1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2016, 2017 Intel Corporation. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 27 */ 28 29 /* 30 * Functions to convert between a list of vdevs and an nvlist representing the 31 * configuration. Each entry in the list can be one of: 32 * 33 * Device vdevs 34 * disk=(path=..., devid=...) 35 * file=(path=...) 36 * 37 * Group vdevs 38 * raidz[1|2]=(...) 39 * mirror=(...) 40 * 41 * Hot spares 42 * 43 * While the underlying implementation supports it, group vdevs cannot contain 44 * other group vdevs. All userland verification of devices is contained within 45 * this file. If successful, the nvlist returned can be passed directly to the 46 * kernel; we've done as much verification as possible in userland. 47 * 48 * Hot spares are a special case, and passed down as an array of disk vdevs, at 49 * the same level as the root of the vdev tree. 50 * 51 * The only function exported by this file is 'make_root_vdev'. The 52 * function performs several passes: 53 * 54 * 1. Construct the vdev specification. Performs syntax validation and 55 * makes sure each device is valid. 56 * 2. Check for devices in use. Using libblkid to make sure that no 57 * devices are also in use. Some can be overridden using the 'force' 58 * flag, others cannot. 59 * 3. Check for replication errors if the 'force' flag is not specified. 60 * validates that the replication level is consistent across the 61 * entire pool. 62 * 4. Call libzfs to label any whole disks with an EFI label. 63 */ 64 65 #include <assert.h> 66 #include <ctype.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <libzutil.h> 72 #include <limits.h> 73 #include <sys/spa.h> 74 #include <stdio.h> 75 #include <string.h> 76 #include <unistd.h> 77 #include "zpool_util.h" 78 #include <sys/zfs_context.h> 79 #include <sys/stat.h> 80 81 /* 82 * For any given vdev specification, we can have multiple errors. The 83 * vdev_error() function keeps track of whether we have seen an error yet, and 84 * prints out a header if its the first error we've seen. 85 */ 86 boolean_t error_seen; 87 boolean_t is_force; 88 89 void 90 vdev_error(const char *fmt, ...) 91 { 92 va_list ap; 93 94 if (!error_seen) { 95 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 96 if (!is_force) 97 (void) fprintf(stderr, gettext("use '-f' to override " 98 "the following errors:\n")); 99 else 100 (void) fprintf(stderr, gettext("the following errors " 101 "must be manually repaired:\n")); 102 error_seen = B_TRUE; 103 } 104 105 va_start(ap, fmt); 106 (void) vfprintf(stderr, fmt, ap); 107 va_end(ap); 108 } 109 110 /* 111 * Check that a file is valid. All we can do in this case is check that it's 112 * not in use by another pool, and not in use by swap. 113 */ 114 int 115 check_file_generic(const char *file, boolean_t force, boolean_t isspare) 116 { 117 char *name; 118 int fd; 119 int ret = 0; 120 pool_state_t state; 121 boolean_t inuse; 122 123 if ((fd = open(file, O_RDONLY)) < 0) 124 return (0); 125 126 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 127 const char *desc; 128 129 switch (state) { 130 case POOL_STATE_ACTIVE: 131 desc = gettext("active"); 132 break; 133 134 case POOL_STATE_EXPORTED: 135 desc = gettext("exported"); 136 break; 137 138 case POOL_STATE_POTENTIALLY_ACTIVE: 139 desc = gettext("potentially active"); 140 break; 141 142 default: 143 desc = gettext("unknown"); 144 break; 145 } 146 147 /* 148 * Allow hot spares to be shared between pools. 149 */ 150 if (state == POOL_STATE_SPARE && isspare) { 151 free(name); 152 (void) close(fd); 153 return (0); 154 } 155 156 if (state == POOL_STATE_ACTIVE || 157 state == POOL_STATE_SPARE || !force) { 158 switch (state) { 159 case POOL_STATE_SPARE: 160 vdev_error(gettext("%s is reserved as a hot " 161 "spare for pool %s\n"), file, name); 162 break; 163 default: 164 vdev_error(gettext("%s is part of %s pool " 165 "'%s'\n"), file, desc, name); 166 break; 167 } 168 ret = -1; 169 } 170 171 free(name); 172 } 173 174 (void) close(fd); 175 return (ret); 176 } 177 178 /* 179 * This may be a shorthand device path or it could be total gibberish. 180 * Check to see if it is a known device available in zfs_vdev_paths. 181 * As part of this check, see if we've been given an entire disk 182 * (minus the slice number). 183 */ 184 static int 185 is_shorthand_path(const char *arg, char *path, size_t path_size, 186 struct stat64 *statbuf, boolean_t *wholedisk) 187 { 188 int error; 189 190 error = zfs_resolve_shortname(arg, path, path_size); 191 if (error == 0) { 192 *wholedisk = zfs_dev_is_whole_disk(path); 193 if (*wholedisk || (stat64(path, statbuf) == 0)) 194 return (0); 195 } 196 197 strlcpy(path, arg, path_size); 198 memset(statbuf, 0, sizeof (*statbuf)); 199 *wholedisk = B_FALSE; 200 201 return (error); 202 } 203 204 /* 205 * Determine if the given path is a hot spare within the given configuration. 206 * If no configuration is given we rely solely on the label. 207 */ 208 static boolean_t 209 is_spare(nvlist_t *config, const char *path) 210 { 211 int fd; 212 pool_state_t state; 213 char *name = NULL; 214 nvlist_t *label; 215 uint64_t guid, spareguid; 216 nvlist_t *nvroot; 217 nvlist_t **spares; 218 uint_t i, nspares; 219 boolean_t inuse; 220 221 if (zpool_is_draid_spare(path)) 222 return (B_TRUE); 223 224 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0) 225 return (B_FALSE); 226 227 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 228 !inuse || 229 state != POOL_STATE_SPARE || 230 zpool_read_label(fd, &label, NULL) != 0) { 231 free(name); 232 (void) close(fd); 233 return (B_FALSE); 234 } 235 free(name); 236 (void) close(fd); 237 238 if (config == NULL) { 239 nvlist_free(label); 240 return (B_TRUE); 241 } 242 243 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 244 nvlist_free(label); 245 246 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 247 &nvroot) == 0); 248 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 249 &spares, &nspares) == 0) { 250 for (i = 0; i < nspares; i++) { 251 verify(nvlist_lookup_uint64(spares[i], 252 ZPOOL_CONFIG_GUID, &spareguid) == 0); 253 if (spareguid == guid) 254 return (B_TRUE); 255 } 256 } 257 258 return (B_FALSE); 259 } 260 261 /* 262 * Create a leaf vdev. Determine if this is a file or a device. If it's a 263 * device, fill in the device id to make a complete nvlist. Valid forms for a 264 * leaf vdev are: 265 * 266 * /dev/xxx Complete disk path 267 * /xxx Full path to file 268 * xxx Shorthand for <zfs_vdev_paths>/xxx 269 * draid* Virtual dRAID spare 270 */ 271 static nvlist_t * 272 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary) 273 { 274 char path[MAXPATHLEN]; 275 struct stat64 statbuf; 276 nvlist_t *vdev = NULL; 277 const char *type = NULL; 278 boolean_t wholedisk = B_FALSE; 279 uint64_t ashift = 0; 280 int err; 281 282 /* 283 * Determine what type of vdev this is, and put the full path into 284 * 'path'. We detect whether this is a device of file afterwards by 285 * checking the st_mode of the file. 286 */ 287 if (arg[0] == '/') { 288 /* 289 * Complete device or file path. Exact type is determined by 290 * examining the file descriptor afterwards. Symbolic links 291 * are resolved to their real paths to determine whole disk 292 * and S_ISBLK/S_ISREG type checks. However, we are careful 293 * to store the given path as ZPOOL_CONFIG_PATH to ensure we 294 * can leverage udev's persistent device labels. 