1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, 2017, Intel Corporation. 26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 27 */ 28 29 /* 30 * ZFS syseventd module. 31 * 32 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c 33 * 34 * The purpose of this module is to identify when devices are added to the 35 * system, and appropriately online or replace the affected vdevs. 36 * 37 * When a device is added to the system: 38 * 39 * 1. Search for any vdevs whose devid matches that of the newly added 40 * device. 41 * 42 * 2. If no vdevs are found, then search for any vdevs whose udev path 43 * matches that of the new device. 44 * 45 * 3. If no vdevs match by either method, then ignore the event. 46 * 47 * 4. Attempt to online the device with a flag to indicate that it should 48 * be unspared when resilvering completes. If this succeeds, then the 49 * same device was inserted and we should continue normally. 50 * 51 * 5. If the pool does not have the 'autoreplace' property set, attempt to 52 * online the device again without the unspare flag, which will 53 * generate a FMA fault. 54 * 55 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 56 * is a whole disk, then label the new disk and attempt a 'zpool 57 * replace'. 58 * 59 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK 60 * event indicates that a device failed to open during pool load, but the 61 * autoreplace property was set. In this case, we deferred the associated 62 * FMA fault until our module had a chance to process the autoreplace logic. 63 * If the device could not be replaced, then the second online attempt will 64 * trigger the FMA fault that we skipped earlier. 65 * 66 * On Linux udev provides a disk insert for both the disk and the partition. 67 */ 68 69 #include <ctype.h> 70 #include <fcntl.h> 71 #include <libnvpair.h> 72 #include <libzfs.h> 73 #include <libzutil.h> 74 #include <limits.h> 75 #include <stddef.h> 76 #include <stdlib.h> 77 #include <string.h> 78 #include <syslog.h> 79 #include <sys/list.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysevent/eventdefs.h> 82 #include <sys/sysevent/dev.h> 83 #include <thread_pool.h> 84 #include <pthread.h> 85 #include <unistd.h> 86 #include <errno.h> 87 #include "zfs_agents.h" 88 #include "../zed_log.h" 89 90 #define DEV_BYID_PATH "/dev/disk/by-id/" 91 #define DEV_BYPATH_PATH "/dev/disk/by-path/" 92 #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" 93 94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 95 96 libzfs_handle_t *g_zfshdl; 97 list_t g_pool_list; /* list of unavailable pools at initialization */ 98 list_t g_device_list; /* list of disks with asynchronous label request */ 99 tpool_t *g_tpool; 100 boolean_t g_enumeration_done; 101 pthread_t g_zfs_tid; /* zfs_enum_pools() thread */ 102 103 typedef struct unavailpool { 104 zpool_handle_t *uap_zhp; 105 list_node_t uap_node; 106 } unavailpool_t; 107 108 typedef struct pendingdev { 109 char pd_physpath[128]; 110 list_node_t pd_node; 111 } pendingdev_t; 112 113 static int 114 zfs_toplevel_state(zpool_handle_t *zhp) 115 { 116 nvlist_t *nvroot; 117 vdev_stat_t *vs; 118 unsigned int c; 119 120 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 121 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 122 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 123 (uint64_t **)&vs, &c) == 0); 124 return (vs->vs_state); 125 } 126 127 static int 128 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 129 { 130 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", 131 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); 132 133 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 134 unavailpool_t *uap; 135 uap = malloc(sizeof (unavailpool_t)); 136 if (uap == NULL) { 137 perror("malloc"); 138 exit(EXIT_FAILURE); 139 } 140 141 uap->uap_zhp = zhp; 142 list_insert_tail((list_t *)data, uap); 143 } else { 144 zpool_close(zhp); 145 } 146 return (0); 147 } 148 149 /* 150 * Two stage replace on Linux 151 * since we get disk notifications 152 * we can wait for partitioned disk slice to show up! 153 * 154 * First stage tags the disk, initiates async partitioning, and returns 155 * Second stage finds the tag and proceeds to ZFS labeling/replace 156 * 157 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach 158 * 159 * 1. physical match with no fs, no partition 160 * tag it top, partition disk 161 * 162 * 2. physical match again, see partition and tag 163 * 164 */ 165 166 /* 167 * The device associated with the given vdev (either by devid or physical path) 168 * has been added to the system. If 'isdisk' is set, then we only attempt a 169 * replacement if it's a whole disk. This also implies that we should label the 170 * disk first. 