1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, Intel Corporation. 26 * Copyright (c) 2023, Klara Inc. 27 */ 28 29 #include <stddef.h> 30 #include <string.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <sys/types.h> 34 #include <sys/time.h> 35 #include <sys/fs/zfs.h> 36 #include <sys/fm/protocol.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/zio.h> 39 40 #include "zfs_agents.h" 41 #include "fmd_api.h" 42 43 /* 44 * Default values for the serd engine when processing checksum or io errors. The 45 * semantics are N <events> in T <seconds>. 46 */ 47 #define DEFAULT_CHECKSUM_N 10 /* events */ 48 #define DEFAULT_CHECKSUM_T 600 /* seconds */ 49 #define DEFAULT_IO_N 10 /* events */ 50 #define DEFAULT_IO_T 600 /* seconds */ 51 #define DEFAULT_SLOW_IO_N 10 /* events */ 52 #define DEFAULT_SLOW_IO_T 30 /* seconds */ 53 54 #define CASE_GC_TIMEOUT_SECS 43200 /* 12 hours */ 55 56 /* 57 * Our serd engines are named in the following format: 58 * 'zfs_<pool_guid>_<vdev_guid>_{checksum,io,slow_io}' 59 * This #define reserves enough space for two 64-bit hex values plus the 60 * length of the longest string. 61 */ 62 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 63 64 /* 65 * On-disk case structure. This must maintain backwards compatibility with 66 * previous versions of the DE. By default, any members appended to the end 67 * will be filled with zeros if they don't exist in a previous version. 68 */ 69 typedef struct zfs_case_data { 70 uint64_t zc_version; 71 uint64_t zc_ena; 72 uint64_t zc_pool_guid; 73 uint64_t zc_vdev_guid; 74 uint64_t zc_parent_guid; 75 int zc_pool_state; 76 char zc_serd_checksum[MAX_SERDLEN]; 77 char zc_serd_io[MAX_SERDLEN]; 78 char zc_serd_slow_io[MAX_SERDLEN]; 79 int zc_has_remove_timer; 80 } zfs_case_data_t; 81 82 /* 83 * Time-of-day 84 */ 85 typedef struct er_timeval { 86 uint64_t ertv_sec; 87 uint64_t ertv_nsec; 88 } er_timeval_t; 89 90 /* 91 * In-core case structure. 92 */ 93 typedef struct zfs_case { 94 boolean_t zc_present; 95 uint32_t zc_version; 96 zfs_case_data_t zc_data; 97 fmd_case_t *zc_case; 98 uu_list_node_t zc_node; 99 id_t zc_remove_timer; 100 char *zc_fru; 101 er_timeval_t zc_when; 102 } zfs_case_t; 103 104 #define CASE_DATA "data" 105 #define CASE_FRU "fru" 106 #define CASE_DATA_VERSION_INITIAL 1 107 #define CASE_DATA_VERSION_SERD 2 108 109 typedef struct zfs_de_stats { 110 fmd_stat_t old_drops; 111 fmd_stat_t dev_drops; 112 fmd_stat_t vdev_drops; 113 fmd_stat_t import_drops; 114 fmd_stat_t resource_drops; 115 } zfs_de_stats_t; 116 117 zfs_de_stats_t zfs_stats = { 118 { "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" }, 119 { "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"}, 120 { "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"}, 121 { "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" }, 122 { "resource_drops", FMD_TYPE_UINT64, "resource related ereports" } 123 }; 124 125 /* wait 15 seconds after a removal */ 126 static hrtime_t zfs_remove_timeout = SEC2NSEC(15); 127 128 uu_list_pool_t *zfs_case_pool; 129 uu_list_t *zfs_cases; 130 131 #define ZFS_MAKE_RSRC(type) \ 132 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type 133 #define ZFS_MAKE_EREPORT(type) \ 134 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type 135 136 static void zfs_purge_cases(fmd_hdl_t *hdl); 137 138 /* 139 * Write out the persistent representation of an active case. 140 */ 141 static void 142 zfs_case_serialize(zfs_case_t *zcp) 143 { 144 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 145 } 146 147 /* 148 * Read back the persistent representation of an active case. 149 */ 150 static zfs_case_t * 151 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 152 { 153 zfs_case_t *zcp; 154 155 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 156 zcp->zc_case = cp; 157 158 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 159 sizeof (zcp->zc_data)); 160 161 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 162 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 163 return (NULL); 164 } 165 166 /* 167 * fmd_buf_read() will have already zeroed out the remainder of the 168 * buffer, so we don't have to do anything special if the version 169 * doesn't include the SERD engine name. 170 */ 171 172 if (zcp->zc_data.zc_has_remove_timer) 173 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, 174 NULL, zfs_remove_timeout); 175 176 