xref: /freebsd/sys/contrib/openzfs/cmd/zpool/zpool_vdev.c (revision 2e620256bd76c449c835c604e404483437743011)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2016, 2017 Intel Corporation.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27  */
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libblkid to make sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
79 #include <sys/stat.h>
80 
81 /*
82  * For any given vdev specification, we can have multiple errors.  The
83  * vdev_error() function keeps track of whether we have seen an error yet, and
84  * prints out a header if its the first error we've seen.
85  */
86 boolean_t error_seen;
87 boolean_t is_force;
88 
89 void
90 vdev_error(const char *fmt, ...)
91 {
92 	va_list ap;
93 
94 	if (!error_seen) {
95 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
96 		if (!is_force)
97 			(void) fprintf(stderr, gettext("use '-f' to override "
98 			    "the following errors:\n"));
99 		else
100 			(void) fprintf(stderr, gettext("the following errors "
101 			    "must be manually repaired:\n"));
102 		error_seen = B_TRUE;
103 	}
104 
105 	va_start(ap, fmt);
106 	(void) vfprintf(stderr, fmt, ap);
107 	va_end(ap);
108 }
109 
110 /*
111  * Check that a file is valid.  All we can do in this case is check that it's
112  * not in use by another pool, and not in use by swap.
113  */
114 int
115 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
116 {
117 	char  *name;
118 	int fd;
119 	int ret = 0;
120 	pool_state_t state;
121 	boolean_t inuse;
122 
123 	if ((fd = open(file, O_RDONLY)) < 0)
124 		return (0);
125 
126 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
127 		const char *desc;
128 
129 		switch (state) {
130 		case POOL_STATE_ACTIVE:
131 			desc = gettext("active");
132 			break;
133 
134 		case POOL_STATE_EXPORTED:
135 			desc = gettext("exported");
136 			break;
137 
138 		case POOL_STATE_POTENTIALLY_ACTIVE:
139 			desc = gettext("potentially active");
140 			break;
141 
142 		default:
143 			desc = gettext("unknown");
144 			break;
145 		}
146 
147 		/*
148 		 * Allow hot spares to be shared between pools.
149 		 */
150 		if (state == POOL_STATE_SPARE && isspare) {
151 			free(name);
152 			(void) close(fd);
153 			return (0);
154 		}
155 
156 		if (state == POOL_STATE_ACTIVE ||
157 		    state == POOL_STATE_SPARE || !force) {
158 			switch (state) {
159 			case POOL_STATE_SPARE:
160 				vdev_error(gettext("%s is reserved as a hot "
161 				    "spare for pool %s\n"), file, name);
162 				break;
163 			default:
164 				vdev_error(gettext("%s is part of %s pool "
165 				    "'%s'\n"), file, desc, name);
166 				break;
167 			}
168 			ret = -1;
169 		}
170 
171 		free(name);
172 	}
173 
174 	(void) close(fd);
175 	return (ret);
176 }
177 
178 /*
179  * This may be a shorthand device path or it could be total gibberish.
180  * Check to see if it is a known device available in zfs_vdev_paths.
181  * As part of this check, see if we've been given an entire disk
182  * (minus the slice number).
183  */
184 static int
185 is_shorthand_path(const char *arg, char *path, size_t path_size,
186     struct stat64 *statbuf, boolean_t *wholedisk)
187 {
188 	int error;
189 
190 	error = zfs_resolve_shortname(arg, path, path_size);
191 	if (error == 0) {
192 		*wholedisk = zfs_dev_is_whole_disk(path);
193 		if (*wholedisk || (stat64(path, statbuf) == 0))
194 			return (0);
195 	}
196 
197 	strlcpy(path, arg, path_size);
198 	memset(statbuf, 0, sizeof (*statbuf));
199 	*wholedisk = B_FALSE;
200 
201 	return (error);
202 }
203 
204 /*
205  * Determine if the given path is a hot spare within the given configuration.
206  * If no configuration is given we rely solely on the label.
207  */
208 static boolean_t
209 is_spare(nvlist_t *config, const char *path)
210 {
211 	int fd;
212 	pool_state_t state;
213 	char *name = NULL;
214 	nvlist_t *label;
215 	uint64_t guid, spareguid;
216 	nvlist_t *nvroot;
217 	nvlist_t **spares;
218 	uint_t i, nspares;
219 	boolean_t inuse;
220 
221 	if (zpool_is_draid_spare(path))
222 		return (B_TRUE);
223 
224 	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
225 		return (B_FALSE);
226 
227 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
228 	    !inuse ||
229 	    state != POOL_STATE_SPARE ||
230 	    zpool_read_label(fd, &label, NULL) != 0) {
231 		free(name);
232 		(void) close(fd);
233 		return (B_FALSE);
234 	}
235 	free(name);
236 	(void) close(fd);
237 
238 	if (config == NULL) {
239 		nvlist_free(label);
240 		return (B_TRUE);
241 	}
242 
243 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
244 	nvlist_free(label);
245 
246 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
247 	    &nvroot) == 0);
248 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
249 	    &spares, &nspares) == 0) {
250 		for (i = 0; i < nspares; i++) {
251 			verify(nvlist_lookup_uint64(spares[i],
252 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
253 			if (spareguid == guid)
254 				return (B_TRUE);
255 		}
256 	}
257 
258 	return (B_FALSE);
259 }
260 
261 /*
262  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
263  * device, fill in the device id to make a complete nvlist.  Valid forms for a
264  * leaf vdev are:
265  *
266  *	/dev/xxx	Complete disk path
267  *	/xxx		Full path to file
268  *	xxx		Shorthand for <zfs_vdev_paths>/xxx
269  *	draid*		Virtual dRAID spare
270  */
271 static nvlist_t *
272 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
273 {
274 	char path[MAXPATHLEN];
275 	struct stat64 statbuf;
276 	nvlist_t *vdev = NULL;
277 	const char *type = NULL;
278 	boolean_t wholedisk = B_FALSE;
279 	uint64_t ashift = 0;
280 	int err;
281 
282 	/*
283 	 * Determine what type of vdev this is, and put the full path into
284 	 * 'path'.  We detect whether this is a device of file afterwards by
285 	 * checking the st_mode of the file.
286 	 */
287 	if (arg[0] == '/') {
288 		/*
289 		 * Complete device or file path.  Exact type is determined by
290 		 * examining the file descriptor afterwards.  Symbolic links
291 		 * are resolved to their real paths to determine whole disk
292 		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
293 		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
294 		 * can leverage udev's persistent device labels.
