(width);
5023 	s = 1 + ztest_random(width - 1);
5024 
5025 	packoff = n * sizeof (bufwad_t);
5026 	packsize = s * sizeof (bufwad_t);
5027 
5028 	bigoff = n * chunksize;
5029 	bigsize = s * chunksize;
5030 
5031 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5032 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5033 
5034 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5035 
5036 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5037 
5038 	/*
5039 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5040 	 * Iteration 1 test zcopy to already referenced dbufs.
5041 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5042 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5043 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5044 	 * Iteration 5 test zcopy when it can't be done.
5045 	 * Iteration 6 one more zcopy write.
5046 	 */
5047 	for (i = 0; i < 7; i++) {
5048 		uint64_t j;
5049 		uint64_t off;
5050 
5051 		/*
5052 		 * In iteration 5 (i == 5) use arcbufs
5053 		 * that don't match bigobj blksz to test
5054 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5055 		 * assign an arcbuf to a dbuf.
5056 		 */
5057 		for (j = 0; j < s; j++) {
5058 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5059 				bigbuf_arcbufs[j] =
5060 				    dmu_request_arcbuf(bonus_db, chunksize);
5061 			} else {
5062 				bigbuf_arcbufs[2 * j] =
5063 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5064 				bigbuf_arcbufs[2 * j + 1] =
5065 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5066 			}
5067 		}
5068 
5069 		/*
5070 		 * Get a tx for the mods to both packobj and bigobj.
5071 		 */
5072 		tx = dmu_tx_create(os);
5073 
5074 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5075 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5076 
5077 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5078 		if (txg == 0) {
5079 			umem_free(packbuf, packsize);
5080 			umem_free(bigbuf, bigsize);
5081 			for (j = 0; j < s; j++) {
5082 				if (i != 5 ||
5083 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5084 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5085 				} else {
5086 					dmu_return_arcbuf(
5087 					    bigbuf_arcbufs[2 * j]);
5088 					dmu_return_arcbuf(
5089 					    bigbuf_arcbufs[2 * j + 1]);
5090 				}
5091 			}
5092 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5093 			umem_free(od, size);
5094 			dmu_buf_rele(bonus_db, FTAG);
5095 			return;
5096 		}
5097 
5098 		/*
5099 		 * 50% of the time don't read objects in the 1st iteration to
5100 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5101 		 * no existing dbufs for the specified offsets.
5102 		 */
5103 		if (i != 0 || ztest_random(2) != 0) {
5104 			error = dmu_read(os, packobj, packoff,
5105 			    packsize, packbuf, DMU_READ_PREFETCH);
5106 			ASSERT0(error);
5107 			error = dmu_read(os, bigobj, bigoff, bigsize,
5108 			    bigbuf, DMU_READ_PREFETCH);
5109 			ASSERT0(error);
5110 		}
5111 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5112 		    n, chunksize, txg);
5113 
5114 		/*
5115 		 * We've verified all the old bufwads, and made new ones.
5116 		 * Now write them out.
5117 		 */
5118 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5119 		if (ztest_opts.zo_verbose >= 7) {
5120 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5121 			    " txg %"PRIx64"\n",
5122 			    bigoff, bigsize, txg);
5123 		}
5124 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5125 			dmu_buf_t *dbt;
5126 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5127 				memcpy(bigbuf_arcbufs[j]->b_data,
5128 				    (caddr_t)bigbuf + (off - bigoff),
5129 				    chunksize);
5130 			} else {
5131 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5132 				    (caddr_t)bigbuf + (off - bigoff),
5133 				    chunksize / 2);
5134 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5135 				    (caddr_t)bigbuf + (off - bigoff) +
5136 				    chunksize / 2,
5137 				    chunksize / 2);
5138 			}
5139 
5140 			if (i == 1) {
5141 				VERIFY(dmu_buf_hold(os, bigobj, off,
5142 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5143 			}
5144 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5145 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5146 				    off, bigbuf_arcbufs[j], tx));
5147 			} else {
5148 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5149 				    off, bigbuf_arcbufs[2 * j], tx));
5150 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5151 				    off + chunksize / 2,
5152 				    bigbuf_arcbufs[2 * j + 1], tx));
5153 			}
5154 			if (i == 1) {
5155 				dmu_buf_rele(dbt, FTAG);
5156 			}
5157 		}
5158 		dmu_tx_commit(tx);
5159 
5160 		/*
5161 		 * Sanity check the stuff we just wrote.
5162 		 */
5163 		{
5164 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5165 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5166 
5167 			VERIFY0(dmu_read(os, packobj, packoff,
5168 			    packsize, packcheck, DMU_READ_PREFETCH));
5169 			VERIFY0(dmu_read(os, bigobj, bigoff,
5170 			    bigsize, bigcheck, DMU_READ_PREFETCH));
5171 
5172 			ASSERT0(memcmp(packbuf, packcheck, packsize));
5173 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5174 
5175 			umem_free(packcheck, packsize);
5176 			umem_free(bigcheck, bigsize);
5177 		}
5178 		if (i == 2) {
5179 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5180 		} else if (i == 3) {
5181 			txg_wait_synced(dmu_objset_pool(os), 0);
5182 		}
5183 	}
5184 
5185 	dmu_buf_rele(bonus_db, FTAG);
5186 	umem_free(packbuf, packsize);
5187 	umem_free(bigbuf, bigsize);
5188 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5189 	umem_free(od, size);
5190 }
5191 
5192 void
5193 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5194 {
5195 	(void) id;
5196 	ztest_od_t *od;
5197 
5198 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5199 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5200 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5201 
5202 	/*
5203 	 * Have multiple threads write to large offsets in an object
5204 	 * to verify that parallel writes to an object -- even to the
5205 	 * same blocks within the object -- doesn't cause any trouble.
5206 	 */
5207 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5208 
5209 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5210 		return;
5211 
5212 	while (ztest_random(10) != 0)
5213 		ztest_io(zd, od->od_object, offset);
5214 
5215 	umem_free(od, sizeof (ztest_od_t));
5216 }
5217 
5218 void
5219 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5220 {
5221 	ztest_od_t *od;
5222 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5223 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5224 	uint64_t count = ztest_random(20) + 1;
5225 	uint64_t blocksize = ztest_random_blocksize();
5226 	void *data;
5227 
5228 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5229 
5230 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5231 
5232 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5233 	    !ztest_random(2)) != 0) {
5234 		umem_free(od, sizeof (ztest_od_t));
5235 		return;
5236 	}
5237 
5238 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5239 		umem_free(od, sizeof (ztest_od_t));
5240 		return;
5241 	}
5242 
5243 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5244 
5245 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5246 
5247 	while (ztest_random(count) != 0) {
5248 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5249 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5250 		    data) != 0)
5251 			break;
5252 		while (ztest_random(4) != 0)
5253 			ztest_io(zd, od->od_object, randoff);
5254 	}
5255 
5256 	umem_free(data, blocksize);
5257 	umem_free(od, sizeof (ztest_od_t));
5258 }
5259 
5260 /*
5261  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5262  */
5263 #define	ZTEST_ZAP_MIN_INTS	1
5264 #define	ZTEST_ZAP_MAX_INTS	4
5265 #define	ZTEST_ZAP_MAX_PROPS	1000
5266 
5267 void
5268 ztest_zap(ztest_ds_t *zd, uint64_t id)
5269 {
5270 	objset_t *os = zd->zd_os;
5271 	ztest_od_t *od;
5272 	uint64_t object;
5273 	uint64_t txg, last_txg;
5274 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5275 	uint64_t zl_ints, zl_intsize, prop;
5276 	int i, ints;
5277 	dmu_tx_t *tx;
5278 	char propname[100], txgname[100];
5279 	int error;
5280 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5281 
5282 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5283 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5284 
5285 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5286 	    !ztest_random(2)) != 0)
5287 		goto out;
5288 
5289 	object = od->od_object;
5290 
5291 	/*
5292 	 * Generate a known hash collision, and verify that
5293 	 * we can lookup and remove both entries.
5294 	 */
5295 	tx = dmu_tx_create(os);
5296 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5297 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5298 	if (txg == 0)
5299 		goto out;
5300 	for (i = 0; i < 2; i++) {
5301 		value[i] = i;
5302 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5303 		    1, &value[i], tx));
5304 	}
5305 	for (i = 0; i < 2; i++) {
5306 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5307 		    sizeof (uint64_t), 1, &value[i], tx));
5308 		VERIFY0(
5309 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5310 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5311 		ASSERT3U(zl_ints, ==, 1);
5312 	}
5313 	for (i = 0; i < 2; i++) {
5314 		VERIFY0(zap_remove(os, object, hc[i], tx));
5315 	}
5316 	dmu_tx_commit(tx);
5317 
5318 	/*
5319 	 * Generate a bunch of random entries.
5320 	 */
5321 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5322 
5323 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5324 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5325 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5326 	memset(value, 0, sizeof (value));
5327 	last_txg = 0;
5328 
5329 	/*
5330 	 * If these zap entries already exist, validate their contents.
5331 	 */
5332 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5333 	if (error == 0) {
5334 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5335 		ASSERT3U(zl_ints, ==, 1);
5336 
5337 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5338 		    zl_ints, &last_txg));
5339 
5340 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5341 		    &zl_ints));
5342 
5343 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5344 		ASSERT3U(zl_ints, ==, ints);
5345 
5346 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5347 		    zl_ints, value));
5348 
5349 		for (i = 0; i < ints; i++) {
5350 			ASSERT3U(value[i], ==, last_txg + object + i);
5351 		}
5352 	} else {
5353 		ASSERT3U(error, ==, ENOENT);
5354 	}
5355 
5356 	/*
5357 	 * Atomically update two entries in our zap object.
5358 	 * The first is named txg_%llu, and contains the txg
5359 	 * in which the property was last updated.  The second
5360 	 * is named prop_%llu, and the nth element of its value
5361 	 * should be txg + object + n.
5362 	 */
5363 	tx = dmu_tx_create(os);
5364 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5365 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5366 	if (txg == 0)
5367 		goto out;
5368 
5369 	if (last_txg > txg)
5370 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5371 		    last_txg, txg);
5372 
5373 	for (i = 0; i < ints; i++)
5374 		value[i] = txg + object + i;
5375 
5376 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5377 	    1, &txg, tx));
5378 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5379 	    ints, value, tx));
5380 
5381 	dmu_tx_commit(tx);
5382 
5383 	/*
5384 	 * Remove a random pair of entries.
5385 	 */
5386 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5387 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5388 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5389 
5390 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5391 
5392 	if (error == ENOENT)
5393 		goto out;
5394 
5395 	ASSERT0(error);
5396 
5397 	tx = dmu_tx_create(os);
5398 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5399 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5400 	if (txg == 0)
5401 		goto out;
5402 	VERIFY0(zap_remove(os, object, txgname, tx));
5403 	VERIFY0(zap_remove(os, object, propname, tx));
5404 	dmu_tx_commit(tx);
5405 out:
5406 	umem_free(od, sizeof (ztest_od_t));
5407 }
5408 
5409 /*
5410  * Test case to test the upgrading of a microzap to fatzap.
5411  */
5412 void
5413 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5414 {
5415 	objset_t *os = zd->zd_os;
5416 	ztest_od_t *od;
5417 	uint64_t object, txg, value;
5418 
5419 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5420 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5421 
5422 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5423 	    !ztest_random(2)) != 0)
5424 		goto out;
5425 	object = od->od_object;
5426 
5427 	/*
5428 	 * Add entries to this ZAP and make sure it spills over
5429 	 * and gets upgraded to a fatzap. Also, since we are adding
5430 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5431 	 */
5432 	for (value = 0; value < 2050; value++) {
5433 		char name[ZFS_MAX_DATASET_NAME_LEN];
5434 		dmu_tx_t *tx;
5435 		int error;
5436 
5437 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5438 		    id, value);
5439 
5440 		tx = dmu_tx_create(os);
5441 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5442 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5443 		if (txg == 0)
5444 			goto out;
5445 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5446 		    &value, tx);
5447 		ASSERT(error == 0 || error == EEXIST);
5448 		dmu_tx_commit(tx);
5449 	}
5450 out:
5451 	umem_free(od, sizeof (ztest_od_t));
5452 }
5453 
5454 void
5455 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5456 {
5457 	(void) id;
5458 	objset_t *os = zd->zd_os;
5459 	ztest_od_t *od;
5460 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5461 	dmu_tx_t *tx;
5462 	int i, namelen, error;
5463 	int micro = ztest_random(2);
5464 	char name[20], string_value[20];
5465 	void *data;
5466 
5467 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5468 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5469 
5470 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5471 		umem_free(od, sizeof (ztest_od_t));
5472 		return;
5473 	}
5474 
5475 	object = od->od_object;
5476 
5477 	/*
5478 	 * Generate a random name of the form 'xxx.....' where each
5479 	 * x is a random printable character and the dots are dots.