uu_list_node_init(zcp, &zcp->zc_node, zfs_case_pool); 177 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 178 179 fmd_case_setspecific(hdl, cp, zcp); 180 181 return (zcp); 182 } 183 184 /* 185 * Return count of other unique SERD cases under same vdev parent 186 */ 187 static uint_t 188 zfs_other_serd_cases(fmd_hdl_t *hdl, const zfs_case_data_t *zfs_case) 189 { 190 zfs_case_t *zcp; 191 uint_t cases = 0; 192 static hrtime_t next_check = 0; 193 194 /* 195 * Note that plumbing in some external GC would require adding locking, 196 * since most of this module code is not thread safe and assumes there 197 * is only one thread running against the module. So we perform GC here 198 * inline periodically so that future delay induced faults will be 199 * possible once the issue causing multiple vdev delays is resolved. 200 */ 201 if (gethrestime_sec() > next_check) { 202 /* Periodically purge old SERD entries and stale cases */ 203 fmd_serd_gc(hdl); 204 zfs_purge_cases(hdl); 205 next_check = gethrestime_sec() + CASE_GC_TIMEOUT_SECS; 206 } 207 208 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 209 zcp = uu_list_next(zfs_cases, zcp)) { 210 zfs_case_data_t *zcd = &zcp->zc_data; 211 212 /* 213 * must be same pool and parent vdev but different leaf vdev 214 */ 215 if (zcd->zc_pool_guid != zfs_case->zc_pool_guid || 216 zcd->zc_parent_guid != zfs_case->zc_parent_guid || 217 zcd->zc_vdev_guid == zfs_case->zc_vdev_guid) { 218 continue; 219 } 220 221 /* 222 * Check if there is another active serd case besides zfs_case 223 * 224 * Only one serd engine will be assigned to the case 225 */ 226 if (zcd->zc_serd_checksum[0] == zfs_case->zc_serd_checksum[0] && 227 fmd_serd_active(hdl, zcd->zc_serd_checksum)) { 228 cases++; 229 } 230 if (zcd->zc_serd_io[0] == zfs_case->zc_serd_io[0] && 231 fmd_serd_active(hdl, zcd->zc_serd_io)) { 232 cases++; 233 } 234 if (zcd->zc_serd_slow_io[0] == zfs_case->zc_serd_slow_io[0] && 235 fmd_serd_active(hdl, zcd->zc_serd_slow_io)) { 236 cases++; 237 } 238 } 239 return (cases); 240 } 241 242 /* 243 * Iterate over any active cases. If any cases are associated with a pool or 244 * vdev which is no longer present on the system, close the associated case. 245 */ 246 static void 247 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded) 248 { 249 uint64_t vdev_guid = 0; 250 uint_t c, children; 251 nvlist_t **child; 252 zfs_case_t *zcp; 253 254 (void) nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 255 256 /* 257 * Mark any cases associated with this (pool, vdev) pair. 258 */ 259 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 260 zcp = uu_list_next(zfs_cases, zcp)) { 261 if (zcp->zc_data.zc_pool_guid == pool_guid && 262 zcp->zc_data.zc_vdev_guid == vdev_guid) { 263 zcp->zc_present = B_TRUE; 264 zcp->zc_when = *loaded; 265 } 266 } 267 268 /* 269 * Iterate over all children. 270 */ 271 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 272 &children) == 0) { 273 for (c = 0; c < children; c++) 274 zfs_mark_vdev(pool_guid, child[c], loaded); 275 } 276 277 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child, 278 &children) == 0) { 279 for (c = 0; c < children; c++) 280 zfs_mark_vdev(pool_guid, child[c], loaded); 281 } 282 283 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child, 284 &children) == 0) { 285 for (c = 0; c < children; c++) 286 zfs_mark_vdev(pool_guid, child[c], loaded); 287 } 288 } 289 290 static int 291 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 292 { 293 (void) unused; 294 zfs_case_t *zcp; 295 uint64_t pool_guid; 296 uint64_t *tod; 297 er_timeval_t loaded = { 0 }; 298 nvlist_t *config, *vd; 299 uint_t nelem = 0; 300 int ret; 301 302 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 303 /* 304 * Mark any cases associated with just this pool. 305 */ 306 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 307 zcp = uu_list_next(zfs_cases, zcp)) { 308 if (zcp->zc_data.zc_pool_guid == pool_guid && 309 zcp->zc_data.zc_vdev_guid == 0) 310 zcp->zc_present = B_TRUE; 311 } 312 313 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 314 zpool_close(zhp); 315 return (-1); 316 } 317 318 (void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 319 &tod, &nelem); 320 if (nelem == 2) { 321 loaded.ertv_sec = tod[0]; 322 loaded.ertv_nsec = tod[1]; 323 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 324 zcp = uu_list_next(zfs_cases, zcp)) { 325 if (zcp->zc_data.zc_pool_guid == pool_guid && 326 zcp->zc_data.zc_vdev_guid == 0) { 327 zcp->zc_when = loaded; 328 } 329 } 330 } 331 332 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 333 if (ret) { 334 zpool_close(zhp); 335 return (-1); 336 } 337 338 zfs_mark_vdev(pool_guid, vd, &loaded); 339 340 zpool_close(zhp); 341 342 return (0); 343 } 344 345 struct load_time_arg { 346 uint64_t lt_guid; 347 er_timeval_t *lt_time; 348 boolean_t lt_found; 349 }; 350 351 static int 352 zpool_find_load_time(zpool_handle_t *zhp, void *arg) 353 { 354 struct load_time_arg *lta = arg; 355 uint64_t pool_guid; 356 uint64_t *tod; 357 nvlist_t *config; 358 uint_t nelem; 359 360 if (lta->lt_found) { 361 zpool_close(zhp); 362 return (0); 363 } 364 365 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 366 if (pool_guid != lta->lt_guid) { 367 zpool_close(zhp); 368 return (0); 369 } 370 371 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 372 zpool_close(zhp); 373 return (-1); 374 } 375 376 if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 377 &tod, &nelem) == 0 && nelem == 2) { 378 lta->lt_found = B_TRUE; 379 lta->lt_time->ertv_sec = tod[0]; 380 lta->lt_time->ertv_nsec = tod[1]; 381 } 382 383 zpool_close(zhp); 384 385 return (0); 386 } 387 388 static void 389 zfs_purge_cases(fmd_hdl_t *hdl) 390 { 391 zfs_case_t *zcp; 392 uu_list_walk_t *walk; 393 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 394 395 /* 396 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 397 * matter what we do, we're going to have to stomach an O(vdevs * cases) 398 * algorithm. In reality, both quantities are likely so small that 399 * neither will matter. Given that iterating over pools is more 400 * expensive than iterating over the in-memory case list, we opt for a 401 * 'present' flag in each case that starts off cleared. We then iterate 402 * over all pools, marking those that are still present, and removing 403 * those that aren't found. 404 * 405 * Note that we could also construct an FMRI and rely on 406 * fmd_nvl_fmri_present(), but this would end up doing the same search. 407 */ 408 409 /* 410 * Mark the cases as not present. 411 */ 412 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 413 zcp = uu_list_next(zfs_cases, zcp)) 414 zcp->zc_present = B_FALSE; 415 416 /* 417 * Iterate over all pools and mark the pools and vdevs found. If this 418 * fails (most probably because we're out of memory), then don't close 419 * any of the cases and we cannot be sure they are accurate. 420 */ 421 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 422 return; 423 424 /* 425 * Remove those cases which were not found. 426 */ 427 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 428 while ((zcp = uu_list_walk_next(walk)) != NULL) { 429 if (!zcp->zc_present) 430 fmd_case_close(hdl, zcp->zc_case); 431 } 432 uu_list_walk_end(walk); 433 } 434 435 /* 436 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 437 * checksum). 438 */ 439 static void 440 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 441 const char *type) 442 { 443 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", 444 (long long unsigned int)pool_guid, 445 (long long unsigned int)vdev_guid, type); 446 } 447 448 static void 449 zfs_case_retire(fmd_hdl_t *hdl, zfs_case_t *zcp) 450 { 451 fmd_hdl_debug(hdl, "retiring case"); 452 453 fmd_case_close(hdl, zcp->zc_case); 454 } 455 456 /* 457 * Solve a given ZFS case. This first checks to make sure the diagnosis is 458 * still valid, as well as cleaning up any pending timer associated with the 459 * case. 460 */ 461 static void 462 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname) 463 { 464 nvlist_t *detector, *fault; 465 boolean_t serialize; 466 nvlist_t *fru = NULL; 467 fmd_hdl_debug(hdl, "solving fault '%s'", faultname); 468 469 /* 470 * Construct the detector from the case data. The detector is in the 471 * ZFS scheme, and is either the pool or the vdev, depending on whether 472 * this is a vdev or pool fault. 