295 		 */
296 		if (realpath(arg, path) == NULL) {
297 			(void) fprintf(stderr,
298 			    gettext("cannot resolve path '%s'\n"), arg);
299 			return (NULL);
300 		}
301 
302 		wholedisk = zfs_dev_is_whole_disk(path);
303 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
304 			(void) fprintf(stderr,
305 			    gettext("cannot open '%s': %s\n"),
306 			    path, strerror(errno));
307 			return (NULL);
308 		}
309 
310 		/* After whole disk check restore original passed path */
311 		strlcpy(path, arg, sizeof (path));
312 	} else if (zpool_is_draid_spare(arg)) {
313 		if (!is_primary) {
314 			(void) fprintf(stderr,
315 			    gettext("cannot open '%s': dRAID spares can only "
316 			    "be used to replace primary vdevs\n"), arg);
317 			return (NULL);
318 		}
319 
320 		wholedisk = B_TRUE;
321 		strlcpy(path, arg, sizeof (path));
322 		type = VDEV_TYPE_DRAID_SPARE;
323 	} else {
324 		err = is_shorthand_path(arg, path, sizeof (path),
325 		    &statbuf, &wholedisk);
326 		if (err != 0) {
327 			/*
328 			 * If we got ENOENT, then the user gave us
329 			 * gibberish, so try to direct them with a
330 			 * reasonable error message.  Otherwise,
331 			 * regurgitate strerror() since it's the best we
332 			 * can do.
333 			 */
334 			if (err == ENOENT) {
335 				(void) fprintf(stderr,
336 				    gettext("cannot open '%s': no such "
337 				    "device in %s\n"), arg, DISK_ROOT);
338 				(void) fprintf(stderr,
339 				    gettext("must be a full path or "
340 				    "shorthand device name\n"));
341 				return (NULL);
342 			} else {
343 				(void) fprintf(stderr,
344 				    gettext("cannot open '%s': %s\n"),
345 				    path, strerror(errno));
346 				return (NULL);
347 			}
348 		}
349 	}
350 
351 	if (type == NULL) {
352 		/*
353 		 * Determine whether this is a device or a file.
354 		 */
355 		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
356 			type = VDEV_TYPE_DISK;
357 		} else if (S_ISREG(statbuf.st_mode)) {
358 			type = VDEV_TYPE_FILE;
359 		} else {
360 			fprintf(stderr, gettext("cannot use '%s': must "
361 			    "be a block device or regular file\n"), path);
362 			return (NULL);
363 		}
364 	}
365 
366 	/*
367 	 * Finally, we have the complete device or file, and we know that it is
368 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
369 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
370 	 */
371 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
372 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
373 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
374 
375 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
376 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
377 		    (uint64_t)wholedisk) == 0);
378 
379 	/*
380 	 * Override defaults if custom properties are provided.
381 	 */
382 	if (props != NULL) {
383 		const char *value = NULL;
384 
385 		if (nvlist_lookup_string(props,
386 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
387 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
388 				(void) fprintf(stderr,
389 				    gettext("ashift must be a number.\n"));
390 				return (NULL);
391 			}
392 			if (ashift != 0 &&
393 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
394 				(void) fprintf(stderr,
395 				    gettext("invalid 'ashift=%" PRIu64 "' "
396 				    "property: only values between %" PRId32 " "
397 				    "and %" PRId32 " are allowed.\n"),
398 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
399 				return (NULL);
400 			}
401 		}
402 	}
403 
404 	/*
405 	 * If the device is known to incorrectly report its physical sector
406 	 * size explicitly provide the known correct value.
407 	 */
408 	if (ashift == 0) {
409 		int sector_size;
410 
411 		if (check_sector_size_database(path, &sector_size) == B_TRUE)
412 			ashift = highbit64(sector_size) - 1;
413 	}
414 
415 	if (ashift > 0)
416 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
417 
418 	return (vdev);
419 }
420 
421 /*
422  * Go through and verify the replication level of the pool is consistent.
423  * Performs the following checks:
424  *
425  * 	For the new spec, verifies that devices in mirrors and raidz are the
426  * 	same size.
427  *
428  * 	If the current configuration already has inconsistent replication
429  * 	levels, ignore any other potential problems in the new spec.
430  *
431  * 	Otherwise, make sure that the current spec (if there is one) and the new
432  * 	spec have consistent replication levels.
433  *
434  *	If there is no current spec (create), make sure new spec has at least
435  *	one general purpose vdev.
436  */
437 typedef struct replication_level {
438 	const char *zprl_type;
439 	uint64_t zprl_children;
440 	uint64_t zprl_parity;
441 } replication_level_t;
442 
443 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
444 
445 /*
446  * N.B. For the purposes of comparing replication levels dRAID can be
447  * considered functionally equivalent to raidz.
448  */
449 static boolean_t
450 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
451     replication_level_t **raidz, replication_level_t **mirror)
452 {
453 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
454 	    strcmp(a->zprl_type, "draid") == 0) &&
455 	    strcmp(b->zprl_type, "mirror") == 0) {
456 		*raidz = a;
457 		*mirror = b;
458 		return (B_TRUE);
459 	}
460 	return (B_FALSE);
461 }
462 
463 /*
464  * Comparison for determining if dRAID and raidz where passed in either order.
465  */
466 static boolean_t
467 is_raidz_draid(replication_level_t *a, replication_level_t *b)
468 {
469 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
470 	    strcmp(a->zprl_type, "draid") == 0) &&
471 	    (strcmp(b->zprl_type, "raidz") == 0 ||
472 	    strcmp(b->zprl_type, "draid") == 0)) {
473 		return (B_TRUE);
474 	}
475 
476 	return (B_FALSE);
477 }
478 
479 /*
480  * Given a list of toplevel vdevs, return the current replication level.  If
481  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
482  * an error message will be displayed for each self-inconsistent vdev.
483  */
484 static replication_level_t *
485 get_replication(nvlist_t *nvroot, boolean_t fatal)
486 {
487 	nvlist_t **top;
488 	uint_t t, toplevels;
489 	nvlist_t **child;
490 	uint_t c, children;
491 	nvlist_t *nv;
492 	const char *type;
493 	replication_level_t lastrep = {0};
494 	replication_level_t rep;
495 	replication_level_t *ret;
496 	replication_level_t *raidz, *mirror;
497 	boolean_t dontreport;
498 
499 	ret = safe_malloc(sizeof (replication_level_t));
500 
501 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
502 	    &top, &toplevels) == 0);
503 
504 	for (t = 0; t < toplevels; t++) {
505 		uint64_t is_log = B_FALSE;
506 
507 		nv = top[t];
508 
509 		/*
510 		 * For separate logs we ignore the top level vdev replication
511 		 * constraints.
512 		 */
513 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
514 		if (is_log)
515 			continue;
516 
517 		/*
518 		 * Ignore holes introduced by removing aux devices, along
519 		 * with indirect vdevs introduced by previously removed
520 		 * vdevs.
521 		 */
522 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
523 		if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
524 		    strcmp(type, VDEV_TYPE_INDIRECT) == 0)
525 			continue;
526 
527 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
528 		    &child, &children) != 0) {
529 			/*
530 			 * This is a 'file' or 'disk' vdev.
531 			 */
532 			rep.zprl_type = type;
533 			rep.zprl_children = 1;
534 			rep.zprl_parity = 0;
535 		} else {
536 			int64_t vdev_size;
537 
538 			/*
539 			 * This is a mirror or RAID-Z vdev.  Go through and make
540 			 * sure the contents are all the same (files vs. disks),
541 			 * keeping track of the number of elements in the
542 			 * process.
543 			 *
544 			 * We also check that the size of each vdev (if it can
545 			 * be determined) is the same.
