1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2016, 2017 Intel Corporation. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 27 */ 28 29 /* 30 * Functions to convert between a list of vdevs and an nvlist representing the 31 * configuration. Each entry in the list can be one of: 32 * 33 * Device vdevs 34 * disk=(path=..., devid=...) 35 * file=(path=...) 36 * 37 * Group vdevs 38 * raidz[1|2]=(...) 39 * mirror=(...) 40 * 41 * Hot spares 42 * 43 * While the underlying implementation supports it, group vdevs cannot contain 44 * other group vdevs. All userland verification of devices is contained within 45 * this file. If successful, the nvlist returned can be passed directly to the 46 * kernel; we've done as much verification as possible in userland. 47 * 48 * Hot spares are a special case, and passed down as an array of disk vdevs, at 49 * the same level as the root of the vdev tree. 50 * 51 * The only function exported by this file is 'make_root_vdev'. The 52 * function performs several passes: 53 * 54 * 1. Construct the vdev specification. Performs syntax validation and 55 * makes sure each device is valid. 56 * 2. Check for devices in use. Using libblkid to make sure that no 57 * devices are also in use. Some can be overridden using the 'force' 58 * flag, others cannot. 59 * 3. Check for replication errors if the 'force' flag is not specified. 60 * validates that the replication level is consistent across the 61 * entire pool. 62 * 4. Call libzfs to label any whole disks with an EFI label. 63 */ 64 65 #include <assert.h> 66 #include <ctype.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <libzutil.h> 72 #include <limits.h> 73 #include <sys/spa.h> 74 #include <stdio.h> 75 #include <string.h> 76 #include <unistd.h> 77 #include "zpool_util.h" 78 #include <sys/zfs_context.h> 79 #include <sys/stat.h> 80 81 /* 82 * For any given vdev specification, we can have multiple errors. The 83 * vdev_error() function keeps track of whether we have seen an error yet, and 84 * prints out a header if its the first error we've seen. 85 */ 86 boolean_t error_seen; 87 boolean_t is_force; 88 89 90 91 92 /*PRINTFLIKE1*/ 93 void 94 vdev_error(const char *fmt, ...) 95 { 96 va_list ap; 97 98 if (!error_seen) { 99 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 100 if (!is_force) 101 (void) fprintf(stderr, gettext("use '-f' to override " 102 "the following errors:\n")); 103 else 104 (void) fprintf(stderr, gettext("the following errors " 105 "must be manually repaired:\n")); 106 error_seen = B_TRUE; 107 } 108 109 va_start(ap, fmt); 110 (void) vfprintf(stderr, fmt, ap); 111 va_end(ap); 112 } 113 114 /* 115 * Check that a file is valid. All we can do in this case is check that it's 116 * not in use by another pool, and not in use by swap. 117 */ 118 int 119 check_file(const char *file, boolean_t force, boolean_t isspare) 120 { 121 char *name; 122 int fd; 123 int ret = 0; 124 pool_state_t state; 125 boolean_t inuse; 126 127 if ((fd = open(file, O_RDONLY)) < 0) 128 return (0); 129 130 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 131 const char *desc; 132 133 switch (state) { 134 case POOL_STATE_ACTIVE: 135 desc = gettext("active"); 136 break; 137 138 case POOL_STATE_EXPORTED: 139 desc = gettext("exported"); 140 break; 141 142 case POOL_STATE_POTENTIALLY_ACTIVE: 143 desc = gettext("potentially active"); 144 break; 145 146 default: 147 desc = gettext("unknown"); 148 break; 149 } 150 151 /* 152 * Allow hot spares to be shared between pools. 153 */ 154 if (state == POOL_STATE_SPARE && isspare) { 155 free(name); 156 (void) close(fd); 157 return (0); 158 } 159 160 if (state == POOL_STATE_ACTIVE || 161 state == POOL_STATE_SPARE || !force) { 162 switch (state) { 163 case POOL_STATE_SPARE: 164 vdev_error(gettext("%s is reserved as a hot " 165 "spare for pool %s\n"), file, name); 166 break; 167 default: 168 vdev_error(gettext("%s is part of %s pool " 169 "'%s'\n"), file, desc, name); 170 break; 171 } 172 ret = -1; 173 } 174 175 free(name); 176 } 177 178 (void) close(fd); 179 return (ret); 180 } 181 182 /* 183 * This may be a shorthand device path or it could be total gibberish. 184 * Check to see if it is a known device available in zfs_vdev_paths. 185 * As part of this check, see if we've been given an entire disk 186 * (minus the slice number). 187 */ 188 static int 189 is_shorthand_path(const char *arg, char *path, size_t path_size, 190 struct stat64 *statbuf, boolean_t *wholedisk) 191 { 192 int error; 193 194 error = zfs_resolve_shortname(arg, path, path_size); 195 if (error == 0) { 196 *wholedisk = zfs_dev_is_whole_disk(path); 197 if (*wholedisk || (stat64(path, statbuf) == 0)) 198 return (0); 199 } 200 201 strlcpy(path, arg, path_size); 202 memset(statbuf, 0, sizeof (*statbuf)); 203 *wholedisk = B_FALSE; 204 205 return (error); 206 } 207 208 /* 209 * Determine if the given path is a hot spare within the given configuration. 210 * If no configuration is given we rely solely on the label. 