473 */ 474 detector = fmd_nvl_alloc(hdl, FMD_SLEEP); 475 476 (void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0); 477 (void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS); 478 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 479 zcp->zc_data.zc_pool_guid); 480 if (zcp->zc_data.zc_vdev_guid != 0) { 481 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 482 zcp->zc_data.zc_vdev_guid); 483 } 484 485 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, 486 fru, detector); 487 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 488 489 nvlist_free(fru); 490 491 fmd_case_solve(hdl, zcp->zc_case); 492 493 serialize = B_FALSE; 494 if (zcp->zc_data.zc_has_remove_timer) { 495 fmd_timer_remove(hdl, zcp->zc_remove_timer); 496 zcp->zc_data.zc_has_remove_timer = 0; 497 serialize = B_TRUE; 498 } 499 if (serialize) 500 zfs_case_serialize(zcp); 501 502 nvlist_free(detector); 503 } 504 505 static boolean_t 506 timeval_earlier(er_timeval_t *a, er_timeval_t *b) 507 { 508 return (a->ertv_sec < b->ertv_sec || 509 (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec)); 510 } 511 512 static void 513 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when) 514 { 515 (void) hdl; 516 int64_t *tod; 517 uint_t nelem; 518 519 if (nvlist_lookup_int64_array(nvl, FM_EREPORT_TIME, &tod, 520 &nelem) == 0 && nelem == 2) { 521 when->ertv_sec = tod[0]; 522 when->ertv_nsec = tod[1]; 523 } else { 524 when->ertv_sec = when->ertv_nsec = UINT64_MAX; 525 } 526 } 527 528 /* 529 * Record the specified event in the SERD engine and return a 530 * boolean value indicating whether or not the engine fired as 531 * the result of inserting this event. 532 * 533 * When the pool has similar active cases on other vdevs, then 534 * the fired state is disregarded and the case is retired. 535 */ 536 static int 537 zfs_fm_serd_record(fmd_hdl_t *hdl, const char *name, fmd_event_t *ep, 538 zfs_case_t *zcp, const char *err_type) 539 { 540 int fired = fmd_serd_record(hdl, name, ep); 541 int peers = 0; 542 543 if (fired && (peers = zfs_other_serd_cases(hdl, &zcp->zc_data)) > 0) { 544 fmd_hdl_debug(hdl, "pool %llu is tracking %d other %s cases " 545 "-- skip faulting the vdev %llu", 546 (u_longlong_t)zcp->zc_data.zc_pool_guid, 547 peers, err_type, 548 (u_longlong_t)zcp->zc_data.zc_vdev_guid); 549 zfs_case_retire(hdl, zcp); 550 fired = 0; 551 } 552 553 return (fired); 554 } 555 556 /* 557 * Main fmd entry point. 558 */ 559 static void 560 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 561 { 562 zfs_case_t *zcp, *dcp; 563 int32_t pool_state; 564 uint64_t ena, pool_guid, vdev_guid, parent_guid; 565 uint64_t checksum_n, checksum_t; 566 uint64_t io_n, io_t; 567 er_timeval_t pool_load; 568 er_timeval_t er_when; 569 nvlist_t *detector; 570 boolean_t pool_found = B_FALSE; 571 boolean_t isresource; 572 const char *type; 573 574 /* 575 * We subscribe to notifications for vdev or pool removal. In these 576 * cases, there may be cases that no longer apply. Purge any cases 577 * that no longer apply. 578 */ 579 if (fmd_nvl_class_match(hdl, nvl, "sysevent.fs.zfs.*")) { 580 fmd_hdl_debug(hdl, "purging orphaned cases from %s", 581 strrchr(class, '.') + 1); 582 zfs_purge_cases(hdl); 583 zfs_stats.resource_drops.fmds_value.ui64++; 584 return; 585 } 586 587 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 588 589 if (isresource) { 590 /* 591 * For resources, we don't have a normal payload. 592 */ 593 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 594 &vdev_guid) != 0) 595 pool_state = SPA_LOAD_OPEN; 596 else 597 pool_state = SPA_LOAD_NONE; 598 detector = NULL; 599 } else { 600 (void) nvlist_lookup_nvlist(nvl, 601 FM_EREPORT_DETECTOR, &detector); 602 (void) nvlist_lookup_int32(nvl, 603 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 604 } 605 606 /* 607 * We also ignore all ereports generated during an import of a pool, 608 * since the only possible fault (.pool) would result in import failure, 609 * and hence no persistent fault. Some day we may want to do something 610 * with these ereports, so we continue generating them internally. 611 */ 612 if (pool_state == SPA_LOAD_IMPORT) { 613 zfs_stats.import_drops.fmds_value.ui64++; 614 fmd_hdl_debug(hdl, "ignoring '%s' during import", class); 615 return; 616 } 617 618 /* 619 * Device I/O errors are ignored during pool open. 620 */ 621 if (pool_state == SPA_LOAD_OPEN && 622 (fmd_nvl_class_match(hdl, nvl, 623 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 624 fmd_nvl_class_match(hdl, nvl, 625 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 626 fmd_nvl_class_match(hdl, nvl, 627 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) { 628 fmd_hdl_debug(hdl, "ignoring '%s' during pool open", class); 629 zfs_stats.dev_drops.fmds_value.ui64++; 630 return; 631 } 632 633 /* 634 * We ignore ereports for anything except disks and files. 