546 			 */
547 			rep.zprl_type = type;
548 			rep.zprl_children = 0;
549 
550 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
551 			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
552 				verify(nvlist_lookup_uint64(nv,
553 				    ZPOOL_CONFIG_NPARITY,
554 				    &rep.zprl_parity) == 0);
555 				assert(rep.zprl_parity != 0);
556 			} else {
557 				rep.zprl_parity = 0;
558 			}
559 
560 			/*
561 			 * The 'dontreport' variable indicates that we've
562 			 * already reported an error for this spec, so don't
563 			 * bother doing it again.
564 			 */
565 			type = NULL;
566 			dontreport = 0;
567 			vdev_size = -1LL;
568 			for (c = 0; c < children; c++) {
569 				nvlist_t *cnv = child[c];
570 				const char *path;
571 				struct stat64 statbuf;
572 				int64_t size = -1LL;
573 				const char *childtype;
574 				int fd, err;
575 
576 				rep.zprl_children++;
577 
578 				verify(nvlist_lookup_string(cnv,
579 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
580 
581 				/*
582 				 * If this is a replacing or spare vdev, then
583 				 * get the real first child of the vdev: do this
584 				 * in a loop because replacing and spare vdevs
585 				 * can be nested.
586 				 */
587 				while (strcmp(childtype,
588 				    VDEV_TYPE_REPLACING) == 0 ||
589 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
590 					nvlist_t **rchild;
591 					uint_t rchildren;
592 
593 					verify(nvlist_lookup_nvlist_array(cnv,
594 					    ZPOOL_CONFIG_CHILDREN, &rchild,
595 					    &rchildren) == 0);
596 					assert(rchildren == 2);
597 					cnv = rchild[0];
598 
599 					verify(nvlist_lookup_string(cnv,
600 					    ZPOOL_CONFIG_TYPE,
601 					    &childtype) == 0);
602 				}
603 
604 				verify(nvlist_lookup_string(cnv,
605 				    ZPOOL_CONFIG_PATH, &path) == 0);
606 
607 				/*
608 				 * If we have a raidz/mirror that combines disks
609 				 * with files, report it as an error.
610 				 */
611 				if (!dontreport && type != NULL &&
612 				    strcmp(type, childtype) != 0) {
613 					if (ret != NULL)
614 						free(ret);
615 					ret = NULL;
616 					if (fatal)
617 						vdev_error(gettext(
618 						    "mismatched replication "
619 						    "level: %s contains both "
620 						    "files and devices\n"),
621 						    rep.zprl_type);
622 					else
623 						return (NULL);
624 					dontreport = B_TRUE;
625 				}
626 
627 				/*
628 				 * According to stat(2), the value of 'st_size'
629 				 * is undefined for block devices and character
630 				 * devices.  But there is no effective way to
631 				 * determine the real size in userland.
632 				 *
633 				 * Instead, we'll take advantage of an
634 				 * implementation detail of spec_size().  If the
635 				 * device is currently open, then we (should)
636 				 * return a valid size.
637 				 *
638 				 * If we still don't get a valid size (indicated
639 				 * by a size of 0 or MAXOFFSET_T), then ignore
640 				 * this device altogether.
641 				 */
642 				if ((fd = open(path, O_RDONLY)) >= 0) {
643 					err = fstat64_blk(fd, &statbuf);
644 					(void) close(fd);
645 				} else {
646 					err = stat64(path, &statbuf);
647 				}
648 
649 				if (err != 0 ||
650 				    statbuf.st_size == 0 ||
651 				    statbuf.st_size == MAXOFFSET_T)
652 					continue;
653 
654 				size = statbuf.st_size;
655 
656 				/*
657 				 * Also make sure that devices and
658 				 * slices have a consistent size.  If
659 				 * they differ by a significant amount
660 				 * (~16MB) then report an error.
661 				 */
662 				if (!dontreport &&
663 				    (vdev_size != -1LL &&
664 				    (llabs(size - vdev_size) >
665 				    ZPOOL_FUZZ))) {
666 					if (ret != NULL)
667 						free(ret);
668 					ret = NULL;
669 					if (fatal)
670 						vdev_error(gettext(
671 						    "%s contains devices of "
672 						    "different sizes\n"),
673 						    rep.zprl_type);
674 					else
675 						return (NULL);
676 					dontreport = B_TRUE;
677 				}
678 
679 				type = childtype;
680 				vdev_size = size;
681 			}
682 		}
683 
684 		/*
685 		 * At this point, we have the replication of the last toplevel
686 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
687 		 * different.
688 		 */
689 		if (lastrep.zprl_type != NULL) {
690 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
691 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
692 				/*
693 				 * Accepted raidz and mirror when they can
694 				 * handle the same number of disk failures.
695 				 */
696 				if (raidz->zprl_parity !=
697 				    mirror->zprl_children - 1) {
698 					if (ret != NULL)
699 						free(ret);
700 					ret = NULL;
701 					if (fatal)
702 						vdev_error(gettext(
703 						    "mismatched replication "
704 						    "level: "
705 						    "%s and %s vdevs with "
706 						    "different redundancy, "
707 						    "%llu vs. %llu (%llu-way) "
708 						    "are present\n"),
709 						    raidz->zprl_type,
710 						    mirror->zprl_type,
711 						    (u_longlong_t)
712 						    raidz->zprl_parity,
713 						    (u_longlong_t)
714 						    mirror->zprl_children - 1,
715 						    (u_longlong_t)
716 						    mirror->zprl_children);
717 					else
718 						return (NULL);
719 				}
720 			} else if (is_raidz_draid(&lastrep, &rep)) {
721 				/*
722 				 * Accepted raidz and draid when they can
723 				 * handle the same number of disk failures.
724 				 */
725 				if (lastrep.zprl_parity != rep.zprl_parity) {
726 					if (ret != NULL)
727 						free(ret);
728 					ret = NULL;
729 					if (fatal)
730 						vdev_error(gettext(
731 						    "mismatched replication "
732 						    "level: %s and %s vdevs "
733 						    "with different "
734 						    "redundancy, %llu vs. "
735 						    "%llu are present\n"),
736 						    lastrep.zprl_type,
737 						    rep.zprl_type,
738 						    (u_longlong_t)
739 						    lastrep.zprl_parity,
740 						    (u_longlong_t)
741 						    rep.zprl_parity);
742 					else
743 						return (NULL);
744 				}
745 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
746 			    0) {
747 				if (ret != NULL)
748 					free(ret);
749 				ret = NULL;
750 				if (fatal)
751 					vdev_error(gettext(
752 					    "mismatched replication level: "
753 					    "both %s and %s vdevs are "
754 					    "present\n"),
755 					    lastrep.zprl_type, rep.zprl_type);
756 				else
757 					return (NULL);
758 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
759 				if (ret)
760 					free(ret);
761 				ret = NULL;
762 				if (fatal)
763 					vdev_error(gettext(
764 					    "mismatched replication level: "
765 					    "both %llu and %llu device parity "
766 					    "%s vdevs are present\n"),
767 					    (u_longlong_t)
768 					    lastrep.zprl_parity,
769 					    (u_longlong_t)rep.zprl_parity,
770 					    rep.zprl_type);
771 				else
772 					return (NULL);
773 			} else if (lastrep.zprl_children != rep.zprl_children) {
774 				if (ret)
775 					free(ret);
776 				ret = NULL;
777 				if (fatal)
778 					vdev_error(gettext(
779 					    "mismatched replication level: "
780 					    "both %llu-way and %llu-way %s "
781 					    "vdevs are present\n"),
782 					    (u_longlong_t)
783 					    lastrep.zprl_children,
784 					    (u_longlong_t)
785 					    rep.zprl_children,
786 					    rep.zprl_type);
787 				else
788 					return (NULL);
789 			}
790 		}
791 		lastrep = rep;
792 	}
793 
794 	if (ret != NULL)
795 		*ret = rep;
796 
797 	return (ret);
798 }
799 
800 /*
801  * Check the replication level of the vdev spec against the current pool.  Calls
802  * get_replication() to make sure the new spec is self-consistent.  If the pool
803  * has a consistent replication level, then we ignore any errors.  Otherwise,
804  * report any difference between the two.