5480 	 * There are 94 such characters, and the name length goes from
5481 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5482 	 */
5483 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5484 
5485 	for (i = 0; i < 3; i++)
5486 		name[i] = '!' + ztest_random('~' - '!' + 1);
5487 	for (; i < namelen - 1; i++)
5488 		name[i] = '.';
5489 	name[i] = '\0';
5490 
5491 	if ((namelen & 1) || micro) {
5492 		wsize = sizeof (txg);
5493 		wc = 1;
5494 		data = &txg;
5495 	} else {
5496 		wsize = 1;
5497 		wc = namelen;
5498 		data = string_value;
5499 	}
5500 
5501 	count = -1ULL;
5502 	VERIFY0(zap_count(os, object, &count));
5503 	ASSERT3S(count, !=, -1ULL);
5504 
5505 	/*
5506 	 * Select an operation: length, lookup, add, update, remove.
5507 	 */
5508 	i = ztest_random(5);
5509 
5510 	if (i >= 2) {
5511 		tx = dmu_tx_create(os);
5512 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5513 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5514 		if (txg == 0) {
5515 			umem_free(od, sizeof (ztest_od_t));
5516 			return;
5517 		}
5518 		memcpy(string_value, name, namelen);
5519 	} else {
5520 		tx = NULL;
5521 		txg = 0;
5522 		memset(string_value, 0, namelen);
5523 	}
5524 
5525 	switch (i) {
5526 
5527 	case 0:
5528 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5529 		if (error == 0) {
5530 			ASSERT3U(wsize, ==, zl_wsize);
5531 			ASSERT3U(wc, ==, zl_wc);
5532 		} else {
5533 			ASSERT3U(error, ==, ENOENT);
5534 		}
5535 		break;
5536 
5537 	case 1:
5538 		error = zap_lookup(os, object, name, wsize, wc, data);
5539 		if (error == 0) {
5540 			if (data == string_value &&
5541 			    memcmp(name, data, namelen) != 0)
5542 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5543 				    name, (char *)data, namelen);
5544 		} else {
5545 			ASSERT3U(error, ==, ENOENT);
5546 		}
5547 		break;
5548 
5549 	case 2:
5550 		error = zap_add(os, object, name, wsize, wc, data, tx);
5551 		ASSERT(error == 0 || error == EEXIST);
5552 		break;
5553 
5554 	case 3:
5555 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5556 		break;
5557 
5558 	case 4:
5559 		error = zap_remove(os, object, name, tx);
5560 		ASSERT(error == 0 || error == ENOENT);
5561 		break;
5562 	}
5563 
5564 	if (tx != NULL)
5565 		dmu_tx_commit(tx);
5566 
5567 	umem_free(od, sizeof (ztest_od_t));
5568 }
5569 
5570 /*
5571  * Commit callback data.
5572  */
5573 typedef struct ztest_cb_data {
5574 	list_node_t		zcd_node;
5575 	uint64_t		zcd_txg;
5576 	int			zcd_expected_err;
5577 	boolean_t		zcd_added;
5578 	boolean_t		zcd_called;
5579 	spa_t			*zcd_spa;
5580 } ztest_cb_data_t;
5581 
5582 /* This is the actual commit callback function */
5583 static void
5584 ztest_commit_callback(void *arg, int error)
5585 {
5586 	ztest_cb_data_t *data = arg;
5587 	uint64_t synced_txg;
5588 
5589 	VERIFY3P(data, !=, NULL);
5590 	VERIFY3S(data->zcd_expected_err, ==, error);
5591 	VERIFY(!data->zcd_called);
5592 
5593 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5594 	if (data->zcd_txg > synced_txg)
5595 		fatal(B_FALSE,
5596 		    "commit callback of txg %"PRIu64" called prematurely, "
5597 		    "last synced txg = %"PRIu64"\n",
5598 		    data->zcd_txg, synced_txg);
5599 
5600 	data->zcd_called = B_TRUE;
5601 
5602 	if (error == ECANCELED) {
5603 		ASSERT0(data->zcd_txg);
5604 		ASSERT(!data->zcd_added);
5605 
5606 		/*
5607 		 * The private callback data should be destroyed here, but
5608 		 * since we are going to check the zcd_called field after
5609 		 * dmu_tx_abort(), we will destroy it there.
5610 		 */
5611 		return;
5612 	}
5613 
5614 	ASSERT(data->zcd_added);
5615 	ASSERT3U(data->zcd_txg, !=, 0);
5616 
5617 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5618 
5619 	/* See if this cb was called more quickly */
5620 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5621 		zc_min_txg_delay = synced_txg - data->zcd_txg;
5622 
5623 	/* Remove our callback from the list */
5624 	list_remove(&zcl.zcl_callbacks, data);
5625 
5626 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5627 
5628 	umem_free(data, sizeof (ztest_cb_data_t));
5629 }
5630 
5631 /* Allocate and initialize callback data structure */
5632 static ztest_cb_data_t *
5633 ztest_create_cb_data(objset_t *os, uint64_t txg)
5634 {
5635 	ztest_cb_data_t *cb_data;
5636 
5637 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5638 
5639 	cb_data->zcd_txg = txg;
5640 	cb_data->zcd_spa = dmu_objset_spa(os);
5641 	list_link_init(&cb_data->zcd_node);
5642 
5643 	return (cb_data);
5644 }
5645 
5646 /*
5647  * Commit callback test.
5648  */
5649 void
5650 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5651 {
5652 	objset_t *os = zd->zd_os;
5653 	ztest_od_t *od;
5654 	dmu_tx_t *tx;
5655 	ztest_cb_data_t *cb_data[3], *tmp_cb;
5656 	uint64_t old_txg, txg;
5657 	int i, error = 0;
5658 
5659 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5660 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5661 
5662 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5663 		umem_free(od, sizeof (ztest_od_t));
5664 		return;
5665 	}
5666 
5667 	tx = dmu_tx_create(os);
5668 
5669 	cb_data[0] = ztest_create_cb_data(os, 0);
5670 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5671 
5672 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5673 
5674 	/* Every once in a while, abort the transaction on purpose */
5675 	if (ztest_random(100) == 0)
5676 		error = -1;
5677 
5678 	if (!error)
5679 		error = dmu_tx_assign(tx, TXG_NOWAIT);
5680 
5681 	txg = error ? 0 : dmu_tx_get_txg(tx);
5682 
5683 	cb_data[0]->zcd_txg = txg;
5684 	cb_data[1] = ztest_create_cb_data(os, txg);
5685 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5686 
5687 	if (error) {
5688 		/*
5689 		 * It's not a strict requirement to call the registered
5690 		 * callbacks from inside dmu_tx_abort(), but that's what
5691 		 * it's supposed to happen in the current implementation
5692 		 * so we will check for that.
5693 		 */
5694 		for (i = 0; i < 2; i++) {
5695 			cb_data[i]->zcd_expected_err = ECANCELED;
5696 			VERIFY(!cb_data[i]->zcd_called);
5697 		}
5698 
5699 		dmu_tx_abort(tx);
5700 
5701 		for (i = 0; i < 2; i++) {
5702 			VERIFY(cb_data[i]->zcd_called);
5703 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5704 		}
5705 
5706 		umem_free(od, sizeof (ztest_od_t));
5707 		return;
5708 	}
5709 
5710 	cb_data[2] = ztest_create_cb_data(os, txg);
5711 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5712 
5713 	/*
5714 	 * Read existing data to make sure there isn't a future leak.
5715 	 */
5716 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5717 	    &old_txg, DMU_READ_PREFETCH));
5718 
5719 	if (old_txg > txg)
5720 		fatal(B_FALSE,
5721 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
5722 		    old_txg, txg);
5723 
5724 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5725 
5726 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5727 
5728 	/*
5729 	 * Since commit callbacks don't have any ordering requirement and since
5730 	 * it is theoretically possible for a commit callback to be called
5731 	 * after an arbitrary amount of time has elapsed since its txg has been
5732 	 * synced, it is difficult to reliably determine whether a commit
5733 	 * callback hasn't been called due to high load or due to a flawed
5734 	 * implementation.
5735 	 *
5736 	 * In practice, we will assume that if after a certain number of txgs a
5737 	 * commit callback hasn't been called, then most likely there's an
5738 	 * implementation bug..
5739 	 */
5740 	tmp_cb = list_head(&zcl.zcl_callbacks);
5741 	if (tmp_cb != NULL &&
5742 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5743 		fatal(B_FALSE,
5744 		    "Commit callback threshold exceeded, "
5745 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
5746 		    tmp_cb->zcd_txg, txg);
5747 	}
5748 
5749 	/*
5750 	 * Let's find the place to insert our callbacks.
5751 	 *
5752 	 * Even though the list is ordered by txg, it is possible for the
5753 	 * insertion point to not be the end because our txg may already be
5754 	 * quiescing at this point and other callbacks in the open txg
5755 	 * (from other objsets) may have sneaked in.
5756 	 */
5757 	tmp_cb = list_tail(&zcl.zcl_callbacks);
5758 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5759 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5760 
5761 	/* Add the 3 callbacks to the list */
5762 	for (i = 0; i < 3; i++) {
5763 		if (tmp_cb == NULL)
5764 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5765 		else
5766 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5767 			    cb_data[i]);
5768 
5769 		cb_data[i]->zcd_added = B_TRUE;
5770 		VERIFY(!cb_data[i]->zcd_called);
5771 
5772 		tmp_cb = cb_data[i];
5773 	}
5774 
5775 	zc_cb_counter += 3;
5776 
5777 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5778 
5779 	dmu_tx_commit(tx);
5780 
5781 	umem_free(od, sizeof (ztest_od_t));
5782 }
5783 
5784 /*
5785  * Visit each object in the dataset. Verify that its properties
5786  * are consistent what was stored in the block tag when it was created,
5787  * and that its unused bonus buffer space has not been overwritten.
5788  */
5789 void
5790 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5791 {
5792 	(void) id;
5793 	objset_t *os = zd->zd_os;
5794 	uint64_t obj;
5795 	int err = 0;
5796 
5797 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5798 		ztest_block_tag_t *bt = NULL;
5799 		dmu_object_info_t doi;
5800 		dmu_buf_t *db;
5801 
5802 		ztest_object_lock(zd, obj, RL_READER);
5803 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5804 			ztest_object_unlock(zd, obj);
5805 			continue;
5806 		}
5807 
5808 		dmu_object_info_from_db(db, &doi);
5809 		if (doi.doi_bonus_size >= sizeof (*bt))
5810 			bt = ztest_bt_bonus(db);
5811 
5812 		if (bt && bt->bt_magic == BT_MAGIC) {
5813 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5814 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
5815 			    bt->bt_crtxg);
5816 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5817 		}
5818 
5819 		dmu_buf_rele(db, FTAG);
5820 		ztest_object_unlock(zd, obj);
5821 	}
5822 }
5823 
5824 void
5825 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5826 {
5827 	(void) id;
5828 	zfs_prop_t proplist[] = {
5829 		ZFS_PROP_CHECKSUM,
5830 		ZFS_PROP_COMPRESSION,
5831 		ZFS_PROP_COPIES,
5832 		ZFS_PROP_DEDUP
5833 	};
5834 
5835 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5836 
5837 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5838 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5839 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5840 
5841 	VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5842 	    ztest_random_blocksize(), (int)ztest_random(2)));
5843 
5844 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5845 }
5846 
5847 void
5848 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5849 {
5850 	(void) zd, (void) id;
5851 	nvlist_t *props = NULL;
5852 
5853 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5854 
5855 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5856 
5857 	VERIFY0(spa_prop_get(ztest_spa, &props));
5858 
5859 	if (ztest_opts.zo_verbose >= 6)
5860 		dump_nvlist(props, 4);
5861 
5862 	fnvlist_free(props);
5863 
5864 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5865 }
5866 
5867 static int
5868 user_release_one(const char *snapname, const char *holdname)
5869 {
5870 	nvlist_t *snaps, *holds;
5871 	int error;
5872 
5873 	snaps = fnvlist_alloc();
5874 	holds = fnvlist_alloc();
5875 	fnvlist_add_boolean(holds, holdname);
5876 	fnvlist_add_nvlist(snaps, snapname, holds);
5877 	fnvlist_free(holds);
5878 	error = dsl_dataset_user_release(snaps, NULL);
5879 	fnvlist_free(snaps);
5880 	return (error);
5881 }
5882 
5883 /*
5884  * Test snapshot hold/release and deferred destroy.
5885  */
5886 void
5887 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5888 {
5889 	int error;
5890 	objset_t *os = zd->zd_os;
5891 	objset_t *origin;
5892 	char snapname[100];
5893 	char fullname[100];
5894 	char clonename[100];
5895 	char tag[100];
5896 	char osname[ZFS_MAX_DATASET_NAME_LEN];
5897 	nvlist_t *holds;
5898 
5899 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5900 
5901 	dmu_objset_name(os, osname);
5902 
5903 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
5904 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5905 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
5906 	    osname, id);
5907 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
5908 
5909 	/*
5910 	 * Clean up from any previous run.