171 * 172 * First, we attempt to online the device (making sure to undo any spare 173 * operation when finished). If this succeeds, then we're done. If it fails, 174 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 175 * but that the label was not what we expected. If the 'autoreplace' property 176 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool 177 * replace'. If the online is successful, but the new state is something else 178 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 179 * race, and we should avoid attempting to relabel the disk. 180 * 181 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event 182 */ 183 static void 184 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) 185 { 186 const char *path; 187 vdev_state_t newstate; 188 nvlist_t *nvroot, *newvd; 189 pendingdev_t *device; 190 uint64_t wholedisk = 0ULL; 191 uint64_t offline = 0ULL, faulted = 0ULL; 192 uint64_t guid = 0ULL; 193 uint64_t is_spare = 0; 194 const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; 195 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 196 char devpath[PATH_MAX]; 197 int ret; 198 int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE; 199 boolean_t is_sd = B_FALSE; 200 boolean_t is_mpath_wholedisk = B_FALSE; 201 uint_t c; 202 vdev_stat_t *vs; 203 204 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 205 return; 206 207 /* Skip healthy disks */ 208 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, 209 (uint64_t **)&vs, &c) == 0); 210 if (vs->vs_state == VDEV_STATE_HEALTHY) { 211 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", 212 __func__, path); 213 return; 214 } 215 216 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 217 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 218 &enc_sysfs_path); 219 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 220 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); 221 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted); 222 223 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); 224 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare); 225 226 /* 227 * Special case: 228 * 229 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH 230 * entry in their config. For example, on this force-faulted disk: 231 * 232 * children[0]: 233 * type: 'disk' 234 * id: 0 235 * guid: 14309659774640089719 236 * path: '/dev/disk/by-vdev/L28' 237 * whole_disk: 0 238 * DTL: 654 239 * create_txg: 4 240 * com.delphix:vdev_zap_leaf: 1161 241 * faulted: 1 242 * aux_state: 'external' 243 * children[1]: 244 * type: 'disk' 245 * id: 1 246 * guid: 16002508084177980912 247 * path: '/dev/disk/by-vdev/L29' 248 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 249 * phys_path: 'L29' 250 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 251 * whole_disk: 0 252 * DTL: 1028 253 * create_txg: 4 254 * com.delphix:vdev_zap_leaf: 131 255 * 256 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer 257 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name. 258 */ 259 if (physpath == NULL && path != NULL) { 260 /* If path begins with "/dev/disk/by-vdev/" ... */ 261 if (strncmp(path, DEV_BYVDEV_PATH, 262 strlen(DEV_BYVDEV_PATH)) == 0) { 263 /* Set physpath to the char after "/dev/disk/by-vdev" */ 264 physpath = &path[strlen(DEV_BYVDEV_PATH)]; 265 } 266 } 267 268 /* 269 * We don't want to autoreplace offlined disks. However, we do want to 270 * replace force-faulted disks (`zpool offline -f`). Force-faulted 271 * disks have both offline=1 and faulted=1 in the nvlist. 272 */ 273 if (offline && !faulted) { 274 zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace", 275 __func__, path); 276 return; 277 } 278 279 is_mpath_wholedisk = is_mpath_whole_disk(path); 280 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" 281 " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', " 282 "(guid %llu)", 283 zpool_get_name(zhp), path, 284 physpath ? physpath : "NULL", 285 wholedisk ? "is" : "not", 286 is_mpath_wholedisk? "is" : "not", 287 labeled ? "is" : "not", 288 enc_sysfs_path, 289 (long long unsigned int)guid); 290 291 /* 292 * The VDEV guid is preferred for identification (gets passed in path) 293 */ 294 if (guid != 0) { 295 (void) snprintf(fullpath, sizeof (fullpath), "%llu", 296 (long long unsigned int)guid); 297 } else { 298 /* 299 * otherwise use path sans partition suffix for whole disks 300 */ 301 (void) strlcpy(fullpath, path, sizeof (fullpath)); 302 if (wholedisk) { 303 char *spath = zfs_strip_partition(fullpath); 304 if (!spath) { 305 zed_log_msg(LOG_INFO, "%s: Can't alloc", 306 __func__); 307 return; 308 } 309 310 (void) strlcpy(fullpath, spath, sizeof (fullpath)); 311 free(spath); 312 } 313 } 314 315 if (is_spare) 316 online_flag |= ZFS_ONLINE_SPARE; 317 318 /* 319 * Attempt to online the device. 320 */ 321 if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 && 322 (newstate == VDEV_STATE_HEALTHY || 323 newstate == VDEV_STATE_DEGRADED)) { 324 zed_log_msg(LOG_INFO, 325 " zpool_vdev_online: vdev '%s' ('%s') is " 326 "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ? 