1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright (c) 2016, Intel Corporation. 25 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com> 26 */ 27 28 /* 29 * The ZFS retire agent is responsible for managing hot spares across all pools. 30 * When we see a device fault or a device removal, we try to open the associated 31 * pool and look for any hot spares. We iterate over any available hot spares 32 * and attempt a 'zpool replace' for each one. 33 * 34 * For vdevs diagnosed as faulty, the agent is also responsible for proactively 35 * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors). 36 */ 37 38 #include <sys/fs/zfs.h> 39 #include <sys/fm/protocol.h> 40 #include <sys/fm/fs/zfs.h> 41 #include <libzutil.h> 42 #include <libzfs.h> 43 #include <string.h> 44 #include <libgen.h> 45 46 #include "zfs_agents.h" 47 #include "fmd_api.h" 48 49 50 typedef struct zfs_retire_repaired { 51 struct zfs_retire_repaired *zrr_next; 52 uint64_t zrr_pool; 53 uint64_t zrr_vdev; 54 } zfs_retire_repaired_t; 55 56 typedef struct zfs_retire_data { 57 libzfs_handle_t *zrd_hdl; 58 zfs_retire_repaired_t *zrd_repaired; 59 } zfs_retire_data_t; 60 61 static void 62 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp) 63 { 64 zfs_retire_repaired_t *zrp; 65 66 while ((zrp = zdp->zrd_repaired) != NULL) { 67 zdp->zrd_repaired = zrp->zrr_next; 68 fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t)); 69 } 70 } 71 72 /* 73 * Find a pool with a matching GUID. 74 */ 75 typedef struct find_cbdata { 76 uint64_t cb_guid; 77 zpool_handle_t *cb_zhp; 78 nvlist_t *cb_vdev; 79 } find_cbdata_t; 80 81 static int 82 find_pool(zpool_handle_t *zhp, void *data) 83 { 84 find_cbdata_t *cbp = data; 85 86 if (cbp->cb_guid == 87 zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) { 88 cbp->cb_zhp = zhp; 89 return (1); 90 } 91 92 zpool_close(zhp); 93 return (0); 94 } 95 96 /* 97 * Find a vdev within a tree with a matching GUID. 98 */ 99 static nvlist_t * 100 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid) 101 { 102 uint64_t guid; 103 nvlist_t **child; 104 uint_t c, children; 105 nvlist_t *ret; 106 107 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 && 108 guid == search_guid) { 109 fmd_hdl_debug(fmd_module_hdl("zfs-retire"), 110 "matched vdev %llu", guid); 111 return (nv); 112 } 113 114 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 115 &child, &children) != 0) 116 return (NULL); 117 118 for (c = 0; c < children; c++) { 119 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) 120 return (ret); 121 } 122 123 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 124 &child, &children) != 0) 125 return (NULL); 126 127 for (c = 0; c < children; c++) { 128 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) 129 return (ret); 130 } 131 132 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 133 &child, &children) != 0) 134 return (NULL); 135 136 for (c = 0; c < children; c++) { 137 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) 138 return (ret); 139 } 140 141 return (NULL); 142 } 143 144 /* 145 * Given a (pool, vdev) GUID pair, find the matching pool and vdev. 146 */ 147 static zpool_handle_t * 148 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid, 149 nvlist_t **vdevp) 150 { 151 find_cbdata_t cb; 152 zpool_handle_t *zhp; 153 nvlist_t *config, *nvroot; 154 155 /* 156 * Find the corresponding pool and make sure the vdev still exists. 157 */ 158 cb.cb_guid = pool_guid; 159 if (zpool_iter(zhdl, find_pool, &cb) != 1) 160 return (NULL); 161 162 zhp = cb.cb_zhp; 163 config = zpool_get_config(zhp, NULL); 164 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 165 &nvroot) != 0) { 166 zpool_close(zhp); 167 return (NULL); 168 } 169 170 if (vdev_guid != 0) { 171 if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) { 172 zpool_close(zhp); 173 return (NULL); 174 } 175 } 176 177 return (zhp); 178 } 179 180 /* 181 * Given a vdev, attempt to replace it with every known spare until one 182 * succeeds or we run out of devices to try. 183 * Return whether we were successful or not in replacing the device. 