211 */ 212 static boolean_t 213 is_spare(nvlist_t *config, const char *path) 214 { 215 int fd; 216 pool_state_t state; 217 char *name = NULL; 218 nvlist_t *label; 219 uint64_t guid, spareguid; 220 nvlist_t *nvroot; 221 nvlist_t **spares; 222 uint_t i, nspares; 223 boolean_t inuse; 224 225 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0) 226 return (B_FALSE); 227 228 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 229 !inuse || 230 state != POOL_STATE_SPARE || 231 zpool_read_label(fd, &label, NULL) != 0) { 232 free(name); 233 (void) close(fd); 234 return (B_FALSE); 235 } 236 free(name); 237 (void) close(fd); 238 239 if (config == NULL) { 240 nvlist_free(label); 241 return (B_TRUE); 242 } 243 244 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 245 nvlist_free(label); 246 247 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 248 &nvroot) == 0); 249 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 250 &spares, &nspares) == 0) { 251 for (i = 0; i < nspares; i++) { 252 verify(nvlist_lookup_uint64(spares[i], 253 ZPOOL_CONFIG_GUID, &spareguid) == 0); 254 if (spareguid == guid) 255 return (B_TRUE); 256 } 257 } 258 259 return (B_FALSE); 260 } 261 262 /* 263 * Create a leaf vdev. Determine if this is a file or a device. If it's a 264 * device, fill in the device id to make a complete nvlist. Valid forms for a 265 * leaf vdev are: 266 * 267 * /dev/xxx Complete disk path 268 * /xxx Full path to file 269 * xxx Shorthand for <zfs_vdev_paths>/xxx 270 */ 271 static nvlist_t * 272 make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log) 273 { 274 char path[MAXPATHLEN]; 275 struct stat64 statbuf; 276 nvlist_t *vdev = NULL; 277 char *type = NULL; 278 boolean_t wholedisk = B_FALSE; 279 uint64_t ashift = 0; 280 int err; 281 282 /* 283 * Determine what type of vdev this is, and put the full path into 284 * 'path'. We detect whether this is a device of file afterwards by 285 * checking the st_mode of the file. 286 */ 287 if (arg[0] == '/') { 288 /* 289 * Complete device or file path. Exact type is determined by 290 * examining the file descriptor afterwards. Symbolic links 291 * are resolved to their real paths to determine whole disk 292 * and S_ISBLK/S_ISREG type checks. However, we are careful 293 * to store the given path as ZPOOL_CONFIG_PATH to ensure we 294 * can leverage udev's persistent device labels. 295 */ 296 if (realpath(arg, path) == NULL) { 297 (void) fprintf(stderr, 298 gettext("cannot resolve path '%s'\n"), arg); 299 return (NULL); 300 } 301 302 wholedisk = zfs_dev_is_whole_disk(path); 303 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 304 (void) fprintf(stderr, 305 gettext("cannot open '%s': %s\n"), 306 path, strerror(errno)); 307 return (NULL); 308 } 309 310 /* After whole disk check restore original passed path */ 311 strlcpy(path, arg, sizeof (path)); 312 } else { 313 err = is_shorthand_path(arg, path, sizeof (path), 314 &statbuf, &wholedisk); 315 if (err != 0) { 316 /* 317 * If we got ENOENT, then the user gave us 318 * gibberish, so try to direct them with a 319 * reasonable error message. Otherwise, 320 * regurgitate strerror() since it's the best we 321 * can do. 322 */ 323 if (err == ENOENT) { 324 (void) fprintf(stderr, 325 gettext("cannot open '%s': no such " 326 "device in %s\n"), arg, DISK_ROOT); 327 (void) fprintf(stderr, 328 gettext("must be a full path or " 329 "shorthand device name\n")); 330 return (NULL); 331 } else { 332 (void) fprintf(stderr, 333 gettext("cannot open '%s': %s\n"), 334 path, strerror(errno)); 335 return (NULL); 336 } 337 } 338 } 339 340 /* 341 * Determine whether this is a device or a file. 342 */ 343 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 344 type = VDEV_TYPE_DISK; 345 } else if (S_ISREG(statbuf.st_mode)) { 346 type = VDEV_TYPE_FILE; 347 } else { 348 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 349 "block device or regular file\n"), path); 350 return (NULL); 351 } 352 353 /* 354 * Finally, we have the complete device or file, and we know that it is 355 * acceptable to use. Construct the nvlist to describe this vdev. All 356 * vdevs have a 'path' element, and devices also have a 'devid' element. 357 */ 358 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 359 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 360 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 361 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 362 if (is_log) 363 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_ALLOCATION_BIAS, 364 VDEV_ALLOC_BIAS_LOG) == 0); 365 if (strcmp(type, VDEV_TYPE_DISK) == 0) 366 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 367 (uint64_t)wholedisk) == 0); 368 369 /* 370 * Override defaults if custom properties are provided. 371 */ 372 if (props != NULL) { 373 char *value = NULL; 374 375 if (nvlist_lookup_string(props, 376 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) { 377 if (zfs_nicestrtonum(NULL, value, &ashift) != 0) { 378 (void) fprintf(stderr, 379 gettext("ashift must be a number.\n")); 380 return (NULL); 381 } 382 if (ashift != 0 && 383 (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) { 384 (void) fprintf(stderr, 385 gettext("invalid 'ashift=%" PRIu64 "' " 386 "property: only values between %" PRId32 " " 387 "and %" PRId32 " are allowed.\n"), 388 ashift, ASHIFT_MIN, ASHIFT_MAX); 389 return (NULL); 390 } 391 } 392 } 393 394 /* 395 * If the device is known to incorrectly report its physical sector 396 * size explicitly provide the known correct value. 397 */ 398 if (ashift == 0) { 399 int sector_size; 400 401 if (check_sector_size_database(path, §or_size) == B_TRUE) 402 ashift = highbit64(sector_size) - 1; 403 } 404 405 if (ashift > 0) 406 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift); 407 408 return (vdev); 409 } 410 411 /* 412 * Go through and verify the replication level of the pool is consistent. 