635 */ 636 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 637 &type) == 0) { 638 if (strcmp(type, VDEV_TYPE_DISK) != 0 && 639 strcmp(type, VDEV_TYPE_FILE) != 0) { 640 zfs_stats.vdev_drops.fmds_value.ui64++; 641 return; 642 } 643 } 644 645 /* 646 * Determine if this ereport corresponds to an open case. 647 * Each vdev or pool can have a single case. 648 */ 649 (void) nvlist_lookup_uint64(nvl, 650 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 651 if (nvlist_lookup_uint64(nvl, 652 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 653 vdev_guid = 0; 654 if (nvlist_lookup_uint64(nvl, 655 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, &parent_guid) != 0) 656 parent_guid = 0; 657 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 658 ena = 0; 659 660 zfs_ereport_when(hdl, nvl, &er_when); 661 662 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 663 zcp = uu_list_next(zfs_cases, zcp)) { 664 if (zcp->zc_data.zc_pool_guid == pool_guid) { 665 pool_found = B_TRUE; 666 pool_load = zcp->zc_when; 667 } 668 if (zcp->zc_data.zc_vdev_guid == vdev_guid) 669 break; 670 } 671 672 /* 673 * Avoid falsely accusing a pool of being faulty. Do so by 674 * not replaying ereports that were generated prior to the 675 * current import. If the failure that generated them was 676 * transient because the device was actually removed but we 677 * didn't receive the normal asynchronous notification, we 678 * don't want to mark it as faulted and potentially panic. If 679 * there is still a problem we'd expect not to be able to 680 * import the pool, or that new ereports will be generated 681 * once the pool is used. 682 */ 683 if (pool_found && timeval_earlier(&er_when, &pool_load)) { 684 fmd_hdl_debug(hdl, "ignoring pool %llx, " 685 "ereport time %lld.%lld, pool load time = %lld.%lld", 686 pool_guid, er_when.ertv_sec, er_when.ertv_nsec, 687 pool_load.ertv_sec, pool_load.ertv_nsec); 688 zfs_stats.old_drops.fmds_value.ui64++; 689 return; 690 } 691 692 if (!pool_found) { 693 /* 694 * Haven't yet seen this pool, but same situation 695 * may apply. 696 */ 697 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 698 struct load_time_arg la; 699 700 la.lt_guid = pool_guid; 701 la.lt_time = &pool_load; 702 la.lt_found = B_FALSE; 703 704 if (zhdl != NULL && 705 zpool_iter(zhdl, zpool_find_load_time, &la) == 0 && 706 la.lt_found == B_TRUE) { 707 pool_found = B_TRUE; 708 709 if (timeval_earlier(&er_when, &pool_load)) { 710 fmd_hdl_debug(hdl, "ignoring pool %llx, " 711 "ereport time %lld.%lld, " 712 "pool load time = %lld.%lld", 713 pool_guid, er_when.ertv_sec, 714 er_when.ertv_nsec, pool_load.ertv_sec, 715 pool_load.ertv_nsec); 716 zfs_stats.old_drops.fmds_value.ui64++; 717 return; 718 } 719 } 720 } 721 722 if (zcp == NULL) { 723 fmd_case_t *cs; 724 zfs_case_data_t data = { 0 }; 725 726 /* 727 * If this is one of our 'fake' resource ereports, and there is 728 * no case open, simply discard it. 729 */ 730 if (isresource) { 731 zfs_stats.resource_drops.fmds_value.ui64++; 732 fmd_hdl_debug(hdl, "discarding '%s for vdev %llu", 733 class, vdev_guid); 734 return; 735 } 736 737 /* 738 * Skip tracking some ereports 739 */ 740 if (strcmp(class, 741 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DATA)) == 0 || 742 strcmp(class, 743 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE)) == 0) { 744 zfs_stats.resource_drops.fmds_value.ui64++; 745 return; 746 } 747 748 /* 749 * Open a new case. 750 */ 751 cs = fmd_case_open(hdl, NULL); 752 753 fmd_hdl_debug(hdl, "opening case for vdev %llu due to '%s'", 754 vdev_guid, class); 755 756 /* 757 * Initialize the case buffer. To commonize code, we actually 758 * create the buffer with existing data, and then call 759 * zfs_case_unserialize() to instantiate the in-core structure. 