1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 29 #include <libintl.h> 30 #include <libuutil.h> 31 #include <stddef.h> 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <strings.h> 36 37 #include <libzfs.h> 38 39 #include "zfs_util.h" 40 #include "zfs_iter.h" 41 42 /* 43 * This is a private interface used to gather up all the datasets specified on 44 * the command line so that we can iterate over them in order. 45 * 46 * First, we iterate over all filesystems, gathering them together into an 47 * AVL tree. We report errors for any explicitly specified datasets 48 * that we couldn't open. 49 * 50 * When finished, we have an AVL tree of ZFS handles. We go through and execute 51 * the provided callback for each one, passing whatever data the user supplied. 52 */ 53 54 typedef struct zfs_node { 55 zfs_handle_t *zn_handle; 56 uu_avl_node_t zn_avlnode; 57 } zfs_node_t; 58 59 typedef struct callback_data { 60 uu_avl_t *cb_avl; 61 int cb_flags; 62 zfs_type_t cb_types; 63 zfs_sort_column_t *cb_sortcol; 64 zprop_list_t **cb_proplist; 65 int cb_depth_limit; 66 int cb_depth; 67 uint8_t cb_props_table[ZFS_NUM_PROPS]; 68 } callback_data_t; 69 70 uu_avl_pool_t *avl_pool; 71 72 /* 73 * Include snaps if they were requested or if this a zfs list where types 74 * were not specified and the "listsnapshots" property is set on this pool. 75 */ 76 static boolean_t 77 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb) 78 { 79 zpool_handle_t *zph; 80 81 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0) 82 return (cb->cb_types & ZFS_TYPE_SNAPSHOT); 83 84 zph = zfs_get_pool_handle(zhp); 85 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL)); 86 } 87 88 /* 89 * Called for each dataset. If the object is of an appropriate type, 90 * add it to the avl tree and recurse over any children as necessary. 91 */ 92 static int 93 zfs_callback(zfs_handle_t *zhp, void *data) 94 { 95 callback_data_t *cb = data; 96 boolean_t should_close = B_TRUE; 97 boolean_t include_snaps = zfs_include_snapshots(zhp, cb); 98 boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK); 99 100 if ((zfs_get_type(zhp) & cb->cb_types) || 101 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) { 102 uu_avl_index_t idx; 103 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); 104 105 node->zn_handle = zhp; 106 uu_avl_node_init(node, &node->zn_avlnode, avl_pool); 107 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, 108 &idx) == NULL) { 109 if (cb->cb_proplist) { 110 if ((*cb->cb_proplist) && 111 !(*cb->cb_proplist)->pl_all) 112 zfs_prune_proplist(zhp, 113 cb->cb_props_table); 114 115 if (zfs_expand_proplist(zhp, cb->cb_proplist, 116 (cb->cb_flags & ZFS_ITER_RECVD_PROPS), 117 (cb->cb_flags & ZFS_ITER_LITERAL_PROPS)) 118 != 0) { 119 free(node); 120 return (-1); 121 } 122 } 123 uu_avl_insert(cb->cb_avl, node, idx); 124 should_close = B_FALSE; 125 } else { 126 free(node); 127 } 128 } 129 130 /* 131 * Recurse if necessary. 132 */ 133 if (cb->cb_flags & ZFS_ITER_RECURSE && 134 ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || 135 cb->cb_depth < cb->cb_depth_limit)) { 136 cb->cb_depth++; 137 138 /* 139 * If we are not looking for filesystems, we don't need to 140 * recurse into filesystems when we are at our depth limit. 141 */ 142 if ((cb->cb_depth < cb->cb_depth_limit || 143 (cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || 144 (cb->cb_types & 145 (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME))) && 146 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { 147 (void) zfs_iter_filesystems(zhp, zfs_callback, data); 148 } 149 150 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 151 ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) { 152 (void) zfs_iter_snapshots(zhp, 153 (cb->cb_flags & ZFS_ITER_SIMPLE) != 0, 154 zfs_callback, data, 0, 0); 155 } 156 157 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 158 ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) { 159 (void) zfs_iter_bookmarks(zhp, zfs_callback, data); 160 } 161 162 cb->cb_depth--; 163 } 164 165 if (should_close) 166 zfs_close(zhp); 167 168 return (0); 169 } 170 171 int 172 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, 173 boolean_t reverse) 174 { 175 zfs_sort_column_t *col; 176 zfs_prop_t prop; 177 178 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL && 179 !zfs_prop_user(name)) 180 return (-1); 181 182 col = safe_malloc(sizeof (zfs_sort_column_t)); 183 184 col->sc_prop = prop; 185 col->sc_reverse = reverse; 186 if (prop == ZPROP_INVAL) { 187 col->sc_user_prop = safe_malloc(strlen(name) + 1); 188 (void) strcpy(col->sc_user_prop, name); 189 } 190 191 if (*sc == NULL) { 192 col->sc_last = col; 193 *sc = col; 194 } else { 195 (*sc)->sc_last->sc_next = col; 196 (*sc)->sc_last = col; 197 } 198 199 return (0); 200 } 201 202 void 203 zfs_free_sort_columns(zfs_sort_column_t *sc) 204 { 205 zfs_sort_column_t *col; 206 207 while (sc != NULL) { 208 col = sc->sc_next; 209 free(sc->sc_user_prop); 210 free(sc); 211 sc = col; 212 } 213 } 214 215 int 216 zfs_sort_only_by_name(const zfs_sort_column_t *sc) 217 { 218 return (sc != NULL && sc->sc_next == NULL && 219 sc->sc_prop == ZFS_PROP_NAME); 220 } 221 222 static int 223 zfs_compare(const void *larg, const void *rarg) 224 { 225 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 226 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 227 const char *lname = zfs_get_name(l); 228 const char *rname = zfs_get_name(r); 229 char *lat, *rat; 230 uint64_t lcreate, rcreate; 231 int ret; 232 233 lat = (char *)strchr(lname, '@'); 234 rat = (char *)strchr(rname, '@'); 235 236 if (lat != NULL) 237 *lat = '\0'; 238 if (rat != NULL) 239 *rat = '\0'; 240 241 ret = strcmp(lname, rname); 242 if (ret == 0 && (lat != NULL || rat != NULL)) { 243 /* 244 * If we're comparing a dataset to one of its snapshots, we 245 * always make the full dataset first. 246 */ 247 if (lat == NULL) { 248 ret = -1; 249 } else if (rat == NULL) { 250 ret = 1; 251 } else { 252 /* 253 * If we have two snapshots from the same dataset, then 254 * we want to sort them according to creation time. We 255 * use the hidden CREATETXG property to get an absolute 256 * ordering of snapshots. 257 */ 258 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); 259 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); 260 261 /* 262 * Both lcreate and rcreate being 0 means we don't have 263 * properties and we should compare full name. 264 */ 265 if (lcreate == 0 && rcreate == 0) 266 ret = strcmp(lat + 1, rat + 1); 267 else if (lcreate < rcreate) 268 ret = -1; 269 else if (lcreate > rcreate) 270 ret = 1; 271 } 272 } 273 274 if (lat != NULL) 275 *lat = '@'; 276 if (rat != NULL) 277 *rat = '@'; 278 279 return (ret); 280 } 281 282 /* 283 * Sort datasets by specified columns. 284 * 285 * o Numeric types sort in ascending order. 286 * o String types sort in alphabetical order. 287 * o Types inappropriate for a row sort that row to the literal 288 * bottom, regardless of the specified ordering. 289 * 290 * If no sort columns are specified, or two datasets compare equally 291 * across all specified columns, they are sorted alphabetically by name 292 * with snapshots grouped under their parents. 293 */ 294 static int 295 zfs_sort(const void *larg, const void *rarg, void *data) 296 { 297 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 298 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 299 zfs_sort_column_t *sc = (zfs_sort_column_t *)data; 300 zfs_sort_column_t *psc; 301 302 for (psc = sc; psc != NULL; psc = psc->sc_next) { 303 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; 304 char *lstr, *rstr; 305 uint64_t lnum, rnum; 306 boolean_t lvalid, rvalid; 307 int ret = 0; 308 309 /* 310 * We group the checks below the generic code. If 'lstr' and 311 * 'rstr' are non-NULL, then we do a string based comparison. 312 * Otherwise, we compare 'lnum' and 'rnum'. 313 */ 314 lstr = rstr = NULL; 315 if (psc->sc_prop == ZPROP_INVAL) { 316 nvlist_t *luser, *ruser; 317 nvlist_t *lval, *rval; 318 319 luser = zfs_get_user_props(l); 320 ruser = zfs_get_user_props(r); 321 322 lvalid = (nvlist_lookup_nvlist(luser, 323 psc->sc_user_prop, &lval) == 0); 324 rvalid = (nvlist_lookup_nvlist(ruser, 325 psc->sc_user_prop, &rval) == 0); 326 327 if (lvalid) 328 verify(nvlist_lookup_string(lval, 329 ZPROP_VALUE, &lstr) == 0); 330 if (rvalid) 331 verify(nvlist_lookup_string(rval, 332 ZPROP_VALUE, &rstr) == 0); 333 } else if (psc->sc_prop == ZFS_PROP_NAME) { 334 lvalid = rvalid = B_TRUE; 335 336 (void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf)); 337 (void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf)); 338 339 lstr = lbuf; 340 rstr = rbuf; 341 } else if (zfs_prop_is_string(psc->sc_prop)) { 342 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, 343 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); 344 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, 