1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, 2017, Intel Corporation. 26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 27 */ 28 29 /* 30 * ZFS syseventd module. 31 * 32 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c 33 * 34 * The purpose of this module is to identify when devices are added to the 35 * system, and appropriately online or replace the affected vdevs. 36 * 37 * When a device is added to the system: 38 * 39 * 1. Search for any vdevs whose devid matches that of the newly added 40 * device. 41 * 42 * 2. If no vdevs are found, then search for any vdevs whose udev path 43 * matches that of the new device. 44 * 45 * 3. If no vdevs match by either method, then ignore the event. 46 * 47 * 4. Attempt to online the device with a flag to indicate that it should 48 * be unspared when resilvering completes. If this succeeds, then the 49 * same device was inserted and we should continue normally. 50 * 51 * 5. If the pool does not have the 'autoreplace' property set, attempt to 52 * online the device again without the unspare flag, which will 53 * generate a FMA fault. 54 * 55 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 56 * is a whole disk, then label the new disk and attempt a 'zpool 57 * replace'. 58 * 59 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK 60 * event indicates that a device failed to open during pool load, but the 61 * autoreplace property was set. In this case, we deferred the associated 62 * FMA fault until our module had a chance to process the autoreplace logic. 63 * If the device could not be replaced, then the second online attempt will 64 * trigger the FMA fault that we skipped earlier. 65 * 66 * On Linux udev provides a disk insert for both the disk and the partition. 67 */ 68 69 #include <ctype.h> 70 #include <fcntl.h> 71 #include <libnvpair.h> 72 #include <libzfs.h> 73 #include <libzutil.h> 74 #include <limits.h> 75 #include <stddef.h> 76 #include <stdlib.h> 77 #include <string.h> 78 #include <syslog.h> 79 #include <sys/list.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysevent/eventdefs.h> 82 #include <sys/sysevent/dev.h> 83 #include <thread_pool.h> 84 #include <pthread.h> 85 #include <unistd.h> 86 #include <errno.h> 87 #include "zfs_agents.h" 88 #include "../zed_log.h" 89 90 #define DEV_BYID_PATH "/dev/disk/by-id/" 91 #define DEV_BYPATH_PATH "/dev/disk/by-path/" 92 #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" 93 94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 95 96 libzfs_handle_t *g_zfshdl; 97 list_t g_pool_list; /* list of unavailable pools at initialization */ 98 list_t g_device_list; /* list of disks with asynchronous label request */ 99 tpool_t *g_tpool; 100 boolean_t g_enumeration_done; 101 pthread_t g_zfs_tid; /* zfs_enum_pools() thread */ 102 103 typedef struct unavailpool { 104 zpool_handle_t *uap_zhp; 105 list_node_t uap_node; 106 } unavailpool_t; 107 108 typedef struct pendingdev { 109 char pd_physpath[128]; 110 list_node_t pd_node; 111 } pendingdev_t; 112 113 static int 114 zfs_toplevel_state(zpool_handle_t *zhp) 115 { 116 nvlist_t *nvroot; 117 vdev_stat_t *vs; 118 unsigned int c; 119 120 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 121 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 122 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 123 (uint64_t **)&vs, &c) == 0); 124 return (vs->vs_state); 125 } 126 127 static int 128 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 129 { 130 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", 131 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); 132 133 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 134 unavailpool_t *uap; 135 uap = malloc(sizeof (unavailpool_t)); 136 if (uap == NULL) { 137 perror("malloc"); 138 exit(EXIT_FAILURE); 139 } 140 141 uap->uap_zhp = zhp; 142 list_insert_tail((list_t *)data, uap); 143 } else { 144 zpool_close(zhp); 145 } 146 return (0); 147 } 148 149 /* 150 * Two stage replace on Linux 151 * since we get disk notifications 152 * we can wait for partitioned disk slice to show up! 153 * 154 * First stage tags the disk, initiates async partitioning, and returns 155 * Second stage finds the tag and proceeds to ZFS labeling/replace 156 * 157 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach 158 * 159 * 1. physical match with no fs, no partition 160 * tag it top, partition disk 161 * 162 * 2. physical match again, see partition and tag 163 * 164 */ 165 166 /* 167 * The device associated with the given vdev (either by devid or physical path) 168 * has been added to the system. If 'isdisk' is set, then we only attempt a 169 * replacement if it's a whole disk. This also implies that we should label the 170 * disk first. 