327 "HEALTHY" : "DEGRADED"); 328 return; 329 } 330 331 /* 332 * vdev_id alias rule for using scsi_debug devices (FMA automated 333 * testing) 334 */ 335 if (physpath != NULL && strcmp("scsidebug", physpath) == 0) 336 is_sd = B_TRUE; 337 338 /* 339 * If the pool doesn't have the autoreplace property set, then use 340 * vdev online to trigger a FMA fault by posting an ereport. 341 */ 342 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 343 !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) { 344 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 345 &newstate); 346 zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " 347 "not a blank disk for '%s' ('%s')", fullpath, 348 physpath); 349 return; 350 } 351 352 /* 353 * Convert physical path into its current device node. Rawpath 354 * needs to be /dev/disk/by-vdev for a scsi_debug device since 355 * /dev/disk/by-path will not be present. 356 */ 357 (void) snprintf(rawpath, sizeof (rawpath), "%s%s", 358 is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); 359 360 if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) { 361 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", 362 rawpath, strerror(errno)); 363 364 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 365 &newstate); 366 367 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)", 368 fullpath, libzfs_error_description(g_zfshdl)); 369 return; 370 } 371 372 /* Only autoreplace bad disks */ 373 if ((vs->vs_state != VDEV_STATE_DEGRADED) && 374 (vs->vs_state != VDEV_STATE_FAULTED) && 375 (vs->vs_state != VDEV_STATE_CANT_OPEN)) { 376 zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in " 377 "a bad state (currently %llu)", vs->vs_state); 378 return; 379 } 380 381 nvlist_lookup_string(vdev, "new_devid", &new_devid); 382 383 if (is_mpath_wholedisk) { 384 /* Don't label device mapper or multipath disks. */ 385 } else if (!labeled) { 386 /* 387 * we're auto-replacing a raw disk, so label it first 388 */ 389 char *leafname; 390 391 /* 392 * If this is a request to label a whole disk, then attempt to 393 * write out the label. Before we can label the disk, we need 394 * to map the physical string that was matched on to the under 395 * lying device node. 396 * 397 * If any part of this process fails, then do a force online 398 * to trigger a ZFS fault for the device (and any hot spare 399 * replacement). 400 */ 401 leafname = strrchr(devpath, '/') + 1; 402 403 /* 404 * If this is a request to label a whole disk, then attempt to 405 * write out the label. 406 */ 407 if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) { 408 zed_log_msg(LOG_INFO, " zpool_label_disk: could not " 409 "label '%s' (%s)", leafname, 410 libzfs_error_description(g_zfshdl)); 411 412 (void) zpool_vdev_online(zhp, fullpath, 413 ZFS_ONLINE_FORCEFAULT, &newstate); 414 return; 415 } 416 417 /* 418 * The disk labeling is asynchronous on Linux. Just record 419 * this label request and return as there will be another 420 * disk add event for the partition after the labeling is 421 * completed. 422 */ 423 device = malloc(sizeof (pendingdev_t)); 424 if (device == NULL) { 425 perror("malloc"); 426 exit(EXIT_FAILURE); 427 } 428 429 (void) strlcpy(device->pd_physpath, physpath, 430 sizeof (device->pd_physpath)); 431 list_insert_tail(&g_device_list, device); 432 433 zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)", 434 leafname, (u_longlong_t)guid); 435 436 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ 437 438 } else /* labeled */ { 439 boolean_t found = B_FALSE; 440 /* 441 * match up with request above to label the disk 442 */ 443 for (device = list_head(&g_device_list); device != NULL; 444 device = list_next(&g_device_list, device)) { 445 if (strcmp(physpath, device->pd_physpath) == 0) { 446 list_remove(&g_device_list, device); 447 free(device); 448 found = B_TRUE; 449 break; 450 } 451 zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", 452 physpath, device->pd_physpath); 453 } 454 if (!found) { 455 /* unexpected partition slice encountered */ 456 zed_log_msg(LOG_INFO, "labeled disk %s unexpected here", 457 fullpath); 458 (void) zpool_vdev_online(zhp, fullpath, 459 ZFS_ONLINE_FORCEFAULT, &newstate); 460 return; 461 } 462 463 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", 464 physpath, (u_longlong_t)guid); 465 466 (void) snprintf(devpath, sizeof (devpath), "%s%s", 467 DEV_BYID_PATH, new_devid); 468 } 469 470 /* 471 * Construct the root vdev to pass to zpool_vdev_attach(). While adding 472 * the entire vdev structure is harmless, we construct a reduced set of 473 * path/physpath/wholedisk to keep it simple. 