1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 29 #include <libintl.h> 30 #include <libuutil.h> 31 #include <stddef.h> 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <string.h> 35 36 #include <libzfs.h> 37 38 #include "zfs_util.h" 39 #include "zfs_iter.h" 40 41 /* 42 * This is a private interface used to gather up all the datasets specified on 43 * the command line so that we can iterate over them in order. 44 * 45 * First, we iterate over all filesystems, gathering them together into an 46 * AVL tree. We report errors for any explicitly specified datasets 47 * that we couldn't open. 48 * 49 * When finished, we have an AVL tree of ZFS handles. We go through and execute 50 * the provided callback for each one, passing whatever data the user supplied. 51 */ 52 53 typedef struct zfs_node { 54 zfs_handle_t *zn_handle; 55 uu_avl_node_t zn_avlnode; 56 } zfs_node_t; 57 58 typedef struct callback_data { 59 uu_avl_t *cb_avl; 60 int cb_flags; 61 zfs_type_t cb_types; 62 zfs_sort_column_t *cb_sortcol; 63 zprop_list_t **cb_proplist; 64 int cb_depth_limit; 65 int cb_depth; 66 uint8_t cb_props_table[ZFS_NUM_PROPS]; 67 } callback_data_t; 68 69 uu_avl_pool_t *avl_pool; 70 71 /* 72 * Include snaps if they were requested or if this a zfs list where types 73 * were not specified and the "listsnapshots" property is set on this pool. 74 */ 75 static boolean_t 76 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb) 77 { 78 zpool_handle_t *zph; 79 80 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0) 81 return (cb->cb_types & ZFS_TYPE_SNAPSHOT); 82 83 zph = zfs_get_pool_handle(zhp); 84 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL)); 85 } 86 87 /* 88 * Called for each dataset. If the object is of an appropriate type, 89 * add it to the avl tree and recurse over any children as necessary. 90 */ 91 static int 92 zfs_callback(zfs_handle_t *zhp, void *data) 93 { 94 callback_data_t *cb = data; 95 boolean_t should_close = B_TRUE; 96 boolean_t include_snaps = zfs_include_snapshots(zhp, cb); 97 boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK); 98 99 if ((zfs_get_type(zhp) & cb->cb_types) || 100 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) { 101 uu_avl_index_t idx; 102 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); 103 104 node->zn_handle = zhp; 105 uu_avl_node_init(node, &node->zn_avlnode, avl_pool); 106 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, 107 &idx) == NULL) { 108 if (cb->cb_proplist) { 109 if ((*cb->cb_proplist) && 110 !(*cb->cb_proplist)->pl_all) 111 zfs_prune_proplist(zhp, 112 cb->cb_props_table); 113 114 if (zfs_expand_proplist(zhp, cb->cb_proplist, 115 (cb->cb_flags & ZFS_ITER_RECVD_PROPS), 116 (cb->cb_flags & ZFS_ITER_LITERAL_PROPS)) 117 != 0) { 118 free(node); 119 return (-1); 120 } 121 } 122 uu_avl_insert(cb->cb_avl, node, idx); 123 should_close = B_FALSE; 124 } else { 125 free(node); 126 } 127 } 128 129 /* 130 * Recurse if necessary. 131 */ 132 if (cb->cb_flags & ZFS_ITER_RECURSE && 133 ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || 134 cb->cb_depth < cb->cb_depth_limit)) { 135 cb->cb_depth++; 136 137 /* 138 * If we are not looking for filesystems, we don't need to 139 * recurse into filesystems when we are at our depth limit. 