805  */
806 static int
807 check_replication(nvlist_t *config, nvlist_t *newroot)
808 {
809 	nvlist_t **child;
810 	uint_t	children;
811 	replication_level_t *current = NULL, *new;
812 	replication_level_t *raidz, *mirror;
813 	int ret;
814 
815 	/*
816 	 * If we have a current pool configuration, check to see if it's
817 	 * self-consistent.  If not, simply return success.
818 	 */
819 	if (config != NULL) {
820 		nvlist_t *nvroot;
821 
822 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
823 		    &nvroot) == 0);
824 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
825 			return (0);
826 	}
827 	/*
828 	 * for spares there may be no children, and therefore no
829 	 * replication level to check
830 	 */
831 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
832 	    &child, &children) != 0) || (children == 0)) {
833 		free(current);
834 		return (0);
835 	}
836 
837 	/*
838 	 * If all we have is logs then there's no replication level to check.
839 	 */
840 	if (num_logs(newroot) == children) {
841 		free(current);
842 		return (0);
843 	}
844 
845 	/*
846 	 * Get the replication level of the new vdev spec, reporting any
847 	 * inconsistencies found.
848 	 */
849 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
850 		free(current);
851 		return (-1);
852 	}
853 
854 	/*
855 	 * Check to see if the new vdev spec matches the replication level of
856 	 * the current pool.
857 	 */
858 	ret = 0;
859 	if (current != NULL) {
860 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
861 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
862 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
863 				vdev_error(gettext(
864 				    "mismatched replication level: pool and "
865 				    "new vdev with different redundancy, %s "
866 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
867 				    raidz->zprl_type,
868 				    mirror->zprl_type,
869 				    (u_longlong_t)raidz->zprl_parity,
870 				    (u_longlong_t)mirror->zprl_children - 1,
871 				    (u_longlong_t)mirror->zprl_children);
872 				ret = -1;
873 			}
874 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
875 			vdev_error(gettext(
876 			    "mismatched replication level: pool uses %s "
877 			    "and new vdev is %s\n"),
878 			    current->zprl_type, new->zprl_type);
879 			ret = -1;
880 		} else if (current->zprl_parity != new->zprl_parity) {
881 			vdev_error(gettext(
882 			    "mismatched replication level: pool uses %llu "
883 			    "device parity and new vdev uses %llu\n"),
884 			    (u_longlong_t)current->zprl_parity,
885 			    (u_longlong_t)new->zprl_parity);
886 			ret = -1;
887 		} else if (current->zprl_children != new->zprl_children) {
888 			vdev_error(gettext(
889 			    "mismatched replication level: pool uses %llu-way "
890 			    "%s and new vdev uses %llu-way %s\n"),
891 			    (u_longlong_t)current->zprl_children,
892 			    current->zprl_type,
893 			    (u_longlong_t)new->zprl_children,
894 			    new->zprl_type);
895 			ret = -1;
896 		}
897 	}
898 
899 	free(new);
900 	if (current != NULL)
901 		free(current);
902 
903 	return (ret);
904 }
905 
906 static int
907 zero_label(const char *path)
908 {
909 	const int size = 4096;
910 	char buf[size];
911 	int err, fd;
912 
913 	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
914 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
915 		    path, strerror(errno));
916 		return (-1);
917 	}
918 
919 	memset(buf, 0, size);
920 	err = write(fd, buf, size);
921 	(void) fdatasync(fd);
922 	(void) close(fd);
923 
924 	if (err == -1) {
925 		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
926 		    "of '%s': %s\n"), size, path, strerror(errno));
927 		return (-1);
928 	}
929 
930 	if (err != size) {
931 		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
932 		    "of '%s'\n"), err, size, path);
933 		return (-1);
934 	}
935 
936 	return (0);
937 }
938 
939 static void
940 lines_to_stderr(char *lines[], int lines_cnt)
941 {
942 	int i;
943 	for (i = 0; i < lines_cnt; i++) {
944 		fprintf(stderr, "%s\n", lines[i]);
945 	}
946 }
947 
948 /*
949  * Go through and find any whole disks in the vdev specification, labelling them
950  * as appropriate.  When constructing the vdev spec, we were unable to open this
951  * device in order to provide a devid.  Now that we have labelled the disk and
952  * know that slice 0 is valid, we can construct the devid now.
953  *
954  * If the disk was already labeled with an EFI label, we will have gotten the
955  * devid already (because we were able to open the whole disk).  Otherwise, we
956  * need to get the devid after we label the disk.
957  */
958 static int
959 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
960 {
961 	nvlist_t **child;
962 	uint_t c, children;
963 	const char *type, *path;
964 	char devpath[MAXPATHLEN];
965 	char udevpath[MAXPATHLEN];
966 	uint64_t wholedisk;
967 	struct stat64 statbuf;
968 	int is_exclusive = 0;
969 	int fd;
970 	int ret;
971 
972 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
973 
974 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
975 	    &child, &children) != 0) {
976 
977 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
978 			return (0);
979 
980 		/*
981 		 * We have a disk device.  If this is a whole disk write
982 		 * out the efi partition table, otherwise write zero's to
983 		 * the first 4k of the partition.  This is to ensure that
984 		 * libblkid will not misidentify the partition due to a
985 		 * magic value left by the previous filesystem.
986 		 */
987 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
988 		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
989 		    &wholedisk));
990 
991 		if (!wholedisk) {
992 			/*
993 			 * Update device id string for mpath nodes (Linux only)
994 			 */
995 			if (is_mpath_whole_disk(path))
996 				update_vdev_config_dev_strs(nv);
997 
998 			if (!is_spare(NULL, path))
999 				(void) zero_label(path);
1000 			return (0);
1001 		}
1002 
1003 		if (realpath(path, devpath) == NULL) {
1004 			ret = errno;
1005 			(void) fprintf(stderr,
1006 			    gettext("cannot resolve path '%s'\n"), path);
1007 			return (ret);
1008 		}
1009 
1010 		/*
1011 		 * Remove any previously existing symlink from a udev path to
1012 		 * the device before labeling the disk.  This ensures that
1013 		 * only newly created links are used.  Otherwise there is a
1014 		 * window between when udev deletes and recreates the link
1015 		 * during which access attempts will fail with ENOENT.