474 */ 475 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { 476 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 477 return; 478 } 479 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 480 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 481 nvlist_free(nvroot); 482 return; 483 } 484 485 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 486 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 487 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || 488 (physpath != NULL && nvlist_add_string(newvd, 489 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 490 (enc_sysfs_path != NULL && nvlist_add_string(newvd, 491 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || 492 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 493 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 494 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 495 (const nvlist_t **)&newvd, 1) != 0) { 496 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); 497 nvlist_free(newvd); 498 nvlist_free(nvroot); 499 return; 500 } 501 502 nvlist_free(newvd); 503 504 /* 505 * Wait for udev to verify the links exist, then auto-replace 506 * the leaf disk at same physical location. 507 */ 508 if (zpool_label_disk_wait(path, 3000) != 0) { 509 zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement " 510 "disk %s is missing", path); 511 nvlist_free(nvroot); 512 return; 513 } 514 515 /* 516 * Prefer sequential resilvering when supported (mirrors and dRAID), 517 * otherwise fallback to a traditional healing resilver. 518 */ 519 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE); 520 if (ret != 0) { 521 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, 522 B_TRUE, B_FALSE); 523 } 524 525 zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)", 526 fullpath, path, (ret == 0) ? "no errors" : 527 libzfs_error_description(g_zfshdl)); 528 529 nvlist_free(nvroot); 530 } 531 532 /* 533 * Utility functions to find a vdev matching given criteria. 534 */ 535 typedef struct dev_data { 536 const char *dd_compare; 537 const char *dd_prop; 538 zfs_process_func_t dd_func; 539 boolean_t dd_found; 540 boolean_t dd_islabeled; 541 uint64_t dd_pool_guid; 542 uint64_t dd_vdev_guid; 543 uint64_t dd_new_vdev_guid; 544 const char *dd_new_devid; 545 uint64_t dd_num_spares; 546 } dev_data_t; 547 548 static void 549 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 550 { 551 dev_data_t *dp = data; 552 const char *path = NULL; 553 uint_t c, children; 554 nvlist_t **child; 555 uint64_t guid = 0; 556 uint64_t isspare = 0; 557 558 /* 559 * First iterate over any children. 560 */ 561 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 562 &child, &children) == 0) { 563 for (c = 0; c < children; c++) 564 zfs_iter_vdev(zhp, child[c], data); 565 } 566 567 /* 568 * Iterate over any spares and cache devices 569 */ 570 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES, 571 &child, &children) == 0) { 572 for (c = 0; c < children; c++) 573 zfs_iter_vdev(zhp, child[c], data); 574 } 575 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE, 576 &child, &children) == 0) { 577 for (c = 0; c < children; c++) 578 zfs_iter_vdev(zhp, child[c], data); 579 } 580 581 /* once a vdev was matched and processed there is nothing left to do */ 582 if (dp->dd_found && dp->dd_num_spares == 0) 583 return; 584 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid); 585 586 /* 587 * Match by GUID if available otherwise fallback to devid or physical 588 */ 589 if (dp->dd_vdev_guid != 0) { 590 if (guid != dp->dd_vdev_guid) 591 return; 592 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); 593 dp->dd_found = B_TRUE; 594 595 } else if (dp->dd_compare != NULL) { 596 /* 597 * NOTE: On Linux there is an event for partition, so unlike 598 * illumos, substring matching is not required to accommodate 599 * the partition suffix. An exact match will be present in 600 * the dp->dd_compare value. 601 * If the attached disk already contains a vdev GUID, it means 602 * the disk is not clean. In such a scenario, the physical path 603 * would be a match that makes the disk faulted when trying to 604 * online it. So, we would only want to proceed if either GUID 605 * matches with the last attached disk or the disk is in clean 606 * state. 607 */ 608 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 609 strcmp(dp->dd_compare, path) != 0) { 610 return; 611 } 612 if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) { 613 zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu" 614 " != vdev GUID:%llu)", __func__, 615 dp->dd_new_vdev_guid, guid); 616 return; 617 } 618 619 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", 620 dp->dd_prop, path); 621 dp->dd_found = B_TRUE; 622 623 /* pass the new devid for use by replacing code */ 624 if (dp->dd_new_devid != NULL) { 625 (void) nvlist_add_string(nvl, "new_devid", 626 dp->dd_new_devid); 627 } 628 } 629 630 if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl, 631 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 632 dp->dd_num_spares++; 633 634 (dp->dd_func)(zhp, nvl, dp->dd_islabeled); 635 } 636 637 static void 638 zfs_enable_ds(void *arg) 639 { 640 unavailpool_t *pool = (unavailpool_t *)arg; 641 642 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 643 zpool_close(pool->uap_zhp); 644 free(pool); 645 } 646 647 static int 648 zfs_iter_pool(zpool_handle_t *zhp, void *data) 649 { 650 nvlist_t *config, *nvl; 651 dev_data_t *dp = data; 652 uint64_t pool_guid; 653 unavailpool_t *pool; 654 655 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", 656 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); 657 658 /* 659 * For each vdev in this pool, look for a match to apply dd_func 660 */ 661 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 662 if (dp->dd_pool_guid == 0 || 663 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 664 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 665 (void) nvlist_lookup_nvlist(config, 666 ZPOOL_CONFIG_VDEV_TREE, &nvl); 667 zfs_iter_vdev(zhp, nvl, data); 668 } 669 } else { 670 zed_log_msg(LOG_INFO, "%s: no config\n", __func__); 671 } 672 673 /* 674 * if this pool was originally unavailable, 675 * then enable its datasets asynchronously 676 */ 677 if (g_enumeration_done) { 678 for (pool = list_head(&g_pool_list); pool != NULL; 679 pool = list_next(&g_pool_list, pool)) { 680 681 if (strcmp(zpool_get_name(zhp), 682 zpool_get_name(pool->uap_zhp))) 683 continue; 684 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 685 list_remove(&g_pool_list, pool); 686 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 687 pool); 688 break; 689 } 690 } 691 } 692 693 zpool_close(zhp); 694 695 /* cease iteration after a match */ 696 return (dp->dd_found && dp->dd_num_spares == 0); 697 } 698 699 /* 700 * Given a physical device location, iterate over all 701 * (pool, vdev) pairs which correspond to that location. 702 */ 703 static boolean_t 704 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, 705 boolean_t is_slice, uint64_t new_vdev_guid) 706 { 707 dev_data_t data = { 0 }; 708 709 data.dd_compare = physical; 710 data.dd_func = func; 711 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 712 data.dd_found = B_FALSE; 713 data.dd_islabeled = is_slice; 714 data.dd_new_devid = devid; /* used by auto replace code */ 715 data.dd_new_vdev_guid = new_vdev_guid; 716 717 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 718 719 return (data.dd_found); 720 } 721 722 /* 723 * Given a device identifier, find any vdevs with a matching by-vdev 724 * path. Normally we shouldn't need this as the comparison would be 725 * made earlier in the devphys_iter(). For example, if we were replacing 726 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the 727 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28" 728 * of the new disk config. However, we've seen cases where 729 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's 730 * an example of a real 2-disk mirror pool where one disk was force 731 * faulted: 732 * 733 * com.delphix:vdev_zap_top: 129 734 * children[0]: 735 * type: 'disk' 736 * id: 0 737 * guid: 14309659774640089719 738 * path: '/dev/disk/by-vdev/L28' 739 * whole_disk: 0 740 * DTL: 654 741 * create_txg: 4 742 * com.delphix:vdev_zap_leaf: 1161 743 * faulted: 1 744 * aux_state: 'external' 745 * children[1]: 746 * type: 'disk' 747 * id: 1 748 * guid: 16002508084177980912 749 * path: '/dev/disk/by-vdev/L29' 750 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 751 * phys_path: 'L29' 752 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 753 * whole_disk: 0 754 * DTL: 1028 755 * create_txg: 4 756 * com.delphix:vdev_zap_leaf: 131 757 * 758 * So in the case above, the only thing we could compare is the path. 759 * 760 * We can do this because we assume by-vdev paths are authoritative as physical 761 * paths. We could not assume this for normal paths like /dev/sda since the 762 * physical location /dev/sda points to could change over time. 763 */ 764 static boolean_t 765 by_vdev_path_iter(const char *by_vdev_path, const char *devid, 766 zfs_process_func_t func, boolean_t is_slice) 767 { 768 dev_data_t data = { 0 }; 769 770 data.dd_compare = by_vdev_path; 771 data.dd_func = func; 772 data.dd_prop = ZPOOL_CONFIG_PATH; 773 data.dd_found = B_FALSE; 774 data.dd_islabeled = is_slice; 775 data.dd_new_devid = devid; 776 777 if (strncmp(by_vdev_path, DEV_BYVDEV_PATH, 778 strlen(DEV_BYVDEV_PATH)) != 0) { 779 /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */ 780 return (B_FALSE); 781 } 782 783 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 784 785 return (data.dd_found); 786 } 787 788 /* 789 * Given a device identifier, find any vdevs with a matching devid. 