413 * Performs the following checks: 414 * 415 * For the new spec, verifies that devices in mirrors and raidz are the 416 * same size. 417 * 418 * If the current configuration already has inconsistent replication 419 * levels, ignore any other potential problems in the new spec. 420 * 421 * Otherwise, make sure that the current spec (if there is one) and the new 422 * spec have consistent replication levels. 423 * 424 * If there is no current spec (create), make sure new spec has at least 425 * one general purpose vdev. 426 */ 427 typedef struct replication_level { 428 char *zprl_type; 429 uint64_t zprl_children; 430 uint64_t zprl_parity; 431 } replication_level_t; 432 433 #define ZPOOL_FUZZ (16 * 1024 * 1024) 434 435 static boolean_t 436 is_raidz_mirror(replication_level_t *a, replication_level_t *b, 437 replication_level_t **raidz, replication_level_t **mirror) 438 { 439 if (strcmp(a->zprl_type, "raidz") == 0 && 440 strcmp(b->zprl_type, "mirror") == 0) { 441 *raidz = a; 442 *mirror = b; 443 return (B_TRUE); 444 } 445 return (B_FALSE); 446 } 447 448 /* 449 * Given a list of toplevel vdevs, return the current replication level. If 450 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 451 * an error message will be displayed for each self-inconsistent vdev. 452 */ 453 static replication_level_t * 454 get_replication(nvlist_t *nvroot, boolean_t fatal) 455 { 456 nvlist_t **top; 457 uint_t t, toplevels; 458 nvlist_t **child; 459 uint_t c, children; 460 nvlist_t *nv; 461 char *type; 462 replication_level_t lastrep = {0}; 463 replication_level_t rep; 464 replication_level_t *ret; 465 replication_level_t *raidz, *mirror; 466 boolean_t dontreport; 467 468 ret = safe_malloc(sizeof (replication_level_t)); 469 470 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 471 &top, &toplevels) == 0); 472 473 for (t = 0; t < toplevels; t++) { 474 uint64_t is_log = B_FALSE; 475 476 nv = top[t]; 477 478 /* 479 * For separate logs we ignore the top level vdev replication 480 * constraints. 481 */ 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 483 if (is_log) 484 continue; 485 486 /* Ignore holes introduced by removing aux devices */ 487 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 488 if (strcmp(type, VDEV_TYPE_HOLE) == 0) 489 continue; 490 491 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 492 &child, &children) != 0) { 493 /* 494 * This is a 'file' or 'disk' vdev. 495 */ 496 rep.zprl_type = type; 497 rep.zprl_children = 1; 498 rep.zprl_parity = 0; 499 } else { 500 int64_t vdev_size; 501 502 /* 503 * This is a mirror or RAID-Z vdev. Go through and make 504 * sure the contents are all the same (files vs. disks), 505 * keeping track of the number of elements in the 506 * process. 507 * 508 * We also check that the size of each vdev (if it can 509 * be determined) is the same. 510 */ 511 rep.zprl_type = type; 512 rep.zprl_children = 0; 513 514 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 515 verify(nvlist_lookup_uint64(nv, 516 ZPOOL_CONFIG_NPARITY, 517 &rep.zprl_parity) == 0); 518 assert(rep.zprl_parity != 0); 519 } else { 520 rep.zprl_parity = 0; 521 } 522 523 /* 524 * The 'dontreport' variable indicates that we've 525 * already reported an error for this spec, so don't 526 * bother doing it again. 527 */ 528 type = NULL; 529 dontreport = 0; 530 vdev_size = -1LL; 531 for (c = 0; c < children; c++) { 532 nvlist_t *cnv = child[c]; 533 char *path; 534 struct stat64 statbuf; 535 int64_t size = -1LL; 536 char *childtype; 537 int fd, err; 538 539 rep.zprl_children++; 540 541 verify(nvlist_lookup_string(cnv, 542 ZPOOL_CONFIG_TYPE, &childtype) == 0); 543 544 /* 545 * If this is a replacing or spare vdev, then 546 * get the real first child of the vdev: do this 547 * in a loop because replacing and spare vdevs 548 * can be nested. 549 */ 550 while (strcmp(childtype, 551 VDEV_TYPE_REPLACING) == 0 || 552 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 553 nvlist_t **rchild; 554 uint_t rchildren; 555 556 verify(nvlist_lookup_nvlist_array(cnv, 557 ZPOOL_CONFIG_CHILDREN, &rchild, 558 &rchildren) == 0); 559 assert(rchildren == 2); 560 cnv = rchild[0]; 561 562 verify(nvlist_lookup_string(cnv, 563 ZPOOL_CONFIG_TYPE, 564 &childtype) == 0); 565 } 566 567 verify(nvlist_lookup_string(cnv, 568 ZPOOL_CONFIG_PATH, &path) == 0); 569 570 /* 571 * If we have a raidz/mirror that combines disks 572 * with files, report it as an error. 573 */ 574 if (!dontreport && type != NULL && 575 strcmp(type, childtype) != 0) { 576 if (ret != NULL) 577 free(ret); 578 ret = NULL; 579 if (fatal) 580 vdev_error(gettext( 581 "mismatched replication " 582 "level: %s contains both " 583 "files and devices\n"), 584 rep.zprl_type); 585 else 586 return (NULL); 587 dontreport = B_TRUE; 588 } 589 590 /* 591 * According to stat(2), the value of 'st_size' 592 * is undefined for block devices and character 593 * devices. But there is no effective way to 594 * determine the real size in userland. 595 * 596 * Instead, we'll take advantage of an 597 * implementation detail of spec_size(). If the 598 * device is currently open, then we (should) 599 * return a valid size. 600 * 601 * If we still don't get a valid size (indicated 602 * by a size of 0 or MAXOFFSET_T), then ignore 603 * this device altogether. 