295 */ 296 if (realpath(arg, path) == NULL) { 297 (void) fprintf(stderr, 298 gettext("cannot resolve path '%s'\n"), arg); 299 return (NULL); 300 } 301 302 wholedisk = zfs_dev_is_whole_disk(path); 303 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 304 (void) fprintf(stderr, 305 gettext("cannot open '%s': %s\n"), 306 path, strerror(errno)); 307 return (NULL); 308 } 309 310 /* After whole disk check restore original passed path */ 311 strlcpy(path, arg, sizeof (path)); 312 } else if (zpool_is_draid_spare(arg)) { 313 if (!is_primary) { 314 (void) fprintf(stderr, 315 gettext("cannot open '%s': dRAID spares can only " 316 "be used to replace primary vdevs\n"), arg); 317 return (NULL); 318 } 319 320 wholedisk = B_TRUE; 321 strlcpy(path, arg, sizeof (path)); 322 type = VDEV_TYPE_DRAID_SPARE; 323 } else { 324 err = is_shorthand_path(arg, path, sizeof (path), 325 &statbuf, &wholedisk); 326 if (err != 0) { 327 /* 328 * If we got ENOENT, then the user gave us 329 * gibberish, so try to direct them with a 330 * reasonable error message. Otherwise, 331 * regurgitate strerror() since it's the best we 332 * can do. 333 */ 334 if (err == ENOENT) { 335 (void) fprintf(stderr, 336 gettext("cannot open '%s': no such " 337 "device in %s\n"), arg, DISK_ROOT); 338 (void) fprintf(stderr, 339 gettext("must be a full path or " 340 "shorthand device name\n")); 341 return (NULL); 342 } else { 343 (void) fprintf(stderr, 344 gettext("cannot open '%s': %s\n"), 345 path, strerror(errno)); 346 return (NULL); 347 } 348 } 349 } 350 351 if (type == NULL) { 352 /* 353 * Determine whether this is a device or a file. 354 */ 355 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 356 type = VDEV_TYPE_DISK; 357 } else if (S_ISREG(statbuf.st_mode)) { 358 type = VDEV_TYPE_FILE; 359 } else { 360 fprintf(stderr, gettext("cannot use '%s': must " 361 "be a block device or regular file\n"), path); 362 return (NULL); 363 } 364 } 365 366 /* 367 * Finally, we have the complete device or file, and we know that it is 368 * acceptable to use. Construct the nvlist to describe this vdev. All 369 * vdevs have a 'path' element, and devices also have a 'devid' element. 370 */ 371 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 372 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 373 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 374 375 /* Lookup and add the enclosure sysfs path (if exists) */ 376 update_vdev_config_dev_sysfs_path(vdev, path, 377 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH); 378 379 if (strcmp(type, VDEV_TYPE_DISK) == 0) 380 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 381 (uint64_t)wholedisk) == 0); 382 383 /* 384 * Override defaults if custom properties are provided. 385 */ 386 if (props != NULL) { 387 const char *value = NULL; 388 389 if (nvlist_lookup_string(props, 390 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) { 391 if (zfs_nicestrtonum(NULL, value, &ashift) != 0) { 392 (void) fprintf(stderr, 393 gettext("ashift must be a number.\n")); 394 return (NULL); 395 } 396 if (ashift != 0 && 397 (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) { 398 (void) fprintf(stderr, 399 gettext("invalid 'ashift=%" PRIu64 "' " 400 "property: only values between %" PRId32 " " 401 "and %" PRId32 " are allowed.\n"), 402 ashift, ASHIFT_MIN, ASHIFT_MAX); 403 return (NULL); 404 } 405 } 406 } 407 408 /* 409 * If the device is known to incorrectly report its physical sector 410 * size explicitly provide the known correct value. 411 */ 412 if (ashift == 0) { 413 int sector_size; 414 415 if (check_sector_size_database(path, §or_size) == B_TRUE) 416 ashift = highbit64(sector_size) - 1; 417 } 418 419 if (ashift > 0) 420 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift); 421 422 return (vdev); 423 } 424 425 /* 426 * Go through and verify the replication level of the pool is consistent. 427 * Performs the following checks: 428 * 429 * For the new spec, verifies that devices in mirrors and raidz are the 430 * same size. 431 * 432 * If the current configuration already has inconsistent replication 433 * levels, ignore any other potential problems in the new spec. 434 * 435 * Otherwise, make sure that the current spec (if there is one) and the new 436 * spec have consistent replication levels. 437 * 438 * If there is no current spec (create), make sure new spec has at least 439 * one general purpose vdev. 440 */ 441 typedef struct replication_level { 442 const char *zprl_type; 443 uint64_t zprl_children; 444 uint64_t zprl_parity; 445 } replication_level_t; 446 447 #define ZPOOL_FUZZ (16 * 1024 * 1024) 448 449 /* 450 * N.B. For the purposes of comparing replication levels dRAID can be 451 * considered functionally equivalent to raidz. 452 */ 453 static boolean_t 454 is_raidz_mirror(replication_level_t *a, replication_level_t *b, 455 replication_level_t **raidz, replication_level_t **mirror) 456 { 457 if ((strcmp(a->zprl_type, "raidz") == 0 || 458 strcmp(a->zprl_type, "draid") == 0) && 459 strcmp(b->zprl_type, "mirror") == 0) { 460 *raidz = a; 461 *mirror = b; 462 return (B_TRUE); 463 } 464 return (B_FALSE); 465 } 466 467 /* 468 * Comparison for determining if dRAID and raidz where passed in either order. 469 */ 470 static boolean_t 471 is_raidz_draid(replication_level_t *a, replication_level_t *b) 472 { 473 if ((strcmp(a->zprl_type, "raidz") == 0 || 474 strcmp(a->zprl_type, "draid") == 0) && 475 (strcmp(b->zprl_type, "raidz") == 0 || 476 strcmp(b->zprl_type, "draid") == 0)) { 477 return (B_TRUE); 478 } 479 480 return (B_FALSE); 481 } 482 483 /* 484 * Given a list of toplevel vdevs, return the current replication level. If 485 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 486 * an error message will be displayed for each self-inconsistent vdev. 487 */ 488 static replication_level_t * 489 get_replication(nvlist_t *nvroot, boolean_t fatal) 490 { 491 nvlist_t **top; 492 uint_t t, toplevels; 493 nvlist_t **child; 494 uint_t c, children; 495 nvlist_t *nv; 496 const char *type; 497 replication_level_t lastrep = {0}; 498 replication_level_t rep; 499 replication_level_t *ret; 500 replication_level_t *raidz, *mirror; 501 boolean_t dontreport; 502 503 ret = safe_malloc(sizeof (replication_level_t)); 504 505 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 506 &top, &toplevels) == 0); 507 508 for (t = 0; t < toplevels; t++) { 509 uint64_t is_log = B_FALSE; 510 511 nv = top[t]; 512 513 /* 514 * For separate logs we ignore the top level vdev replication 515 * constraints. 