171 * 172 * First, we attempt to online the device (making sure to undo any spare 173 * operation when finished). If this succeeds, then we're done. If it fails, 174 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 175 * but that the label was not what we expected. If the 'autoreplace' property 176 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool 177 * replace'. If the online is successful, but the new state is something else 178 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 179 * race, and we should avoid attempting to relabel the disk. 180 * 181 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event 182 */ 183 static void 184 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) 185 { 186 const char *path; 187 vdev_state_t newstate; 188 nvlist_t *nvroot, *newvd; 189 pendingdev_t *device; 190 uint64_t wholedisk = 0ULL; 191 uint64_t offline = 0ULL, faulted = 0ULL; 192 uint64_t guid = 0ULL; 193 uint64_t is_spare = 0; 194 const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; 195 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 196 char devpath[PATH_MAX]; 197 int ret; 198 int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE; 199 boolean_t is_sd = B_FALSE; 200 boolean_t is_mpath_wholedisk = B_FALSE; 201 uint_t c; 202 vdev_stat_t *vs; 203 204 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 205 return; 206 207 /* Skip healthy disks */ 208 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, 209 (uint64_t **)&vs, &c) == 0); 210 if (vs->vs_state == VDEV_STATE_HEALTHY) { 211 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", 212 __func__, path); 213 return; 214 } 215 216 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 217 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 218 &enc_sysfs_path); 219 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 220 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); 221 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted); 222 223 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); 224 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare); 225 226 /* 227 * Special case: 228 * 229 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH 230 * entry in their config. For example, on this force-faulted disk: 231 * 232 * children[0]: 233 * type: 'disk' 234 * id: 0 235 * guid: 14309659774640089719 236 * path: '/dev/disk/by-vdev/L28' 237 * whole_disk: 0 238 * DTL: 654 239 * create_txg: 4 240 * com.delphix:vdev_zap_leaf: 1161 241 * faulted: 1 242 * aux_state: 'external' 243 * children[1]: 244 * type: 'disk' 245 * id: 1 246 * guid: 16002508084177980912 247 * path: '/dev/disk/by-vdev/L29' 248 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 249 * phys_path: 'L29' 250 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 251 * whole_disk: 0 252 * DTL: 1028 253 * create_txg: 4 254 * com.delphix:vdev_zap_leaf: 131 255 * 256 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer 257 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name. 258 */ 259 if (physpath == NULL && path != NULL) { 260 /* If path begins with "/dev/disk/by-vdev/" ... */ 261 if (strncmp(path, DEV_BYVDEV_PATH, 262 strlen(DEV_BYVDEV_PATH)) == 0) { 263 /* Set physpath to the char after "/dev/disk/by-vdev" */ 264 physpath = &path[strlen(DEV_BYVDEV_PATH)]; 265 } 266 } 267 268 /* 269 * We don't want to autoreplace offlined disks. However, we do want to 270 * replace force-faulted disks (`zpool offline -f`). Force-faulted 271 * disks have both offline=1 and faulted=1 in the nvlist. 272 */ 273 if (offline && !faulted) { 274 zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace", 275 __func__, path); 276 return; 277 } 278 279 is_mpath_wholedisk = is_mpath_whole_disk(path); 280 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" 281 " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', " 282 "(guid %llu)", 283 zpool_get_name(zhp), path, 284 physpath ? physpath : "NULL", 285 wholedisk ? "is" : "not", 286 is_mpath_wholedisk? "is" : "not", 287 labeled ? "is" : "not", 288 enc_sysfs_path, 289 (long long unsigned int)guid); 290 291 /* 292 * The VDEV guid is preferred for identification (gets passed in path) 293 */ 294 if (guid != 0) { 295 (void) snprintf(fullpath, sizeof (fullpath), "%llu", 296 (long long unsigned int)guid); 297 } else { 298 /* 299 * otherwise use path sans partition suffix for whole disks 300 */ 301 (void) strlcpy(fullpath, path, sizeof (fullpath)); 302 if (wholedisk) { 303 char *spath = zfs_strip_partition(fullpath); 304 if (!spath) { 305 zed_log_msg(LOG_INFO, "%s: Can't alloc", 306 __func__); 307 return; 308 } 309 310 (void) strlcpy(fullpath, spath, sizeof (fullpath)); 311 free(spath); 312 } 313 } 314 315 if (is_spare) 316 online_flag |= ZFS_ONLINE_SPARE; 317 318 /* 319 * Attempt to online the device. 320 */ 321 if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 && 322 (newstate == VDEV_STATE_HEALTHY || 323 newstate == VDEV_STATE_DEGRADED)) { 324 zed_log_msg(LOG_INFO, 325 " zpool_vdev_online: vdev '%s' ('%s') is " 326 "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ? 