760 */ 761 fmd_buf_create(hdl, cs, CASE_DATA, sizeof (zfs_case_data_t)); 762 763 data.zc_version = CASE_DATA_VERSION_SERD; 764 data.zc_ena = ena; 765 data.zc_pool_guid = pool_guid; 766 data.zc_vdev_guid = vdev_guid; 767 data.zc_parent_guid = parent_guid; 768 data.zc_pool_state = (int)pool_state; 769 770 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 771 772 zcp = zfs_case_unserialize(hdl, cs); 773 assert(zcp != NULL); 774 if (pool_found) 775 zcp->zc_when = pool_load; 776 } 777 778 if (isresource) { 779 fmd_hdl_debug(hdl, "resource event '%s'", class); 780 781 if (fmd_nvl_class_match(hdl, nvl, 782 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) { 783 /* 784 * The 'resource.fs.zfs.autoreplace' event indicates 785 * that the pool was loaded with the 'autoreplace' 786 * property set. In this case, any pending device 787 * failures should be ignored, as the asynchronous 788 * autoreplace handling will take care of them. 789 */ 790 fmd_case_close(hdl, zcp->zc_case); 791 } else if (fmd_nvl_class_match(hdl, nvl, 792 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) { 793 /* 794 * The 'resource.fs.zfs.removed' event indicates that 795 * device removal was detected, and the device was 796 * closed asynchronously. If this is the case, we 797 * assume that any recent I/O errors were due to the 798 * device removal, not any fault of the device itself. 799 * We reset the SERD engine, and cancel any pending 800 * timers. 801 */ 802 if (zcp->zc_data.zc_has_remove_timer) { 803 fmd_timer_remove(hdl, zcp->zc_remove_timer); 804 zcp->zc_data.zc_has_remove_timer = 0; 805 zfs_case_serialize(zcp); 806 } 807 if (zcp->zc_data.zc_serd_io[0] != '\0') 808 fmd_serd_reset(hdl, zcp->zc_data.zc_serd_io); 809 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 810 fmd_serd_reset(hdl, 811 zcp->zc_data.zc_serd_checksum); 812 if (zcp->zc_data.zc_serd_slow_io[0] != '\0') 813 fmd_serd_reset(hdl, 814 zcp->zc_data.zc_serd_slow_io); 815 } else if (fmd_nvl_class_match(hdl, nvl, 816 ZFS_MAKE_RSRC(FM_RESOURCE_STATECHANGE))) { 817 uint64_t state = 0; 818 819 if (zcp != NULL && 820 nvlist_lookup_uint64(nvl, 821 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state) == 0 && 822 state == VDEV_STATE_HEALTHY) { 823 fmd_hdl_debug(hdl, "closing case after a " 824 "device statechange to healthy"); 825 fmd_case_close(hdl, zcp->zc_case); 826 } 827 } 828 zfs_stats.resource_drops.fmds_value.ui64++; 829 return; 830 } 831 832 /* 833 * Associate the ereport with this case. 834 */ 835 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 836 837 /* 838 * Don't do anything else if this case is already solved. 839 */ 840 if (fmd_case_solved(hdl, zcp->zc_case)) 841 return; 842 843 if (vdev_guid) 844 fmd_hdl_debug(hdl, "error event '%s', vdev %llu", class, 845 vdev_guid); 846 else 847 fmd_hdl_debug(hdl, "error event '%s'", class); 848 849 /* 850 * Determine if we should solve the case and generate a fault. We solve 851 * a case if: 852 * 853 * a. A pool failed to open (ereport.fs.zfs.pool) 854 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 855 * was up and running. 856 * 857 * We may see a series of ereports associated with a pool open, all 858 * chained together by the same ENA. If the pool open succeeds, then 859 * we'll see no further ereports. To detect when a pool open has 860 * succeeded, we associate a timer with the event. When it expires, we 861 * close the case. 862 */ 863 if (fmd_nvl_class_match(hdl, nvl, 864 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) { 865 /* 866 * Pool level fault. Before solving the case, go through and 867 * close any open device cases that may be pending. 868 */ 869 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 870 dcp = uu_list_next(zfs_cases, dcp)) { 871 if (dcp->zc_data.zc_pool_guid == 872 zcp->zc_data.zc_pool_guid && 873 dcp->zc_data.zc_vdev_guid != 0) 874 fmd_case_close(hdl, dcp->zc_case); 875 } 876 877 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool"); 878 } else if (fmd_nvl_class_match(hdl, nvl, 879 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) { 880 /* 881 * Pool level fault for reading the intent logs. 882 */ 883 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay"); 884 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 885 /* 886 * Device fault. 887 */ 888 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device"); 889 } else if (fmd_nvl_class_match(hdl, nvl, 890 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 891 fmd_nvl_class_match(hdl, nvl, 892 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 893 fmd_nvl_class_match(hdl, nvl, 894 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) || 895 fmd_nvl_class_match(hdl, nvl, 896 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY)) || 897 fmd_nvl_class_match(hdl, nvl, 898 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 899 const char *failmode = NULL; 900 boolean_t checkremove = B_FALSE; 901 uint32_t pri = 0; 902 903 /* 904 * If this is a checksum or I/O error, then toss it into the 905 * appropriate SERD engine and check to see if it has fired. 