790 * On Linux we can match devid directly which is always a whole disk. 791 */ 792 static boolean_t 793 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) 794 { 795 dev_data_t data = { 0 }; 796 797 data.dd_compare = devid; 798 data.dd_func = func; 799 data.dd_prop = ZPOOL_CONFIG_DEVID; 800 data.dd_found = B_FALSE; 801 data.dd_islabeled = is_slice; 802 data.dd_new_devid = devid; 803 804 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 805 806 return (data.dd_found); 807 } 808 809 /* 810 * Given a device guid, find any vdevs with a matching guid. 811 */ 812 static boolean_t 813 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid, 814 zfs_process_func_t func, boolean_t is_slice) 815 { 816 dev_data_t data = { 0 }; 817 818 data.dd_func = func; 819 data.dd_found = B_FALSE; 820 data.dd_pool_guid = pool_guid; 821 data.dd_vdev_guid = vdev_guid; 822 data.dd_islabeled = is_slice; 823 data.dd_new_devid = devid; 824 825 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 826 827 return (data.dd_found); 828 } 829 830 /* 831 * Handle a EC_DEV_ADD.ESC_DISK event. 832 * 833 * illumos 834 * Expects: DEV_PHYS_PATH string in schema 835 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 836 * 837 * path: '/dev/dsk/c0t1d0s0' (persistent) 838 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' 839 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' 840 * 841 * linux 842 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema 843 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 844 * 845 * path: '/dev/sdc1' (not persistent) 846 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' 847 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' 848 */ 849 static int 850 zfs_deliver_add(nvlist_t *nvl) 851 { 852 const char *devpath = NULL, *devid = NULL; 853 uint64_t pool_guid = 0, vdev_guid = 0; 854 boolean_t is_slice; 855 856 /* 857 * Expecting a devid string and an optional physical location and guid 858 */ 859 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) { 860 zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__); 861 return (-1); 862 } 863 864 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); 865 (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid); 866 (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid); 867 868 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); 869 870 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", 871 devid, devpath ? devpath : "NULL", is_slice); 872 873 /* 874 * Iterate over all vdevs looking for a match in the following order: 875 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) 876 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). 877 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev). 878 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since 879 * by-vdev paths represent physical paths). 880 */ 881 if (devid_iter(devid, zfs_process_add, is_slice)) 882 return (0); 883 if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add, 884 is_slice, vdev_guid)) 885 return (0); 886 if (vdev_guid != 0) 887 (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add, 888 is_slice); 889 890 if (devpath != NULL) { 891 /* Can we match a /dev/disk/by-vdev/ path? */ 892 char by_vdev_path[MAXPATHLEN]; 893 snprintf(by_vdev_path, sizeof (by_vdev_path), 894 "/dev/disk/by-vdev/%s", devpath); 895 if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add, 896 is_slice)) 897 return (0); 898 } 899 900 return (0); 901 } 902 903 /* 904 * Called when we receive a VDEV_CHECK event, which indicates a device could not 905 * be opened during initial pool open, but the autoreplace property was set on 906 * the pool. In this case, we treat it as if it were an add event. 907 */ 908 static int 909 zfs_deliver_check(nvlist_t *nvl) 910 { 911 dev_data_t data = { 0 }; 912 913 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 914 &data.dd_pool_guid) != 0 || 915 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 916 &data.dd_vdev_guid) != 0 || 917 data.dd_vdev_guid == 0) 918 return (0); 919 920 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", 921 data.dd_pool_guid, data.dd_vdev_guid); 922 923 data.dd_func = zfs_process_add; 924 925 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 926 927 return (0); 928 } 929 930 /* 931 * Given a path to a vdev, lookup the vdev's physical size from its 932 * config nvlist. 933 * 934 * Returns the vdev's physical size in bytes on success, 0 on error. 935 */ 936 static uint64_t 937 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path) 938 { 939 nvlist_t *nvl = NULL; 940 boolean_t avail_spare, l2cache, log; 941 vdev_stat_t *vs = NULL; 942 uint_t c; 943 944 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 945 if (!nvl) 946 return (0); 947 948 verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS, 949 (uint64_t **)&vs, &c) == 0); 950 if (!vs) { 951 zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__, 952 vdev_path); 953 return (0); 954 } 955 956 return (vs->vs_pspace); 957 } 958 959 /* 960 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the 961 * config nvlist. "whole disk" means that ZFS was passed a whole disk 962 * at pool creation time, which it partitioned up and has full control over. 963 * Thus a partition with wholedisk=1 set tells us that zfs created the 964 * partition at creation time. A partition without whole disk set would have 965 * been created by externally (like with fdisk) and passed to ZFS. 966 * 967 * Returns the whole disk value (either 0 or 1). 