5911 	 */
5912 	error = dsl_destroy_head(clonename);
5913 	if (error != ENOENT)
5914 		ASSERT0(error);
5915 	error = user_release_one(fullname, tag);
5916 	if (error != ESRCH && error != ENOENT)
5917 		ASSERT0(error);
5918 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5919 	if (error != ENOENT)
5920 		ASSERT0(error);
5921 
5922 	/*
5923 	 * Create snapshot, clone it, mark snap for deferred destroy,
5924 	 * destroy clone, verify snap was also destroyed.
5925 	 */
5926 	error = dmu_objset_snapshot_one(osname, snapname);
5927 	if (error) {
5928 		if (error == ENOSPC) {
5929 			ztest_record_enospc("dmu_objset_snapshot");
5930 			goto out;
5931 		}
5932 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5933 	}
5934 
5935 	error = dmu_objset_clone(clonename, fullname);
5936 	if (error) {
5937 		if (error == ENOSPC) {
5938 			ztest_record_enospc("dmu_objset_clone");
5939 			goto out;
5940 		}
5941 		fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
5942 	}
5943 
5944 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5945 	if (error) {
5946 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5947 		    fullname, error);
5948 	}
5949 
5950 	error = dsl_destroy_head(clonename);
5951 	if (error)
5952 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
5953 
5954 	error = dmu_objset_hold(fullname, FTAG, &origin);
5955 	if (error != ENOENT)
5956 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
5957 
5958 	/*
5959 	 * Create snapshot, add temporary hold, verify that we can't
5960 	 * destroy a held snapshot, mark for deferred destroy,
5961 	 * release hold, verify snapshot was destroyed.
5962 	 */
5963 	error = dmu_objset_snapshot_one(osname, snapname);
5964 	if (error) {
5965 		if (error == ENOSPC) {
5966 			ztest_record_enospc("dmu_objset_snapshot");
5967 			goto out;
5968 		}
5969 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5970 	}
5971 
5972 	holds = fnvlist_alloc();
5973 	fnvlist_add_string(holds, fullname, tag);
5974 	error = dsl_dataset_user_hold(holds, 0, NULL);
5975 	fnvlist_free(holds);
5976 
5977 	if (error == ENOSPC) {
5978 		ztest_record_enospc("dsl_dataset_user_hold");
5979 		goto out;
5980 	} else if (error) {
5981 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
5982 		    fullname, tag, error);
5983 	}
5984 
5985 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5986 	if (error != EBUSY) {
5987 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5988 		    fullname, error);
5989 	}
5990 
5991 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5992 	if (error) {
5993 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5994 		    fullname, error);
5995 	}
5996 
5997 	error = user_release_one(fullname, tag);
5998 	if (error)
5999 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6000 		    fullname, tag, error);
6001 
6002 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6003 
6004 out:
6005 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6006 }
6007 
6008 /*
6009  * Inject random faults into the on-disk data.
6010  */
6011 void
6012 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6013 {
6014 	(void) zd, (void) id;
6015 	ztest_shared_t *zs = ztest_shared;
6016 	spa_t *spa = ztest_spa;
6017 	int fd;
6018 	uint64_t offset;
6019 	uint64_t leaves;
6020 	uint64_t bad = 0x1990c0ffeedecadeull;
6021 	uint64_t top, leaf;
6022 	char *path0;
6023 	char *pathrand;
6024 	size_t fsize;
6025 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6026 	int iters = 1000;
6027 	int maxfaults;
6028 	int mirror_save;
6029 	vdev_t *vd0 = NULL;
6030 	uint64_t guid0 = 0;
6031 	boolean_t islog = B_FALSE;
6032 
6033 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6034 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6035 
6036 	mutex_enter(&ztest_vdev_lock);
6037 
6038 	/*
6039 	 * Device removal is in progress, fault injection must be disabled
6040 	 * until it completes and the pool is scrubbed.  The fault injection
6041 	 * strategy for damaging blocks does not take in to account evacuated
6042 	 * blocks which may have already been damaged.
6043 	 */
6044 	if (ztest_device_removal_active) {
6045 		mutex_exit(&ztest_vdev_lock);
6046 		goto out;
6047 	}
6048 
6049 	maxfaults = MAXFAULTS(zs);
6050 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6051 	mirror_save = zs->zs_mirrors;
6052 	mutex_exit(&ztest_vdev_lock);
6053 
6054 	ASSERT3U(leaves, >=, 1);
6055 
6056 	/*
6057 	 * While ztest is running the number of leaves will not change.  This
6058 	 * is critical for the fault injection logic as it determines where
6059 	 * errors can be safely injected such that they are always repairable.
6060 	 *
6061 	 * When restarting ztest a different number of leaves may be requested
6062 	 * which will shift the regions to be damaged.  This is fine as long
6063 	 * as the pool has been scrubbed prior to using the new mapping.
6064 	 * Failure to do can result in non-repairable damage being injected.
6065 	 */
6066 	if (ztest_pool_scrubbed == B_FALSE)
6067 		goto out;
6068 
6069 	/*
6070 	 * Grab the name lock as reader. There are some operations
6071 	 * which don't like to have their vdevs changed while
6072 	 * they are in progress (i.e. spa_change_guid). Those
6073 	 * operations will have grabbed the name lock as writer.
6074 	 */
6075 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6076 
6077 	/*
6078 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6079 	 */
6080 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6081 
6082 	if (ztest_random(2) == 0) {
6083 		/*
6084 		 * Inject errors on a normal data device or slog device.
6085 		 */
6086 		top = ztest_random_vdev_top(spa, B_TRUE);
6087 		leaf = ztest_random(leaves) + zs->zs_splits;
6088 
6089 		/*
6090 		 * Generate paths to the first leaf in this top-level vdev,
6091 		 * and to the random leaf we selected.  We'll induce transient
6092 		 * write failures and random online/offline activity on leaf 0,
6093 		 * and we'll write random garbage to the randomly chosen leaf.
6094 		 */
6095 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6096 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6097 		    top * leaves + zs->zs_splits);
6098 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6099 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6100 		    top * leaves + leaf);
6101 
6102 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6103 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6104 			islog = B_TRUE;
6105 
6106 		/*
6107 		 * If the top-level vdev needs to be resilvered
6108 		 * then we only allow faults on the device that is
6109 		 * resilvering.
6110 		 */
6111 		if (vd0 != NULL && maxfaults != 1 &&
6112 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6113 		    vd0->vdev_resilver_txg != 0)) {
6114 			/*
6115 			 * Make vd0 explicitly claim to be unreadable,
6116 			 * or unwritable, or reach behind its back
6117 			 * and close the underlying fd.  We can do this if
6118 			 * maxfaults == 0 because we'll fail and reexecute,
6119 			 * and we can do it if maxfaults >= 2 because we'll
6120 			 * have enough redundancy.  If maxfaults == 1, the
6121 			 * combination of this with injection of random data
6122 			 * corruption below exceeds the pool's fault tolerance.
6123 			 */
6124 			vdev_file_t *vf = vd0->vdev_tsd;
6125 
6126 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6127 			    (long long)vd0->vdev_id, (int)maxfaults);
6128 
6129 			if (vf != NULL && ztest_random(3) == 0) {
6130 				(void) close(vf->vf_file->f_fd);
6131 				vf->vf_file->f_fd = -1;
6132 			} else if (ztest_random(2) == 0) {
6133 				vd0->vdev_cant_read = B_TRUE;
6134 			} else {
6135 				vd0->vdev_cant_write = B_TRUE;
6136 			}
6137 			guid0 = vd0->vdev_guid;
6138 		}
6139 	} else {
6140 		/*
6141 		 * Inject errors on an l2cache device.
6142 		 */
6143 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6144 
6145 		if (sav->sav_count == 0) {
6146 			spa_config_exit(spa, SCL_STATE, FTAG);
6147 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6148 			goto out;
6149 		}
6150 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6151 		guid0 = vd0->vdev_guid;
6152 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6153 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6154 
6155 		leaf = 0;
6156 		leaves = 1;
6157 		maxfaults = INT_MAX;	/* no limit on cache devices */
6158 	}
6159 
6160 	spa_config_exit(spa, SCL_STATE, FTAG);
6161 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6162 
6163 	/*
6164 	 * If we can tolerate two or more faults, or we're dealing
6165 	 * with a slog, randomly online/offline vd0.
6166 	 */
6167 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6168 		if (ztest_random(10) < 6) {
6169 			int flags = (ztest_random(2) == 0 ?
6170 			    ZFS_OFFLINE_TEMPORARY : 0);
6171 
6172 			/*
6173 			 * We have to grab the zs_name_lock as writer to
6174 			 * prevent a race between offlining a slog and
6175 			 * destroying a dataset. Offlining the slog will
6176 			 * grab a reference on the dataset which may cause
6177 			 * dsl_destroy_head() to fail with EBUSY thus
6178 			 * leaving the dataset in an inconsistent state.
6179 			 */
6180 			if (islog)
6181 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6182 
6183 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6184 
6185 			if (islog)
6186 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6187 		} else {
6188 			/*
6189 			 * Ideally we would like to be able to randomly
6190 			 * call vdev_[on|off]line without holding locks
6191 			 * to force unpredictable failures but the side
6192 			 * effects of vdev_[on|off]line prevent us from
6193 			 * doing so. We grab the ztest_vdev_lock here to
6194 			 * prevent a race between injection testing and
6195 			 * aux_vdev removal.
6196 			 */
6197 			mutex_enter(&ztest_vdev_lock);
6198 			(void) vdev_online(spa, guid0, 0, NULL);
6199 			mutex_exit(&ztest_vdev_lock);
6200 		}
6201 	}
6202 
6203 	if (maxfaults == 0)
6204 		goto out;
6205 
6206 	/*
6207 	 * We have at least single-fault tolerance, so inject data corruption.
6208 	 */
6209 	fd = open(pathrand, O_RDWR);
6210 
6211 	if (fd == -1) /* we hit a gap in the device namespace */
6212 		goto out;
6213 
6214 	fsize = lseek(fd, 0, SEEK_END);
6215 
6216 	while (--iters != 0) {
6217 		/*
6218 		 * The offset must be chosen carefully to ensure that
6219 		 * we do not inject a given logical block with errors
6220 		 * on two different leaf devices, because ZFS can not
6221 		 * tolerate that (if maxfaults==1).
6222 		 *
6223 		 * To achieve this we divide each leaf device into
6224 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6225 		 * Each chunk is further divided into error-injection
6226 		 * ranges (can accept errors) and clear ranges (we do
6227 		 * not inject errors in those). Each error-injection
6228 		 * range can accept errors only for a single leaf vdev.
6229 		 * Error-injection ranges are separated by clear ranges.
6230 		 *
6231 		 * For example, with 3 leaves, each chunk looks like:
6232 		 *    0 to  32M: injection range for leaf 0
6233 		 *  32M to  64M: clear range - no injection allowed
6234 		 *  64M to  96M: injection range for leaf 1
6235 		 *  96M to 128M: clear range - no injection allowed
6236 		 * 128M to 160M: injection range for leaf 2
6237 		 * 160M to 192M: clear range - no injection allowed
6238 		 *
6239 		 * Each clear range must be large enough such that a
6240 		 * single block cannot straddle it. This way a block
6241 		 * can't be a target in two different injection ranges
6242 		 * (on different leaf vdevs).
6243 		 */
6244 		offset = ztest_random(fsize / (leaves << bshift)) *
6245 		    (leaves << bshift) + (leaf << bshift) +
6246 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6247 
6248 		/*
6249 		 * Only allow damage to the labels at one end of the vdev.
6250 		 *
6251 		 * If all labels are damaged, the device will be totally
6252 		 * inaccessible, which will result in loss of data,
6253 		 * because we also damage (parts of) the other side of
6254 		 * the mirror/raidz.
6255 		 *
6256 		 * Additionally, we will always have both an even and an
6257 		 * odd label, so that we can handle crashes in the
6258 		 * middle of vdev_config_sync().
6259 		 */
6260 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6261 			continue;
6262 
6263 		/*
6264 		 * The two end labels are stored at the "end" of the disk, but
6265 		 * the end of the disk (vdev_psize) is aligned to
6266 		 * sizeof (vdev_label_t).