1016 		 */
1017 		strlcpy(udevpath, path, MAXPATHLEN);
1018 		(void) zfs_append_partition(udevpath, MAXPATHLEN);
1019 
1020 		fd = open(devpath, O_RDWR|O_EXCL);
1021 		if (fd == -1) {
1022 			if (errno == EBUSY)
1023 				is_exclusive = 1;
1024 #ifdef __FreeBSD__
1025 			if (errno == EPERM)
1026 				is_exclusive = 1;
1027 #endif
1028 		} else {
1029 			(void) close(fd);
1030 		}
1031 
1032 		/*
1033 		 * If the partition exists, contains a valid spare label,
1034 		 * and is opened exclusively there is no need to partition
1035 		 * it.  Hot spares have already been partitioned and are
1036 		 * held open exclusively by the kernel as a safety measure.
1037 		 *
1038 		 * If the provided path is for a /dev/disk/ device its
1039 		 * symbolic link will be removed, partition table created,
1040 		 * and then block until udev creates the new link.
1041 		 */
1042 		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1043 			char *devnode = strrchr(devpath, '/') + 1;
1044 			char **lines = NULL;
1045 			int lines_cnt = 0;
1046 
1047 			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1048 			if (ret == 0) {
1049 				ret = lstat64(udevpath, &statbuf);
1050 				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1051 					(void) unlink(udevpath);
1052 			}
1053 
1054 			/*
1055 			 * When labeling a pool the raw device node name
1056 			 * is provided as it appears under /dev/.
1057 			 *
1058 			 * Note that 'zhp' will be NULL when we're creating a
1059 			 * pool.
1060 			 */
1061 			if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1062 			    nv, zhp == NULL ? "create" :
1063 			    replacing ? "replace" : "add", &lines,
1064 			    &lines_cnt) != 0) {
1065 				(void) fprintf(stderr,
1066 				    gettext(
1067 				    "Error preparing/labeling disk.\n"));
1068 				if (lines_cnt > 0) {
1069 					(void) fprintf(stderr,
1070 					gettext("zfs_prepare_disk output:\n"));
1071 					lines_to_stderr(lines, lines_cnt);
1072 				}
1073 
1074 				libzfs_free_str_array(lines, lines_cnt);
1075 				return (-1);
1076 			}
1077 			libzfs_free_str_array(lines, lines_cnt);
1078 
1079 			/*
1080 			 * Wait for udev to signal the device is available
1081 			 * by the provided path.
1082 			 */
1083 			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1084 			if (ret) {
1085 				(void) fprintf(stderr,
1086 				    gettext("missing link: %s was "
1087 				    "partitioned but %s is missing\n"),
1088 				    devnode, udevpath);
1089 				return (ret);
1090 			}
1091 
1092 			ret = zero_label(udevpath);
1093 			if (ret)
1094 				return (ret);
1095 		}
1096 
1097 		/*
1098 		 * Update the path to refer to the partition.  The presence of
1099 		 * the 'whole_disk' field indicates to the CLI that we should
1100 		 * chop off the partition number when displaying the device in
1101 		 * future output.
1102 		 */
1103 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1104 
1105 		/*
1106 		 * Update device id strings for whole disks (Linux only)
1107 		 */
1108 		update_vdev_config_dev_strs(nv);
1109 
1110 		return (0);
1111 	}
1112 
1113 	for (c = 0; c < children; c++)
1114 		if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1115 			return (ret);
1116 
1117 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1118 	    &child, &children) == 0)
1119 		for (c = 0; c < children; c++)
1120 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1121 				return (ret);
1122 
1123 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1124 	    &child, &children) == 0)
1125 		for (c = 0; c < children; c++)
1126 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1127 				return (ret);
1128 
1129 	return (0);
1130 }
1131 
1132 /*
1133  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1134  * the majority of this task.
1135  */
1136 static boolean_t
1137 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1138     boolean_t replacing, boolean_t isspare)
1139 {
1140 	nvlist_t **child;
1141 	uint_t c, children;
1142 	const char *type, *path;
1143 	int ret = 0;
1144 	char buf[MAXPATHLEN];
1145 	uint64_t wholedisk = B_FALSE;
1146 	boolean_t anyinuse = B_FALSE;
1147 
1148 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1149 
1150 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1151 	    &child, &children) != 0) {
1152 
1153 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1154 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1155 			verify(!nvlist_lookup_uint64(nv,
1156 			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1157 
1158 		/*
1159 		 * As a generic check, we look to see if this is a replace of a
1160 		 * hot spare within the same pool.  If so, we allow it
1161 		 * regardless of what libblkid or zpool_in_use() says.
1162 		 */
1163 		if (replacing) {
1164 			(void) strlcpy(buf, path, sizeof (buf));
1165 			if (wholedisk) {
1166 				ret = zfs_append_partition(buf,  sizeof (buf));
1167 				if (ret == -1)
1168 					return (-1);
1169 			}
1170 
1171 			if (is_spare(config, buf))
1172 				return (B_FALSE);
1173 		}
1174 
1175 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1176 			ret = check_device(path, force, isspare, wholedisk);
1177 
1178 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1179 			ret = check_file(path, force, isspare);
1180 
1181 		return (ret != 0);
1182 	}
1183 
1184 	for (c = 0; c < children; c++)
1185 		if (is_device_in_use(config, child[c], force, replacing,
1186 		    B_FALSE))
1187 			anyinuse = B_TRUE;
1188 
1189 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1190 	    &child, &children) == 0)
1191 		for (c = 0; c < children; c++)
1192 			if (is_device_in_use(config, child[c], force, replacing,
1193 			    B_TRUE))
1194 				anyinuse = B_TRUE;
1195 
1196 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1197 	    &child, &children) == 0)
1198 		for (c = 0; c < children; c++)
1199 			if (is_device_in_use(config, child[c], force, replacing,
1200 			    B_FALSE))
1201 				anyinuse = B_TRUE;
1202 
1203 	return (anyinuse);
1204 }
1205 
1206 /*
1207  * Returns the parity level extracted from a raidz or draid type.
1208  * If the parity cannot be determined zero is returned.