516 */ 517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 518 if (is_log) 519 continue; 520 521 /* 522 * Ignore holes introduced by removing aux devices, along 523 * with indirect vdevs introduced by previously removed 524 * vdevs. 525 */ 526 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 527 if (strcmp(type, VDEV_TYPE_HOLE) == 0 || 528 strcmp(type, VDEV_TYPE_INDIRECT) == 0) 529 continue; 530 531 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 532 &child, &children) != 0) { 533 /* 534 * This is a 'file' or 'disk' vdev. 535 */ 536 rep.zprl_type = type; 537 rep.zprl_children = 1; 538 rep.zprl_parity = 0; 539 } else { 540 int64_t vdev_size; 541 542 /* 543 * This is a mirror or RAID-Z vdev. Go through and make 544 * sure the contents are all the same (files vs. disks), 545 * keeping track of the number of elements in the 546 * process. 547 * 548 * We also check that the size of each vdev (if it can 549 * be determined) is the same. 550 */ 551 rep.zprl_type = type; 552 rep.zprl_children = 0; 553 554 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 || 555 strcmp(type, VDEV_TYPE_DRAID) == 0) { 556 verify(nvlist_lookup_uint64(nv, 557 ZPOOL_CONFIG_NPARITY, 558 &rep.zprl_parity) == 0); 559 assert(rep.zprl_parity != 0); 560 } else { 561 rep.zprl_parity = 0; 562 } 563 564 /* 565 * The 'dontreport' variable indicates that we've 566 * already reported an error for this spec, so don't 567 * bother doing it again. 568 */ 569 type = NULL; 570 dontreport = 0; 571 vdev_size = -1LL; 572 for (c = 0; c < children; c++) { 573 nvlist_t *cnv = child[c]; 574 const char *path; 575 struct stat64 statbuf; 576 int64_t size = -1LL; 577 const char *childtype; 578 int fd, err; 579 580 rep.zprl_children++; 581 582 verify(nvlist_lookup_string(cnv, 583 ZPOOL_CONFIG_TYPE, &childtype) == 0); 584 585 /* 586 * If this is a replacing or spare vdev, then 587 * get the real first child of the vdev: do this 588 * in a loop because replacing and spare vdevs 589 * can be nested. 590 */ 591 while (strcmp(childtype, 592 VDEV_TYPE_REPLACING) == 0 || 593 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 594 nvlist_t **rchild; 595 uint_t rchildren; 596 597 verify(nvlist_lookup_nvlist_array(cnv, 598 ZPOOL_CONFIG_CHILDREN, &rchild, 599 &rchildren) == 0); 600 assert(rchildren == 2); 601 cnv = rchild[0]; 602 603 verify(nvlist_lookup_string(cnv, 604 ZPOOL_CONFIG_TYPE, 605 &childtype) == 0); 606 } 607 608 verify(nvlist_lookup_string(cnv, 609 ZPOOL_CONFIG_PATH, &path) == 0); 610 611 /* 612 * If we have a raidz/mirror that combines disks 613 * with files, report it as an error. 614 */ 615 if (!dontreport && type != NULL && 616 strcmp(type, childtype) != 0) { 617 if (ret != NULL) 618 free(ret); 619 ret = NULL; 620 if (fatal) 621 vdev_error(gettext( 622 "mismatched replication " 623 "level: %s contains both " 624 "files and devices\n"), 625 rep.zprl_type); 626 else 627 return (NULL); 628 dontreport = B_TRUE; 629 } 630 631 /* 632 * According to stat(2), the value of 'st_size' 633 * is undefined for block devices and character 634 * devices. But there is no effective way to 635 * determine the real size in userland. 636 * 637 * Instead, we'll take advantage of an 638 * implementation detail of spec_size(). If the 639 * device is currently open, then we (should) 640 * return a valid size. 641 * 642 * If we still don't get a valid size (indicated 643 * by a size of 0 or MAXOFFSET_T), then ignore 644 * this device altogether. 645 */ 646 if ((fd = open(path, O_RDONLY)) >= 0) { 647 err = fstat64_blk(fd, &statbuf); 648 (void) close(fd); 649 } else { 650 err = stat64(path, &statbuf); 651 } 652 653 if (err != 0 || 654 statbuf.st_size == 0 || 655 statbuf.st_size == MAXOFFSET_T) 656 continue; 657 658 size = statbuf.st_size; 659 660 /* 661 * Also make sure that devices and 662 * slices have a consistent size. If 663 * they differ by a significant amount 664 * (~16MB) then report an error. 665 */ 666 if (!dontreport && 667 (vdev_size != -1LL && 668 (llabs(size - vdev_size) > 669 ZPOOL_FUZZ))) { 670 if (ret != NULL) 671 free(ret); 672 ret = NULL; 673 if (fatal) 674 vdev_error(gettext( 675 "%s contains devices of " 676 "different sizes\n"), 677 rep.zprl_type); 678 else 679 return (NULL); 680 dontreport = B_TRUE; 681 } 682 683 type = childtype; 684 vdev_size = size; 685 } 686 } 687 688 /* 689 * At this point, we have the replication of the last toplevel 690 * vdev in 'rep'. Compare it to 'lastrep' to see if it is 691 * different. 692 */ 693 if (lastrep.zprl_type != NULL) { 694 if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) || 695 is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) { 696 /* 697 * Accepted raidz and mirror when they can 698 * handle the same number of disk failures. 699 */ 700 if (raidz->zprl_parity != 701 mirror->zprl_children - 1) { 702 if (ret != NULL) 703 free(ret); 704 ret = NULL; 705 if (fatal) 706 vdev_error(gettext( 707 "mismatched replication " 708 "level: " 709 "%s and %s vdevs with " 710 "different redundancy, " 711 "%llu vs. %llu (%llu-way) " 712 "are present\n"), 713 raidz->zprl_type, 714 mirror->zprl_type, 715 (u_longlong_t) 716 raidz->zprl_parity, 717 (u_longlong_t) 718 mirror->zprl_children - 1, 719 (u_longlong_t) 720 mirror->zprl_children); 721 else 722 return (NULL); 723 } 724 } else if (is_raidz_draid(&lastrep, &rep)) { 725 /* 726 * Accepted raidz and draid when they can 727 * handle the same number of disk failures. 