6267 		 */
6268 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6269 		if ((leaf & 1) == 1 &&
6270 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6271 			continue;
6272 
6273 		mutex_enter(&ztest_vdev_lock);
6274 		if (mirror_save != zs->zs_mirrors) {
6275 			mutex_exit(&ztest_vdev_lock);
6276 			(void) close(fd);
6277 			goto out;
6278 		}
6279 
6280 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6281 			fatal(B_TRUE,
6282 			    "can't inject bad word at 0x%"PRIx64" in %s",
6283 			    offset, pathrand);
6284 
6285 		mutex_exit(&ztest_vdev_lock);
6286 
6287 		if (ztest_opts.zo_verbose >= 7)
6288 			(void) printf("injected bad word into %s,"
6289 			    " offset 0x%"PRIx64"\n", pathrand, offset);
6290 	}
6291 
6292 	(void) close(fd);
6293 out:
6294 	umem_free(path0, MAXPATHLEN);
6295 	umem_free(pathrand, MAXPATHLEN);
6296 }
6297 
6298 /*
6299  * By design ztest will never inject uncorrectable damage in to the pool.
6300  * Issue a scrub, wait for it to complete, and verify there is never any
6301  * persistent damage.
6302  *
6303  * Only after a full scrub has been completed is it safe to start injecting
6304  * data corruption.  See the comment in zfs_fault_inject().
6305  */
6306 static int
6307 ztest_scrub_impl(spa_t *spa)
6308 {
6309 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6310 	if (error)
6311 		return (error);
6312 
6313 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6314 		txg_wait_synced(spa_get_dsl(spa), 0);
6315 
6316 	if (spa_get_errlog_size(spa) > 0)
6317 		return (ECKSUM);
6318 
6319 	ztest_pool_scrubbed = B_TRUE;
6320 
6321 	return (0);
6322 }
6323 
6324 /*
6325  * Scrub the pool.
6326  */
6327 void
6328 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6329 {
6330 	(void) zd, (void) id;
6331 	spa_t *spa = ztest_spa;
6332 	int error;
6333 
6334 	/*
6335 	 * Scrub in progress by device removal.
6336 	 */
6337 	if (ztest_device_removal_active)
6338 		return;
6339 
6340 	/*
6341 	 * Start a scrub, wait a moment, then force a restart.
6342 	 */
6343 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6344 	(void) poll(NULL, 0, 100);
6345 
6346 	error = ztest_scrub_impl(spa);
6347 	if (error == EBUSY)
6348 		error = 0;
6349 	ASSERT0(error);
6350 }
6351 
6352 /*
6353  * Change the guid for the pool.
6354  */
6355 void
6356 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6357 {
6358 	(void) zd, (void) id;
6359 	spa_t *spa = ztest_spa;
6360 	uint64_t orig, load;
6361 	int error;
6362 
6363 	if (ztest_opts.zo_mmp_test)
6364 		return;
6365 
6366 	orig = spa_guid(spa);
6367 	load = spa_load_guid(spa);
6368 
6369 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6370 	error = spa_change_guid(spa);
6371 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6372 
6373 	if (error != 0)
6374 		return;
6375 
6376 	if (ztest_opts.zo_verbose >= 4) {
6377 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6378 		    orig, spa_guid(spa));
6379 	}
6380 
6381 	VERIFY3U(orig, !=, spa_guid(spa));
6382 	VERIFY3U(load, ==, spa_load_guid(spa));
6383 }
6384 
6385 void
6386 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6387 {
6388 	(void) zd, (void) id;
6389 	hrtime_t end = gethrtime() + NANOSEC;
6390 	zio_cksum_salt_t salt;
6391 	void *salt_ptr = &salt.zcs_bytes;
6392 	struct abd *abd_data, *abd_meta;
6393 	void *buf, *templ;
6394 	int i, *ptr;
6395 	uint32_t size;
6396 	BLAKE3_CTX ctx;
6397 
6398 	size = ztest_random_blocksize();
6399 	buf = umem_alloc(size, UMEM_NOFAIL);
6400 	abd_data = abd_alloc(size, B_FALSE);
6401 	abd_meta = abd_alloc(size, B_TRUE);
6402 
6403 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6404 		*ptr = ztest_random(UINT_MAX);
6405 	memset(salt_ptr, 'A', 32);
6406 
6407 	abd_copy_from_buf_off(abd_data, buf, 0, size);
6408 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6409 
6410 	while (gethrtime() <= end) {
6411 		int run_count = 100;
6412 		zio_cksum_t zc_ref1, zc_ref2;
6413 		zio_cksum_t zc_res1, zc_res2;
6414 
6415 		void *ref1 = &zc_ref1;
6416 		void *ref2 = &zc_ref2;
6417 		void *res1 = &zc_res1;
6418 		void *res2 = &zc_res2;
6419 
6420 		/* BLAKE3_KEY_LEN = 32 */
6421 		VERIFY0(blake3_impl_setname("generic"));
6422 		templ = abd_checksum_blake3_tmpl_init(&salt);
6423 		Blake3_InitKeyed(&ctx, salt_ptr);
6424 		Blake3_Update(&ctx, buf, size);
6425 		Blake3_Final(&ctx, ref1);
6426 		zc_ref2 = zc_ref1;
6427 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6428 		abd_checksum_blake3_tmpl_free(templ);
6429 
6430 		VERIFY0(blake3_impl_setname("cycle"));
6431 		while (run_count-- > 0) {
6432 
6433 			/* Test current implementation */
6434 			Blake3_InitKeyed(&ctx, salt_ptr);
6435 			Blake3_Update(&ctx, buf, size);
6436 			Blake3_Final(&ctx, res1);
6437 			zc_res2 = zc_res1;
6438 			ZIO_CHECKSUM_BSWAP(&zc_res2);
6439 
6440 			VERIFY0(memcmp(ref1, res1, 32));
6441 			VERIFY0(memcmp(ref2, res2, 32));
6442 
6443 			/* Test ABD - data */
6444 			templ = abd_checksum_blake3_tmpl_init(&salt);
6445 			abd_checksum_blake3_native(abd_data, size,
6446 			    templ, &zc_res1);
6447 			abd_checksum_blake3_byteswap(abd_data, size,
6448 			    templ, &zc_res2);
6449 
6450 			VERIFY0(memcmp(ref1, res1, 32));
6451 			VERIFY0(memcmp(ref2, res2, 32));
6452 
6453 			/* Test ABD - metadata */
6454 			abd_checksum_blake3_native(abd_meta, size,
6455 			    templ, &zc_res1);
6456 			abd_checksum_blake3_byteswap(abd_meta, size,
6457 			    templ, &zc_res2);
6458 			abd_checksum_blake3_tmpl_free(templ);
6459 
6460 			VERIFY0(memcmp(ref1, res1, 32));
6461 			VERIFY0(memcmp(ref2, res2, 32));
6462 
6463 		}
6464 	}
6465 
6466 	abd_free(abd_data);
6467 	abd_free(abd_meta);
6468 	umem_free(buf, size);
6469 }
6470 
6471 void
6472 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6473 {
6474 	(void) zd, (void) id;
6475 	hrtime_t end = gethrtime() + NANOSEC;
6476 
6477 	while (gethrtime() <= end) {
6478 		int run_count = 100;
6479 		void *buf;
6480 		struct abd *abd_data, *abd_meta;
6481 		uint32_t size;
6482 		int *ptr;
6483 		int i;
6484 		zio_cksum_t zc_ref;
6485 		zio_cksum_t zc_ref_byteswap;
6486 
6487 		size = ztest_random_blocksize();
6488 
6489 		buf = umem_alloc(size, UMEM_NOFAIL);
6490 		abd_data = abd_alloc(size, B_FALSE);
6491 		abd_meta = abd_alloc(size, B_TRUE);
6492 
6493 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6494 			*ptr = ztest_random(UINT_MAX);
6495 
6496 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6497 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6498 
6499 		VERIFY0(fletcher_4_impl_set("scalar"));
6500 		fletcher_4_native(buf, size, NULL, &zc_ref);
6501 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6502 
6503 		VERIFY0(fletcher_4_impl_set("cycle"));
6504 		while (run_count-- > 0) {
6505 			zio_cksum_t zc;
6506 			zio_cksum_t zc_byteswap;
6507 
6508 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6509 			fletcher_4_native(buf, size, NULL, &zc);
6510 
6511 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6512 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6513 			    sizeof (zc_byteswap)));
6514 
6515 			/* Test ABD - data */
6516 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6517 			    &zc_byteswap);
6518 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6519 
6520 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6521 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6522 			    sizeof (zc_byteswap)));
6523 
6524 			/* Test ABD - metadata */
6525 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6526 			    &zc_byteswap);
6527 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6528 
6529 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6530 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6531 			    sizeof (zc_byteswap)));
6532 
6533 		}
6534 
6535 		umem_free(buf, size);
6536 		abd_free(abd_data);
6537 		abd_free(abd_meta);
6538 	}
6539 }
6540 
6541 void
6542 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6543 {
6544 	(void) zd, (void) id;
6545 	void *buf;
6546 	size_t size;
6547 	int *ptr;
6548 	int i;
6549 	zio_cksum_t zc_ref;
6550 	zio_cksum_t zc_ref_bswap;
6551 
6552 	hrtime_t end = gethrtime() + NANOSEC;
6553 
6554 	while (gethrtime() <= end) {
6555 		int run_count = 100;
6556 
6557 		size = ztest_random_blocksize();
6558 		buf = umem_alloc(size, UMEM_NOFAIL);
6559 
6560 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6561 			*ptr = ztest_random(UINT_MAX);
6562 
6563 		VERIFY0(fletcher_4_impl_set("scalar"));
6564 		fletcher_4_native(buf, size, NULL, &zc_ref);
6565 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6566 
6567 		VERIFY0(fletcher_4_impl_set("cycle"));
6568 
6569 		while (run_count-- > 0) {
6570 			zio_cksum_t zc;
6571 			zio_cksum_t zc_bswap;
6572 			size_t pos = 0;
6573 
6574 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6575 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6576 
6577 			while (pos < size) {
6578 				size_t inc = 64 * ztest_random(size / 67);
6579 				/* sometimes add few bytes to test non-simd */
6580 				if (ztest_random(100) < 10)
6581 					inc += P2ALIGN(ztest_random(64),
6582 					    sizeof (uint32_t));
6583 
6584 				if (inc > (size - pos))
6585 					inc = size - pos;
6586 
6587 				fletcher_4_incremental_native(buf + pos, inc,
6588 				    &zc);
6589 				fletcher_4_incremental_byteswap(buf + pos, inc,
6590 				    &zc_bswap);
6591 
6592 				pos += inc;
6593 			}
6594 
6595 			VERIFY3U(pos, ==, size);
6596 
6597 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6598 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6599 
6600 			/*
6601 			 * verify if incremental on the whole buffer is
6602 			 * equivalent to non-incremental version
6603 			 */
6604 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6605 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6606 
6607 			fletcher_4_incremental_native(buf, size, &zc);
6608 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6609 
6610 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6611 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6612 		}
6613 
6614 		umem_free(buf, size);
6615 	}
6616 }
6617 
6618 static int
6619 ztest_set_global_vars(void)
6620 {
6621 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6622 		char *kv = ztest_opts.zo_gvars[i];
6623 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6624 		VERIFY3U(strlen(kv), >, 0);
6625 		int err = set_global_var(kv);
6626 		if (ztest_opts.zo_verbose > 0) {
6627 			(void) printf("setting global var %s ... %s\n", kv,
6628 			    err ? "failed" : "ok");
6629 		}
6630 		if (err != 0) {
6631 			(void) fprintf(stderr,
6632 			    "failed to set global var '%s'\n", kv);
6633 			return (err);
6634 		}
6635 	}
6636 	return (0);
6637 }
6638 
6639 static char **
6640 ztest_global_vars_to_zdb_args(void)
6641 {
6642 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6643 	char **cur = args;
6644 	if (args == NULL)
6645 		return (NULL);
6646 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6647 		*cur++ = (char *)"-o";
6648 		*cur++ = ztest_opts.zo_gvars[i];
6649 	}
6650 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6651 	*cur = NULL;
6652 	return (args);
6653 }
6654 
6655 /* The end of strings is indicated by a NULL element */
6656 static char *
6657 join_strings(char **strings, const char *sep)
6658 {
6659 	size_t totallen = 0;
6660 	for (char **sp = strings; *sp != NULL; sp++) {
6661 		totallen += strlen(*sp);
6662 		totallen += strlen(sep);
6663 	}
6664 	if (totallen > 0) {
6665 		ASSERT(totallen >= strlen(sep));
6666 		totallen -= strlen(sep);
6667 	}
6668 
6669 	size_t buflen = totallen + 1;
6670 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
6671 	o[0] = '\0';
6672 	for (char **sp = strings; *sp != NULL; sp++) {
6673 		size_t would;
6674 		would = strlcat(o, *sp, buflen);
6675 		VERIFY3U(would, <, buflen);
6676 		if (*(sp+1) == NULL) {
6677 			break;
6678 		}
6679 		would = strlcat(o, sep, buflen);
6680 		VERIFY3U(would, <, buflen);
6681 	}
6682 	ASSERT3S(strlen(o), ==, totallen);
6683 	return (o);
6684 }
6685 
6686 static int
6687 ztest_check_path(char *path)
6688 {
6689 	struct stat s;
6690 	/* return true on success */
6691 	return (!stat(path, &s));
6692 }
6693 
6694 static void
6695 ztest_get_zdb_bin(char *bin, int len)
6696 {
6697 	char *zdb_path;
6698 	/*
6699 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
6700 	 * let popen to search through PATH.