140 */ 141 if ((cb->cb_depth < cb->cb_depth_limit || 142 (cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || 143 (cb->cb_types & 144 (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME))) && 145 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { 146 (void) zfs_iter_filesystems_v2(zhp, cb->cb_flags, 147 zfs_callback, data); 148 } 149 150 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 151 ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) { 152 (void) zfs_iter_snapshots_v2(zhp, cb->cb_flags, 153 zfs_callback, data, 0, 0); 154 } 155 156 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 157 ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) { 158 (void) zfs_iter_bookmarks_v2(zhp, cb->cb_flags, 159 zfs_callback, data); 160 } 161 162 cb->cb_depth--; 163 } 164 165 if (should_close) 166 zfs_close(zhp); 167 168 return (0); 169 } 170 171 int 172 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, 173 boolean_t reverse) 174 { 175 zfs_sort_column_t *col; 176 zfs_prop_t prop; 177 178 if ((prop = zfs_name_to_prop(name)) == ZPROP_USERPROP && 179 !zfs_prop_user(name)) 180 return (-1); 181 182 col = safe_malloc(sizeof (zfs_sort_column_t)); 183 184 col->sc_prop = prop; 185 col->sc_reverse = reverse; 186 if (prop == ZPROP_USERPROP) { 187 col->sc_user_prop = safe_malloc(strlen(name) + 1); 188 (void) strcpy(col->sc_user_prop, name); 189 } 190 191 if (*sc == NULL) { 192 col->sc_last = col; 193 *sc = col; 194 } else { 195 (*sc)->sc_last->sc_next = col; 196 (*sc)->sc_last = col; 197 } 198 199 return (0); 200 } 201 202 void 203 zfs_free_sort_columns(zfs_sort_column_t *sc) 204 { 205 zfs_sort_column_t *col; 206 207 while (sc != NULL) { 208 col = sc->sc_next; 209 free(sc->sc_user_prop); 210 free(sc); 211 sc = col; 212 } 213 } 214 215 /* 216 * Return true if all of the properties to be sorted are populated by 217 * dsl_dataset_fast_stat(). Note that sc == NULL (no sort) means we 218 * don't need any extra properties, so returns true. 219 */ 220 boolean_t 221 zfs_sort_only_by_fast(const zfs_sort_column_t *sc) 222 { 223 while (sc != NULL) { 224 switch (sc->sc_prop) { 225 case ZFS_PROP_NAME: 226 case ZFS_PROP_GUID: 227 case ZFS_PROP_CREATETXG: 228 case ZFS_PROP_NUMCLONES: 229 case ZFS_PROP_INCONSISTENT: 230 case ZFS_PROP_REDACTED: 231 case ZFS_PROP_ORIGIN: 232 break; 233 default: 234 return (B_FALSE); 235 } 236 sc = sc->sc_next; 237 } 238 239 return (B_TRUE); 240 } 241 242 boolean_t 243 zfs_list_only_by_fast(const zprop_list_t *p) 244 { 245 if (p == NULL) { 246 /* NULL means 'all' so we can't use simple mode */ 247 return (B_FALSE); 248 } 249 250 while (p != NULL) { 251 switch (p->pl_prop) { 252 case ZFS_PROP_NAME: 253 case ZFS_PROP_GUID: 254 case ZFS_PROP_CREATETXG: 255 case ZFS_PROP_NUMCLONES: 256 case ZFS_PROP_INCONSISTENT: 257 case ZFS_PROP_REDACTED: 258 case ZFS_PROP_ORIGIN: 259 break; 260 default: 261 return (B_FALSE); 262 } 263 p = p->pl_next; 264 } 265 266 return (B_TRUE); 267 } 268 269 static int 270 zfs_compare(const void *larg, const void *rarg) 271 { 272 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 273 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 274 const char *lname = zfs_get_name(l); 275 const char *rname = zfs_get_name(r); 276 char *lat, *rat; 277 uint64_t lcreate, rcreate; 278 int ret; 279 280 lat = (char *)strchr(lname, '@'); 281 rat = (char *)strchr(rname, '@'); 282 283 if (lat != NULL) 284 *lat = '\0'; 285 if (rat != NULL) 286 *rat = '\0'; 287 288 ret = strcmp(lname, rname); 289 if (ret == 0 && (lat != NULL || rat != NULL)) { 290 /* 291 * If we're comparing a dataset to one of its snapshots, we 292 * always make the full dataset first. 293 */ 294 if (lat == NULL) { 295 ret = -1; 296 } else if (rat == NULL) { 297 ret = 1; 298 } else { 299 /* 300 * If we have two snapshots from the same dataset, then 301 * we want to sort them according to creation time. We 302 * use the hidden CREATETXG property to get an absolute 303 * ordering of snapshots. 