604 */ 605 if ((fd = open(path, O_RDONLY)) >= 0) { 606 err = fstat64_blk(fd, &statbuf); 607 (void) close(fd); 608 } else { 609 err = stat64(path, &statbuf); 610 } 611 612 if (err != 0 || 613 statbuf.st_size == 0 || 614 statbuf.st_size == MAXOFFSET_T) 615 continue; 616 617 size = statbuf.st_size; 618 619 /* 620 * Also make sure that devices and 621 * slices have a consistent size. If 622 * they differ by a significant amount 623 * (~16MB) then report an error. 624 */ 625 if (!dontreport && 626 (vdev_size != -1LL && 627 (llabs(size - vdev_size) > 628 ZPOOL_FUZZ))) { 629 if (ret != NULL) 630 free(ret); 631 ret = NULL; 632 if (fatal) 633 vdev_error(gettext( 634 "%s contains devices of " 635 "different sizes\n"), 636 rep.zprl_type); 637 else 638 return (NULL); 639 dontreport = B_TRUE; 640 } 641 642 type = childtype; 643 vdev_size = size; 644 } 645 } 646 647 /* 648 * At this point, we have the replication of the last toplevel 649 * vdev in 'rep'. Compare it to 'lastrep' to see if it is 650 * different. 651 */ 652 if (lastrep.zprl_type != NULL) { 653 if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) || 654 is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) { 655 /* 656 * Accepted raidz and mirror when they can 657 * handle the same number of disk failures. 658 */ 659 if (raidz->zprl_parity != 660 mirror->zprl_children - 1) { 661 if (ret != NULL) 662 free(ret); 663 ret = NULL; 664 if (fatal) 665 vdev_error(gettext( 666 "mismatched replication " 667 "level: " 668 "%s and %s vdevs with " 669 "different redundancy, " 670 "%llu vs. %llu (%llu-way) " 671 "are present\n"), 672 raidz->zprl_type, 673 mirror->zprl_type, 674 raidz->zprl_parity, 675 mirror->zprl_children - 1, 676 mirror->zprl_children); 677 else 678 return (NULL); 679 } 680 } else if (strcmp(lastrep.zprl_type, rep.zprl_type) != 681 0) { 682 if (ret != NULL) 683 free(ret); 684 ret = NULL; 685 if (fatal) 686 vdev_error(gettext( 687 "mismatched replication level: " 688 "both %s and %s vdevs are " 689 "present\n"), 690 lastrep.zprl_type, rep.zprl_type); 691 else 692 return (NULL); 693 } else if (lastrep.zprl_parity != rep.zprl_parity) { 694 if (ret) 695 free(ret); 696 ret = NULL; 697 if (fatal) 698 vdev_error(gettext( 699 "mismatched replication level: " 700 "both %llu and %llu device parity " 701 "%s vdevs are present\n"), 702 lastrep.zprl_parity, 703 rep.zprl_parity, 704 rep.zprl_type); 705 else 706 return (NULL); 707 } else if (lastrep.zprl_children != rep.zprl_children) { 708 if (ret) 709 free(ret); 710 ret = NULL; 711 if (fatal) 712 vdev_error(gettext( 713 "mismatched replication level: " 714 "both %llu-way and %llu-way %s " 715 "vdevs are present\n"), 716 lastrep.zprl_children, 717 rep.zprl_children, 718 rep.zprl_type); 719 else 720 return (NULL); 721 } 722 } 723 lastrep = rep; 724 } 725 726 if (ret != NULL) 727 *ret = rep; 728 729 return (ret); 730 } 731 732 /* 733 * Check the replication level of the vdev spec against the current pool. Calls 734 * get_replication() to make sure the new spec is self-consistent. If the pool 735 * has a consistent replication level, then we ignore any errors. Otherwise, 736 * report any difference between the two. 737 */ 738 static int 739 check_replication(nvlist_t *config, nvlist_t *newroot) 740 { 741 nvlist_t **child; 742 uint_t children; 743 replication_level_t *current = NULL, *new; 744 replication_level_t *raidz, *mirror; 745 int ret; 746 747 /* 748 * If we have a current pool configuration, check to see if it's 749 * self-consistent. If not, simply return success. 750 */ 751 if (config != NULL) { 752 nvlist_t *nvroot; 753 754 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 755 &nvroot) == 0); 756 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 757 return (0); 758 } 759 /* 760 * for spares there may be no children, and therefore no 761 * replication level to check 762 */ 763 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 764 &child, &children) != 0) || (children == 0)) { 765 free(current); 766 return (0); 767 } 768 769 /* 770 * If all we have is logs then there's no replication level to check. 771 */ 772 if (num_logs(newroot) == children) { 773 free(current); 774 return (0); 775 } 776 777 /* 778 * Get the replication level of the new vdev spec, reporting any 779 * inconsistencies found. 780 */ 781 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 782 free(current); 783 return (-1); 784 } 785 786 /* 787 * Check to see if the new vdev spec matches the replication level of 788 * the current pool. 789 */ 790 ret = 0; 791 if (current != NULL) { 792 if (is_raidz_mirror(current, new, &raidz, &mirror) || 793 is_raidz_mirror(new, current, &raidz, &mirror)) { 794 if (raidz->zprl_parity != mirror->zprl_children - 1) { 795 vdev_error(gettext( 796 "mismatched replication level: pool and " 797 "new vdev with different redundancy, %s " 798 "and %s vdevs, %llu vs. %llu (%llu-way)\n"), 799 raidz->zprl_type, 800 mirror->zprl_type, 801 raidz->zprl_parity, 802 mirror->zprl_children - 1, 803 mirror->zprl_children); 804 ret = -1; 805 } 806 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) { 807 vdev_error(gettext( 808 "mismatched replication level: pool uses %s " 809 "and new vdev is %s\n"), 810 current->zprl_type, new->zprl_type); 811 ret = -1; 812 } else if (current->zprl_parity != new->zprl_parity) { 813 vdev_error(gettext( 814 "mismatched replication level: pool uses %llu " 815 "device parity and new vdev uses %llu\n"), 816 current->zprl_parity, new->zprl_parity); 817 ret = -1; 818 } else if (current->zprl_children != new->zprl_children) { 819 vdev_error(gettext( 820 "mismatched replication level: pool uses %llu-way " 821 "%s and new vdev uses %llu-way %s\n"), 822 current->zprl_children, current->zprl_type, 823 new->zprl_children, new->zprl_type); 824 ret = -1; 825 } 826 } 827 828 free(new); 829 if (current != NULL) 830 free(current); 831 832 return (ret); 833 } 834 835 static int 836 zero_label(char *path) 837 { 838 const int size = 4096; 839 char buf[size]; 840 int err, fd; 841 842 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) { 843 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), 844 path, strerror(errno)); 845 return (-1); 846 } 847 848 memset(buf, 0, size); 849 err = write(fd, buf, size); 850 (void) fdatasync(fd); 851 (void) close(fd); 852 853 if (err == -1) { 854 (void) fprintf(stderr, gettext("cannot zero first %d bytes " 855 "of '%s': %s\n"), size, path, strerror(errno)); 856 return (-1); 857 } 858 859 if (err != size) { 860 (void) fprintf(stderr, gettext("could only zero %d/%d bytes " 861 "of '%s'\n"), err, size, path); 862 return (-1); 863 } 864 865 return (0); 866 } 867 868 /* 869 * Go through and find any whole disks in the vdev specification, labelling them 870 * as appropriate. When constructing the vdev spec, we were unable to open this 871 * device in order to provide a devid. Now that we have labelled the disk and 872 * know that slice 0 is valid, we can construct the devid now. 873 * 874 * If the disk was already labeled with an EFI label, we will have gotten the 875 * devid already (because we were able to open the whole disk). Otherwise, we 876 * need to get the devid after we label the disk. 877 */ 878 static int 879 make_disks(zpool_handle_t *zhp, nvlist_t *nv) 880 { 881 nvlist_t **child; 882 uint_t c, children; 883 char *type, *path; 884 char devpath[MAXPATHLEN]; 885 char udevpath[MAXPATHLEN]; 886 uint64_t wholedisk; 887 struct stat64 statbuf; 888 int is_exclusive = 0; 889 int fd; 890 int ret; 891 892 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 893 894 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 895 &child, &children) != 0) { 896 897 if (strcmp(type, VDEV_TYPE_DISK) != 0) 898 return (0); 899 900 /* 901 * We have a disk device. If this is a whole disk write 902 * out the efi partition table, otherwise write zero's to 903 * the first 4k of the partition. This is to ensure that 904 * libblkid will not misidentify the partition due to a 905 * magic value left by the previous filesystem. 906 */ 907 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); 908 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 909 &wholedisk)); 910 911 if (!wholedisk) { 912 /* 913 * Update device id string for mpath nodes (Linux only) 914 */ 915 if (is_mpath_whole_disk(path)) 916 update_vdev_config_dev_strs(nv); 917 918 if (!is_spare(NULL, path)) 919 (void) zero_label(path); 920 return (0); 921 } 922 923 if (realpath(path, devpath) == NULL) { 924 ret = errno; 925 (void) fprintf(stderr, 926 gettext("cannot resolve path '%s'\n"), path); 927 return (ret); 928 } 929 930 /* 931 * Remove any previously existing symlink from a udev path to 932 * the device before labeling the disk. This ensures that 933 * only newly created links are used. Otherwise there is a 934 * window between when udev deletes and recreates the link 935 * during which access attempts will fail with ENOENT. 936 */ 937 strlcpy(udevpath, path, MAXPATHLEN); 938 (void) zfs_append_partition(udevpath, MAXPATHLEN); 939 940 fd = open(devpath, O_RDWR|O_EXCL); 941 if (fd == -1) { 942 if (errno == EBUSY) 943 is_exclusive = 1; 944 #ifdef __FreeBSD__ 945 if (errno == EPERM) 946 is_exclusive = 1; 947 #endif 948 } else { 949 (void) close(fd); 950 } 951 952 /* 953 * If the partition exists, contains a valid spare label, 954 * and is opened exclusively there is no need to partition 955 * it. Hot spares have already been partitioned and are 956 * held open exclusively by the kernel as a safety measure. 957 * 958 * If the provided path is for a /dev/disk/ device its 959 * symbolic link will be removed, partition table created, 960 * and then block until udev creates the new link. 961 */ 962 if (!is_exclusive && !is_spare(NULL, udevpath)) { 963 char *devnode = strrchr(devpath, '/') + 1; 964 965 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT)); 966 if (ret == 0) { 967 ret = lstat64(udevpath, &statbuf); 968 if (ret == 0 && S_ISLNK(statbuf.st_mode)) 969 (void) unlink(udevpath); 970 } 971 972 /* 973 * When labeling a pool the raw device node name 974 * is provided as it appears under /dev/. 975 */ 976 if (zpool_label_disk(g_zfs, zhp, devnode) == -1) 977 return (-1); 978 979 /* 980 * Wait for udev to signal the device is available 981 * by the provided path. 982 */ 983 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT); 984 if (ret) { 985 (void) fprintf(stderr, 986 gettext("missing link: %s was " 987 "partitioned but %s is missing\n"), 988 devnode, udevpath); 989 return (ret); 990 } 991 992 ret = zero_label(udevpath); 993 if (ret) 994 return (ret); 995 } 996 997 /* 998 * Update the path to refer to the partition. The presence of 999 * the 'whole_disk' field indicates to the CLI that we should 1000 * chop off the partition number when displaying the device in 1001 * future output. 