906 * Ideally, we want to do something more sophisticated, 907 * (persistent errors for a single data block, etc). For now, 908 * a single SERD engine is sufficient. 909 */ 910 if (fmd_nvl_class_match(hdl, nvl, 911 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) { 912 if (zcp->zc_data.zc_serd_io[0] == '\0') { 913 if (nvlist_lookup_uint64(nvl, 914 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N, 915 &io_n) != 0) { 916 io_n = DEFAULT_IO_N; 917 } 918 if (nvlist_lookup_uint64(nvl, 919 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T, 920 &io_t) != 0) { 921 io_t = DEFAULT_IO_T; 922 } 923 zfs_serd_name(zcp->zc_data.zc_serd_io, 924 pool_guid, vdev_guid, "io"); 925 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 926 io_n, 927 SEC2NSEC(io_t)); 928 zfs_case_serialize(zcp); 929 } 930 if (zfs_fm_serd_record(hdl, zcp->zc_data.zc_serd_io, 931 ep, zcp, "io error")) { 932 checkremove = B_TRUE; 933 } 934 } else if (fmd_nvl_class_match(hdl, nvl, 935 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY))) { 936 uint64_t slow_io_n, slow_io_t; 937 938 /* 939 * Create a slow io SERD engine when the VDEV has the 940 * 'vdev_slow_io_n' and 'vdev_slow_io_n' properties. 941 */ 942 if (zcp->zc_data.zc_serd_slow_io[0] == '\0' && 943 nvlist_lookup_uint64(nvl, 944 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N, 945 &slow_io_n) == 0 && 946 nvlist_lookup_uint64(nvl, 947 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T, 948 &slow_io_t) == 0) { 949 zfs_serd_name(zcp->zc_data.zc_serd_slow_io, 950 pool_guid, vdev_guid, "slow_io"); 951 fmd_serd_create(hdl, 952 zcp->zc_data.zc_serd_slow_io, 953 slow_io_n, 954 SEC2NSEC(slow_io_t)); 955 zfs_case_serialize(zcp); 956 } 957 /* Pass event to SERD engine and see if this triggers */ 958 if (zcp->zc_data.zc_serd_slow_io[0] != '\0' && 959 zfs_fm_serd_record(hdl, 960 zcp->zc_data.zc_serd_slow_io, ep, zcp, "slow io")) { 961 zfs_case_solve(hdl, zcp, 962 "fault.fs.zfs.vdev.slow_io"); 963 } 964 } else if (fmd_nvl_class_match(hdl, nvl, 965 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) { 966 uint64_t flags = 0; 967 int32_t flags32 = 0; 968 /* 969 * We ignore ereports for checksum errors generated by 970 * scrub/resilver I/O to avoid potentially further 971 * degrading the pool while it's being repaired. 972 * 973 * Note that FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS used to 974 * be int32. To allow newer zed to work on older 975 * kernels, if we don't find the flags, we look for 976 * the older ones too. 977 */ 978 if (((nvlist_lookup_uint32(nvl, 979 FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, &pri) == 0) && 980 (pri == ZIO_PRIORITY_SCRUB || 981 pri == ZIO_PRIORITY_REBUILD)) || 982 ((nvlist_lookup_uint64(nvl, 983 FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, &flags) == 0) && 984 (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) || 985 ((nvlist_lookup_int32(nvl, 986 FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, &flags32) == 0) && 987 (flags32 & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))) { 988 fmd_hdl_debug(hdl, "ignoring '%s' for " 989 "scrub/resilver I/O", class); 990 return; 991 } 992 993 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 994 if (nvlist_lookup_uint64(nvl, 995 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N, 996 &checksum_n) != 0) { 997 checksum_n = DEFAULT_CHECKSUM_N; 998 } 999 if (nvlist_lookup_uint64(nvl, 1000 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T, 1001 &checksum_t) != 0) { 1002 checksum_t = DEFAULT_CHECKSUM_T; 1003 } 1004 1005 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 1006 pool_guid, vdev_guid, "checksum"); 1007 fmd_serd_create(hdl, 1008 zcp->zc_data.zc_serd_checksum, 1009 checksum_n, 1010 SEC2NSEC(checksum_t)); 1011 zfs_case_serialize(zcp); 1012 } 1013 if (zfs_fm_serd_record(hdl, 1014 zcp->zc_data.zc_serd_checksum, ep, zcp, 1015 "checksum")) { 1016 zfs_case_solve(hdl, zcp, 1017 "fault.fs.zfs.vdev.checksum"); 1018 } 1019 } else if (fmd_nvl_class_match(hdl, nvl, 1020 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) && 1021 (nvlist_lookup_string(nvl, 1022 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 1023 failmode != NULL) { 1024 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 1025 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 1026 zfs_case_solve(hdl, zcp, 