728 */ 729 if (lastrep.zprl_parity != rep.zprl_parity) { 730 if (ret != NULL) 731 free(ret); 732 ret = NULL; 733 if (fatal) 734 vdev_error(gettext( 735 "mismatched replication " 736 "level: %s and %s vdevs " 737 "with different " 738 "redundancy, %llu vs. " 739 "%llu are present\n"), 740 lastrep.zprl_type, 741 rep.zprl_type, 742 (u_longlong_t) 743 lastrep.zprl_parity, 744 (u_longlong_t) 745 rep.zprl_parity); 746 else 747 return (NULL); 748 } 749 } else if (strcmp(lastrep.zprl_type, rep.zprl_type) != 750 0) { 751 if (ret != NULL) 752 free(ret); 753 ret = NULL; 754 if (fatal) 755 vdev_error(gettext( 756 "mismatched replication level: " 757 "both %s and %s vdevs are " 758 "present\n"), 759 lastrep.zprl_type, rep.zprl_type); 760 else 761 return (NULL); 762 } else if (lastrep.zprl_parity != rep.zprl_parity) { 763 if (ret) 764 free(ret); 765 ret = NULL; 766 if (fatal) 767 vdev_error(gettext( 768 "mismatched replication level: " 769 "both %llu and %llu device parity " 770 "%s vdevs are present\n"), 771 (u_longlong_t) 772 lastrep.zprl_parity, 773 (u_longlong_t)rep.zprl_parity, 774 rep.zprl_type); 775 else 776 return (NULL); 777 } else if (lastrep.zprl_children != rep.zprl_children) { 778 if (ret) 779 free(ret); 780 ret = NULL; 781 if (fatal) 782 vdev_error(gettext( 783 "mismatched replication level: " 784 "both %llu-way and %llu-way %s " 785 "vdevs are present\n"), 786 (u_longlong_t) 787 lastrep.zprl_children, 788 (u_longlong_t) 789 rep.zprl_children, 790 rep.zprl_type); 791 else 792 return (NULL); 793 } 794 } 795 lastrep = rep; 796 } 797 798 if (ret != NULL) 799 *ret = rep; 800 801 return (ret); 802 } 803 804 /* 805 * Check the replication level of the vdev spec against the current pool. Calls 806 * get_replication() to make sure the new spec is self-consistent. If the pool 807 * has a consistent replication level, then we ignore any errors. Otherwise, 808 * report any difference between the two. 809 */ 810 static int 811 check_replication(nvlist_t *config, nvlist_t *newroot) 812 { 813 nvlist_t **child; 814 uint_t children; 815 replication_level_t *current = NULL, *new; 816 replication_level_t *raidz, *mirror; 817 int ret; 818 819 /* 820 * If we have a current pool configuration, check to see if it's 821 * self-consistent. If not, simply return success. 822 */ 823 if (config != NULL) { 824 nvlist_t *nvroot; 825 826 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 827 &nvroot) == 0); 828 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 829 return (0); 830 } 831 /* 832 * for spares there may be no children, and therefore no 833 * replication level to check 834 */ 835 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 836 &child, &children) != 0) || (children == 0)) { 837 free(current); 838 return (0); 839 } 840 841 /* 842 * If all we have is logs then there's no replication level to check. 843 */ 844 if (num_logs(newroot) == children) { 845 free(current); 846 return (0); 847 } 848 849 /* 850 * Get the replication level of the new vdev spec, reporting any 851 * inconsistencies found. 852 */ 853 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 854 free(current); 855 return (-1); 856 } 857 858 /* 859 * Check to see if the new vdev spec matches the replication level of 860 * the current pool. 861 */ 862 ret = 0; 863 if (current != NULL) { 864 if (is_raidz_mirror(current, new, &raidz, &mirror) || 865 is_raidz_mirror(new, current, &raidz, &mirror)) { 866 if (raidz->zprl_parity != mirror->zprl_children - 1) { 867 vdev_error(gettext( 868 "mismatched replication level: pool and " 869 "new vdev with different redundancy, %s " 870 "and %s vdevs, %llu vs. %llu (%llu-way)\n"), 871 raidz->zprl_type, 872 mirror->zprl_type, 873 (u_longlong_t)raidz->zprl_parity, 874 (u_longlong_t)mirror->zprl_children - 1, 875 (u_longlong_t)mirror->zprl_children); 876 ret = -1; 877 } 878 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) { 879 vdev_error(gettext( 880 "mismatched replication level: pool uses %s " 881 "and new vdev is %s\n"), 882 current->zprl_type, new->zprl_type); 883 ret = -1; 884 } else if (current->zprl_parity != new->zprl_parity) { 885 vdev_error(gettext( 886 "mismatched replication level: pool uses %llu " 887 "device parity and new vdev uses %llu\n"), 888 (u_longlong_t)current->zprl_parity, 889 (u_longlong_t)new->zprl_parity); 890 ret = -1; 891 } else if (current->zprl_children != new->zprl_children) { 892 vdev_error(gettext( 893 "mismatched replication level: pool uses %llu-way " 894 "%s and new vdev uses %llu-way %s\n"), 895 (u_longlong_t)current->zprl_children, 896 current->zprl_type, 897 (u_longlong_t)new->zprl_children, 898 new->zprl_type); 899 ret = -1; 900 } 901 } 902 903 free(new); 904 if (current != NULL) 905 free(current); 906 907 return (ret); 908 } 909 910 static int 911 zero_label(const char *path) 912 { 913 const int size = 4096; 914 char buf[size]; 915 int err, fd; 916 917 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) { 918 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), 919 path, strerror(errno)); 920 return (-1); 921 } 922 923 memset(buf, 0, size); 924 err = write(fd, buf, size); 925 (void) fdatasync(fd); 926 (void) close(fd); 927 928 if (err == -1) { 929 (void) fprintf(stderr, gettext("cannot zero first %d bytes " 930 "of '%s': %s\n"), size, path, strerror(errno)); 931 return (-1); 932 } 933 934 if (err != size) { 935 (void) fprintf(stderr, gettext("could only zero %d/%d bytes " 936 "of '%s'\n"), err, size, path); 937 return (-1); 938 } 939 940 return (0); 941 } 942 943 static void 944 lines_to_stderr(char *lines[], int lines_cnt) 945 { 946 int i; 947 for (i = 0; i < lines_cnt; i++) { 948 fprintf(stderr, "%s\n", lines[i]); 949 } 950 } 951 952 /* 953 * Go through and find any whole disks in the vdev specification, labelling them 954 * as appropriate. When constructing the vdev spec, we were unable to open this 955 * device in order to provide a devid. Now that we have labelled the disk and 956 * know that slice 0 is valid, we can construct the devid now. 957 * 958 * If the disk was already labeled with an EFI label, we will have gotten the 959 * devid already (because we were able to open the whole disk). Otherwise, we 960 * need to get the devid after we label the disk. 961 */ 962 static int 963 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing) 964 { 965 nvlist_t **child; 966 uint_t c, children; 967 const char *type, *path; 968 char devpath[MAXPATHLEN]; 969 char udevpath[MAXPATHLEN]; 970 uint64_t wholedisk; 971 struct stat64 statbuf; 972 int is_exclusive = 0; 973 int fd; 974 int ret; 975 976 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 977 978 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 979 &child, &children) != 0) { 980 981 if (strcmp(type, VDEV_TYPE_DISK) != 0) 982 return (0); 983 984 /* 985 * We have a disk device. If this is a whole disk write 986 * out the efi partition table, otherwise write zero's to 987 * the first 4k of the partition. This is to ensure that 988 * libblkid will not misidentify the partition due to a 989 * magic value left by the previous filesystem. 