1209  */
1210 static int
1211 get_parity(const char *type)
1212 {
1213 	long parity = 0;
1214 	const char *p;
1215 
1216 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1217 		p = type + strlen(VDEV_TYPE_RAIDZ);
1218 
1219 		if (*p == '\0') {
1220 			/* when unspecified default to single parity */
1221 			return (1);
1222 		} else if (*p == '0') {
1223 			/* no zero prefixes allowed */
1224 			return (0);
1225 		} else {
1226 			/* 0-3, no suffixes allowed */
1227 			char *end;
1228 			errno = 0;
1229 			parity = strtol(p, &end, 10);
1230 			if (errno != 0 || *end != '\0' ||
1231 			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1232 				return (0);
1233 			}
1234 		}
1235 	} else if (strncmp(type, VDEV_TYPE_DRAID,
1236 	    strlen(VDEV_TYPE_DRAID)) == 0) {
1237 		p = type + strlen(VDEV_TYPE_DRAID);
1238 
1239 		if (*p == '\0' || *p == ':') {
1240 			/* when unspecified default to single parity */
1241 			return (1);
1242 		} else if (*p == '0') {
1243 			/* no zero prefixes allowed */
1244 			return (0);
1245 		} else {
1246 			/* 0-3, allowed suffixes: '\0' or ':' */
1247 			char *end;
1248 			errno = 0;
1249 			parity = strtol(p, &end, 10);
1250 			if (errno != 0 ||
1251 			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1252 			    (*end != '\0' && *end != ':')) {
1253 				return (0);
1254 			}
1255 		}
1256 	}
1257 
1258 	return ((int)parity);
1259 }
1260 
1261 /*
1262  * Assign the minimum and maximum number of devices allowed for
1263  * the specified type.  On error NULL is returned, otherwise the
1264  * type prefix is returned (raidz, mirror, etc).
1265  */
1266 static const char *
1267 is_grouping(const char *type, int *mindev, int *maxdev)
1268 {
1269 	int nparity;
1270 
1271 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1272 	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1273 		nparity = get_parity(type);
1274 		if (nparity == 0)
1275 			return (NULL);
1276 		if (mindev != NULL)
1277 			*mindev = nparity + 1;
1278 		if (maxdev != NULL)
1279 			*maxdev = 255;
1280 
1281 		if (strncmp(type, VDEV_TYPE_RAIDZ,
1282 		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1283 			return (VDEV_TYPE_RAIDZ);
1284 		} else {
1285 			return (VDEV_TYPE_DRAID);
1286 		}
1287 	}
1288 
1289 	if (maxdev != NULL)
1290 		*maxdev = INT_MAX;
1291 
1292 	if (strcmp(type, "mirror") == 0) {
1293 		if (mindev != NULL)
1294 			*mindev = 2;
1295 		return (VDEV_TYPE_MIRROR);
1296 	}
1297 
1298 	if (strcmp(type, "spare") == 0) {
1299 		if (mindev != NULL)
1300 			*mindev = 1;
1301 		return (VDEV_TYPE_SPARE);
1302 	}
1303 
1304 	if (strcmp(type, "log") == 0) {
1305 		if (mindev != NULL)
1306 			*mindev = 1;
1307 		return (VDEV_TYPE_LOG);
1308 	}
1309 
1310 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1311 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1312 		if (mindev != NULL)
1313 			*mindev = 1;
1314 		return (type);
1315 	}
1316 
1317 	if (strcmp(type, "cache") == 0) {
1318 		if (mindev != NULL)
1319 			*mindev = 1;
1320 		return (VDEV_TYPE_L2CACHE);
1321 	}
1322 
1323 	return (NULL);
1324 }
1325 
1326 /*
1327  * Extract the configuration parameters encoded in the dRAID type and
1328  * use them to generate a dRAID configuration.  The expected format is:
1329  *
1330  * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1331  *
1332  * The intent is to be able to generate a good configuration when no
1333  * additional information is provided.  The only mandatory component
1334  * of the 'type' is the 'draid' prefix.  If a value is not provided
1335  * then reasonable defaults are used.  The optional components may
1336  * appear in any order but the d/s/c suffix is required.
1337  *
1338  * Valid inputs:
1339  * - data:     number of data devices per group (1-255)
1340  * - parity:   number of parity blocks per group (1-3)
1341  * - spares:   number of distributed spare (0-100)
1342  * - children: total number of devices (1-255)
1343  *
1344  * Examples:
1345  * - zpool create tank draid <devices...>
1346  * - zpool create tank draid2:8d:51c:2s <devices...>
1347  */
1348 static int
1349 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1350 {
1351 	uint64_t nparity = 1;
1352 	uint64_t nspares = 0;
1353 	uint64_t ndata = UINT64_MAX;
1354 	uint64_t ngroups = 1;
1355 	long value;
1356 
1357 	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1358 		return (EINVAL);
1359 
1360 	nparity = (uint64_t)get_parity(type);
1361 	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1362 		fprintf(stderr,
1363 		    gettext("invalid dRAID parity level %llu; must be "
1364 		    "between 1 and %d\n"), (u_longlong_t)nparity,
1365 		    VDEV_DRAID_MAXPARITY);
1366 		return (EINVAL);
1367 	}
1368 
1369 	char *p = (char *)type;
1370 	while ((p = strchr(p, ':')) != NULL) {
1371 		char *end;
1372 
1373 		p = p + 1;
1374 		errno = 0;
1375 
1376 		if (!isdigit(p[0])) {
1377 			(void) fprintf(stderr, gettext("invalid dRAID "
1378 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1379 			    type);
1380 			return (EINVAL);
1381 		}
1382 
1383 		/* Expected non-zero value with c/d/s suffix */
1384 		value = strtol(p, &end, 10);
1385 		char suffix = tolower(*end);
1386 		if (errno != 0 ||
1387 		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1388 			(void) fprintf(stderr, gettext("invalid dRAID "
1389 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1390 			    type);
1391 			return (EINVAL);
1392 		}
1393 
1394 		if (suffix == 'c') {
1395 			if ((uint64_t)value != children) {
1396 				fprintf(stderr,
1397 				    gettext("invalid number of dRAID children; "
1398 				    "%llu required but %llu provided\n"),
1399 				    (u_longlong_t)value,
1400 				    (u_longlong_t)children);
1401 				return (EINVAL);
1402 			}
1403 		} else if (suffix == 'd') {
1404 			ndata = (uint64_t)value;
1405 		} else if (suffix == 's') {
1406 			nspares = (uint64_t)value;
1407 		} else {
1408 			verify(0); /* Unreachable */
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * When a specific number of data disks is not provided limit a
1414 	 * redundancy group to 8 data disks.  This value was selected to
1415 	 * provide a reasonable tradeoff between capacity and performance.
1416 	 */
1417 	if (ndata == UINT64_MAX) {
1418 		if (children > nspares + nparity) {
1419 			ndata = MIN(children - nspares - nparity, 8);
1420 		} else {
1421 			fprintf(stderr, gettext("request number of "
1422 			    "distributed spares %llu and parity level %llu\n"
1423 			    "leaves no disks available for data\n"),
1424 			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1425 			return (EINVAL);
1426 		}
1427 	}
1428 
1429 	/* Verify the maximum allowed group size is never exceeded. */
1430 	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1431 		fprintf(stderr, gettext("requested number of dRAID data "
1432 		    "disks per group %llu is too high,\nat most %llu disks "
1433 		    "are available for data\n"), (u_longlong_t)ndata,
1434 		    (u_longlong_t)(children - nspares - nparity));
1435 		return (EINVAL);
1436 	}
1437 
1438 	/*
1439 	 * Verify the requested number of spares can be satisfied.
1440 	 * An arbitrary limit of 100 distributed spares is applied.