6701 	 */
6702 	if ((zdb_path = getenv("ZDB"))) {
6703 		strlcpy(bin, zdb_path, len); /* In env */
6704 		if (!ztest_check_path(bin)) {
6705 			ztest_dump_core = 0;
6706 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
6707 		}
6708 		return;
6709 	}
6710 
6711 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6712 	if (strstr(bin, ".libs/ztest")) {
6713 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
6714 		strcat(bin, "zdb");
6715 		if (ztest_check_path(bin))
6716 			return;
6717 	}
6718 	strcpy(bin, "zdb");
6719 }
6720 
6721 static vdev_t *
6722 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6723 {
6724 	if (vd == NULL)
6725 		return (NULL);
6726 
6727 	if (vd->vdev_children == 0)
6728 		return (vd);
6729 
6730 	vdev_t *eligible[vd->vdev_children];
6731 	int eligible_idx = 0, i;
6732 	for (i = 0; i < vd->vdev_children; i++) {
6733 		vdev_t *cvd = vd->vdev_child[i];
6734 		if (cvd->vdev_top->vdev_removing)
6735 			continue;
6736 		if (cvd->vdev_children > 0 ||
6737 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6738 			eligible[eligible_idx++] = cvd;
6739 		}
6740 	}
6741 	VERIFY3S(eligible_idx, >, 0);
6742 
6743 	uint64_t child_no = ztest_random(eligible_idx);
6744 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6745 }
6746 
6747 void
6748 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6749 {
6750 	(void) zd, (void) id;
6751 	spa_t *spa = ztest_spa;
6752 	int error = 0;
6753 
6754 	mutex_enter(&ztest_vdev_lock);
6755 
6756 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6757 
6758 	/* Random leaf vdev */
6759 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6760 	if (rand_vd == NULL) {
6761 		spa_config_exit(spa, SCL_VDEV, FTAG);
6762 		mutex_exit(&ztest_vdev_lock);
6763 		return;
6764 	}
6765 
6766 	/*
6767 	 * The random vdev we've selected may change as soon as we
6768 	 * drop the spa_config_lock. We create local copies of things
6769 	 * we're interested in.
6770 	 */
6771 	uint64_t guid = rand_vd->vdev_guid;
6772 	char *path = strdup(rand_vd->vdev_path);
6773 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6774 
6775 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6776 	spa_config_exit(spa, SCL_VDEV, FTAG);
6777 
6778 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6779 
6780 	nvlist_t *vdev_guids = fnvlist_alloc();
6781 	nvlist_t *vdev_errlist = fnvlist_alloc();
6782 	fnvlist_add_uint64(vdev_guids, path, guid);
6783 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6784 	fnvlist_free(vdev_guids);
6785 	fnvlist_free(vdev_errlist);
6786 
6787 	switch (cmd) {
6788 	case POOL_INITIALIZE_CANCEL:
6789 		if (ztest_opts.zo_verbose >= 4) {
6790 			(void) printf("Cancel initialize %s", path);
6791 			if (!active)
6792 				(void) printf(" failed (no initialize active)");
6793 			(void) printf("\n");
6794 		}
6795 		break;
6796 	case POOL_INITIALIZE_START:
6797 		if (ztest_opts.zo_verbose >= 4) {
6798 			(void) printf("Start initialize %s", path);
6799 			if (active && error == 0)
6800 				(void) printf(" failed (already active)");
6801 			else if (error != 0)
6802 				(void) printf(" failed (error %d)", error);
6803 			(void) printf("\n");
6804 		}
6805 		break;
6806 	case POOL_INITIALIZE_SUSPEND:
6807 		if (ztest_opts.zo_verbose >= 4) {
6808 			(void) printf("Suspend initialize %s", path);
6809 			if (!active)
6810 				(void) printf(" failed (no initialize active)");
6811 			(void) printf("\n");
6812 		}
6813 		break;
6814 	}
6815 	free(path);
6816 	mutex_exit(&ztest_vdev_lock);
6817 }
6818 
6819 void
6820 ztest_trim(ztest_ds_t *zd, uint64_t id)
6821 {
6822 	(void) zd, (void) id;
6823 	spa_t *spa = ztest_spa;
6824 	int error = 0;
6825 
6826 	mutex_enter(&ztest_vdev_lock);
6827 
6828 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6829 
6830 	/* Random leaf vdev */
6831 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6832 	if (rand_vd == NULL) {
6833 		spa_config_exit(spa, SCL_VDEV, FTAG);
6834 		mutex_exit(&ztest_vdev_lock);
6835 		return;
6836 	}
6837 
6838 	/*
6839 	 * The random vdev we've selected may change as soon as we
6840 	 * drop the spa_config_lock. We create local copies of things
6841 	 * we're interested in.
6842 	 */
6843 	uint64_t guid = rand_vd->vdev_guid;
6844 	char *path = strdup(rand_vd->vdev_path);
6845 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
6846 
6847 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6848 	spa_config_exit(spa, SCL_VDEV, FTAG);
6849 
6850 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6851 	uint64_t rate = 1 << ztest_random(30);
6852 	boolean_t partial = (ztest_random(5) > 0);
6853 	boolean_t secure = (ztest_random(5) > 0);
6854 
6855 	nvlist_t *vdev_guids = fnvlist_alloc();
6856 	nvlist_t *vdev_errlist = fnvlist_alloc();
6857 	fnvlist_add_uint64(vdev_guids, path, guid);
6858 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6859 	    secure, vdev_errlist);
6860 	fnvlist_free(vdev_guids);
6861 	fnvlist_free(vdev_errlist);
6862 
6863 	switch (cmd) {
6864 	case POOL_TRIM_CANCEL:
6865 		if (ztest_opts.zo_verbose >= 4) {
6866 			(void) printf("Cancel TRIM %s", path);
6867 			if (!active)
6868 				(void) printf(" failed (no TRIM active)");
6869 			(void) printf("\n");
6870 		}
6871 		break;
6872 	case POOL_TRIM_START:
6873 		if (ztest_opts.zo_verbose >= 4) {
6874 			(void) printf("Start TRIM %s", path);
6875 			if (active && error == 0)
6876 				(void) printf(" failed (already active)");
6877 			else if (error != 0)
6878 				(void) printf(" failed (error %d)", error);
6879 			(void) printf("\n");
6880 		}
6881 		break;
6882 	case POOL_TRIM_SUSPEND:
6883 		if (ztest_opts.zo_verbose >= 4) {
6884 			(void) printf("Suspend TRIM %s", path);
6885 			if (!active)
6886 				(void) printf(" failed (no TRIM active)");
6887 			(void) printf("\n");
6888 		}
6889 		break;
6890 	}
6891 	free(path);
6892 	mutex_exit(&ztest_vdev_lock);
6893 }
6894 
6895 /*
6896  * Verify pool integrity by running zdb.
6897  */
6898 static void
6899 ztest_run_zdb(const char *pool)
6900 {
6901 	int status;
6902 	char *bin;
6903 	char *zdb;
6904 	char *zbuf;
6905 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
6906 	FILE *fp;
6907 
6908 	bin = umem_alloc(len, UMEM_NOFAIL);
6909 	zdb = umem_alloc(len, UMEM_NOFAIL);
6910 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
6911 
6912 	ztest_get_zdb_bin(bin, len);
6913 
6914 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
6915 	if (set_gvars_args == NULL) {
6916 		fatal(B_FALSE, "Failed to allocate memory in "
6917 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
6918 	}
6919 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6920 	free(set_gvars_args);
6921 
6922 	size_t would = snprintf(zdb, len,
6923 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6924 	    bin,
6925 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
6926 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
6927 	    set_gvars_args_joined,
6928 	    ztest_opts.zo_dir,
6929 	    pool);
6930 	ASSERT3U(would, <, len);
6931 
6932 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
6933 
6934 	if (ztest_opts.zo_verbose >= 5)
6935 		(void) printf("Executing %s\n", zdb);
6936 
6937 	fp = popen(zdb, "r");
6938 
6939 	while (fgets(zbuf, 1024, fp) != NULL)
6940 		if (ztest_opts.zo_verbose >= 3)
6941 			(void) printf("%s", zbuf);
6942 
6943 	status = pclose(fp);
6944 
6945 	if (status == 0)
6946 		goto out;
6947 
6948 	ztest_dump_core = 0;
6949 	if (WIFEXITED(status))
6950 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6951 	else
6952 		fatal(B_FALSE, "'%s' died with signal %d",
6953 		    zdb, WTERMSIG(status));
6954 out:
6955 	umem_free(bin, len);
6956 	umem_free(zdb, len);
6957 	umem_free(zbuf, 1024);
6958 }
6959 
6960 static void
6961 ztest_walk_pool_directory(const char *header)
6962 {
6963 	spa_t *spa = NULL;
6964 
6965 	if (ztest_opts.zo_verbose >= 6)
6966 		(void) puts(header);
6967 
6968 	mutex_enter(&spa_namespace_lock);
6969 	while ((spa = spa_next(spa)) != NULL)
6970 		if (ztest_opts.zo_verbose >= 6)
6971 			(void) printf("\t%s\n", spa_name(spa));
6972 	mutex_exit(&spa_namespace_lock);
6973 }
6974 
6975 static void
6976 ztest_spa_import_export(char *oldname, char *newname)
6977 {
6978 	nvlist_t *config, *newconfig;
6979 	uint64_t pool_guid;
6980 	spa_t *spa;
6981 	int error;
6982 
6983 	if (ztest_opts.zo_verbose >= 4) {
6984 		(void) printf("import/export: old = %s, new = %s\n",
6985 		    oldname, newname);
6986 	}
6987 
6988 	/*
6989 	 * Clean up from previous runs.
6990 	 */
6991 	(void) spa_destroy(newname);
6992 
6993 	/*
6994 	 * Get the pool's configuration and guid.
6995 	 */
6996 	VERIFY0(spa_open(oldname, &spa, FTAG));
6997 
6998 	/*
6999 	 * Kick off a scrub to tickle scrub/export races.
7000 	 */
7001 	if (ztest_random(2) == 0)
7002 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7003 
7004 	pool_guid = spa_guid(spa);
7005 	spa_close(spa, FTAG);
7006 
7007 	ztest_walk_pool_directory("pools before export");
7008 
7009 	/*
7010 	 * Export it.
7011 	 */
7012 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7013 
7014 	ztest_walk_pool_directory("pools after export");
7015 
7016 	/*
7017 	 * Try to import it.
7018 	 */
7019 	newconfig = spa_tryimport(config);
7020 	ASSERT3P(newconfig, !=, NULL);
7021 	fnvlist_free(newconfig);
7022 
7023 	/*
7024 	 * Import it under the new name.
7025 	 */
7026 	error = spa_import(newname, config, NULL, 0);
7027 	if (error != 0) {
7028 		dump_nvlist(config, 0);
7029 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7030 		    oldname, newname, error);
7031 	}
7032 
7033 	ztest_walk_pool_directory("pools after import");
7034 
7035 	/*
7036 	 * Try to import it again -- should fail with EEXIST.
7037 	 */
7038 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7039 
7040 	/*
7041 	 * Try to import it under a different name -- should fail with EEXIST.
7042 	 */
7043 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7044 
7045 	/*
7046 	 * Verify that the pool is no longer visible under the old name.
7047 	 */
7048 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7049 
7050 	/*
7051 	 * Verify that we can open and close the pool using the new name.
7052 	 */
7053 	VERIFY0(spa_open(newname, &spa, FTAG));
7054 	ASSERT3U(pool_guid, ==, spa_guid(spa));
7055 	spa_close(spa, FTAG);
7056 
7057 	fnvlist_free(config);
7058 }
7059 
7060 static void
7061 ztest_resume(spa_t *spa)
7062 {
7063 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7064 		(void) printf("resuming from suspended state\n");
7065 	spa_vdev_state_enter(spa, SCL_NONE);
7066 	vdev_clear(spa, NULL);
7067 	(void) spa_vdev_state_exit(spa, NULL, 0);
7068 	(void) zio_resume(spa);
7069 }
7070 
7071 static __attribute__((noreturn)) void
7072 ztest_resume_thread(void *arg)
7073 {
7074 	spa_t *spa = arg;
7075 
7076 	while (!ztest_exiting) {
7077 		if (spa_suspended(spa))
7078 			ztest_resume(spa);
7079 		(void) poll(NULL, 0, 100);
7080 
7081 		/*
7082 		 * Periodically change the zfs_compressed_arc_enabled setting.
7083 		 */
7084 		if (ztest_random(10) == 0)
7085 			zfs_compressed_arc_enabled = ztest_random(2);
7086 
7087 		/*
7088 		 * Periodically change the zfs_abd_scatter_enabled setting.