990 */ 991 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); 992 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 993 &wholedisk)); 994 995 if (!wholedisk) { 996 /* 997 * Update device id string for mpath nodes (Linux only) 998 */ 999 if (is_mpath_whole_disk(path)) 1000 update_vdev_config_dev_strs(nv); 1001 1002 if (!is_spare(NULL, path)) 1003 (void) zero_label(path); 1004 return (0); 1005 } 1006 1007 if (realpath(path, devpath) == NULL) { 1008 ret = errno; 1009 (void) fprintf(stderr, 1010 gettext("cannot resolve path '%s'\n"), path); 1011 return (ret); 1012 } 1013 1014 /* 1015 * Remove any previously existing symlink from a udev path to 1016 * the device before labeling the disk. This ensures that 1017 * only newly created links are used. Otherwise there is a 1018 * window between when udev deletes and recreates the link 1019 * during which access attempts will fail with ENOENT. 1020 */ 1021 strlcpy(udevpath, path, MAXPATHLEN); 1022 (void) zfs_append_partition(udevpath, MAXPATHLEN); 1023 1024 fd = open(devpath, O_RDWR|O_EXCL); 1025 if (fd == -1) { 1026 if (errno == EBUSY) 1027 is_exclusive = 1; 1028 #ifdef __FreeBSD__ 1029 if (errno == EPERM) 1030 is_exclusive = 1; 1031 #endif 1032 } else { 1033 (void) close(fd); 1034 } 1035 1036 /* 1037 * If the partition exists, contains a valid spare label, 1038 * and is opened exclusively there is no need to partition 1039 * it. Hot spares have already been partitioned and are 1040 * held open exclusively by the kernel as a safety measure. 1041 * 1042 * If the provided path is for a /dev/disk/ device its 1043 * symbolic link will be removed, partition table created, 1044 * and then block until udev creates the new link. 1045 */ 1046 if (!is_exclusive && !is_spare(NULL, udevpath)) { 1047 char *devnode = strrchr(devpath, '/') + 1; 1048 char **lines = NULL; 1049 int lines_cnt = 0; 1050 1051 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT)); 1052 if (ret == 0) { 1053 ret = lstat64(udevpath, &statbuf); 1054 if (ret == 0 && S_ISLNK(statbuf.st_mode)) 1055 (void) unlink(udevpath); 1056 } 1057 1058 /* 1059 * When labeling a pool the raw device node name 1060 * is provided as it appears under /dev/. 1061 * 1062 * Note that 'zhp' will be NULL when we're creating a 1063 * pool. 1064 */ 1065 if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode, 1066 nv, zhp == NULL ? "create" : 1067 replacing ? "replace" : "add", &lines, 1068 &lines_cnt) != 0) { 1069 (void) fprintf(stderr, 1070 gettext( 1071 "Error preparing/labeling disk.\n")); 1072 if (lines_cnt > 0) { 1073 (void) fprintf(stderr, 1074 gettext("zfs_prepare_disk output:\n")); 1075 lines_to_stderr(lines, lines_cnt); 1076 } 1077 1078 libzfs_free_str_array(lines, lines_cnt); 1079 return (-1); 1080 } 1081 libzfs_free_str_array(lines, lines_cnt); 1082 1083 /* 1084 * Wait for udev to signal the device is available 1085 * by the provided path. 1086 */ 1087 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT); 1088 if (ret) { 1089 (void) fprintf(stderr, 1090 gettext("missing link: %s was " 1091 "partitioned but %s is missing\n"), 1092 devnode, udevpath); 1093 return (ret); 1094 } 1095 1096 ret = zero_label(udevpath); 1097 if (ret) 1098 return (ret); 1099 } 1100 1101 /* 1102 * Update the path to refer to the partition. The presence of 1103 * the 'whole_disk' field indicates to the CLI that we should 1104 * chop off the partition number when displaying the device in 1105 * future output. 1106 */ 1107 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0); 1108 1109 /* 1110 * Update device id strings for whole disks (Linux only) 1111 */ 1112 update_vdev_config_dev_strs(nv); 1113 1114 return (0); 1115 } 1116 1117 for (c = 0; c < children; c++) 1118 if ((ret = make_disks(zhp, child[c], replacing)) != 0) 1119 return (ret); 1120 1121 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1122 &child, &children) == 0) 1123 for (c = 0; c < children; c++) 1124 if ((ret = make_disks(zhp, child[c], replacing)) != 0) 1125 return (ret); 1126 1127 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1128 &child, &children) == 0) 1129 for (c = 0; c < children; c++) 1130 if ((ret = make_disks(zhp, child[c], replacing)) != 0) 1131 return (ret); 1132 1133 return (0); 1134 } 1135 1136 /* 1137 * Go through and find any devices that are in use. We rely on libdiskmgt for 1138 * the majority of this task. 1139 */ 1140 static boolean_t 1141 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1142 boolean_t replacing, boolean_t isspare) 1143 { 1144 nvlist_t **child; 1145 uint_t c, children; 1146 const char *type, *path; 1147 int ret = 0; 1148 char buf[MAXPATHLEN]; 1149 uint64_t wholedisk = B_FALSE; 1150 boolean_t anyinuse = B_FALSE; 1151 1152 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1153 1154 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1155 &child, &children) != 0) { 1156 1157 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); 1158 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1159 verify(!nvlist_lookup_uint64(nv, 1160 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk)); 1161 1162 /* 1163 * As a generic check, we look to see if this is a replace of a 1164 * hot spare within the same pool. If so, we allow it 1165 * regardless of what libblkid or zpool_in_use() says. 1166 */ 1167 if (replacing) { 1168 (void) strlcpy(buf, path, sizeof (buf)); 1169 if (wholedisk) { 1170 ret = zfs_append_partition(buf, sizeof (buf)); 1171 if (ret == -1) 1172 return (-1); 1173 } 1174 1175 if (is_spare(config, buf)) 1176 return (B_FALSE); 1177 } 1178 1179 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1180 ret = check_device(path, force, isspare, wholedisk); 1181 1182 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1183 ret = check_file(path, force, isspare); 1184 1185 return (ret != 0); 1186 } 1187 1188 for (c = 0; c < children; c++) 1189 if (is_device_in_use(config, child[c], force, replacing, 1190 B_FALSE)) 1191 anyinuse = B_TRUE; 1192 1193 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1194 &child, &children) == 0) 1195 for (c = 0; c < children; c++) 1196 if (is_device_in_use(config, child[c], force, replacing, 1197 B_TRUE)) 1198 anyinuse = B_TRUE; 1199 1200 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1201 &child, &children) == 0) 1202 for (c = 0; c < children; c++) 1203 if (is_device_in_use(config, child[c], force, replacing, 1204 B_FALSE)) 1205 anyinuse = B_TRUE; 1206 1207 return (anyinuse); 1208 } 1209 1210 /* 1211 * Returns the parity level extracted from a raidz or draid type. 1212 * If the parity cannot be determined zero is returned. 