968 */ 969 static uint64_t 970 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path) 971 { 972 nvlist_t *nvl = NULL; 973 boolean_t avail_spare, l2cache, log; 974 uint64_t wholedisk = 0; 975 976 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 977 if (!nvl) 978 return (0); 979 980 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 981 982 return (wholedisk); 983 } 984 985 /* 986 * If the device size grew more than 1% then return true. 987 */ 988 #define DEVICE_GREW(oldsize, newsize) \ 989 ((newsize > oldsize) && \ 990 ((newsize / (newsize - oldsize)) <= 100)) 991 992 static int 993 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 994 { 995 boolean_t avail_spare, l2cache; 996 nvlist_t *udev_nvl = data; 997 nvlist_t *tgt; 998 int error; 999 1000 const char *tmp_devname; 1001 char devname[MAXPATHLEN] = ""; 1002 uint64_t guid; 1003 1004 if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1005 sprintf(devname, "%llu", (u_longlong_t)guid); 1006 } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH, 1007 &tmp_devname) == 0) { 1008 strlcpy(devname, tmp_devname, MAXPATHLEN); 1009 zfs_append_partition(devname, MAXPATHLEN); 1010 } else { 1011 zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__); 1012 } 1013 1014 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", 1015 devname, zpool_get_name(zhp)); 1016 1017 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 1018 &avail_spare, &l2cache, NULL)) != NULL) { 1019 const char *path; 1020 char fullpath[MAXPATHLEN]; 1021 uint64_t wholedisk = 0; 1022 1023 error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path); 1024 if (error) { 1025 zpool_close(zhp); 1026 return (0); 1027 } 1028 1029 (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 1030 &wholedisk); 1031 1032 if (wholedisk) { 1033 char *tmp; 1034 path = strrchr(path, '/'); 1035 if (path != NULL) { 1036 tmp = zfs_strip_partition(path + 1); 1037 if (tmp == NULL) { 1038 zpool_close(zhp); 1039 return (0); 1040 } 1041 } else { 1042 zpool_close(zhp); 1043 return (0); 1044 } 1045 1046 (void) strlcpy(fullpath, tmp, sizeof (fullpath)); 1047 free(tmp); 1048 1049 /* 1050 * We need to reopen the pool associated with this 1051 * device so that the kernel can update the size of 1052 * the expanded device. When expanding there is no 1053 * need to restart the scrub from the beginning. 1054 */ 1055 boolean_t scrub_restart = B_FALSE; 1056 (void) zpool_reopen_one(zhp, &scrub_restart); 1057 } else { 1058 (void) strlcpy(fullpath, path, sizeof (fullpath)); 1059 } 1060 1061 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 1062 vdev_state_t newstate; 1063 1064 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) { 1065 /* 1066 * If this disk size has not changed, then 1067 * there's no need to do an autoexpand. To 1068 * check we look at the disk's size in its 1069 * config, and compare it to the disk size 1070 * that udev is reporting. 1071 */ 1072 uint64_t udev_size = 0, conf_size = 0, 1073 wholedisk = 0, udev_parent_size = 0; 1074 1075 /* 1076 * Get the size of our disk that udev is 1077 * reporting. 1078 */ 1079 if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE, 1080 &udev_size) != 0) { 1081 udev_size = 0; 1082 } 1083 1084 /* 1085 * Get the size of our disk's parent device 1086 * from udev (where sda1's parent is sda). 1087 */ 1088 if (nvlist_lookup_uint64(udev_nvl, 1089 DEV_PARENT_SIZE, &udev_parent_size) != 0) { 1090 udev_parent_size = 0; 1091 } 1092 1093 conf_size = vdev_size_from_config(zhp, 1094 fullpath); 1095 1096 wholedisk = vdev_whole_disk_from_config(zhp, 1097 fullpath); 1098 1099 /* 1100 * Only attempt an autoexpand if the vdev size 1101 * changed. There are two different cases 1102 * to consider. 1103 * 1104 * 1. wholedisk=1 1105 * If you do a 'zpool create' on a whole disk 1106 * (like /dev/sda), then zfs will create 1107 * partitions on the disk (like /dev/sda1). In 1108 * that case, wholedisk=1 will be set in the 1109 * partition's nvlist config. So zed will need 1110 * to see if your parent device (/dev/sda) 1111 * expanded in size, and if so, then attempt 1112 * the autoexpand. 