184 */ 185 static boolean_t 186 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev) 187 { 188 nvlist_t *config, *nvroot, *replacement; 189 nvlist_t **spares; 190 uint_t s, nspares; 191 char *dev_name; 192 zprop_source_t source; 193 int ashift; 194 195 config = zpool_get_config(zhp, NULL); 196 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 197 &nvroot) != 0) 198 return (B_FALSE); 199 200 /* 201 * Find out if there are any hot spares available in the pool. 202 */ 203 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 204 &spares, &nspares) != 0) 205 return (B_FALSE); 206 207 /* 208 * lookup "ashift" pool property, we may need it for the replacement 209 */ 210 ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source); 211 212 replacement = fmd_nvl_alloc(hdl, FMD_SLEEP); 213 214 (void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE, 215 VDEV_TYPE_ROOT); 216 217 dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE); 218 219 /* 220 * Try to replace each spare, ending when we successfully 221 * replace it. 222 */ 223 for (s = 0; s < nspares; s++) { 224 boolean_t rebuild = B_FALSE; 225 char *spare_name, *type; 226 227 if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH, 228 &spare_name) != 0) 229 continue; 230 231 /* prefer sequential resilvering for distributed spares */ 232 if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE, 233 &type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 234 rebuild = B_TRUE; 235 236 /* if set, add the "ashift" pool property to the spare nvlist */ 237 if (source != ZPROP_SRC_DEFAULT) 238 (void) nvlist_add_uint64(spares[s], 239 ZPOOL_CONFIG_ASHIFT, ashift); 240 241 (void) nvlist_add_nvlist_array(replacement, 242 ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)&spares[s], 1); 243 244 fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'", 245 dev_name, zfs_basename(spare_name)); 246 247 if (zpool_vdev_attach(zhp, dev_name, spare_name, 248 replacement, B_TRUE, rebuild) == 0) { 249 free(dev_name); 250 nvlist_free(replacement); 251 return (B_TRUE); 252 } 253 } 254 255 free(dev_name); 256 nvlist_free(replacement); 257 258 return (B_FALSE); 259 } 260 261 /* 262 * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and 263 * ASRU is now usable. ZFS has found the device to be present and 264 * functioning. 265 */ 266 /*ARGSUSED*/ 267 static void 268 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl) 269 { 270 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 271 zfs_retire_repaired_t *zrp; 272 uint64_t pool_guid, vdev_guid; 273 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 274 &pool_guid) != 0 || nvlist_lookup_uint64(nvl, 275 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 276 return; 277 278 /* 279 * Before checking the state of the ASRU, go through and see if we've 280 * already made an attempt to repair this ASRU. This list is cleared 281 * whenever we receive any kind of list event, and is designed to 282 * prevent us from generating a feedback loop when we attempt repairs 283 * against a faulted pool. The problem is that checking the unusable 284 * state of the ASRU can involve opening the pool, which can post 285 * statechange events but otherwise leave the pool in the faulted 286 * state. This list allows us to detect when a statechange event is 287 * due to our own request. 