1213 */ 1214 static int 1215 get_parity(const char *type) 1216 { 1217 long parity = 0; 1218 const char *p; 1219 1220 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) { 1221 p = type + strlen(VDEV_TYPE_RAIDZ); 1222 1223 if (*p == '\0') { 1224 /* when unspecified default to single parity */ 1225 return (1); 1226 } else if (*p == '0') { 1227 /* no zero prefixes allowed */ 1228 return (0); 1229 } else { 1230 /* 0-3, no suffixes allowed */ 1231 char *end; 1232 errno = 0; 1233 parity = strtol(p, &end, 10); 1234 if (errno != 0 || *end != '\0' || 1235 parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) { 1236 return (0); 1237 } 1238 } 1239 } else if (strncmp(type, VDEV_TYPE_DRAID, 1240 strlen(VDEV_TYPE_DRAID)) == 0) { 1241 p = type + strlen(VDEV_TYPE_DRAID); 1242 1243 if (*p == '\0' || *p == ':') { 1244 /* when unspecified default to single parity */ 1245 return (1); 1246 } else if (*p == '0') { 1247 /* no zero prefixes allowed */ 1248 return (0); 1249 } else { 1250 /* 0-3, allowed suffixes: '\0' or ':' */ 1251 char *end; 1252 errno = 0; 1253 parity = strtol(p, &end, 10); 1254 if (errno != 0 || 1255 parity < 1 || parity > VDEV_DRAID_MAXPARITY || 1256 (*end != '\0' && *end != ':')) { 1257 return (0); 1258 } 1259 } 1260 } 1261 1262 return ((int)parity); 1263 } 1264 1265 /* 1266 * Assign the minimum and maximum number of devices allowed for 1267 * the specified type. On error NULL is returned, otherwise the 1268 * type prefix is returned (raidz, mirror, etc). 1269 */ 1270 static const char * 1271 is_grouping(const char *type, int *mindev, int *maxdev) 1272 { 1273 int nparity; 1274 1275 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 || 1276 strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) { 1277 nparity = get_parity(type); 1278 if (nparity == 0) 1279 return (NULL); 1280 if (mindev != NULL) 1281 *mindev = nparity + 1; 1282 if (maxdev != NULL) 1283 *maxdev = 255; 1284 1285 if (strncmp(type, VDEV_TYPE_RAIDZ, 1286 strlen(VDEV_TYPE_RAIDZ)) == 0) { 1287 return (VDEV_TYPE_RAIDZ); 1288 } else { 1289 return (VDEV_TYPE_DRAID); 1290 } 1291 } 1292 1293 if (maxdev != NULL) 1294 *maxdev = INT_MAX; 1295 1296 if (strcmp(type, "mirror") == 0) { 1297 if (mindev != NULL) 1298 *mindev = 2; 1299 return (VDEV_TYPE_MIRROR); 1300 } 1301 1302 if (strcmp(type, "spare") == 0) { 1303 if (mindev != NULL) 1304 *mindev = 1; 1305 return (VDEV_TYPE_SPARE); 1306 } 1307 1308 if (strcmp(type, "log") == 0) { 1309 if (mindev != NULL) 1310 *mindev = 1; 1311 return (VDEV_TYPE_LOG); 1312 } 1313 1314 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 || 1315 strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) { 1316 if (mindev != NULL) 1317 *mindev = 1; 1318 return (type); 1319 } 1320 1321 if (strcmp(type, "cache") == 0) { 1322 if (mindev != NULL) 1323 *mindev = 1; 1324 return (VDEV_TYPE_L2CACHE); 1325 } 1326 1327 return (NULL); 1328 } 1329 1330 /* 1331 * Extract the configuration parameters encoded in the dRAID type and 1332 * use them to generate a dRAID configuration. The expected format is: 1333 * 1334 * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>] 1335 * 1336 * The intent is to be able to generate a good configuration when no 1337 * additional information is provided. The only mandatory component 1338 * of the 'type' is the 'draid' prefix. If a value is not provided 1339 * then reasonable defaults are used. The optional components may 1340 * appear in any order but the d/s/c suffix is required. 1341 * 1342 * Valid inputs: 1343 * - data: number of data devices per group (1-255) 1344 * - parity: number of parity blocks per group (1-3) 1345 * - spares: number of distributed spare (0-100) 1346 * - children: total number of devices (1-255) 1347 * 1348 * Examples: 1349 * - zpool create tank draid <devices...> 1350 * - zpool create tank draid2:8d:51c:2s <devices...> 1351 */ 1352 static int 1353 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children) 1354 { 1355 uint64_t nparity = 1; 1356 uint64_t nspares = 0; 1357 uint64_t ndata = UINT64_MAX; 1358 uint64_t ngroups = 1; 1359 long value; 1360 1361 if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0) 1362 return (EINVAL); 1363 1364 nparity = (uint64_t)get_parity(type); 1365 if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) { 1366 fprintf(stderr, 1367 gettext("invalid dRAID parity level %llu; must be " 1368 "between 1 and %d\n"), (u_longlong_t)nparity, 1369 VDEV_DRAID_MAXPARITY); 1370 return (EINVAL); 1371 } 1372 1373 char *p = (char *)type; 1374 while ((p = strchr(p, ':')) != NULL) { 1375 char *end; 1376 1377 p = p + 1; 1378 errno = 0; 1379 1380 if (!isdigit(p[0])) { 1381 (void) fprintf(stderr, gettext("invalid dRAID " 1382 "syntax; expected [:<number><c|d|s>] not '%s'\n"), 1383 type); 1384 return (EINVAL); 1385 } 1386 1387 /* Expected non-zero value with c/d/s suffix */ 1388 value = strtol(p, &end, 10); 1389 char suffix = tolower(*end); 1390 if (errno != 0 || 1391 (suffix != 'c' && suffix != 'd' && suffix != 's')) { 1392 (void) fprintf(stderr, gettext("invalid dRAID " 1393 "syntax; expected [:<number><c|d|s>] not '%s'\n"), 1394 type); 1395 return (EINVAL); 1396 } 1397 1398 if (suffix == 'c') { 1399 if ((uint64_t)value != children) { 1400 fprintf(stderr, 1401 gettext("invalid number of dRAID children; " 1402 "%llu required but %llu provided\n"), 1403 (u_longlong_t)value, 1404 (u_longlong_t)children); 1405 return (EINVAL); 1406 } 1407 } else if (suffix == 'd') { 1408 ndata = (uint64_t)value; 1409 } else if (suffix == 's') { 1410 nspares = (uint64_t)value; 1411 } else { 1412 verify(0); /* Unreachable */ 1413 } 1414 } 1415 1416 /* 1417 * When a specific number of data disks is not provided limit a 1418 * redundancy group to 8 data disks. This value was selected to 1419 * provide a reasonable tradeoff between capacity and performance. 1420 */ 1421 if (ndata == UINT64_MAX) { 1422 if (children > nspares + nparity) { 1423 ndata = MIN(children - nspares - nparity, 8); 1424 } else { 1425 fprintf(stderr, gettext("request number of " 1426 "distributed spares %llu and parity level %llu\n" 1427 "leaves no disks available for data\n"), 1428 (u_longlong_t)nspares, (u_longlong_t)nparity); 1429 return (EINVAL); 1430 } 1431 } 1432 1433 /* Verify the maximum allowed group size is never exceeded. */ 1434 if (ndata == 0 || (ndata + nparity > children - nspares)) { 1435 fprintf(stderr, gettext("requested number of dRAID data " 1436 "disks per group %llu is too high,\nat most %llu disks " 1437 "are available for data\n"), (u_longlong_t)ndata, 1438 (u_longlong_t)(children - nspares - nparity)); 1439 return (EINVAL); 1440 } 1441 1442 /* 1443 * Verify the requested number of spares can be satisfied. 1444 * An arbitrary limit of 100 distributed spares is applied. 