1002 */ 1003 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0); 1004 1005 /* 1006 * Update device id strings for whole disks (Linux only) 1007 */ 1008 update_vdev_config_dev_strs(nv); 1009 1010 return (0); 1011 } 1012 1013 for (c = 0; c < children; c++) 1014 if ((ret = make_disks(zhp, child[c])) != 0) 1015 return (ret); 1016 1017 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1018 &child, &children) == 0) 1019 for (c = 0; c < children; c++) 1020 if ((ret = make_disks(zhp, child[c])) != 0) 1021 return (ret); 1022 1023 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1024 &child, &children) == 0) 1025 for (c = 0; c < children; c++) 1026 if ((ret = make_disks(zhp, child[c])) != 0) 1027 return (ret); 1028 1029 return (0); 1030 } 1031 1032 /* 1033 * Go through and find any devices that are in use. We rely on libdiskmgt for 1034 * the majority of this task. 1035 */ 1036 static boolean_t 1037 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1038 boolean_t replacing, boolean_t isspare) 1039 { 1040 nvlist_t **child; 1041 uint_t c, children; 1042 char *type, *path; 1043 int ret = 0; 1044 char buf[MAXPATHLEN]; 1045 uint64_t wholedisk = B_FALSE; 1046 boolean_t anyinuse = B_FALSE; 1047 1048 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1049 1050 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1051 &child, &children) != 0) { 1052 1053 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); 1054 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1055 verify(!nvlist_lookup_uint64(nv, 1056 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk)); 1057 1058 /* 1059 * As a generic check, we look to see if this is a replace of a 1060 * hot spare within the same pool. If so, we allow it 1061 * regardless of what libblkid or zpool_in_use() says. 1062 */ 1063 if (replacing) { 1064 (void) strlcpy(buf, path, sizeof (buf)); 1065 if (wholedisk) { 1066 ret = zfs_append_partition(buf, sizeof (buf)); 1067 if (ret == -1) 1068 return (-1); 1069 } 1070 1071 if (is_spare(config, buf)) 1072 return (B_FALSE); 1073 } 1074 1075 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1076 ret = check_device(path, force, isspare, wholedisk); 1077 1078 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1079 ret = check_file(path, force, isspare); 1080 1081 return (ret != 0); 1082 } 1083 1084 for (c = 0; c < children; c++) 1085 if (is_device_in_use(config, child[c], force, replacing, 1086 B_FALSE)) 1087 anyinuse = B_TRUE; 1088 1089 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1090 &child, &children) == 0) 1091 for (c = 0; c < children; c++) 1092 if (is_device_in_use(config, child[c], force, replacing, 1093 B_TRUE)) 1094 anyinuse = B_TRUE; 1095 1096 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1097 &child, &children) == 0) 1098 for (c = 0; c < children; c++) 1099 if (is_device_in_use(config, child[c], force, replacing, 1100 B_FALSE)) 1101 anyinuse = B_TRUE; 1102 1103 return (anyinuse); 1104 } 1105 1106 static const char * 1107 is_grouping(const char *type, int *mindev, int *maxdev) 1108 { 1109 if (strncmp(type, "raidz", 5) == 0) { 1110 const char *p = type + 5; 1111 char *end; 1112 long nparity; 1113 1114 if (*p == '\0') { 1115 nparity = 1; 1116 } else if (*p == '0') { 1117 return (NULL); /* no zero prefixes allowed */ 1118 } else { 1119 errno = 0; 1120 nparity = strtol(p, &end, 10); 1121 if (errno != 0 || nparity < 1 || nparity >= 255 || 1122 *end != '\0') 1123 return (NULL); 1124 } 1125 1126 if (mindev != NULL) 1127 *mindev = nparity + 1; 1128 if (maxdev != NULL) 1129 *maxdev = 255; 1130 return (VDEV_TYPE_RAIDZ); 1131 } 1132 1133 if (maxdev != NULL) 1134 *maxdev = INT_MAX; 1135 1136 if (strcmp(type, "mirror") == 0) { 1137 if (mindev != NULL) 1138 *mindev = 2; 1139 return (VDEV_TYPE_MIRROR); 1140 } 1141 1142 if (strcmp(type, "spare") == 0) { 1143 if (mindev != NULL) 1144 *mindev = 1; 1145 return (VDEV_TYPE_SPARE); 1146 } 1147 1148 if (strcmp(type, "log") == 0) { 1149 if (mindev != NULL) 1150 *mindev = 1; 1151 return (VDEV_TYPE_LOG); 1152 } 1153 1154 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 || 1155 strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) { 1156 if (mindev != NULL) 1157 *mindev = 1; 1158 return (type); 1159 } 1160 1161 if (strcmp(type, "cache") == 0) { 1162 if (mindev != NULL) 1163 *mindev = 1; 1164 return (VDEV_TYPE_L2CACHE); 1165 } 1166 1167 return (NULL); 1168 } 1169 1170 /* 1171 * Construct a syntactically valid vdev specification, 1172 * and ensure that all devices and files exist and can be opened. 1173 * Note: we don't bother freeing anything in the error paths 1174 * because the program is just going to exit anyway. 1175 */ 1176 static nvlist_t * 1177 construct_spec(nvlist_t *props, int argc, char **argv) 1178 { 1179 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1180 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1181 const char *type; 1182 uint64_t is_log, is_special, is_dedup; 1183 boolean_t seen_logs; 1184 1185 top = NULL; 1186 toplevels = 0; 1187 spares = NULL; 1188 l2cache = NULL; 1189 nspares = 0; 1190 nlogs = 0; 1191 nl2cache = 0; 1192 is_log = is_special = is_dedup = B_FALSE; 1193 seen_logs = B_FALSE; 1194 nvroot = NULL; 1195 1196 while (argc > 0) { 1197 nv = NULL; 1198 1199 /* 1200 * If it's a mirror or raidz, the subsequent arguments are 1201 * its leaves -- until we encounter the next mirror or raidz. 