7089 		 */
7090 		if (ztest_random(10) == 0)
7091 			zfs_abd_scatter_enabled = ztest_random(2);
7092 	}
7093 
7094 	thread_exit();
7095 }
7096 
7097 static __attribute__((noreturn)) void
7098 ztest_deadman_thread(void *arg)
7099 {
7100 	ztest_shared_t *zs = arg;
7101 	spa_t *spa = ztest_spa;
7102 	hrtime_t delay, overdue, last_run = gethrtime();
7103 
7104 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7105 	    MSEC2NSEC(zfs_deadman_synctime_ms);
7106 
7107 	while (!ztest_exiting) {
7108 		/*
7109 		 * Wait for the delay timer while checking occasionally
7110 		 * if we should stop.
7111 		 */
7112 		if (gethrtime() < last_run + delay) {
7113 			(void) poll(NULL, 0, 1000);
7114 			continue;
7115 		}
7116 
7117 		/*
7118 		 * If the pool is suspended then fail immediately. Otherwise,
7119 		 * check to see if the pool is making any progress. If
7120 		 * vdev_deadman() discovers that there hasn't been any recent
7121 		 * I/Os then it will end up aborting the tests.
7122 		 */
7123 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7124 			fatal(B_FALSE,
7125 			    "aborting test after %llu seconds because "
7126 			    "pool has transitioned to a suspended state.",
7127 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7128 		}
7129 		vdev_deadman(spa->spa_root_vdev, FTAG);
7130 
7131 		/*
7132 		 * If the process doesn't complete within a grace period of
7133 		 * zfs_deadman_synctime_ms over the expected finish time,
7134 		 * then it may be hung and is terminated.
7135 		 */
7136 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7137 		if (gethrtime() > overdue) {
7138 			fatal(B_FALSE,
7139 			    "aborting test after %llu seconds because "
7140 			    "the process is overdue for termination.",
7141 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7142 		}
7143 
7144 		(void) printf("ztest has been running for %lld seconds\n",
7145 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7146 
7147 		last_run = gethrtime();
7148 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7149 	}
7150 
7151 	thread_exit();
7152 }
7153 
7154 static void
7155 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7156 {
7157 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7158 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7159 	hrtime_t functime = gethrtime();
7160 	int i;
7161 
7162 	for (i = 0; i < zi->zi_iters; i++)
7163 		zi->zi_func(zd, id);
7164 
7165 	functime = gethrtime() - functime;
7166 
7167 	atomic_add_64(&zc->zc_count, 1);
7168 	atomic_add_64(&zc->zc_time, functime);
7169 
7170 	if (ztest_opts.zo_verbose >= 4)
7171 		(void) printf("%6.2f sec in %s\n",
7172 		    (double)functime / NANOSEC, zi->zi_funcname);
7173 }
7174 
7175 static __attribute__((noreturn)) void
7176 ztest_thread(void *arg)
7177 {
7178 	int rand;
7179 	uint64_t id = (uintptr_t)arg;
7180 	ztest_shared_t *zs = ztest_shared;
7181 	uint64_t call_next;
7182 	hrtime_t now;
7183 	ztest_info_t *zi;
7184 	ztest_shared_callstate_t *zc;
7185 
7186 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7187 		/*
7188 		 * See if it's time to force a crash.
7189 		 */
7190 		if (now > zs->zs_thread_kill)
7191 			ztest_kill(zs);
7192 
7193 		/*
7194 		 * If we're getting ENOSPC with some regularity, stop.
7195 		 */
7196 		if (zs->zs_enospc_count > 10)
7197 			break;
7198 
7199 		/*
7200 		 * Pick a random function to execute.
7201 		 */
7202 		rand = ztest_random(ZTEST_FUNCS);
7203 		zi = &ztest_info[rand];
7204 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7205 		call_next = zc->zc_next;
7206 
7207 		if (now >= call_next &&
7208 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7209 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7210 			ztest_execute(rand, zi, id);
7211 		}
7212 	}
7213 
7214 	thread_exit();
7215 }
7216 
7217 static void
7218 ztest_dataset_name(char *dsname, const char *pool, int d)
7219 {
7220 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7221 }
7222 
7223 static void
7224 ztest_dataset_destroy(int d)
7225 {
7226 	char name[ZFS_MAX_DATASET_NAME_LEN];
7227 	int t;
7228 
7229 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7230 
7231 	if (ztest_opts.zo_verbose >= 3)
7232 		(void) printf("Destroying %s to free up space\n", name);
7233 
7234 	/*
7235 	 * Cleanup any non-standard clones and snapshots.  In general,
7236 	 * ztest thread t operates on dataset (t % zopt_datasets),
7237 	 * so there may be more than one thing to clean up.
7238 	 */
7239 	for (t = d; t < ztest_opts.zo_threads;
7240 	    t += ztest_opts.zo_datasets)
7241 		ztest_dsl_dataset_cleanup(name, t);
7242 
7243 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7244 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7245 }
7246 
7247 static void
7248 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7249 {
7250 	uint64_t usedobjs, dirobjs, scratch;
7251 
7252 	/*
7253 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7254 	 * Therefore, the number of objects in use should equal the
7255 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7256 	 * If not, we have an object leak.
7257 	 *
7258 	 * Note that we can only check this in ztest_dataset_open(),
7259 	 * when the open-context and syncing-context values agree.
7260 	 * That's because zap_count() returns the open-context value,
7261 	 * while dmu_objset_space() returns the rootbp fill count.
7262 	 */
7263 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7264 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7265 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7266 }
7267 
7268 static int
7269 ztest_dataset_open(int d)
7270 {
7271 	ztest_ds_t *zd = &ztest_ds[d];
7272 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7273 	objset_t *os;
7274 	zilog_t *zilog;
7275 	char name[ZFS_MAX_DATASET_NAME_LEN];
7276 	int error;
7277 
7278 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7279 
7280 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7281 
7282 	error = ztest_dataset_create(name);
7283 	if (error == ENOSPC) {
7284 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7285 		ztest_record_enospc(FTAG);
7286 		return (error);
7287 	}
7288 	ASSERT(error == 0 || error == EEXIST);
7289 
7290 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7291 	    B_TRUE, zd, &os));
7292 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7293 
7294 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7295 
7296 	zilog = zd->zd_zilog;
7297 
7298 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7299 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7300 		fatal(B_FALSE, "missing log records: "
7301 		    "claimed %"PRIu64" < committed %"PRIu64"",
7302 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7303 
7304 	ztest_dataset_dirobj_verify(zd);
7305 
7306 	zil_replay(os, zd, ztest_replay_vector);
7307 
7308 	ztest_dataset_dirobj_verify(zd);
7309 
7310 	if (ztest_opts.zo_verbose >= 6)
7311 		(void) printf("%s replay %"PRIu64" blocks, "
7312 		    "%"PRIu64" records, seq %"PRIu64"\n",
7313 		    zd->zd_name,
7314 		    zilog->zl_parse_blk_count,
7315 		    zilog->zl_parse_lr_count,
7316 		    zilog->zl_replaying_seq);
7317 
7318 	zilog = zil_open(os, ztest_get_data, NULL);
7319 
7320 	if (zilog->zl_replaying_seq != 0 &&
7321 	    zilog->zl_replaying_seq < committed_seq)
7322 		fatal(B_FALSE, "missing log records: "
7323 		    "replayed %"PRIu64" < committed %"PRIu64"",
7324 		    zilog->zl_replaying_seq, committed_seq);
7325 
7326 	return (0);
7327 }
7328 
7329 static void
7330 ztest_dataset_close(int d)
7331 {
7332 	ztest_ds_t *zd = &ztest_ds[d];
7333 
7334 	zil_close(zd->zd_zilog);
7335 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7336 
7337 	ztest_zd_fini(zd);
7338 }
7339 
7340 static int
7341 ztest_replay_zil_cb(const char *name, void *arg)
7342 {
7343 	(void) arg;
7344 	objset_t *os;
7345 	ztest_ds_t *zdtmp;
7346 
7347 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7348 	    B_TRUE, FTAG, &os));
7349 
7350 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7351 
7352 	ztest_zd_init(zdtmp, NULL, os);
7353 	zil_replay(os, zdtmp, ztest_replay_vector);
7354 	ztest_zd_fini(zdtmp);
7355 
7356 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7357 	    ztest_opts.zo_verbose >= 6) {
7358 		zilog_t *zilog = dmu_objset_zil(os);
7359 
7360 		(void) printf("%s replay %"PRIu64" blocks, "
7361 		    "%"PRIu64" records, seq %"PRIu64"\n",
7362 		    name,
7363 		    zilog->zl_parse_blk_count,
7364 		    zilog->zl_parse_lr_count,
7365 		    zilog->zl_replaying_seq);
7366 	}
7367 
7368 	umem_free(zdtmp, sizeof (ztest_ds_t));
7369 
7370 	dmu_objset_disown(os, B_TRUE, FTAG);
7371 	return (0);
7372 }
7373 
7374 static void
7375 ztest_freeze(void)
7376 {
7377 	ztest_ds_t *zd = &ztest_ds[0];
7378 	spa_t *spa;
7379 	int numloops = 0;
7380 
7381 	if (ztest_opts.zo_verbose >= 3)
7382 		(void) printf("testing spa_freeze()...\n");
7383 
7384 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7385 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7386 	VERIFY0(ztest_dataset_open(0));
7387 	ztest_spa = spa;
7388 
7389 	/*
7390 	 * Force the first log block to be transactionally allocated.
7391 	 * We have to do this before we freeze the pool -- otherwise
7392 	 * the log chain won't be anchored.
7393 	 */
7394 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7395 		ztest_dmu_object_alloc_free(zd, 0);
7396 		zil_commit(zd->zd_zilog, 0);
7397 	}
7398 
7399 	txg_wait_synced(spa_get_dsl(spa), 0);
7400 
7401 	/*
7402 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7403 	 * so that the only way to record changes from now on is the ZIL.
7404 	 */
7405 	spa_freeze(spa);
7406 
7407 	/*
7408 	 * Because it is hard to predict how much space a write will actually
7409 	 * require beforehand, we leave ourselves some fudge space to write over
7410 	 * capacity.
7411 	 */
7412 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7413 
7414 	/*
7415 	 * Run tests that generate log records but don't alter the pool config
7416 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7417 	 * We do a txg_wait_synced() after each iteration to force the txg
7418 	 * to increase well beyond the last synced value in the uberblock.
7419 	 * The ZIL should be OK with that.
7420 	 *
7421 	 * Run a random number of times less than zo_maxloops and ensure we do
7422 	 * not run out of space on the pool.
7423 	 */
7424 	while (ztest_random(10) != 0 &&
7425 	    numloops++ < ztest_opts.zo_maxloops &&
7426 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7427 		ztest_od_t od;
7428 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7429 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7430 		ztest_io(zd, od.od_object,
7431 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7432 		txg_wait_synced(spa_get_dsl(spa), 0);
7433 	}
7434 
7435 	/*
7436 	 * Commit all of the changes we just generated.
7437 	 */
7438 	zil_commit(zd->zd_zilog, 0);
7439 	txg_wait_synced(spa_get_dsl(spa), 0);
7440 
7441 	/*
7442 	 * Close our dataset and close the pool.
7443 	 */
7444 	ztest_dataset_close(0);
7445 	spa_close(spa, FTAG);
7446 	kernel_fini();
7447 
7448 	/*
7449 	 * Open and close the pool and dataset to induce log replay.
7450 	 */
7451 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7452 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7453 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7454 	VERIFY0(ztest_dataset_open(0));
7455 	ztest_spa = spa;
7456 	txg_wait_synced(spa_get_dsl(spa), 0);
7457 	ztest_dataset_close(0);
7458 	ztest_reguid(NULL, 0);
7459 
7460 	spa_close(spa, FTAG);
7461 	kernel_fini();
7462 }
7463 
7464 static void
7465 ztest_import_impl(void)
7466 {
7467 	importargs_t args = { 0 };
7468 	nvlist_t *cfg = NULL;
7469 	int nsearch = 1;
7470 	char *searchdirs[nsearch];
7471 	int flags = ZFS_IMPORT_MISSING_LOG;
7472 
7473 	searchdirs[0] = ztest_opts.zo_dir;
7474 	args.paths = nsearch;
7475 	args.path = searchdirs;
7476 	args.can_be_active = B_FALSE;
7477 
7478 	libpc_handle_t lpch = {
7479 		.lpc_lib_handle = NULL,
7480 		.lpc_ops = &libzpool_config_ops,
7481 		.lpc_printerr = B_TRUE
7482 	};
7483 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
7484 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7485 	fnvlist_free(cfg);
7486 }
7487 
7488 /*
7489  * Import a storage pool with the given name.