1441 	 */
1442 	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1443 		fprintf(stderr,
1444 		    gettext("invalid number of dRAID spares %llu; additional "
1445 		    "disks would be required\n"), (u_longlong_t)nspares);
1446 		return (EINVAL);
1447 	}
1448 
1449 	/* Verify the requested number children is sufficient. */
1450 	if (children < (ndata + nparity + nspares)) {
1451 		fprintf(stderr, gettext("%llu disks were provided, but at "
1452 		    "least %llu disks are required for this config\n"),
1453 		    (u_longlong_t)children,
1454 		    (u_longlong_t)(ndata + nparity + nspares));
1455 	}
1456 
1457 	if (children > VDEV_DRAID_MAX_CHILDREN) {
1458 		fprintf(stderr, gettext("%llu disks were provided, but "
1459 		    "dRAID only supports up to %u disks"),
1460 		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1461 	}
1462 
1463 	/*
1464 	 * Calculate the minimum number of groups required to fill a slice.
1465 	 * This is the LCM of the stripe width (ndata + nparity) and the
1466 	 * number of data drives (children - nspares).
1467 	 */
1468 	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1469 		ngroups++;
1470 
1471 	/* Store the basic dRAID configuration. */
1472 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1473 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1474 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1475 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1476 
1477 	return (0);
1478 }
1479 
1480 /*
1481  * Construct a syntactically valid vdev specification,
1482  * and ensure that all devices and files exist and can be opened.
1483  * Note: we don't bother freeing anything in the error paths
1484  * because the program is just going to exit anyway.
1485  */
1486 static nvlist_t *
1487 construct_spec(nvlist_t *props, int argc, char **argv)
1488 {
1489 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1490 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1491 	const char *type, *fulltype;
1492 	boolean_t is_log, is_special, is_dedup, is_spare;
1493 	boolean_t seen_logs;
1494 
1495 	top = NULL;
1496 	toplevels = 0;
1497 	spares = NULL;
1498 	l2cache = NULL;
1499 	nspares = 0;
1500 	nlogs = 0;
1501 	nl2cache = 0;
1502 	is_log = is_special = is_dedup = is_spare = B_FALSE;
1503 	seen_logs = B_FALSE;
1504 	nvroot = NULL;
1505 
1506 	while (argc > 0) {
1507 		fulltype = argv[0];
1508 		nv = NULL;
1509 
1510 		/*
1511 		 * If it's a mirror, raidz, or draid the subsequent arguments
1512 		 * are its leaves -- until we encounter the next mirror,
1513 		 * raidz or draid.
1514 		 */
1515 		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1516 			nvlist_t **child = NULL;
1517 			int c, children = 0;
1518 
1519 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1520 				if (spares != NULL) {
1521 					(void) fprintf(stderr,
1522 					    gettext("invalid vdev "
1523 					    "specification: 'spare' can be "
1524 					    "specified only once\n"));
1525 					goto spec_out;
1526 				}
1527 				is_spare = B_TRUE;
1528 				is_log = is_special = is_dedup = B_FALSE;
1529 			}
1530 
1531 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1532 				if (seen_logs) {
1533 					(void) fprintf(stderr,
1534 					    gettext("invalid vdev "
1535 					    "specification: 'log' can be "
1536 					    "specified only once\n"));
1537 					goto spec_out;
1538 				}
1539 				seen_logs = B_TRUE;
1540 				is_log = B_TRUE;
1541 				is_special = is_dedup = is_spare = B_FALSE;
1542 				argc--;
1543 				argv++;
1544 				/*
1545 				 * A log is not a real grouping device.
1546 				 * We just set is_log and continue.
1547 				 */
1548 				continue;
1549 			}
1550 
1551 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1552 				is_special = B_TRUE;
1553 				is_log = is_dedup = is_spare = B_FALSE;
1554 				argc--;
1555 				argv++;
1556 				continue;
1557 			}
1558 
1559 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1560 				is_dedup = B_TRUE;
1561 				is_log = is_special = is_spare = B_FALSE;
1562 				argc--;
1563 				argv++;
1564 				continue;
1565 			}
1566 
1567 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1568 				if (l2cache != NULL) {
1569 					(void) fprintf(stderr,
1570 					    gettext("invalid vdev "
1571 					    "specification: 'cache' can be "
1572 					    "specified only once\n"));
1573 					goto spec_out;
1574 				}
1575 				is_log = is_special = B_FALSE;
1576 				is_dedup = is_spare = B_FALSE;
1577 			}
1578 
1579 			if (is_log || is_special || is_dedup) {
1580 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1581 					(void) fprintf(stderr,
1582 					    gettext("invalid vdev "
1583 					    "specification: unsupported '%s' "
1584 					    "device: %s\n"), is_log ? "log" :
1585 					    "special", type);
1586 					goto spec_out;
1587 				}
1588 				nlogs++;
1589 			}
1590 
1591 			for (c = 1; c < argc; c++) {
1592 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1593 					break;
1594 
1595 				children++;
1596 				child = realloc(child,
1597 				    children * sizeof (nvlist_t *));
1598 				if (child == NULL)
1599 					zpool_no_memory();
1600 				if ((nv = make_leaf_vdev(props, argv[c],
1601 				    !(is_log || is_special || is_dedup ||
1602 				    is_spare))) == NULL) {
1603 					for (c = 0; c < children - 1; c++)
1604 						nvlist_free(child[c]);
1605 					free(child);
1606 					goto spec_out;
1607 				}
1608 
1609 				child[children - 1] = nv;
1610 			}
1611 
1612 			if (children < mindev) {
1613 				(void) fprintf(stderr, gettext("invalid vdev "
1614 				    "specification: %s requires at least %d "
1615 				    "devices\n"), argv[0], mindev);
1616 				for (c = 0; c < children; c++)
1617 					nvlist_free(child[c]);
1618 				free(child);
1619 				goto spec_out;
1620 			}
1621 
1622 			if (children > maxdev) {
1623 				(void) fprintf(stderr, gettext("invalid vdev "
1624 				    "specification: %s supports no more than "
1625 				    "%d devices\n"), argv[0], maxdev);
1626 				for (c = 0; c < children; c++)
1627 					nvlist_free(child[c]);
1628 				free(child);
1629 				goto spec_out;
1630 			}
1631 
1632 			argc -= c;
1633 			argv += c;
1634 
1635 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1636 				spares = child;
1637 				nspares = children;
1638 				continue;
1639 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1640 				l2cache = child;
1641 				nl2cache = children;
1642 				continue;
1643 			} else {
1644 				/* create a top-level vdev with children */
1645 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1646 				    0) == 0);
1647 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1648 				    type) == 0);
1649 				verify(nvlist_add_uint64(nv,
1650 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1651 				if (is_log) {
1652 					verify(nvlist_add_string(nv,
1653 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1654 					    VDEV_ALLOC_BIAS_LOG) == 0);
1655 				}
1656 				if (is_special) {
1657 					verify(nvlist_add_string(nv,
1658 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1659 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1660 				}
1661 				if (is_dedup) {
1662 					verify(nvlist_add_string(nv,
1663 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1664 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1665 				}
1666 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1667 					verify(nvlist_add_uint64(nv,
1668 					    ZPOOL_CONFIG_NPARITY,
1669 					    mindev - 1) == 0);
1670 				}
1671 				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1672 					if (draid_config_by_type(nv,
1673 					    fulltype, children) != 0) {
1674 						for (c = 0; c < children; c++)
1675 							nvlist_free(child[c]);
1676 						free(child);
1677 						goto spec_out;
1678 					}
1679 				}
1680 				verify(nvlist_add_nvlist_array(nv,
1681 				    ZPOOL_CONFIG_CHILDREN,
1682 				    (const nvlist_t **)child, children) == 0);
1683 
1684 				for (c = 0; c < children; c++)
1685 					nvlist_free(child[c]);
1686 				free(child);
1687 			}
1688 		} else {
1689 			/*
1690 			 * We have a device.  Pass off to make_leaf_vdev() to
1691 			 * construct the appropriate nvlist describing the vdev.