1202 */ 1203 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { 1204 nvlist_t **child = NULL; 1205 int c, children = 0; 1206 1207 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1208 if (spares != NULL) { 1209 (void) fprintf(stderr, 1210 gettext("invalid vdev " 1211 "specification: 'spare' can be " 1212 "specified only once\n")); 1213 goto spec_out; 1214 } 1215 is_log = is_special = is_dedup = B_FALSE; 1216 } 1217 1218 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1219 if (seen_logs) { 1220 (void) fprintf(stderr, 1221 gettext("invalid vdev " 1222 "specification: 'log' can be " 1223 "specified only once\n")); 1224 goto spec_out; 1225 } 1226 seen_logs = B_TRUE; 1227 is_log = B_TRUE; 1228 is_special = B_FALSE; 1229 is_dedup = B_FALSE; 1230 argc--; 1231 argv++; 1232 /* 1233 * A log is not a real grouping device. 1234 * We just set is_log and continue. 1235 */ 1236 continue; 1237 } 1238 1239 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) { 1240 is_special = B_TRUE; 1241 is_log = B_FALSE; 1242 is_dedup = B_FALSE; 1243 argc--; 1244 argv++; 1245 continue; 1246 } 1247 1248 if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) { 1249 is_dedup = B_TRUE; 1250 is_log = B_FALSE; 1251 is_special = B_FALSE; 1252 argc--; 1253 argv++; 1254 continue; 1255 } 1256 1257 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1258 if (l2cache != NULL) { 1259 (void) fprintf(stderr, 1260 gettext("invalid vdev " 1261 "specification: 'cache' can be " 1262 "specified only once\n")); 1263 goto spec_out; 1264 } 1265 is_log = is_special = is_dedup = B_FALSE; 1266 } 1267 1268 if (is_log || is_special || is_dedup) { 1269 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1270 (void) fprintf(stderr, 1271 gettext("invalid vdev " 1272 "specification: unsupported '%s' " 1273 "device: %s\n"), is_log ? "log" : 1274 "special", type); 1275 goto spec_out; 1276 } 1277 nlogs++; 1278 } 1279 1280 for (c = 1; c < argc; c++) { 1281 if (is_grouping(argv[c], NULL, NULL) != NULL) 1282 break; 1283 children++; 1284 child = realloc(child, 1285 children * sizeof (nvlist_t *)); 1286 if (child == NULL) 1287 zpool_no_memory(); 1288 if ((nv = make_leaf_vdev(props, argv[c], 1289 B_FALSE)) == NULL) { 1290 for (c = 0; c < children - 1; c++) 1291 nvlist_free(child[c]); 1292 free(child); 1293 goto spec_out; 1294 } 1295 1296 child[children - 1] = nv; 1297 } 1298 1299 if (children < mindev) { 1300 (void) fprintf(stderr, gettext("invalid vdev " 1301 "specification: %s requires at least %d " 1302 "devices\n"), argv[0], mindev); 1303 for (c = 0; c < children; c++) 1304 nvlist_free(child[c]); 1305 free(child); 1306 goto spec_out; 1307 } 1308 1309 if (children > maxdev) { 1310 (void) fprintf(stderr, gettext("invalid vdev " 1311 "specification: %s supports no more than " 1312 "%d devices\n"), argv[0], maxdev); 1313 for (c = 0; c < children; c++) 1314 nvlist_free(child[c]); 1315 free(child); 1316 goto spec_out; 1317 } 1318 1319 argc -= c; 1320 argv += c; 1321 1322 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1323 spares = child; 1324 nspares = children; 1325 continue; 1326 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1327 l2cache = child; 1328 nl2cache = children; 1329 continue; 1330 } else { 1331 /* create a top-level vdev with children */ 1332 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1333 0) == 0); 1334 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1335 type) == 0); 1336 verify(nvlist_add_uint64(nv, 1337 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1338 if (is_log) 1339 verify(nvlist_add_string(nv, 1340 ZPOOL_CONFIG_ALLOCATION_BIAS, 1341 VDEV_ALLOC_BIAS_LOG) == 0); 1342 if (is_special) { 1343 verify(nvlist_add_string(nv, 1344 ZPOOL_CONFIG_ALLOCATION_BIAS, 1345 VDEV_ALLOC_BIAS_SPECIAL) == 0); 1346 } 1347 if (is_dedup) { 1348 verify(nvlist_add_string(nv, 1349 ZPOOL_CONFIG_ALLOCATION_BIAS, 1350 VDEV_ALLOC_BIAS_DEDUP) == 0); 1351 } 1352 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1353 verify(nvlist_add_uint64(nv, 1354 ZPOOL_CONFIG_NPARITY, 1355 mindev - 1) == 0); 1356 } 1357 verify(nvlist_add_nvlist_array(nv, 1358 ZPOOL_CONFIG_CHILDREN, child, 1359 children) == 0); 1360 1361 for (c = 0; c < children; c++) 1362 nvlist_free(child[c]); 1363 free(child); 1364 } 1365 } else { 1366 /* 1367 * We have a device. Pass off to make_leaf_vdev() to 1368 * construct the appropriate nvlist describing the vdev. 1369 */ 1370 if ((nv = make_leaf_vdev(props, argv[0], 1371 is_log)) == NULL) 1372 goto spec_out; 1373 1374 if (is_log) 1375 nlogs++; 1376 if (is_special) { 1377 verify(nvlist_add_string(nv, 1378 ZPOOL_CONFIG_ALLOCATION_BIAS, 1379 VDEV_ALLOC_BIAS_SPECIAL) == 0); 1380 } 1381 if (is_dedup) { 1382 verify(nvlist_add_string(nv, 1383 ZPOOL_CONFIG_ALLOCATION_BIAS, 1384 VDEV_ALLOC_BIAS_DEDUP) == 0); 1385 } 1386 argc--; 1387 argv++; 1388 } 1389 1390 toplevels++; 1391 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1392 if (top == NULL) 1393 zpool_no_memory(); 1394 top[toplevels - 1] = nv; 1395 } 1396 1397 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1398 (void) fprintf(stderr, gettext("invalid vdev " 1399 "specification: at least one toplevel vdev must be " 1400 "specified\n")); 