7490  */
7491 static void
7492 ztest_import(ztest_shared_t *zs)
7493 {
7494 	spa_t *spa;
7495 
7496 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7497 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7498 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7499 
7500 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7501 
7502 	ztest_import_impl();
7503 
7504 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7505 	zs->zs_metaslab_sz =
7506 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7507 	spa_close(spa, FTAG);
7508 
7509 	kernel_fini();
7510 
7511 	if (!ztest_opts.zo_mmp_test) {
7512 		ztest_run_zdb(ztest_opts.zo_pool);
7513 		ztest_freeze();
7514 		ztest_run_zdb(ztest_opts.zo_pool);
7515 	}
7516 
7517 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7518 	mutex_destroy(&ztest_vdev_lock);
7519 	mutex_destroy(&ztest_checkpoint_lock);
7520 }
7521 
7522 /*
7523  * Kick off threads to run tests on all datasets in parallel.
7524  */
7525 static void
7526 ztest_run(ztest_shared_t *zs)
7527 {
7528 	spa_t *spa;
7529 	objset_t *os;
7530 	kthread_t *resume_thread, *deadman_thread;
7531 	kthread_t **run_threads;
7532 	uint64_t object;
7533 	int error;
7534 	int t, d;
7535 
7536 	ztest_exiting = B_FALSE;
7537 
7538 	/*
7539 	 * Initialize parent/child shared state.
7540 	 */
7541 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7542 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7543 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7544 
7545 	zs->zs_thread_start = gethrtime();
7546 	zs->zs_thread_stop =
7547 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7548 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7549 	zs->zs_thread_kill = zs->zs_thread_stop;
7550 	if (ztest_random(100) < ztest_opts.zo_killrate) {
7551 		zs->zs_thread_kill -=
7552 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
7553 	}
7554 
7555 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7556 
7557 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7558 	    offsetof(ztest_cb_data_t, zcd_node));
7559 
7560 	/*
7561 	 * Open our pool.  It may need to be imported first depending on
7562 	 * what tests were running when the previous pass was terminated.
7563 	 */
7564 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7565 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7566 	if (error) {
7567 		VERIFY3S(error, ==, ENOENT);
7568 		ztest_import_impl();
7569 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7570 		zs->zs_metaslab_sz =
7571 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7572 	}
7573 
7574 	metaslab_preload_limit = ztest_random(20) + 1;
7575 	ztest_spa = spa;
7576 
7577 	VERIFY0(vdev_raidz_impl_set("cycle"));
7578 
7579 	dmu_objset_stats_t dds;
7580 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7581 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7582 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7583 	dmu_objset_fast_stat(os, &dds);
7584 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7585 	zs->zs_guid = dds.dds_guid;
7586 	dmu_objset_disown(os, B_TRUE, FTAG);
7587 
7588 	/*
7589 	 * Create a thread to periodically resume suspended I/O.
7590 	 */
7591 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7592 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7593 
7594 	/*
7595 	 * Create a deadman thread and set to panic if we hang.
7596 	 */
7597 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7598 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7599 
7600 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7601 
7602 	/*
7603 	 * Verify that we can safely inquire about any object,
7604 	 * whether it's allocated or not.  To make it interesting,
7605 	 * we probe a 5-wide window around each power of two.
7606 	 * This hits all edge cases, including zero and the max.
7607 	 */
7608 	for (t = 0; t < 64; t++) {
7609 		for (d = -5; d <= 5; d++) {
7610 			error = dmu_object_info(spa->spa_meta_objset,
7611 			    (1ULL << t) + d, NULL);
7612 			ASSERT(error == 0 || error == ENOENT ||
7613 			    error == EINVAL);
7614 		}
7615 	}
7616 
7617 	/*
7618 	 * If we got any ENOSPC errors on the previous run, destroy something.
7619 	 */
7620 	if (zs->zs_enospc_count != 0) {
7621 		int d = ztest_random(ztest_opts.zo_datasets);
7622 		ztest_dataset_destroy(d);
7623 	}
7624 	zs->zs_enospc_count = 0;
7625 
7626 	/*
7627 	 * If we were in the middle of ztest_device_removal() and were killed
7628 	 * we need to ensure the removal and scrub complete before running
7629 	 * any tests that check ztest_device_removal_active. The removal will
7630 	 * be restarted automatically when the spa is opened, but we need to
7631 	 * initiate the scrub manually if it is not already in progress. Note
7632 	 * that we always run the scrub whenever an indirect vdev exists
7633 	 * because we have no way of knowing for sure if ztest_device_removal()
7634 	 * fully completed its scrub before the pool was reimported.
7635 	 */
7636 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7637 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7638 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7639 			txg_wait_synced(spa_get_dsl(spa), 0);
7640 
7641 		error = ztest_scrub_impl(spa);
7642 		if (error == EBUSY)
7643 			error = 0;
7644 		ASSERT0(error);
7645 	}
7646 
7647 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7648 	    UMEM_NOFAIL);
7649 
7650 	if (ztest_opts.zo_verbose >= 4)
7651 		(void) printf("starting main threads...\n");
7652 
7653 	/*
7654 	 * Replay all logs of all datasets in the pool. This is primarily for
7655 	 * temporary datasets which wouldn't otherwise get replayed, which
7656 	 * can trigger failures when attempting to offline a SLOG in
7657 	 * ztest_fault_inject().
7658 	 */
7659 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7660 	    NULL, DS_FIND_CHILDREN);
7661 
7662 	/*
7663 	 * Kick off all the tests that run in parallel.
7664 	 */
7665 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7666 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7667 			umem_free(run_threads, ztest_opts.zo_threads *
7668 			    sizeof (kthread_t *));
7669 			return;
7670 		}
7671 
7672 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
7673 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7674 		    defclsyspri);
7675 	}
7676 
7677 	/*
7678 	 * Wait for all of the tests to complete.
7679 	 */
7680 	for (t = 0; t < ztest_opts.zo_threads; t++)
7681 		VERIFY0(thread_join(run_threads[t]));
7682 
7683 	/*
7684 	 * Close all datasets. This must be done after all the threads
7685 	 * are joined so we can be sure none of the datasets are in-use
7686 	 * by any of the threads.
7687 	 */
7688 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7689 		if (t < ztest_opts.zo_datasets)
7690 			ztest_dataset_close(t);
7691 	}
7692 
7693 	txg_wait_synced(spa_get_dsl(spa), 0);
7694 
7695 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7696 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7697 
7698 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7699 
7700 	/* Kill the resume and deadman threads */
7701 	ztest_exiting = B_TRUE;
7702 	VERIFY0(thread_join(resume_thread));
7703 	VERIFY0(thread_join(deadman_thread));
7704 	ztest_resume(spa);
7705 
7706 	/*
7707 	 * Right before closing the pool, kick off a bunch of async I/O;
7708 	 * spa_close() should wait for it to complete.
7709 	 */
7710 	for (object = 1; object < 50; object++) {
7711 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7712 		    ZIO_PRIORITY_SYNC_READ);
7713 	}
7714 
7715 	/* Verify that at least one commit cb was called in a timely fashion */
7716 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7717 		VERIFY0(zc_min_txg_delay);
7718 
7719 	spa_close(spa, FTAG);
7720 
7721 	/*
7722 	 * Verify that we can loop over all pools.
7723 	 */
7724 	mutex_enter(&spa_namespace_lock);
7725 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7726 		if (ztest_opts.zo_verbose > 3)
7727 			(void) printf("spa_next: found %s\n", spa_name(spa));
7728 	mutex_exit(&spa_namespace_lock);
7729 
7730 	/*
7731 	 * Verify that we can export the pool and reimport it under a
7732 	 * different name.
7733 	 */
7734 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7735 		char name[ZFS_MAX_DATASET_NAME_LEN];
7736 		(void) snprintf(name, sizeof (name), "%s_import",
7737 		    ztest_opts.zo_pool);
7738 		ztest_spa_import_export(ztest_opts.zo_pool, name);
7739 		ztest_spa_import_export(name, ztest_opts.zo_pool);
7740 	}
7741 
7742 	kernel_fini();
7743 
7744 	list_destroy(&zcl.zcl_callbacks);
7745 	mutex_destroy(&zcl.zcl_callbacks_lock);
7746 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7747 	mutex_destroy(&ztest_vdev_lock);
7748 	mutex_destroy(&ztest_checkpoint_lock);
7749 }
7750 
7751 static void
7752 print_time(hrtime_t t, char *timebuf)
7753 {
7754 	hrtime_t s = t / NANOSEC;
7755 	hrtime_t m = s / 60;
7756 	hrtime_t h = m / 60;
7757 	hrtime_t d = h / 24;
7758 
7759 	s -= m * 60;
7760 	m -= h * 60;
7761 	h -= d * 24;
7762 
7763 	timebuf[0] = '\0';
7764 
7765 	if (d)
7766 		(void) sprintf(timebuf,
7767 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
7768 	else if (h)
7769 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7770 	else if (m)
7771 		(void) sprintf(timebuf, "%llum%02llus", m, s);
7772 	else
7773 		(void) sprintf(timebuf, "%llus", s);
7774 }
7775 
7776 static nvlist_t *
7777 make_random_props(void)
7778 {
7779 	nvlist_t *props;
7780 
7781 	props = fnvlist_alloc();
7782 
7783 	if (ztest_random(2) == 0)
7784 		return (props);
7785 
7786 	fnvlist_add_uint64(props,
7787 	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7788 
7789 	return (props);
7790 }
7791 
7792 /*
7793  * Create a storage pool with the given name and initial vdev size.
7794  * Then test spa_freeze() functionality.
7795  */
7796 static void
7797 ztest_init(ztest_shared_t *zs)
7798 {
7799 	spa_t *spa;
7800 	nvlist_t *nvroot, *props;
7801 	int i;
7802 
7803 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7804 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7805 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7806 
7807 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7808 
7809 	/*
7810 	 * Create the storage pool.
7811 	 */
7812 	(void) spa_destroy(ztest_opts.zo_pool);
7813 	ztest_shared->zs_vdev_next_leaf = 0;
7814 	zs->zs_splits = 0;
7815 	zs->zs_mirrors = ztest_opts.zo_mirrors;
7816 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7817 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7818 	props = make_random_props();
7819 
7820 	/*
7821 	 * We don't expect the pool to suspend unless maxfaults == 0,
7822 	 * in which case ztest_fault_inject() temporarily takes away
7823 	 * the only valid replica.
7824 	 */
7825 	fnvlist_add_uint64(props,
7826 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7827 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7828 
7829 	for (i = 0; i < SPA_FEATURES; i++) {
7830 		char *buf;
7831 
7832 		if (!spa_feature_table[i].fi_zfs_mod_supported)
7833 			continue;
7834 
7835 		/*
7836 		 * 75% chance of using the log space map feature. We want ztest
7837 		 * to exercise both the code paths that use the log space map
7838 		 * feature and the ones that don't.