1113 * 1114 * 2. wholedisk=0 1115 * If you do a 'zpool create' on an existing 1116 * partition, or a device that doesn't allow 1117 * partitions, then wholedisk=0, and you will 1118 * simply need to check if the device itself 1119 * expanded in size. 1120 */ 1121 if (DEVICE_GREW(conf_size, udev_size) || 1122 (wholedisk && DEVICE_GREW(conf_size, 1123 udev_parent_size))) { 1124 error = zpool_vdev_online(zhp, fullpath, 1125 0, &newstate); 1126 1127 zed_log_msg(LOG_INFO, 1128 "%s: autoexpanding '%s' from %llu" 1129 " to %llu bytes in pool '%s': %d", 1130 __func__, fullpath, conf_size, 1131 MAX(udev_size, udev_parent_size), 1132 zpool_get_name(zhp), error); 1133 } 1134 } 1135 } 1136 zpool_close(zhp); 1137 return (1); 1138 } 1139 zpool_close(zhp); 1140 return (0); 1141 } 1142 1143 /* 1144 * This function handles the ESC_DEV_DLE device change event. Use the 1145 * provided vdev guid when looking up a disk or partition, when the guid 1146 * is not present assume the entire disk is owned by ZFS and append the 1147 * expected -part1 partition information then lookup by physical path. 1148 */ 1149 static int 1150 zfs_deliver_dle(nvlist_t *nvl) 1151 { 1152 const char *devname; 1153 char name[MAXPATHLEN]; 1154 uint64_t guid; 1155 1156 if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1157 sprintf(name, "%llu", (u_longlong_t)guid); 1158 } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { 1159 strlcpy(name, devname, MAXPATHLEN); 1160 zfs_append_partition(name, MAXPATHLEN); 1161 } else { 1162 sprintf(name, "unknown"); 1163 zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); 1164 } 1165 1166 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) { 1167 zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " 1168 "found", name); 1169 return (1); 1170 } 1171 1172 return (0); 1173 } 1174 1175 /* 1176 * syseventd daemon module event handler 1177 * 1178 * Handles syseventd daemon zfs device related events: 1179 * 1180 * EC_DEV_ADD.ESC_DISK 1181 * EC_DEV_STATUS.ESC_DEV_DLE 1182 * EC_ZFS.ESC_ZFS_VDEV_CHECK 1183 * 1184 * Note: assumes only one thread active at a time (not thread safe) 1185 */ 1186 static int 1187 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) 1188 { 1189 int ret; 1190 boolean_t is_check = B_FALSE, is_dle = B_FALSE; 1191 1192 if (strcmp(class, EC_DEV_ADD) == 0) { 1193 /* 1194 * We're mainly interested in disk additions, but we also listen 1195 * for new loop devices, to allow for simplified testing. 1196 */ 1197 if (strcmp(subclass, ESC_DISK) != 0 && 1198 strcmp(subclass, ESC_LOFI) != 0) 1199 return (0); 1200 1201 is_check = B_FALSE; 1202 } else if (strcmp(class, EC_ZFS) == 0 && 1203 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 1204 /* 1205 * This event signifies that a device failed to open 1206 * during pool load, but the 'autoreplace' property was 1207 * set, so we should pretend it's just been added. 1208 */ 1209 is_check = B_TRUE; 1210 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 1211 strcmp(subclass, ESC_DEV_DLE) == 0) { 1212 is_dle = B_TRUE; 1213 } else { 1214 return (0); 1215 } 1216 1217 if (is_dle) 1218 ret = zfs_deliver_dle(nvl); 1219 else if (is_check) 1220 ret = zfs_deliver_check(nvl); 1221 else 1222 ret = zfs_deliver_add(nvl); 1223 1224 return (ret); 1225 } 1226 1227 static void * 1228 zfs_enum_pools(void *arg) 1229 { 1230 (void) arg; 1231 1232 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 1233 /* 1234 * Linux - instead of using a thread pool, each list entry 1235 * will spawn a thread when an unavailable pool transitions 1236 * to available. zfs_slm_fini will wait for these threads. 1237 */ 1238 g_enumeration_done = B_TRUE; 1239 return (NULL); 1240 } 1241 1242 /* 1243 * called from zed daemon at startup 1244 * 1245 * sent messages from zevents or udev monitor 1246 * 1247 * For now, each agent has its own libzfs instance 1248 */ 1249 int 1250 zfs_slm_init(void) 1251 { 1252 if ((g_zfshdl = libzfs_init()) == NULL) 1253 return (-1); 1254 1255 /* 1256 * collect a list of unavailable pools (asynchronously, 1257 * since this can take a while) 1258 */ 1259 list_create(&g_pool_list, sizeof (struct unavailpool), 1260 offsetof(struct unavailpool, uap_node)); 1261 1262 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { 1263 list_destroy(&g_pool_list); 1264 libzfs_fini(g_zfshdl); 1265 return (-1); 1266 } 1267 1268 pthread_setname_np(g_zfs_tid, "enum-pools"); 1269 list_create(&g_device_list, sizeof (struct pendingdev), 1270 offsetof(struct pendingdev, pd_node)); 1271 1272 return (0); 1273 } 1274 1275 void 1276 zfs_slm_fini(void) 1277 { 1278 unavailpool_t *pool; 1279 pendingdev_t *device; 1280 1281 /* wait for zfs_enum_pools thread to complete */ 1282 (void) pthread_join(g_zfs_tid, NULL); 1283 /* destroy the thread pool */ 1284 if (g_tpool != NULL) { 1285 tpool_wait(g_tpool); 1286 tpool_destroy(g_tpool); 1287 } 1288 1289 while ((pool = list_remove_head(&g_pool_list)) != NULL) { 1290 zpool_close(pool->uap_zhp); 1291 free(pool); 1292 } 1293 list_destroy(&g_pool_list); 1294 1295 while ((device = list_remove_head(&g_device_list)) != NULL) 1296 free(device); 1297 list_destroy(&g_device_list); 1298 1299 libzfs_fini(g_zfshdl); 1300 } 1301 1302 void 1303 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) 1304 { 1305 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); 1306 (void) zfs_slm_deliver_event(class, subclass, nvl); 1307 } 1308