327 "HEALTHY" : "DEGRADED"); 328 return; 329 } 330 331 /* 332 * vdev_id alias rule for using scsi_debug devices (FMA automated 333 * testing) 334 */ 335 if (physpath != NULL && strcmp("scsidebug", physpath) == 0) 336 is_sd = B_TRUE; 337 338 /* 339 * If the pool doesn't have the autoreplace property set, then use 340 * vdev online to trigger a FMA fault by posting an ereport. 341 */ 342 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 343 !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) { 344 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 345 &newstate); 346 zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " 347 "not a blank disk for '%s' ('%s')", fullpath, 348 physpath); 349 return; 350 } 351 352 /* 353 * Convert physical path into its current device node. Rawpath 354 * needs to be /dev/disk/by-vdev for a scsi_debug device since 355 * /dev/disk/by-path will not be present. 356 */ 357 (void) snprintf(rawpath, sizeof (rawpath), "%s%s", 358 is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); 359 360 if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) { 361 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", 362 rawpath, strerror(errno)); 363 364 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 365 &newstate); 366 367 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)", 368 fullpath, libzfs_error_description(g_zfshdl)); 369 return; 370 } 371 372 /* Only autoreplace bad disks */ 373 if ((vs->vs_state != VDEV_STATE_DEGRADED) && 374 (vs->vs_state != VDEV_STATE_FAULTED) && 375 (vs->vs_state != VDEV_STATE_CANT_OPEN)) { 376 zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in " 377 "a bad state (currently %llu)", vs->vs_state); 378 return; 379 } 380 381 nvlist_lookup_string(vdev, "new_devid", &new_devid); 382 383 if (is_mpath_wholedisk) { 384 /* Don't label device mapper or multipath disks. */ 385 } else if (!labeled) { 386 /* 387 * we're auto-replacing a raw disk, so label it first 388 */ 389 char *leafname; 390 391 /* 392 * If this is a request to label a whole disk, then attempt to 393 * write out the label. Before we can label the disk, we need 394 * to map the physical string that was matched on to the under 395 * lying device node. 396 * 397 * If any part of this process fails, then do a force online 398 * to trigger a ZFS fault for the device (and any hot spare 399 * replacement). 400 */ 401 leafname = strrchr(devpath, '/') + 1; 402 403 /* 404 * If this is a request to label a whole disk, then attempt to 405 * write out the label. 406 */ 407 if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) { 408 zed_log_msg(LOG_INFO, " zpool_label_disk: could not " 409 "label '%s' (%s)", leafname, 410 libzfs_error_description(g_zfshdl)); 411 412 (void) zpool_vdev_online(zhp, fullpath, 413 ZFS_ONLINE_FORCEFAULT, &newstate); 414 return; 415 } 416 417 /* 418 * The disk labeling is asynchronous on Linux. Just record 419 * this label request and return as there will be another 420 * disk add event for the partition after the labeling is 421 * completed. 422 */ 423 device = malloc(sizeof (pendingdev_t)); 424 if (device == NULL) { 425 perror("malloc"); 426 exit(EXIT_FAILURE); 427 } 428 429 (void) strlcpy(device->pd_physpath, physpath, 430 sizeof (device->pd_physpath)); 431 list_insert_tail(&g_device_list, device); 432 433 zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)", 434 leafname, (u_longlong_t)guid); 435 436 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ 437 438 } else /* labeled */ { 439 boolean_t found = B_FALSE; 440 /* 441 * match up with request above to label the disk 442 */ 443 for (device = list_head(&g_device_list); device != NULL; 444 device = list_next(&g_device_list, device)) { 445 if (strcmp(physpath, device->pd_physpath) == 0) { 446 list_remove(&g_device_list, device); 447 free(device); 448 found = B_TRUE; 449 break; 450 } 451 zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", 452 physpath, device->pd_physpath); 453 } 454 if (!found) { 455 /* unexpected partition slice encountered */ 456 zed_log_msg(LOG_INFO, "labeled disk %s unexpected here", 457 fullpath); 458 (void) zpool_vdev_online(zhp, fullpath, 459 ZFS_ONLINE_FORCEFAULT, &newstate); 460 return; 461 } 462 463 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", 464 physpath, (u_longlong_t)guid); 465 466 (void) snprintf(devpath, sizeof (devpath), "%s%s", 467 DEV_BYID_PATH, new_devid); 468 } 469 470 /* 471 * Construct the root vdev to pass to zpool_vdev_attach(). While adding 472 * the entire vdev structure is harmless, we construct a reduced set of 473 * path/physpath/wholedisk to keep it simple. 