1401 goto spec_out; 1402 } 1403 1404 if (seen_logs && nlogs == 0) { 1405 (void) fprintf(stderr, gettext("invalid vdev specification: " 1406 "log requires at least 1 device\n")); 1407 goto spec_out; 1408 } 1409 1410 /* 1411 * Finally, create nvroot and add all top-level vdevs to it. 1412 */ 1413 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1414 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1415 VDEV_TYPE_ROOT) == 0); 1416 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1417 top, toplevels) == 0); 1418 if (nspares != 0) 1419 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1420 spares, nspares) == 0); 1421 if (nl2cache != 0) 1422 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1423 l2cache, nl2cache) == 0); 1424 1425 spec_out: 1426 for (t = 0; t < toplevels; t++) 1427 nvlist_free(top[t]); 1428 for (t = 0; t < nspares; t++) 1429 nvlist_free(spares[t]); 1430 for (t = 0; t < nl2cache; t++) 1431 nvlist_free(l2cache[t]); 1432 1433 free(spares); 1434 free(l2cache); 1435 free(top); 1436 1437 return (nvroot); 1438 } 1439 1440 nvlist_t * 1441 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1442 splitflags_t flags, int argc, char **argv) 1443 { 1444 nvlist_t *newroot = NULL, **child; 1445 uint_t c, children; 1446 1447 if (argc > 0) { 1448 if ((newroot = construct_spec(props, argc, argv)) == NULL) { 1449 (void) fprintf(stderr, gettext("Unable to build a " 1450 "pool from the specified devices\n")); 1451 return (NULL); 1452 } 1453 1454 if (!flags.dryrun && make_disks(zhp, newroot) != 0) { 1455 nvlist_free(newroot); 1456 return (NULL); 1457 } 1458 1459 /* avoid any tricks in the spec */ 1460 verify(nvlist_lookup_nvlist_array(newroot, 1461 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1462 for (c = 0; c < children; c++) { 1463 char *path; 1464 const char *type; 1465 int min, max; 1466 1467 verify(nvlist_lookup_string(child[c], 1468 ZPOOL_CONFIG_PATH, &path) == 0); 1469 if ((type = is_grouping(path, &min, &max)) != NULL) { 1470 (void) fprintf(stderr, gettext("Cannot use " 1471 "'%s' as a device for splitting\n"), type); 1472 nvlist_free(newroot); 1473 return (NULL); 1474 } 1475 } 1476 } 1477 1478 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1479 nvlist_free(newroot); 1480 return (NULL); 1481 } 1482 1483 return (newroot); 1484 } 1485 1486 static int 1487 num_normal_vdevs(nvlist_t *nvroot) 1488 { 1489 nvlist_t **top; 1490 uint_t t, toplevels, normal = 0; 1491 1492 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1493 &top, &toplevels) == 0); 1494 1495 for (t = 0; t < toplevels; t++) { 1496 uint64_t log = B_FALSE; 1497 1498 (void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log); 1499 if (log) 1500 continue; 1501 if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS)) 1502 continue; 1503 1504 normal++; 1505 } 1506 1507 return (normal); 1508 } 1509 1510 /* 1511 * Get and validate the contents of the given vdev specification. This ensures 1512 * that the nvlist returned is well-formed, that all the devices exist, and that 1513 * they are not currently in use by any other known consumer. The 'poolconfig' 1514 * parameter is the current configuration of the pool when adding devices 1515 * existing pool, and is used to perform additional checks, such as changing the 1516 * replication level of the pool. It can be 'NULL' to indicate that this is a 1517 * new pool. The 'force' flag controls whether devices should be forcefully 1518 * added, even if they appear in use. 1519 */ 1520 nvlist_t * 1521 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep, 1522 boolean_t replacing, boolean_t dryrun, int argc, char **argv) 1523 { 1524 nvlist_t *newroot; 1525 nvlist_t *poolconfig = NULL; 1526 is_force = force; 1527 1528 /* 1529 * Construct the vdev specification. If this is successful, we know 1530 * that we have a valid specification, and that all devices can be 1531 * opened. 1532 */ 1533 if ((newroot = construct_spec(props, argc, argv)) == NULL) 1534 return (NULL); 1535 1536 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) { 1537 nvlist_free(newroot); 1538 return (NULL); 1539 } 1540 1541 /* 1542 * Validate each device to make sure that it's not shared with another 1543 * subsystem. We do this even if 'force' is set, because there are some 1544 * uses (such as a dedicated dump device) that even '-f' cannot 1545 * override. 1546 */ 1547 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1548 nvlist_free(newroot); 1549 return (NULL); 1550 } 1551 1552 /* 1553 * Check the replication level of the given vdevs and report any errors 1554 * found. We include the existing pool spec, if any, as we need to 1555 * catch changes against the existing replication level. 1556 */ 1557 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1558 nvlist_free(newroot); 1559 return (NULL); 1560 } 1561 1562 /* 1563 * On pool create the new vdev spec must have one normal vdev. 1564 */ 1565 if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) { 1566 vdev_error(gettext("at least one general top-level vdev must " 1567 "be specified\n")); 1568 nvlist_free(newroot); 1569 return (NULL); 1570 } 1571 1572 /* 1573 * Run through the vdev specification and label any whole disks found. 1574 */ 1575 if (!dryrun && make_disks(zhp, newroot) != 0) { 1576 nvlist_free(newroot); 1577 return (NULL); 1578 } 1579 1580 return (newroot); 1581 } 1582