304 */ 305 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); 306 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); 307 308 /* 309 * Both lcreate and rcreate being 0 means we don't have 310 * properties and we should compare full name. 311 */ 312 if (lcreate == 0 && rcreate == 0) 313 ret = strcmp(lat + 1, rat + 1); 314 else if (lcreate < rcreate) 315 ret = -1; 316 else if (lcreate > rcreate) 317 ret = 1; 318 } 319 } 320 321 if (lat != NULL) 322 *lat = '@'; 323 if (rat != NULL) 324 *rat = '@'; 325 326 return (ret); 327 } 328 329 /* 330 * Sort datasets by specified columns. 331 * 332 * o Numeric types sort in ascending order. 333 * o String types sort in alphabetical order. 334 * o Types inappropriate for a row sort that row to the literal 335 * bottom, regardless of the specified ordering. 336 * 337 * If no sort columns are specified, or two datasets compare equally 338 * across all specified columns, they are sorted alphabetically by name 339 * with snapshots grouped under their parents. 340 */ 341 static int 342 zfs_sort(const void *larg, const void *rarg, void *data) 343 { 344 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 345 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 346 zfs_sort_column_t *sc = (zfs_sort_column_t *)data; 347 zfs_sort_column_t *psc; 348 349 for (psc = sc; psc != NULL; psc = psc->sc_next) { 350 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; 351 const char *lstr, *rstr; 352 uint64_t lnum = 0, rnum = 0; 353 boolean_t lvalid, rvalid; 354 int ret = 0; 355 356 /* 357 * We group the checks below the generic code. If 'lstr' and 358 * 'rstr' are non-NULL, then we do a string based comparison. 359 * Otherwise, we compare 'lnum' and 'rnum'. 360 */ 361 lstr = rstr = NULL; 362 if (psc->sc_prop == ZPROP_USERPROP) { 363 nvlist_t *luser, *ruser; 364 nvlist_t *lval, *rval; 365 366 luser = zfs_get_user_props(l); 367 ruser = zfs_get_user_props(r); 368 369 lvalid = (nvlist_lookup_nvlist(luser, 370 psc->sc_user_prop, &lval) == 0); 371 rvalid = (nvlist_lookup_nvlist(ruser, 372 psc->sc_user_prop, &rval) == 0); 373 374 if (lvalid) 375 verify(nvlist_lookup_string(lval, 376 ZPROP_VALUE, &lstr) == 0); 377 if (rvalid) 378 verify(nvlist_lookup_string(rval, 379 ZPROP_VALUE, &rstr) == 0); 380 } else if (psc->sc_prop == ZFS_PROP_NAME) { 381 lvalid = rvalid = B_TRUE; 382 383 (void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf)); 384 (void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf)); 385 386 lstr = lbuf; 387 rstr = rbuf; 388 } else if (zfs_prop_is_string(psc->sc_prop)) { 389 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, 390 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); 391 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, 392 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); 393 394 lstr = lbuf; 395 rstr = rbuf; 396 } else { 397 lvalid = zfs_prop_valid_for_type(psc->sc_prop, 398 zfs_get_type(l), B_FALSE); 399 rvalid = zfs_prop_valid_for_type(psc->sc_prop, 400 zfs_get_type(r), B_FALSE); 401 402 if (lvalid) 403 lnum = zfs_prop_get_int(l, psc->sc_prop); 404 if (rvalid) 405 rnum = zfs_prop_get_int(r, psc->sc_prop); 406 } 407 408 if (!lvalid && !rvalid) 409 continue; 410 else if (!lvalid) 411 return (1); 412 else if (!rvalid) 413 return (-1); 414 415 if (lstr) 416 ret = strcmp(lstr, rstr); 417 else if (lnum < rnum) 418 ret = -1; 419 else if (lnum > rnum) 420 ret = 1; 421 422 if (ret != 0) { 423 if (psc->sc_reverse == B_TRUE) 424 ret = (ret < 0) ? 