474 */ 475 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { 476 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 477 return; 478 } 479 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 480 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 481 nvlist_free(nvroot); 482 return; 483 } 484 485 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 486 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 487 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || 488 (physpath != NULL && nvlist_add_string(newvd, 489 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 490 (enc_sysfs_path != NULL && nvlist_add_string(newvd, 491 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || 492 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 493 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 494 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 495 (const nvlist_t **)&newvd, 1) != 0) { 496 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); 497 nvlist_free(newvd); 498 nvlist_free(nvroot); 499 return; 500 } 501 502 nvlist_free(newvd); 503 504 /* 505 * Wait for udev to verify the links exist, then auto-replace 506 * the leaf disk at same physical location. 507 */ 508 if (zpool_label_disk_wait(path, 3000) != 0) { 509 zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement " 510 "disk %s is missing", path); 511 nvlist_free(nvroot); 512 return; 513 } 514 515 /* 516 * Prefer sequential resilvering when supported (mirrors and dRAID), 517 * otherwise fallback to a traditional healing resilver. 518 */ 519 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE); 520 if (ret != 0) { 521 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, 522 B_TRUE, B_FALSE); 523 } 524 525 zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)", 526 fullpath, path, (ret == 0) ? "no errors" : 527 libzfs_error_description(g_zfshdl)); 528 529 nvlist_free(nvroot); 530 } 531 532 /* 533 * Utility functions to find a vdev matching given criteria. 534 */ 535 typedef struct dev_data { 536 const char *dd_compare; 537 const char *dd_prop; 538 zfs_process_func_t dd_func; 539 boolean_t dd_found; 540 boolean_t dd_islabeled; 541 uint64_t dd_pool_guid; 542 uint64_t dd_vdev_guid; 543 uint64_t dd_new_vdev_guid; 544 const char *dd_new_devid; 545 uint64_t dd_num_spares; 546 } dev_data_t; 547 548 static void 549 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 550 { 551 dev_data_t *dp = data; 552 const char *path = NULL; 553 uint_t c, children; 554 nvlist_t **child; 555 uint64_t guid = 0; 556 uint64_t isspare = 0; 557 558 /* 559 * First iterate over any children. 560 */ 561 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 562 &child, &children) == 0) { 563 for (c = 0; c < children; c++) 564 zfs_iter_vdev(zhp, child[c], data); 565 } 566 567 /* 568 * Iterate over any spares and cache devices 569 */ 570 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES, 571 &child, &children) == 0) { 572 for (c = 0; c < children; c++) 573 zfs_iter_vdev(zhp, child[c], data); 574 } 575 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE, 576 &child, &children) == 0) { 577 for (c = 0; c < children; c++) 578 zfs_iter_vdev(zhp, child[c], data); 579 } 580 581 /* once a vdev was matched and processed there is nothing left to do */ 582 if (dp->dd_found && dp->dd_num_spares == 0) 583 return; 584 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid); 585 586 /* 587 * Match by GUID if available otherwise fallback to devid or physical 588 */ 589 if (dp->dd_vdev_guid != 0) { 590 if (guid != dp->dd_vdev_guid) 591 return; 592 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); 593 dp->dd_found = B_TRUE; 594 595 } else if (dp->dd_compare != NULL) { 596 /* 597 * NOTE: On Linux there is an event for partition, so unlike 598 * illumos, substring matching is not required to accommodate 599 * the partition suffix. An exact match will be present in 600 * the dp->dd_compare value. 601 * If the attached disk already contains a vdev GUID, it means 602 * the disk is not clean. In such a scenario, the physical path 603 * would be a match that makes the disk faulted when trying to 604 * online it. So, we would only want to proceed if either GUID 605 * matches with the last attached disk or the disk is in clean 606 * state. 607 */ 608 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 609 strcmp(dp->dd_compare, path) != 0) { 610 zed_log_msg(LOG_INFO, " %s: no match (%s != vdev %s)", 611 __func__, dp->dd_compare, path); 612 return; 613 } 614 if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) { 615 zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu" 616 " != vdev GUID:%llu)", __func__, 617 dp->dd_new_vdev_guid, guid); 618 return; 619 } 620 621 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", 622 dp->dd_prop, path); 623 dp->dd_found = B_TRUE; 624 625 /* pass the new devid for use by replacing code */ 626 if (dp->dd_new_devid != NULL) { 627 (void) nvlist_add_string(nvl, "new_devid", 628 dp->dd_new_devid); 629 } 630 } 631 632 if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl, 633 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 634 dp->dd_num_spares++; 635 636 (dp->dd_func)(zhp, nvl, dp->dd_islabeled); 637 } 638 639 static void 640 zfs_enable_ds(void *arg) 641 { 642 unavailpool_t *pool = (unavailpool_t *)arg; 643 644 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 645 zpool_close(pool->uap_zhp); 646 free(pool); 647 } 648 649 static int 650 zfs_iter_pool(zpool_handle_t *zhp, void *data) 651 { 652 nvlist_t *config, *nvl; 653 dev_data_t *dp = data; 654 uint64_t pool_guid; 655 unavailpool_t *pool; 656 657 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", 658 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); 659 660 /* 661 * For each vdev in this pool, look for a match to apply dd_func 662 */ 663 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 664 if (dp->dd_pool_guid == 0 || 665 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 666 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 667 (void) nvlist_lookup_nvlist(config, 668 ZPOOL_CONFIG_VDEV_TREE, &nvl); 669 zfs_iter_vdev(zhp, nvl, data); 670 } 671 } else { 672 zed_log_msg(LOG_INFO, "%s: no config\n", __func__); 673 } 674 675 /* 676 * if this pool was originally unavailable, 677 * then enable its datasets asynchronously 678 */ 679 if (g_enumeration_done) { 680 for (pool = list_head(&g_pool_list); pool != NULL; 681 pool = list_next(&g_pool_list, pool)) { 682 683 if (strcmp(zpool_get_name(zhp), 684 zpool_get_name(pool->uap_zhp))) 685 continue; 686 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 687 list_remove(&g_pool_list, pool); 688 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 689 pool); 690 break; 691 } 692 } 693 } 694 695 zpool_close(zhp); 696 697 /* cease iteration after a match */ 698 return (dp->dd_found && dp->dd_num_spares == 0); 699 } 700 701 /* 702 * Given a physical device location, iterate over all 703 * (pool, vdev) pairs which correspond to that location. 704 */ 705 static boolean_t 706 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, 707 boolean_t is_slice, uint64_t new_vdev_guid) 708 { 709 dev_data_t data = { 0 }; 710 711 data.dd_compare = physical; 712 data.dd_func = func; 713 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 714 data.dd_found = B_FALSE; 715 data.dd_islabeled = is_slice; 716 data.dd_new_devid = devid; /* used by auto replace code */ 717 data.dd_new_vdev_guid = new_vdev_guid; 718 719 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 720 721 return (data.dd_found); 722 } 723 724 /* 725 * Given a device identifier, find any vdevs with a matching by-vdev 726 * path. Normally we shouldn't need this as the comparison would be 727 * made earlier in the devphys_iter(). For example, if we were replacing 728 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the 729 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28" 730 * of the new disk config. However, we've seen cases where 731 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's 732 * an example of a real 2-disk mirror pool where one disk was force 733 * faulted: 734 * 735 * com.delphix:vdev_zap_top: 129 736 * children[0]: 737 * type: 'disk' 738 * id: 0 739 * guid: 14309659774640089719 740 * path: '/dev/disk/by-vdev/L28' 741 * whole_disk: 0 742 * DTL: 654 743 * create_txg: 4 744 * com.delphix:vdev_zap_leaf: 1161 745 * faulted: 1 746 * aux_state: 'external' 747 * children[1]: 748 * type: 'disk' 749 * id: 1 750 * guid: 16002508084177980912 751 * path: '/dev/disk/by-vdev/L29' 752 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 753 * phys_path: 'L29' 754 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 755 * whole_disk: 0 756 * DTL: 1028 757 * create_txg: 4 758 * com.delphix:vdev_zap_leaf: 131 759 * 760 * So in the case above, the only thing we could compare is the path. 761 * 762 * We can do this because we assume by-vdev paths are authoritative as physical 763 * paths. We could not assume this for normal paths like /dev/sda since the 764 * physical location /dev/sda points to could change over time. 765 */ 766 static boolean_t 767 by_vdev_path_iter(const char *by_vdev_path, const char *devid, 768 zfs_process_func_t func, boolean_t is_slice) 769 { 770 dev_data_t data = { 0 }; 771 772 data.dd_compare = by_vdev_path; 773 data.dd_func = func; 774 data.dd_prop = ZPOOL_CONFIG_PATH; 775 data.dd_found = B_FALSE; 776 data.dd_islabeled = is_slice; 777 data.dd_new_devid = devid; 778 779 if (strncmp(by_vdev_path, DEV_BYVDEV_PATH, 780 strlen(DEV_BYVDEV_PATH)) != 0) { 781 /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */ 782 return (B_FALSE); 783 } 784 785 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 786 787 return (data.dd_found); 788 } 789 790 /* 791 * Given a device identifier, find any vdevs with a matching devid. 