288 */ 289 for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) { 290 if (zrp->zrr_pool == pool_guid && 291 zrp->zrr_vdev == vdev_guid) 292 return; 293 } 294 295 zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP); 296 zrp->zrr_next = zdp->zrd_repaired; 297 zrp->zrr_pool = pool_guid; 298 zrp->zrr_vdev = vdev_guid; 299 zdp->zrd_repaired = zrp; 300 301 fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu", 302 vdev_guid, pool_guid); 303 } 304 305 /*ARGSUSED*/ 306 static void 307 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, 308 const char *class) 309 { 310 uint64_t pool_guid, vdev_guid; 311 zpool_handle_t *zhp; 312 nvlist_t *resource, *fault; 313 nvlist_t **faults; 314 uint_t f, nfaults; 315 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 316 libzfs_handle_t *zhdl = zdp->zrd_hdl; 317 boolean_t fault_device, degrade_device; 318 boolean_t is_repair; 319 char *scheme; 320 nvlist_t *vdev = NULL; 321 char *uuid; 322 int repair_done = 0; 323 boolean_t retire; 324 boolean_t is_disk; 325 vdev_aux_t aux; 326 uint64_t state = 0; 327 328 fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class); 329 330 nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state); 331 332 /* 333 * If this is a resource notifying us of device removal then simply 334 * check for an available spare and continue unless the device is a 335 * l2arc vdev, in which case we just offline it. 336 */ 337 if (strcmp(class, "resource.fs.zfs.removed") == 0 || 338 (strcmp(class, "resource.fs.zfs.statechange") == 0 && 339 (state == VDEV_STATE_REMOVED || state == VDEV_STATE_FAULTED))) { 340 char *devtype; 341 char *devname; 342 343 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 344 &pool_guid) != 0 || 345 nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 346 &vdev_guid) != 0) 347 return; 348 349 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, 350 &vdev)) == NULL) 351 return; 352 353 devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE); 354 355 /* Can't replace l2arc with a spare: offline the device */ 356 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 357 &devtype) == 0 && strcmp(devtype, VDEV_TYPE_L2CACHE) == 0) { 358 fmd_hdl_debug(hdl, "zpool_vdev_offline '%s'", devname); 359 zpool_vdev_offline(zhp, devname, B_TRUE); 360 } else if (!fmd_prop_get_int32(hdl, "spare_on_remove") || 361 replace_with_spare(hdl, zhp, vdev) == B_FALSE) { 362 /* Could not handle with spare */ 363 fmd_hdl_debug(hdl, "no spare for '%s'", devname); 364 } 365 366 free(devname); 367 zpool_close(zhp); 368 return; 369 } 370 371 if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0) 372 return; 373 374 /* 375 * Note: on Linux statechange events are more than just 376 * healthy ones so we need to confirm the actual state value. 377 */ 378 if (strcmp(class, "resource.fs.zfs.statechange") == 0 && 379 state == VDEV_STATE_HEALTHY) { 380 zfs_vdev_repair(hdl, nvl); 381 return; 382 } 383 if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) { 384 zfs_vdev_repair(hdl, nvl); 385 return; 386 } 387 388 zfs_retire_clear_data(hdl, zdp); 389 390 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0) 391 is_repair = B_TRUE; 392 else 393 is_repair = B_FALSE; 394 395 /* 396 * We subscribe to zfs faults as well as all repair events. 397 */ 398 if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, 399 &faults, &nfaults) != 0) 400 return; 401 402 for (f = 0; f < nfaults; f++) { 403 fault = faults[f]; 404 405 fault_device = B_FALSE; 406 degrade_device = B_FALSE; 407 is_disk = B_FALSE; 408 409 if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE, 410 &retire) == 0 && retire == 0) 411 continue; 412 413 /* 414 * While we subscribe to fault.fs.zfs.*, we only take action 415 * for faults targeting a specific vdev (open failure or SERD 416 * failure). We also subscribe to fault.io.