1 : -1; 425 return (ret); 426 } 427 } 428 429 return (zfs_compare(larg, rarg)); 430 } 431 432 int 433 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types, 434 zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit, 435 zfs_iter_f callback, void *data) 436 { 437 callback_data_t cb = {0}; 438 int ret = 0; 439 zfs_node_t *node; 440 uu_avl_walk_t *walk; 441 442 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), 443 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); 444 445 if (avl_pool == NULL) 446 nomem(); 447 448 cb.cb_sortcol = sortcol; 449 cb.cb_flags = flags; 450 cb.cb_proplist = proplist; 451 cb.cb_types = types; 452 cb.cb_depth_limit = limit; 453 /* 454 * If cb_proplist is provided then in the zfs_handles created we 455 * retain only those properties listed in cb_proplist and sortcol. 456 * The rest are pruned. So, the caller should make sure that no other 457 * properties other than those listed in cb_proplist/sortcol are 458 * accessed. 459 * 460 * If cb_proplist is NULL then we retain all the properties. We 461 * always retain the zoned property, which some other properties 462 * need (userquota & friends), and the createtxg property, which 463 * we need to sort snapshots. 464 */ 465 if (cb.cb_proplist && *cb.cb_proplist) { 466 zprop_list_t *p = *cb.cb_proplist; 467 468 while (p) { 469 if (p->pl_prop >= ZFS_PROP_TYPE && 470 p->pl_prop < ZFS_NUM_PROPS) { 471 cb.cb_props_table[p->pl_prop] = B_TRUE; 472 } 473 p = p->pl_next; 474 } 475 476 while (sortcol) { 477 if (sortcol->sc_prop >= ZFS_PROP_TYPE && 478 sortcol->sc_prop < ZFS_NUM_PROPS) { 479 cb.cb_props_table[sortcol->sc_prop] = B_TRUE; 480 } 481 sortcol = sortcol->sc_next; 482 } 483 484 cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE; 485 cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE; 486 } else { 487 (void) memset(cb.cb_props_table, B_TRUE, 488 sizeof (cb.cb_props_table)); 489 } 490 491 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) 492 nomem(); 493 494 if (argc == 0) { 495 /* 496 * If given no arguments, iterate over all datasets. 497 */ 498 cb.cb_flags |= ZFS_ITER_RECURSE; 499 ret = zfs_iter_root(g_zfs, zfs_callback, &cb); 500 } else { 501 zfs_handle_t *zhp = NULL; 502 zfs_type_t argtype = types; 503 504 /* 505 * If we're recursive, then we always allow filesystems as 506 * arguments. If we also are interested in snapshots or 507 * bookmarks, then we can take volumes as well. 508 */ 509 if (flags & ZFS_ITER_RECURSE) { 510 argtype |= ZFS_TYPE_FILESYSTEM; 511 if (types & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK)) 512 argtype |= ZFS_TYPE_VOLUME; 513 } 514 515 for (int i = 0; i < argc; i++) { 516 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) { 517 zhp = zfs_path_to_zhandle(g_zfs, argv[i], 518 argtype); 519 } else { 520 zhp = zfs_open(g_zfs, argv[i], argtype); 521 } 522 if (zhp != NULL) 523 ret |= zfs_callback(zhp, &cb); 524 else 525 ret = 1; 526 } 527 } 528 529 /* 530 * At this point we've got our AVL tree full of zfs handles, so iterate 531 * over each one and execute the real user callback. 532 */ 533 for (node = uu_avl_first(cb.cb_avl); node != NULL; 534 node = uu_avl_next(cb.cb_avl, node)) 535 ret |= callback(node->zn_handle, data); 536 537 /* 538 * Finally, clean up the AVL tree. 539 */ 540 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) 541 nomem(); 542 543 while ((node = uu_avl_walk_next(walk)) != NULL) { 544 uu_avl_remove(cb.cb_avl, node); 545 zfs_close(node->zn_handle); 546 free(node); 547 } 548 549 uu_avl_walk_end(walk); 550 uu_avl_destroy(cb.cb_avl); 551 uu_avl_pool_destroy(avl_pool); 552 553 return (ret); 554 } 555