792 * On Linux we can match devid directly which is always a whole disk. 793 */ 794 static boolean_t 795 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) 796 { 797 dev_data_t data = { 0 }; 798 799 data.dd_compare = devid; 800 data.dd_func = func; 801 data.dd_prop = ZPOOL_CONFIG_DEVID; 802 data.dd_found = B_FALSE; 803 data.dd_islabeled = is_slice; 804 data.dd_new_devid = devid; 805 806 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 807 808 return (data.dd_found); 809 } 810 811 /* 812 * Given a device guid, find any vdevs with a matching guid. 813 */ 814 static boolean_t 815 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid, 816 zfs_process_func_t func, boolean_t is_slice) 817 { 818 dev_data_t data = { 0 }; 819 820 data.dd_func = func; 821 data.dd_found = B_FALSE; 822 data.dd_pool_guid = pool_guid; 823 data.dd_vdev_guid = vdev_guid; 824 data.dd_islabeled = is_slice; 825 data.dd_new_devid = devid; 826 827 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 828 829 return (data.dd_found); 830 } 831 832 /* 833 * Handle a EC_DEV_ADD.ESC_DISK event. 834 * 835 * illumos 836 * Expects: DEV_PHYS_PATH string in schema 837 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 838 * 839 * path: '/dev/dsk/c0t1d0s0' (persistent) 840 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' 841 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' 842 * 843 * linux 844 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema 845 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 846 * 847 * path: '/dev/sdc1' (not persistent) 848 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' 849 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' 850 */ 851 static int 852 zfs_deliver_add(nvlist_t *nvl) 853 { 854 const char *devpath = NULL, *devid = NULL; 855 uint64_t pool_guid = 0, vdev_guid = 0; 856 boolean_t is_slice; 857 858 /* 859 * Expecting a devid string and an optional physical location and guid 860 */ 861 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) { 862 zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__); 863 return (-1); 864 } 865 866 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); 867 (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid); 868 (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid); 869 870 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); 871 872 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", 873 devid, devpath ? devpath : "NULL", is_slice); 874 875 /* 876 * Iterate over all vdevs looking for a match in the following order: 877 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) 878 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). 879 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev). 880 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since 881 * by-vdev paths represent physical paths). 882 */ 883 if (devid_iter(devid, zfs_process_add, is_slice)) 884 return (0); 885 if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add, 886 is_slice, vdev_guid)) 887 return (0); 888 if (vdev_guid != 0) 889 (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add, 890 is_slice); 891 892 if (devpath != NULL) { 893 /* Can we match a /dev/disk/by-vdev/ path? */ 894 char by_vdev_path[MAXPATHLEN]; 895 snprintf(by_vdev_path, sizeof (by_vdev_path), 896 "/dev/disk/by-vdev/%s", devpath); 897 if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add, 898 is_slice)) 899 return (0); 900 } 901 902 return (0); 903 } 904 905 /* 906 * Called when we receive a VDEV_CHECK event, which indicates a device could not 907 * be opened during initial pool open, but the autoreplace property was set on 908 * the pool. In this case, we treat it as if it were an add event. 909 */ 910 static int 911 zfs_deliver_check(nvlist_t *nvl) 912 { 913 dev_data_t data = { 0 }; 914 915 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 916 &data.dd_pool_guid) != 0 || 917 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 918 &data.dd_vdev_guid) != 0 || 919 data.dd_vdev_guid == 0) 920 return (0); 921 922 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", 923 data.dd_pool_guid, data.dd_vdev_guid); 924 925 data.dd_func = zfs_process_add; 926 927 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 928 929 return (0); 930 } 931 932 /* 933 * Given a path to a vdev, lookup the vdev's physical size from its 934 * config nvlist. 935 * 936 * Returns the vdev's physical size in bytes on success, 0 on error. 937 */ 938 static uint64_t 939 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path) 940 { 941 nvlist_t *nvl = NULL; 942 boolean_t avail_spare, l2cache, log; 943 vdev_stat_t *vs = NULL; 944 uint_t c; 945 946 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 947 if (!nvl) 948 return (0); 949 950 verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS, 951 (uint64_t **)&vs, &c) == 0); 952 if (!vs) { 953 zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__, 954 vdev_path); 955 return (0); 956 } 957 958 return (vs->vs_pspace); 959 } 960 961 /* 962 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the 963 * config nvlist. "whole disk" means that ZFS was passed a whole disk 964 * at pool creation time, which it partitioned up and has full control over. 965 * Thus a partition with wholedisk=1 set tells us that zfs created the 966 * partition at creation time. A partition without whole disk set would have 967 * been created by externally (like with fdisk) and passed to ZFS. 968 * 969 * Returns the whole disk value (either 0 or 1). 