1445 */ 1446 if (nspares > 100 || nspares > (children - (ndata + nparity))) { 1447 fprintf(stderr, 1448 gettext("invalid number of dRAID spares %llu; additional " 1449 "disks would be required\n"), (u_longlong_t)nspares); 1450 return (EINVAL); 1451 } 1452 1453 /* Verify the requested number children is sufficient. */ 1454 if (children < (ndata + nparity + nspares)) { 1455 fprintf(stderr, gettext("%llu disks were provided, but at " 1456 "least %llu disks are required for this config\n"), 1457 (u_longlong_t)children, 1458 (u_longlong_t)(ndata + nparity + nspares)); 1459 } 1460 1461 if (children > VDEV_DRAID_MAX_CHILDREN) { 1462 fprintf(stderr, gettext("%llu disks were provided, but " 1463 "dRAID only supports up to %u disks"), 1464 (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN); 1465 } 1466 1467 /* 1468 * Calculate the minimum number of groups required to fill a slice. 1469 * This is the LCM of the stripe width (ndata + nparity) and the 1470 * number of data drives (children - nspares). 1471 */ 1472 while (ngroups * (ndata + nparity) % (children - nspares) != 0) 1473 ngroups++; 1474 1475 /* Store the basic dRAID configuration. */ 1476 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity); 1477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata); 1478 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares); 1479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups); 1480 1481 return (0); 1482 } 1483 1484 /* 1485 * Construct a syntactically valid vdev specification, 1486 * and ensure that all devices and files exist and can be opened. 1487 * Note: we don't bother freeing anything in the error paths 1488 * because the program is just going to exit anyway. 1489 */ 1490 static nvlist_t * 1491 construct_spec(nvlist_t *props, int argc, char **argv) 1492 { 1493 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1494 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1495 const char *type, *fulltype; 1496 boolean_t is_log, is_special, is_dedup, is_spare; 1497 boolean_t seen_logs; 1498 1499 top = NULL; 1500 toplevels = 0; 1501 spares = NULL; 1502 l2cache = NULL; 1503 nspares = 0; 1504 nlogs = 0; 1505 nl2cache = 0; 1506 is_log = is_special = is_dedup = is_spare = B_FALSE; 1507 seen_logs = B_FALSE; 1508 nvroot = NULL; 1509 1510 while (argc > 0) { 1511 fulltype = argv[0]; 1512 nv = NULL; 1513 1514 /* 1515 * If it's a mirror, raidz, or draid the subsequent arguments 1516 * are its leaves -- until we encounter the next mirror, 1517 * raidz or draid. 1518 */ 1519 if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) { 1520 nvlist_t **child = NULL; 1521 int c, children = 0; 1522 1523 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1524 if (spares != NULL) { 1525 (void) fprintf(stderr, 1526 gettext("invalid vdev " 1527 "specification: 'spare' can be " 1528 "specified only once\n")); 1529 goto spec_out; 1530 } 1531 is_spare = B_TRUE; 1532 is_log = is_special = is_dedup = B_FALSE; 1533 } 1534 1535 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1536 if (seen_logs) { 1537 (void) fprintf(stderr, 1538 gettext("invalid vdev " 1539 "specification: 'log' can be " 1540 "specified only once\n")); 1541 goto spec_out; 1542 } 1543 seen_logs = B_TRUE; 1544 is_log = B_TRUE; 1545 is_special = is_dedup = is_spare = B_FALSE; 1546 argc--; 1547 argv++; 1548 /* 1549 * A log is not a real grouping device. 1550 * We just set is_log and continue. 1551 */ 1552 continue; 1553 } 1554 1555 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) { 1556 is_special = B_TRUE; 1557 is_log = is_dedup = is_spare = B_FALSE; 1558 argc--; 1559 argv++; 1560 continue; 1561 } 1562 1563 if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) { 1564 is_dedup = B_TRUE; 1565 is_log = is_special = is_spare = B_FALSE; 1566 argc--; 1567 argv++; 1568 continue; 1569 } 1570 1571 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1572 if (l2cache != NULL) { 1573 (void) fprintf(stderr, 1574 gettext("invalid vdev " 1575 "specification: 'cache' can be " 1576 "specified only once\n")); 1577 goto spec_out; 1578 } 1579 is_log = is_special = B_FALSE; 1580 is_dedup = is_spare = B_FALSE; 1581 } 1582 1583 if (is_log || is_special || is_dedup) { 1584 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1585 (void) fprintf(stderr, 1586 gettext("invalid vdev " 1587 "specification: unsupported '%s' " 1588 "device: %s\n"), is_log ? "log" : 1589 "special", type); 1590 goto spec_out; 1591 } 1592 nlogs++; 1593 } 1594 1595 for (c = 1; c < argc; c++) { 1596 if (is_grouping(argv[c], NULL, NULL) != NULL) 1597 break; 1598 1599 children++; 1600 child = realloc(child, 1601 children * sizeof (nvlist_t *)); 1602 if (child == NULL) 1603 zpool_no_memory(); 1604 if ((nv = make_leaf_vdev(props, argv[c], 1605 !(is_log || is_special || is_dedup || 1606 is_spare))) == NULL) { 1607 for (c = 0; c < children - 1; c++) 1608 nvlist_free(child[c]); 1609 free(child); 1610 goto spec_out; 1611 } 1612 1613 child[children - 1] = nv; 1614 } 1615 1616 if (children < mindev) { 1617 (void) fprintf(stderr, gettext("invalid vdev " 1618 "specification: %s requires at least %d " 1619 "devices\n"), argv[0], mindev); 1620 for (c = 0; c < children; c++) 1621 nvlist_free(child[c]); 1622 free(child); 1623 goto spec_out; 1624 } 1625 1626 if (children > maxdev) { 1627 (void) fprintf(stderr, gettext("invalid vdev " 1628 "specification: %s supports no more than " 1629 "%d devices\n"), argv[0], maxdev); 1630 for (c = 0; c < children; c++) 1631 nvlist_free(child[c]); 1632 free(child); 1633 goto spec_out; 1634 } 1635 1636 argc -= c; 1637 argv += c; 1638 1639 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1640 spares = child; 1641 nspares = children; 1642 continue; 1643 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1644 l2cache = child; 1645 nl2cache = children; 1646 continue; 1647 } else { 1648 /* create a top-level vdev with children */ 1649 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1650 0) == 0); 1651 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1652 type) == 0); 1653 verify(nvlist_add_uint64(nv, 1654 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1655 if (is_log) { 1656 verify(nvlist_add_string(nv, 1657 ZPOOL_CONFIG_ALLOCATION_BIAS, 1658 VDEV_ALLOC_BIAS_LOG) == 0); 1659 } 1660 if (is_special) { 1661 verify(nvlist_add_string(nv, 1662 ZPOOL_CONFIG_ALLOCATION_BIAS, 1663 VDEV_ALLOC_BIAS_SPECIAL) == 0); 1664 } 1665 if (is_dedup) { 1666 verify(nvlist_add_string(nv, 1667 ZPOOL_CONFIG_ALLOCATION_BIAS, 1668 VDEV_ALLOC_BIAS_DEDUP) == 0); 1669 } 1670 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1671 verify(nvlist_add_uint64(nv, 1672 ZPOOL_CONFIG_NPARITY, 1673 mindev - 1) == 0); 1674 } 1675 if (strcmp(type, VDEV_TYPE_DRAID) == 0) { 1676 if (draid_config_by_type(nv, 1677 fulltype, children) != 0) { 1678 for (c = 0; c < children; c++) 1679 nvlist_free(child[c]); 1680 free(child); 1681 goto spec_out; 1682 } 1683 } 1684 verify(nvlist_add_nvlist_array(nv, 1685 ZPOOL_CONFIG_CHILDREN, 1686 (const nvlist_t **)child, children) == 0); 1687 1688 for (c = 0; c < children; c++) 1689 nvlist_free(child[c]); 1690 free(child); 1691 } 1692 } else { 1693 /* 1694 * We have a device. Pass off to make_leaf_vdev() to 1695 * construct the appropriate nvlist describing the vdev. 1696 */ 1697 if ((nv = make_leaf_vdev(props, argv[0], !