1027 "fault.fs.zfs.io_failure_continue"); 1028 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 1029 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 1030 zfs_case_solve(hdl, zcp, 1031 "fault.fs.zfs.io_failure_wait"); 1032 } 1033 } else if (fmd_nvl_class_match(hdl, nvl, 1034 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 1035 #ifndef __linux__ 1036 /* This causes an unexpected fault diagnosis on linux */ 1037 checkremove = B_TRUE; 1038 #endif 1039 } 1040 1041 /* 1042 * Because I/O errors may be due to device removal, we postpone 1043 * any diagnosis until we're sure that we aren't about to 1044 * receive a 'resource.fs.zfs.removed' event. 1045 */ 1046 if (checkremove) { 1047 if (zcp->zc_data.zc_has_remove_timer) 1048 fmd_timer_remove(hdl, zcp->zc_remove_timer); 1049 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL, 1050 zfs_remove_timeout); 1051 if (!zcp->zc_data.zc_has_remove_timer) { 1052 zcp->zc_data.zc_has_remove_timer = 1; 1053 zfs_case_serialize(zcp); 1054 } 1055 } 1056 } 1057 } 1058 1059 /* 1060 * The timeout is fired when we diagnosed an I/O error, and it was not due to 1061 * device removal (which would cause the timeout to be cancelled). 1062 */ 1063 static void 1064 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 1065 { 1066 zfs_case_t *zcp = data; 1067 1068 if (id == zcp->zc_remove_timer) 1069 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io"); 1070 } 1071 1072 /* 1073 * The specified case has been closed and any case-specific 1074 * data structures should be deallocated. 1075 */ 1076 static void 1077 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 1078 { 1079 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 1080 1081 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 1082 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 1083 if (zcp->zc_data.zc_serd_io[0] != '\0') 1084 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 1085 if (zcp->zc_data.zc_serd_slow_io[0] != '\0') 1086 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_slow_io); 1087 if (zcp->zc_data.zc_has_remove_timer) 1088 fmd_timer_remove(hdl, zcp->zc_remove_timer); 1089 1090 uu_list_remove(zfs_cases, zcp); 1091 uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool); 1092 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 1093 } 1094 1095 static const fmd_hdl_ops_t fmd_ops = { 1096 zfs_fm_recv, /* fmdo_recv */ 1097 zfs_fm_timeout, /* fmdo_timeout */ 1098 zfs_fm_close, /* fmdo_close */ 1099 NULL, /* fmdo_stats */ 1100 NULL, /* fmdo_gc */ 1101 }; 1102 1103 static const fmd_prop_t fmd_props[] = { 1104 { NULL, 0, NULL } 1105 }; 1106 1107 static const fmd_hdl_info_t fmd_info = { 1108 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 1109 }; 1110 1111 void 1112 _zfs_diagnosis_init(fmd_hdl_t *hdl) 1113 { 1114 libzfs_handle_t *zhdl; 1115 1116 if ((zhdl = libzfs_init()) == NULL) 1117 return; 1118 1119 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 1120 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 1121 NULL, UU_LIST_POOL_DEBUG)) == NULL) { 1122 libzfs_fini(zhdl); 1123 return; 1124 } 1125 1126 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 1127 UU_LIST_DEBUG)) == NULL) { 1128 uu_list_pool_destroy(zfs_case_pool); 1129 libzfs_fini(zhdl); 1130 return; 1131 } 1132 1133 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 1134 uu_list_destroy(zfs_cases); 1135 uu_list_pool_destroy(zfs_case_pool); 1136 libzfs_fini(zhdl); 1137 return; 1138 } 1139 1140 fmd_hdl_setspecific(hdl, zhdl); 1141 1142 (void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) / 1143 sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats); 1144 } 1145 1146 void 1147 _zfs_diagnosis_fini(fmd_hdl_t *hdl) 1148 { 1149 zfs_case_t *zcp; 1150 uu_list_walk_t *walk; 1151 libzfs_handle_t *zhdl; 1152 1153 /* 1154 * Remove all active cases. 1155 */ 1156 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 1157 while ((zcp = uu_list_walk_next(walk)) != NULL) { 1158 fmd_hdl_debug(hdl, "removing case ena %llu", 1159 (long long unsigned)zcp->zc_data.zc_ena); 1160 uu_list_remove(zfs_cases, zcp); 1161 uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool); 1162 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 1163 } 1164 uu_list_walk_end(walk); 1165 1166 uu_list_destroy(zfs_cases); 1167 uu_list_pool_destroy(zfs_case_pool); 1168 1169 zhdl = fmd_hdl_getspecific(hdl); 1170 libzfs_fini(zhdl); 1171 } 1172