970 */ 971 static uint64_t 972 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path) 973 { 974 nvlist_t *nvl = NULL; 975 boolean_t avail_spare, l2cache, log; 976 uint64_t wholedisk = 0; 977 978 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 979 if (!nvl) 980 return (0); 981 982 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 983 984 return (wholedisk); 985 } 986 987 /* 988 * If the device size grew more than 1% then return true. 989 */ 990 #define DEVICE_GREW(oldsize, newsize) \ 991 ((newsize > oldsize) && \ 992 ((newsize / (newsize - oldsize)) <= 100)) 993 994 static int 995 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 996 { 997 boolean_t avail_spare, l2cache; 998 nvlist_t *udev_nvl = data; 999 nvlist_t *tgt; 1000 int error; 1001 1002 const char *tmp_devname; 1003 char devname[MAXPATHLEN] = ""; 1004 uint64_t guid; 1005 1006 if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1007 sprintf(devname, "%llu", (u_longlong_t)guid); 1008 } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH, 1009 &tmp_devname) == 0) { 1010 strlcpy(devname, tmp_devname, MAXPATHLEN); 1011 zfs_append_partition(devname, MAXPATHLEN); 1012 } else { 1013 zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__); 1014 } 1015 1016 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", 1017 devname, zpool_get_name(zhp)); 1018 1019 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 1020 &avail_spare, &l2cache, NULL)) != NULL) { 1021 const char *path; 1022 char fullpath[MAXPATHLEN]; 1023 uint64_t wholedisk = 0; 1024 1025 error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path); 1026 if (error) { 1027 zpool_close(zhp); 1028 return (0); 1029 } 1030 1031 (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 1032 &wholedisk); 1033 1034 if (wholedisk) { 1035 char *tmp; 1036 path = strrchr(path, '/'); 1037 if (path != NULL) { 1038 tmp = zfs_strip_partition(path + 1); 1039 if (tmp == NULL) { 1040 zpool_close(zhp); 1041 return (0); 1042 } 1043 } else { 1044 zpool_close(zhp); 1045 return (0); 1046 } 1047 1048 (void) strlcpy(fullpath, tmp, sizeof (fullpath)); 1049 free(tmp); 1050 1051 /* 1052 * We need to reopen the pool associated with this 1053 * device so that the kernel can update the size of 1054 * the expanded device. When expanding there is no 1055 * need to restart the scrub from the beginning. 1056 */ 1057 boolean_t scrub_restart = B_FALSE; 1058 (void) zpool_reopen_one(zhp, &scrub_restart); 1059 } else { 1060 (void) strlcpy(fullpath, path, sizeof (fullpath)); 1061 } 1062 1063 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 1064 vdev_state_t newstate; 1065 1066 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) { 1067 /* 1068 * If this disk size has not changed, then 1069 * there's no need to do an autoexpand. To 1070 * check we look at the disk's size in its 1071 * config, and compare it to the disk size 1072 * that udev is reporting. 1073 */ 1074 uint64_t udev_size = 0, conf_size = 0, 1075 wholedisk = 0, udev_parent_size = 0; 1076 1077 /* 1078 * Get the size of our disk that udev is 1079 * reporting. 1080 */ 1081 if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE, 1082 &udev_size) != 0) { 1083 udev_size = 0; 1084 } 1085 1086 /* 1087 * Get the size of our disk's parent device 1088 * from udev (where sda1's parent is sda). 1089 */ 1090 if (nvlist_lookup_uint64(udev_nvl, 1091 DEV_PARENT_SIZE, &udev_parent_size) != 0) { 1092 udev_parent_size = 0; 1093 } 1094 1095 conf_size = vdev_size_from_config(zhp, 1096 fullpath); 1097 1098 wholedisk = vdev_whole_disk_from_config(zhp, 1099 fullpath); 1100 1101 /* 1102 * Only attempt an autoexpand if the vdev size 1103 * changed. There are two different cases 1104 * to consider. 1105 * 1106 * 1. wholedisk=1 1107 * If you do a 'zpool create' on a whole disk 1108 * (like /dev/sda), then zfs will create 1109 * partitions on the disk (like /dev/sda1). In 1110 * that case, wholedisk=1 will be set in the 1111 * partition's nvlist config. So zed will need 1112 * to see if your parent device (/dev/sda) 1113 * expanded in size, and if so, then attempt 1114 * the autoexpand. 