345 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); 346 347 lstr = lbuf; 348 rstr = rbuf; 349 } else { 350 lvalid = zfs_prop_valid_for_type(psc->sc_prop, 351 zfs_get_type(l), B_FALSE); 352 rvalid = zfs_prop_valid_for_type(psc->sc_prop, 353 zfs_get_type(r), B_FALSE); 354 355 if (lvalid) 356 (void) zfs_prop_get_numeric(l, psc->sc_prop, 357 &lnum, NULL, NULL, 0); 358 if (rvalid) 359 (void) zfs_prop_get_numeric(r, psc->sc_prop, 360 &rnum, NULL, NULL, 0); 361 } 362 363 if (!lvalid && !rvalid) 364 continue; 365 else if (!lvalid) 366 return (1); 367 else if (!rvalid) 368 return (-1); 369 370 if (lstr) 371 ret = strcmp(lstr, rstr); 372 else if (lnum < rnum) 373 ret = -1; 374 else if (lnum > rnum) 375 ret = 1; 376 377 if (ret != 0) { 378 if (psc->sc_reverse == B_TRUE) 379 ret = (ret < 0) ? 1 : -1; 380 return (ret); 381 } 382 } 383 384 return (zfs_compare(larg, rarg)); 385 } 386 387 int 388 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types, 389 zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit, 390 zfs_iter_f callback, void *data) 391 { 392 callback_data_t cb = {0}; 393 int ret = 0; 394 zfs_node_t *node; 395 uu_avl_walk_t *walk; 396 397 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), 398 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); 399 400 if (avl_pool == NULL) 401 nomem(); 402 403 cb.cb_sortcol = sortcol; 404 cb.cb_flags = flags; 405 cb.cb_proplist = proplist; 406 cb.cb_types = types; 407 cb.cb_depth_limit = limit; 408 /* 409 * If cb_proplist is provided then in the zfs_handles created we 410 * retain only those properties listed in cb_proplist and sortcol. 411 * The rest are pruned. So, the caller should make sure that no other 412 * properties other than those listed in cb_proplist/sortcol are 413 * accessed. 414 * 415 * If cb_proplist is NULL then we retain all the properties. We 416 * always retain the zoned property, which some other properties 417 * need (userquota & friends), and the createtxg property, which 418 * we need to sort snapshots. 419 */ 420 if (cb.cb_proplist && *cb.cb_proplist) { 421 zprop_list_t *p = *cb.cb_proplist; 422 423 while (p) { 424 if (p->pl_prop >= ZFS_PROP_TYPE && 425 p->pl_prop < ZFS_NUM_PROPS) { 426 cb.cb_props_table[p->pl_prop] = B_TRUE; 427 } 428 p = p->pl_next; 429 } 430 431 while (sortcol) { 432 if (sortcol->sc_prop >= ZFS_PROP_TYPE && 433 sortcol->sc_prop < ZFS_NUM_PROPS) { 434 cb.cb_props_table[sortcol->sc_prop] = B_TRUE; 435 } 436 sortcol = sortcol->sc_next; 437 } 438 439 cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE; 440 cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE; 441 } else { 442 (void) memset(cb.cb_props_table, B_TRUE, 443 sizeof (cb.cb_props_table)); 444 } 445 446 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) 447 nomem(); 448 449 if (argc == 0) { 450 /* 451 * If given no arguments, iterate over all datasets. 452 */ 453 cb.cb_flags |= ZFS_ITER_RECURSE; 454 ret = zfs_iter_root(g_zfs, zfs_callback, &cb); 455 } else { 456 int i; 457 zfs_handle_t *zhp; 458 zfs_type_t argtype; 459 460 /* 461 * If we're recursive, then we always allow filesystems as 462 * arguments. If we also are interested in snapshots or 463 * bookmarks, then we can take volumes as well. 464 */ 465 argtype = types; 466 if (flags & ZFS_ITER_RECURSE) { 467 argtype |= ZFS_TYPE_FILESYSTEM; 468 if (types & (ZFS_TYPE_SNAPSHOT | ZFS_TYPE_BOOKMARK)) 469 argtype |= ZFS_TYPE_VOLUME; 470 } 471 472 for (i = 0; i < argc; i++) { 473 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) { 474 zhp = zfs_path_to_zhandle(g_zfs, argv[i], 475 argtype); 476 } else { 477 zhp = zfs_open(g_zfs, argv[i], argtype); 478 } 479 if (zhp != NULL) 480 ret |= zfs_callback(zhp, &cb); 481 else 482 ret = 1; 483 } 484 } 485 486 /* 487 * At this point we've got our AVL tree full of zfs handles, so iterate 488 * over each one and execute the real user callback. 489 */ 490 for (node = uu_avl_first(cb.cb_avl); node != NULL; 491 node = uu_avl_next(cb.cb_avl, node)) 492 ret |= callback(node->zn_handle, data); 493 494 /* 495 * Finally, clean up the AVL tree. 496 */ 497 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) 498 nomem(); 499 500 while ((node = uu_avl_walk_next(walk)) != NULL) { 501 uu_avl_remove(cb.cb_avl, node); 502 zfs_close(node->zn_handle); 503 free(node); 504 } 505 506 uu_avl_walk_end(walk); 507 uu_avl_destroy(cb.cb_avl); 508 uu_avl_pool_destroy(avl_pool); 509 510 return (ret); 511 } 512