1692 			 */
1693 			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1694 			    is_special || is_dedup || is_spare))) == NULL)
1695 				goto spec_out;
1696 
1697 			verify(nvlist_add_uint64(nv,
1698 			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1699 			if (is_log) {
1700 				verify(nvlist_add_string(nv,
1701 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1702 				    VDEV_ALLOC_BIAS_LOG) == 0);
1703 				nlogs++;
1704 			}
1705 
1706 			if (is_special) {
1707 				verify(nvlist_add_string(nv,
1708 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1709 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1710 			}
1711 			if (is_dedup) {
1712 				verify(nvlist_add_string(nv,
1713 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1714 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1715 			}
1716 			argc--;
1717 			argv++;
1718 		}
1719 
1720 		toplevels++;
1721 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1722 		if (top == NULL)
1723 			zpool_no_memory();
1724 		top[toplevels - 1] = nv;
1725 	}
1726 
1727 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1728 		(void) fprintf(stderr, gettext("invalid vdev "
1729 		    "specification: at least one toplevel vdev must be "
1730 		    "specified\n"));
1731 		goto spec_out;
1732 	}
1733 
1734 	if (seen_logs && nlogs == 0) {
1735 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1736 		    "log requires at least 1 device\n"));
1737 		goto spec_out;
1738 	}
1739 
1740 	/*
1741 	 * Finally, create nvroot and add all top-level vdevs to it.
1742 	 */
1743 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1744 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1745 	    VDEV_TYPE_ROOT) == 0);
1746 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1747 	    (const nvlist_t **)top, toplevels) == 0);
1748 	if (nspares != 0)
1749 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1750 		    (const nvlist_t **)spares, nspares) == 0);
1751 	if (nl2cache != 0)
1752 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1753 		    (const nvlist_t **)l2cache, nl2cache) == 0);
1754 
1755 spec_out:
1756 	for (t = 0; t < toplevels; t++)
1757 		nvlist_free(top[t]);
1758 	for (t = 0; t < nspares; t++)
1759 		nvlist_free(spares[t]);
1760 	for (t = 0; t < nl2cache; t++)
1761 		nvlist_free(l2cache[t]);
1762 
1763 	free(spares);
1764 	free(l2cache);
1765 	free(top);
1766 
1767 	return (nvroot);
1768 }
1769 
1770 nvlist_t *
1771 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1772     splitflags_t flags, int argc, char **argv)
1773 {
1774 	nvlist_t *newroot = NULL, **child;
1775 	uint_t c, children;
1776 
1777 	if (argc > 0) {
1778 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1779 			(void) fprintf(stderr, gettext("Unable to build a "
1780 			    "pool from the specified devices\n"));
1781 			return (NULL);
1782 		}
1783 
1784 		if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1785 			nvlist_free(newroot);
1786 			return (NULL);
1787 		}
1788 
1789 		/* avoid any tricks in the spec */
1790 		verify(nvlist_lookup_nvlist_array(newroot,
1791 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1792 		for (c = 0; c < children; c++) {
1793 			const char *path;
1794 			const char *type;
1795 			int min, max;
1796 
1797 			verify(nvlist_lookup_string(child[c],
1798 			    ZPOOL_CONFIG_PATH, &path) == 0);
1799 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1800 				(void) fprintf(stderr, gettext("Cannot use "
1801 				    "'%s' as a device for splitting\n"), type);
1802 				nvlist_free(newroot);
1803 				return (NULL);
1804 			}
1805 		}
1806 	}
1807 
1808 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1809 		nvlist_free(newroot);
1810 		return (NULL);
1811 	}
1812 
1813 	return (newroot);
1814 }
1815 
1816 static int
1817 num_normal_vdevs(nvlist_t *nvroot)
1818 {
1819 	nvlist_t **top;
1820 	uint_t t, toplevels, normal = 0;
1821 
1822 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1823 	    &top, &toplevels) == 0);
1824 
1825 	for (t = 0; t < toplevels; t++) {
1826 		uint64_t log = B_FALSE;
1827 
1828 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1829 		if (log)
1830 			continue;
1831 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1832 			continue;
1833 
1834 		normal++;
1835 	}
1836 
1837 	return (normal);
1838 }
1839 
1840 /*
1841  * Get and validate the contents of the given vdev specification.  This ensures
1842  * that the nvlist returned is well-formed, that all the devices exist, and that
1843  * they are not currently in use by any other known consumer.  The 'poolconfig'
1844  * parameter is the current configuration of the pool when adding devices
1845  * existing pool, and is used to perform additional checks, such as changing the
1846  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1847  * new pool.  The 'force' flag controls whether devices should be forcefully
1848  * added, even if they appear in use.
1849  */
1850 nvlist_t *
1851 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1852     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1853 {
1854 	nvlist_t *newroot;
1855 	nvlist_t *poolconfig = NULL;
1856 	is_force = force;
1857 
1858 	/*
1859 	 * Construct the vdev specification.  If this is successful, we know
1860 	 * that we have a valid specification, and that all devices can be
1861 	 * opened.
1862 	 */
1863 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1864 		return (NULL);
1865 
1866 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1867 		nvlist_free(newroot);
1868 		return (NULL);
1869 	}
1870 
1871 	/*
1872 	 * Validate each device to make sure that it's not shared with another
1873 	 * subsystem.  We do this even if 'force' is set, because there are some
1874 	 * uses (such as a dedicated dump device) that even '-f' cannot
1875 	 * override.
1876 	 */
1877 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1878 		nvlist_free(newroot);
1879 		return (NULL);
1880 	}
1881 
1882 	/*
1883 	 * Check the replication level of the given vdevs and report any errors
1884 	 * found.  We include the existing pool spec, if any, as we need to
1885 	 * catch changes against the existing replication level.
1886 	 */
1887 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1888 		nvlist_free(newroot);
1889 		return (NULL);
1890 	}
1891 
1892 	/*
1893 	 * On pool create the new vdev spec must have one normal vdev.
1894 	 */
1895 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1896 		vdev_error(gettext("at least one general top-level vdev must "
1897 		    "be specified\n"));
1898 		nvlist_free(newroot);
1899 		return (NULL);
1900 	}
1901 
1902 	/*
1903 	 * Run through the vdev specification and label any whole disks found.
1904 	 */
1905 	if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1906 		nvlist_free(newroot);
1907 		return (NULL);
1908 	}
1909 
1910 	return (newroot);
1911 }
1912