* events, so that 417 * faulty disks will be faulted in the ZFS configuration. 418 */ 419 if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) { 420 fault_device = B_TRUE; 421 } else if (fmd_nvl_class_match(hdl, fault, 422 "fault.fs.zfs.vdev.checksum")) { 423 degrade_device = B_TRUE; 424 } else if (fmd_nvl_class_match(hdl, fault, 425 "fault.fs.zfs.device")) { 426 fault_device = B_FALSE; 427 } else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) { 428 is_disk = B_TRUE; 429 fault_device = B_TRUE; 430 } else { 431 continue; 432 } 433 434 if (is_disk) { 435 continue; 436 } else { 437 /* 438 * This is a ZFS fault. Lookup the resource, and 439 * attempt to find the matching vdev. 440 */ 441 if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE, 442 &resource) != 0 || 443 nvlist_lookup_string(resource, FM_FMRI_SCHEME, 444 &scheme) != 0) 445 continue; 446 447 if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0) 448 continue; 449 450 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL, 451 &pool_guid) != 0) 452 continue; 453 454 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV, 455 &vdev_guid) != 0) { 456 if (is_repair) 457 vdev_guid = 0; 458 else 459 continue; 460 } 461 462 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, 463 &vdev)) == NULL) 464 continue; 465 466 aux = VDEV_AUX_ERR_EXCEEDED; 467 } 468 469 if (vdev_guid == 0) { 470 /* 471 * For pool-level repair events, clear the entire pool. 472 */ 473 fmd_hdl_debug(hdl, "zpool_clear of pool '%s'", 474 zpool_get_name(zhp)); 475 (void) zpool_clear(zhp, NULL, NULL); 476 zpool_close(zhp); 477 continue; 478 } 479 480 /* 481 * If this is a repair event, then mark the vdev as repaired and 482 * continue. 483 */ 484 if (is_repair) { 485 repair_done = 1; 486 fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu", 487 zpool_get_name(zhp), vdev_guid); 488 (void) zpool_vdev_clear(zhp, vdev_guid); 489 zpool_close(zhp); 490 continue; 491 } 492 493 /* 494 * Actively fault the device if needed. 495 */ 496 if (fault_device) 497 (void) zpool_vdev_fault(zhp, vdev_guid, aux); 498 if (degrade_device) 499 (void) zpool_vdev_degrade(zhp, vdev_guid, aux); 500 501 if (fault_device || degrade_device) 502 fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'", 503 fault_device ? "fault" : "degrade", vdev_guid, 504 zpool_get_name(zhp)); 505 506 /* 507 * Attempt to substitute a hot spare. 508 */ 509 (void) replace_with_spare(hdl, zhp, vdev); 510 511 zpool_close(zhp); 512 } 513 514 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done && 515 nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0) 516 fmd_case_uuresolved(hdl, uuid); 517 } 518 519 static const fmd_hdl_ops_t fmd_ops = { 520 zfs_retire_recv, /* fmdo_recv */ 521 NULL, /* fmdo_timeout */ 522 NULL, /* fmdo_close */ 523 NULL, /* fmdo_stats */ 524 NULL, /* fmdo_gc */ 525 }; 526 527 static const fmd_prop_t fmd_props[] = { 528 { "spare_on_remove", FMD_TYPE_BOOL, "true" }, 529 { NULL, 0, NULL } 530 }; 531 532 static const fmd_hdl_info_t fmd_info = { 533 "ZFS Retire Agent", "1.0", &fmd_ops, fmd_props 534 }; 535 536 void 537 _zfs_retire_init(fmd_hdl_t *hdl) 538 { 539 zfs_retire_data_t *zdp; 540 libzfs_handle_t *zhdl; 541 542 if ((zhdl = libzfs_init()) == NULL) 543 return; 544 545 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 546 libzfs_fini(zhdl); 547 return; 548 } 549 550 zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP); 551 zdp->zrd_hdl = zhdl; 552 553 fmd_hdl_setspecific(hdl, zdp); 554 } 555 556 void 557 _zfs_retire_fini(fmd_hdl_t *hdl) 558 { 559 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 560 561 if (zdp != NULL) { 562 zfs_retire_clear_data(hdl, zdp); 563 libzfs_fini(zdp->zrd_hdl); 564 fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t)); 565 } 566 } 567