(is_log || 1698 is_special || is_dedup || is_spare))) == NULL) 1699 goto spec_out; 1700 1701 verify(nvlist_add_uint64(nv, 1702 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1703 if (is_log) { 1704 verify(nvlist_add_string(nv, 1705 ZPOOL_CONFIG_ALLOCATION_BIAS, 1706 VDEV_ALLOC_BIAS_LOG) == 0); 1707 nlogs++; 1708 } 1709 1710 if (is_special) { 1711 verify(nvlist_add_string(nv, 1712 ZPOOL_CONFIG_ALLOCATION_BIAS, 1713 VDEV_ALLOC_BIAS_SPECIAL) == 0); 1714 } 1715 if (is_dedup) { 1716 verify(nvlist_add_string(nv, 1717 ZPOOL_CONFIG_ALLOCATION_BIAS, 1718 VDEV_ALLOC_BIAS_DEDUP) == 0); 1719 } 1720 argc--; 1721 argv++; 1722 } 1723 1724 toplevels++; 1725 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1726 if (top == NULL) 1727 zpool_no_memory(); 1728 top[toplevels - 1] = nv; 1729 } 1730 1731 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1732 (void) fprintf(stderr, gettext("invalid vdev " 1733 "specification: at least one toplevel vdev must be " 1734 "specified\n")); 1735 goto spec_out; 1736 } 1737 1738 if (seen_logs && nlogs == 0) { 1739 (void) fprintf(stderr, gettext("invalid vdev specification: " 1740 "log requires at least 1 device\n")); 1741 goto spec_out; 1742 } 1743 1744 /* 1745 * Finally, create nvroot and add all top-level vdevs to it. 1746 */ 1747 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1748 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1749 VDEV_TYPE_ROOT) == 0); 1750 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1751 (const nvlist_t **)top, toplevels) == 0); 1752 if (nspares != 0) 1753 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1754 (const nvlist_t **)spares, nspares) == 0); 1755 if (nl2cache != 0) 1756 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1757 (const nvlist_t **)l2cache, nl2cache) == 0); 1758 1759 spec_out: 1760 for (t = 0; t < toplevels; t++) 1761 nvlist_free(top[t]); 1762 for (t = 0; t < nspares; t++) 1763 nvlist_free(spares[t]); 1764 for (t = 0; t < nl2cache; t++) 1765 nvlist_free(l2cache[t]); 1766 1767 free(spares); 1768 free(l2cache); 1769 free(top); 1770 1771 return (nvroot); 1772 } 1773 1774 nvlist_t * 1775 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1776 splitflags_t flags, int argc, char **argv) 1777 { 1778 nvlist_t *newroot = NULL, **child; 1779 uint_t c, children; 1780 1781 if (argc > 0) { 1782 if ((newroot = construct_spec(props, argc, argv)) == NULL) { 1783 (void) fprintf(stderr, gettext("Unable to build a " 1784 "pool from the specified devices\n")); 1785 return (NULL); 1786 } 1787 1788 if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) { 1789 nvlist_free(newroot); 1790 return (NULL); 1791 } 1792 1793 /* avoid any tricks in the spec */ 1794 verify(nvlist_lookup_nvlist_array(newroot, 1795 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1796 for (c = 0; c < children; c++) { 1797 const char *path; 1798 const char *type; 1799 int min, max; 1800 1801 verify(nvlist_lookup_string(child[c], 1802 ZPOOL_CONFIG_PATH, &path) == 0); 1803 if ((type = is_grouping(path, &min, &max)) != NULL) { 1804 (void) fprintf(stderr, gettext("Cannot use " 1805 "'%s' as a device for splitting\n"), type); 1806 nvlist_free(newroot); 1807 return (NULL); 1808 } 1809 } 1810 } 1811 1812 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1813 nvlist_free(newroot); 1814 return (NULL); 1815 } 1816 1817 return (newroot); 1818 } 1819 1820 static int 1821 num_normal_vdevs(nvlist_t *nvroot) 1822 { 1823 nvlist_t **top; 1824 uint_t t, toplevels, normal = 0; 1825 1826 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1827 &top, &toplevels) == 0); 1828 1829 for (t = 0; t < toplevels; t++) { 1830 uint64_t log = B_FALSE; 1831 1832 (void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log); 1833 if (log) 1834 continue; 1835 if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS)) 1836 continue; 1837 1838 normal++; 1839 } 1840 1841 return (normal); 1842 } 1843 1844 /* 1845 * Get and validate the contents of the given vdev specification. This ensures 1846 * that the nvlist returned is well-formed, that all the devices exist, and that 1847 * they are not currently in use by any other known consumer. The 'poolconfig' 1848 * parameter is the current configuration of the pool when adding devices 1849 * existing pool, and is used to perform additional checks, such as changing the 1850 * replication level of the pool. It can be 'NULL' to indicate that this is a 1851 * new pool. The 'force' flag controls whether devices should be forcefully 1852 * added, even if they appear in use. 1853 */ 1854 nvlist_t * 1855 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep, 1856 boolean_t replacing, boolean_t dryrun, int argc, char **argv) 1857 { 1858 nvlist_t *newroot; 1859 nvlist_t *poolconfig = NULL; 1860 is_force = force; 1861 1862 /* 1863 * Construct the vdev specification. If this is successful, we know 1864 * that we have a valid specification, and that all devices can be 1865 * opened. 1866 */ 1867 if ((newroot = construct_spec(props, argc, argv)) == NULL) 1868 return (NULL); 1869 1870 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) { 1871 nvlist_free(newroot); 1872 return (NULL); 1873 } 1874 1875 /* 1876 * Validate each device to make sure that it's not shared with another 1877 * subsystem. We do this even if 'force' is set, because there are some 1878 * uses (such as a dedicated dump device) that even '-f' cannot 1879 * override. 1880 */ 1881 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1882 nvlist_free(newroot); 1883 return (NULL); 1884 } 1885 1886 /* 1887 * Check the replication level of the given vdevs and report any errors 1888 * found. We include the existing pool spec, if any, as we need to 1889 * catch changes against the existing replication level. 1890 */ 1891 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1892 nvlist_free(newroot); 1893 return (NULL); 1894 } 1895 1896 /* 1897 * On pool create the new vdev spec must have one normal vdev. 1898 */ 1899 if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) { 1900 vdev_error(gettext("at least one general top-level vdev must " 1901 "be specified\n")); 1902 nvlist_free(newroot); 1903 return (NULL); 1904 } 1905 1906 /* 1907 * Run through the vdev specification and label any whole disks found. 1908 */ 1909 if (!dryrun && make_disks(zhp, newroot, replacing) != 0) { 1910 nvlist_free(newroot); 1911 return (NULL); 1912 } 1913 1914 return (newroot); 1915 } 1916