7839 		 */
7840 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7841 			continue;
7842 
7843 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7844 		    spa_feature_table[i].fi_uname));
7845 		fnvlist_add_uint64(props, buf, 0);
7846 		free(buf);
7847 	}
7848 
7849 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7850 	fnvlist_free(nvroot);
7851 	fnvlist_free(props);
7852 
7853 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7854 	zs->zs_metaslab_sz =
7855 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7856 	spa_close(spa, FTAG);
7857 
7858 	kernel_fini();
7859 
7860 	if (!ztest_opts.zo_mmp_test) {
7861 		ztest_run_zdb(ztest_opts.zo_pool);
7862 		ztest_freeze();
7863 		ztest_run_zdb(ztest_opts.zo_pool);
7864 	}
7865 
7866 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7867 	mutex_destroy(&ztest_vdev_lock);
7868 	mutex_destroy(&ztest_checkpoint_lock);
7869 }
7870 
7871 static void
7872 setup_data_fd(void)
7873 {
7874 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7875 
7876 	ztest_fd_data = mkstemp(ztest_name_data);
7877 	ASSERT3S(ztest_fd_data, >=, 0);
7878 	(void) unlink(ztest_name_data);
7879 }
7880 
7881 static int
7882 shared_data_size(ztest_shared_hdr_t *hdr)
7883 {
7884 	int size;
7885 
7886 	size = hdr->zh_hdr_size;
7887 	size += hdr->zh_opts_size;
7888 	size += hdr->zh_size;
7889 	size += hdr->zh_stats_size * hdr->zh_stats_count;
7890 	size += hdr->zh_ds_size * hdr->zh_ds_count;
7891 
7892 	return (size);
7893 }
7894 
7895 static void
7896 setup_hdr(void)
7897 {
7898 	int size;
7899 	ztest_shared_hdr_t *hdr;
7900 
7901 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7902 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7903 	ASSERT3P(hdr, !=, MAP_FAILED);
7904 
7905 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7906 
7907 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7908 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7909 	hdr->zh_size = sizeof (ztest_shared_t);
7910 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7911 	hdr->zh_stats_count = ZTEST_FUNCS;
7912 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7913 	hdr->zh_ds_count = ztest_opts.zo_datasets;
7914 
7915 	size = shared_data_size(hdr);
7916 	VERIFY0(ftruncate(ztest_fd_data, size));
7917 
7918 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7919 }
7920 
7921 static void
7922 setup_data(void)
7923 {
7924 	int size, offset;
7925 	ztest_shared_hdr_t *hdr;
7926 	uint8_t *buf;
7927 
7928 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7929 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7930 	ASSERT3P(hdr, !=, MAP_FAILED);
7931 
7932 	size = shared_data_size(hdr);
7933 
7934 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7935 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7936 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7937 	ASSERT3P(hdr, !=, MAP_FAILED);
7938 	buf = (uint8_t *)hdr;
7939 
7940 	offset = hdr->zh_hdr_size;
7941 	ztest_shared_opts = (void *)&buf[offset];
7942 	offset += hdr->zh_opts_size;
7943 	ztest_shared = (void *)&buf[offset];
7944 	offset += hdr->zh_size;
7945 	ztest_shared_callstate = (void *)&buf[offset];
7946 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
7947 	ztest_shared_ds = (void *)&buf[offset];
7948 }
7949 
7950 static boolean_t
7951 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7952 {
7953 	pid_t pid;
7954 	int status;
7955 	char *cmdbuf = NULL;
7956 
7957 	pid = fork();
7958 
7959 	if (cmd == NULL) {
7960 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7961 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7962 		cmd = cmdbuf;
7963 	}
7964 
7965 	if (pid == -1)
7966 		fatal(B_TRUE, "fork failed");
7967 
7968 	if (pid == 0) {	/* child */
7969 		char fd_data_str[12];
7970 
7971 		VERIFY3S(11, >=,
7972 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7973 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7974 
7975 		if (libpath != NULL) {
7976 			const char *curlp = getenv("LD_LIBRARY_PATH");
7977 			if (curlp == NULL)
7978 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7979 			else {
7980 				char *newlp = NULL;
7981 				VERIFY3S(-1, !=,
7982 				    asprintf(&newlp, "%s:%s", libpath, curlp));
7983 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
7984 				free(newlp);
7985 			}
7986 		}
7987 		(void) execl(cmd, cmd, (char *)NULL);
7988 		ztest_dump_core = B_FALSE;
7989 		fatal(B_TRUE, "exec failed: %s", cmd);
7990 	}
7991 
7992 	if (cmdbuf != NULL) {
7993 		umem_free(cmdbuf, MAXPATHLEN);
7994 		cmd = NULL;
7995 	}
7996 
7997 	while (waitpid(pid, &status, 0) != pid)
7998 		continue;
7999 	if (statusp != NULL)
8000 		*statusp = status;
8001 
8002 	if (WIFEXITED(status)) {
8003 		if (WEXITSTATUS(status) != 0) {
8004 			(void) fprintf(stderr, "child exited with code %d\n",
8005 			    WEXITSTATUS(status));
8006 			exit(2);
8007 		}
8008 		return (B_FALSE);
8009 	} else if (WIFSIGNALED(status)) {
8010 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8011 			(void) fprintf(stderr, "child died with signal %d\n",
8012 			    WTERMSIG(status));
8013 			exit(3);
8014 		}
8015 		return (B_TRUE);
8016 	} else {
8017 		(void) fprintf(stderr, "something strange happened to child\n");
8018 		exit(4);
8019 	}
8020 }
8021 
8022 static void
8023 ztest_run_init(void)
8024 {
8025 	int i;
8026 
8027 	ztest_shared_t *zs = ztest_shared;
8028 
8029 	/*
8030 	 * Blow away any existing copy of zpool.cache
8031 	 */
8032 	(void) remove(spa_config_path);
8033 
8034 	if (ztest_opts.zo_init == 0) {
8035 		if (ztest_opts.zo_verbose >= 1)
8036 			(void) printf("Importing pool %s\n",
8037 			    ztest_opts.zo_pool);
8038 		ztest_import(zs);
8039 		return;
8040 	}
8041 
8042 	/*
8043 	 * Create and initialize our storage pool.
8044 	 */
8045 	for (i = 1; i <= ztest_opts.zo_init; i++) {
8046 		memset(zs, 0, sizeof (*zs));
8047 		if (ztest_opts.zo_verbose >= 3 &&
8048 		    ztest_opts.zo_init != 1) {
8049 			(void) printf("ztest_init(), pass %d\n", i);
8050 		}
8051 		ztest_init(zs);
8052 	}
8053 }
8054 
8055 int
8056 main(int argc, char **argv)
8057 {
8058 	int kills = 0;
8059 	int iters = 0;
8060 	int older = 0;
8061 	int newer = 0;
8062 	ztest_shared_t *zs;
8063 	ztest_info_t *zi;
8064 	ztest_shared_callstate_t *zc;
8065 	char timebuf[100];
8066 	char numbuf[NN_NUMBUF_SZ];
8067 	char *cmd;
8068 	boolean_t hasalt;
8069 	int f, err;
8070 	char *fd_data_str = getenv("ZTEST_FD_DATA");
8071 	struct sigaction action;
8072 
8073 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8074 
8075 	dprintf_setup(&argc, argv);
8076 	zfs_deadman_synctime_ms = 300000;
8077 	zfs_deadman_checktime_ms = 30000;
8078 	/*
8079 	 * As two-word space map entries may not come up often (especially
8080 	 * if pool and vdev sizes are small) we want to force at least some
8081 	 * of them so the feature get tested.
8082 	 */
8083 	zfs_force_some_double_word_sm_entries = B_TRUE;
8084 
8085 	/*
8086 	 * Verify that even extensively damaged split blocks with many
8087 	 * segments can be reconstructed in a reasonable amount of time
8088 	 * when reconstruction is known to be possible.
8089 	 *
8090 	 * Note: the lower this value is, the more damage we inflict, and
8091 	 * the more time ztest spends in recovering that damage. We chose
8092 	 * to induce damage 1/100th of the time so recovery is tested but
8093 	 * not so frequently that ztest doesn't get to test other code paths.
8094 	 */
8095 	zfs_reconstruct_indirect_damage_fraction = 100;
8096 
8097 	action.sa_handler = sig_handler;
8098 	sigemptyset(&action.sa_mask);
8099 	action.sa_flags = 0;
8100 
8101 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8102 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8103 		    strerror(errno));
8104 		exit(EXIT_FAILURE);
8105 	}
8106 
8107 	if (sigaction(SIGABRT, &action, NULL) < 0) {
8108 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8109 		    strerror(errno));
8110 		exit(EXIT_FAILURE);
8111 	}
8112 
8113 	/*
8114 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8115 	 * ztest from needlessly depleting the system entropy pool.
8116 	 */
8117 	random_path = "/dev/urandom";
8118 	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8119 	ASSERT3S(ztest_fd_rand, >=, 0);
8120 
8121 	if (!fd_data_str) {
8122 		process_options(argc, argv);
8123 
8124 		setup_data_fd();
8125 		setup_hdr();
8126 		setup_data();
8127 		memcpy(ztest_shared_opts, &ztest_opts,
8128 		    sizeof (*ztest_shared_opts));
8129 	} else {
8130 		ztest_fd_data = atoi(fd_data_str);
8131 		setup_data();
8132 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8133 	}
8134 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8135 
8136 	err = ztest_set_global_vars();
8137 	if (err != 0 && !fd_data_str) {
8138 		/* error message done by ztest_set_global_vars */
8139 		exit(EXIT_FAILURE);
8140 	} else {
8141 		/* children should not be spawned if setting gvars fails */
8142 		VERIFY3S(err, ==, 0);
8143 	}
8144 
8145 	/* Override location of zpool.cache */
8146 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8147 	    ztest_opts.zo_dir), !=, -1);
8148 
8149 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8150 	    UMEM_NOFAIL);
8151 	zs = ztest_shared;
8152 
8153 	if (fd_data_str) {
8154 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8155 		metaslab_df_alloc_threshold =
8156 		    zs->zs_metaslab_df_alloc_threshold;
8157 
8158 		if (zs->zs_do_init)
8159 			ztest_run_init();
8160 		else
8161 			ztest_run(zs);
8162 		exit(0);
8163 	}
8164 
8165 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8166 
8167 	if (ztest_opts.zo_verbose >= 1) {
8168 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
8169 		    "%d %s disks, %"PRIu64" seconds...\n\n",
8170 		    ztest_opts.zo_vdevs,
8171 		    ztest_opts.zo_datasets,
8172 		    ztest_opts.zo_threads,
8173 		    ztest_opts.zo_raid_children,
8174 		    ztest_opts.zo_raid_type,
8175 		    ztest_opts.zo_time);
8176 	}
8177 
8178 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8179 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8180 
8181 	zs->zs_do_init = B_TRUE;
8182 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8183 		if (ztest_opts.zo_verbose >= 1) {
8184 			(void) printf("Executing older ztest for "
8185 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
8186 		}
8187 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8188 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8189 	} else {
8190 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8191 	}
8192 	zs->zs_do_init = B_FALSE;
8193 
8194 	zs->zs_proc_start = gethrtime();
8195 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8196 
8197 	for (f = 0; f < ZTEST_FUNCS; f++) {
8198 		zi = &ztest_info[f];
8199 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
8200 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8201 			zc->zc_next = UINT64_MAX;
8202 		else
8203 			zc->zc_next = zs->zs_proc_start +
8204 			    ztest_random(2 * zi->zi_interval[0] + 1);
8205 	}
8206 
8207 	/*
8208 	 * Run the tests in a loop.  These tests include fault injection
8209 	 * to verify that self-healing data works, and forced crashes
8210 	 * to verify that we never lose on-disk consistency.
8211 	 */
8212 	while (gethrtime() < zs->zs_proc_stop) {
8213 		int status;
8214 		boolean_t killed;
8215 
8216 		/*
8217 		 * Initialize the workload counters for each function.
8218 		 */
8219 		for (f = 0; f < ZTEST_FUNCS; f++) {
8220 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
8221 			zc->zc_count = 0;
8222 			zc->zc_time = 0;
8223 		}
8224 
8225 		/* Set the allocation switch size */
8226 		zs->zs_metaslab_df_alloc_threshold =
8227 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
8228 
8229 		if (!hasalt || ztest_random(2) == 0) {
8230 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8231 				(void) printf("Executing newer ztest: %s\n",
8232 				    cmd);
8233 			}
8234 			newer++;
8235 			killed = exec_child(cmd, NULL, B_TRUE, &status);
8236 		} else {
8237 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8238 				(void) printf("Executing older ztest: %s\n",
8239 				    ztest_opts.zo_alt_ztest);
8240 			}
8241 			older++;
8242 			killed = exec_child(ztest_opts.zo_alt_ztest,
8243 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
8244 		}
8245 
8246 		if (killed)
8247 			kills++;
8248 		iters++;
8249 
8250 		if (ztest_opts.zo_verbose >= 1) {
8251 			hrtime_t now = gethrtime();
8252 
8253 			now = MIN(now, zs->zs_proc_stop);
8254 			print_time(zs->zs_proc_stop - now, timebuf);
8255 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8256 
8257 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8258 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8259 			    iters,
8260 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
8261 			    zs->zs_enospc_count,
8262 			    100.0 * zs->zs_alloc / zs->zs_space,
8263 			    numbuf,
8264 			    100.0 * (now - zs->zs_proc_start) /
8265 			    (ztest_opts.zo_time * NANOSEC), timebuf);
8266 		}
8267 
8268 		if (ztest_opts.zo_verbose >= 2) {
8269 			(void) printf("\nWorkload summary:\n\n");
8270 			(void) printf("%7s %9s   %s\n",
8271 			    "Calls", "Time", "Function");
8272 			(void) printf("%7s %9s   %s\n",
8273 			    "-----", "----", "--------");
8274 			for (f = 0; f < ZTEST_FUNCS; f++) {
8275 				zi = &ztest_info[f];
8276 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
8277 				print_time(zc->zc_time, timebuf);
8278 				(void) printf("%7"PRIu64" %9s   %s\n",
8279 				    zc->zc_count, timebuf,
8280 				    zi->zi_funcname);
8281 			}
8282 			(void) printf("\n");
8283 		}
8284 
8285 		if (!ztest_opts.zo_mmp_test)
8286 			ztest_run_zdb(ztest_opts.zo_pool);
8287 	}
8288 
8289 	if (ztest_opts.zo_verbose >= 1) {
8290 		if (hasalt) {
8291 			(void) printf("%d runs of older ztest: %s\n", older,
8292 			    ztest_opts.zo_alt_ztest);
8293 			(void) printf("%d runs of newer ztest: %s\n", newer,
8294 			    cmd);
8295 		}
8296 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8297 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8298 	}
8299 
8300 	umem_free(cmd, MAXNAMELEN);
8301 
8302 	return (0);
8303 }
8304