1115 * 1116 * 2. wholedisk=0 1117 * If you do a 'zpool create' on an existing 1118 * partition, or a device that doesn't allow 1119 * partitions, then wholedisk=0, and you will 1120 * simply need to check if the device itself 1121 * expanded in size. 1122 */ 1123 if (DEVICE_GREW(conf_size, udev_size) || 1124 (wholedisk && DEVICE_GREW(conf_size, 1125 udev_parent_size))) { 1126 error = zpool_vdev_online(zhp, fullpath, 1127 0, &newstate); 1128 1129 zed_log_msg(LOG_INFO, 1130 "%s: autoexpanding '%s' from %llu" 1131 " to %llu bytes in pool '%s': %d", 1132 __func__, fullpath, conf_size, 1133 MAX(udev_size, udev_parent_size), 1134 zpool_get_name(zhp), error); 1135 } 1136 } 1137 } 1138 zpool_close(zhp); 1139 return (1); 1140 } 1141 zpool_close(zhp); 1142 return (0); 1143 } 1144 1145 /* 1146 * This function handles the ESC_DEV_DLE device change event. Use the 1147 * provided vdev guid when looking up a disk or partition, when the guid 1148 * is not present assume the entire disk is owned by ZFS and append the 1149 * expected -part1 partition information then lookup by physical path. 1150 */ 1151 static int 1152 zfs_deliver_dle(nvlist_t *nvl) 1153 { 1154 const char *devname; 1155 char name[MAXPATHLEN]; 1156 uint64_t guid; 1157 1158 if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1159 sprintf(name, "%llu", (u_longlong_t)guid); 1160 } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { 1161 strlcpy(name, devname, MAXPATHLEN); 1162 zfs_append_partition(name, MAXPATHLEN); 1163 } else { 1164 sprintf(name, "unknown"); 1165 zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); 1166 } 1167 1168 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) { 1169 zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " 1170 "found", name); 1171 return (1); 1172 } 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * syseventd daemon module event handler 1179 * 1180 * Handles syseventd daemon zfs device related events: 1181 * 1182 * EC_DEV_ADD.ESC_DISK 1183 * EC_DEV_STATUS.ESC_DEV_DLE 1184 * EC_ZFS.ESC_ZFS_VDEV_CHECK 1185 * 1186 * Note: assumes only one thread active at a time (not thread safe) 1187 */ 1188 static int 1189 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) 1190 { 1191 int ret; 1192 boolean_t is_check = B_FALSE, is_dle = B_FALSE; 1193 1194 if (strcmp(class, EC_DEV_ADD) == 0) { 1195 /* 1196 * We're mainly interested in disk additions, but we also listen 1197 * for new loop devices, to allow for simplified testing. 1198 */ 1199 if (strcmp(subclass, ESC_DISK) != 0 && 1200 strcmp(subclass, ESC_LOFI) != 0) 1201 return (0); 1202 1203 is_check = B_FALSE; 1204 } else if (strcmp(class, EC_ZFS) == 0 && 1205 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 1206 /* 1207 * This event signifies that a device failed to open 1208 * during pool load, but the 'autoreplace' property was 1209 * set, so we should pretend it's just been added. 1210 */ 1211 is_check = B_TRUE; 1212 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 1213 strcmp(subclass, ESC_DEV_DLE) == 0) { 1214 is_dle = B_TRUE; 1215 } else { 1216 return (0); 1217 } 1218 1219 if (is_dle) 1220 ret = zfs_deliver_dle(nvl); 1221 else if (is_check) 1222 ret = zfs_deliver_check(nvl); 1223 else 1224 ret = zfs_deliver_add(nvl); 1225 1226 return (ret); 1227 } 1228 1229 static void * 1230 zfs_enum_pools(void *arg) 1231 { 1232 (void) arg; 1233 1234 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 1235 /* 1236 * Linux - instead of using a thread pool, each list entry 1237 * will spawn a thread when an unavailable pool transitions 1238 * to available. zfs_slm_fini will wait for these threads. 1239 */ 1240 g_enumeration_done = B_TRUE; 1241 return (NULL); 1242 } 1243 1244 /* 1245 * called from zed daemon at startup 1246 * 1247 * sent messages from zevents or udev monitor 1248 * 1249 * For now, each agent has its own libzfs instance 1250 */ 1251 int 1252 zfs_slm_init(void) 1253 { 1254 if ((g_zfshdl = libzfs_init()) == NULL) 1255 return (-1); 1256 1257 /* 1258 * collect a list of unavailable pools (asynchronously, 1259 * since this can take a while) 1260 */ 1261 list_create(&g_pool_list, sizeof (struct unavailpool), 1262 offsetof(struct unavailpool, uap_node)); 1263 1264 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { 1265 list_destroy(&g_pool_list); 1266 libzfs_fini(g_zfshdl); 1267 return (-1); 1268 } 1269 1270 pthread_setname_np(g_zfs_tid, "enum-pools"); 1271 list_create(&g_device_list, sizeof (struct pendingdev), 1272 offsetof(struct pendingdev, pd_node)); 1273 1274 return (0); 1275 } 1276 1277 void 1278 zfs_slm_fini(void) 1279 { 1280 unavailpool_t *pool; 1281 pendingdev_t *device; 1282 1283 /* wait for zfs_enum_pools thread to complete */ 1284 (void) pthread_join(g_zfs_tid, NULL); 1285 /* destroy the thread pool */ 1286 if (g_tpool != NULL) { 1287 tpool_wait(g_tpool); 1288 tpool_destroy(g_tpool); 1289 } 1290 1291 while ((pool = (list_head(&g_pool_list))) != NULL) { 1292 list_remove(&g_pool_list, pool); 1293 zpool_close(pool->uap_zhp); 1294 free(pool); 1295 } 1296 list_destroy(&g_pool_list); 1297 1298 while ((device = (list_head(&g_device_list))) != NULL) { 1299 list_remove(&g_device_list, device); 1300 free(device); 1301 } 1302 list_destroy(&g_device_list); 1303 1304 libzfs_fini(g_zfshdl); 1305 } 1306 1307 void 1308 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) 1309 { 1310 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); 1311 (void) zfs_slm_deliver_event(class, subclass, nvl); 1312 } 1313